Mucopolysaccharidosis type II (MPS II), also known as Hunter syndrome, is a rare X-linked lysosomal storage disorder caused by the lack or deficiency of iduronate 2-sulfatase (IDS), a lysosomal enzyme involved in the first step of heparan and dermatan sulfate degradative pathway. This results in a plethora of somatic and central nervous system (CNS)-related symptoms with high clinical variability and different age of onset. While enzyme replacement therapy can alleviate somatic manifestations, the CNS remains untreatable. Historically, the pathogenesis of MPSs has been attributed to the progressive intracellular accumulation of undegraded glycosaminoglycans (GAGs) and inflammation; however, it is now clear that more complex pathogenic mechanisms may contribute to the pathological manifestations, including impaired autophagy and altered developmental cell signalling. In this context, I exploited the MPS II zebrafish model to deepen the understanding of early pathological mechanisms during brain development. In particular, I focused my research on the investigation of Netrin and Deleted in colorectal cancer (Dcc), one of the most important pair of ligand and receptors, involved in axon guidance-mediated chemoattraction. While both Netrin and Dcc showed altered expression pattern in a in situ-based screening, only Dcc was consistently found altered at protein levels. To this purpose, I performed western blot analysis on dissected heads and isolated brains at early developmental stages. Moreover, to scale up the resolution of my investigation, I set up an optimized protocol for zebrafish primary neuronal-enriched cell culture. This tool allowed me to narrow down Dcc dysregulation specifically to the neuronal compartment. The in vitro neuronal model allowed to detect alterations in Dcc downstream cascade activation, lysosomal acidification and Ras-associated binding 7 (Rab7) protein levels in mutant cells. In addition, I applied zebrafish primary neurons to a microfluidic system to dissect axonal morphology. Indeed, mutant-derived neurons showed shorter axons when compared to control cells. Since Dcc regulation relies on vesicular trafficking, I analysed Dcc intracellular localization in the head of MPS II larvae. Toward this aim, I set up a novel protocol of fractional precipitation applied to zebrafish protein extracts that allowed me to find an altered Dcc localization in ids mutant conditions. Moreover, Dcc analysis at later time points highlighted a consistent dysregulation of this receptor beyond the developmental phase. In addition, a Glial fibrillary acidic protein (Gfap) protein levels analysis revealed that pathological abnormalities are traceable since 1 month of age in MPS II zebrafish brains, suggesting early glial cell activation. Western blot analysis of heparan sulfates (HS) showed no significant differences between wild type and ids mutant larvae at early developmental stages. On the other hand, whole mount brain HS immunofluorescence pointed out abnormal choroid plexus architecture in MPS II larvae. Finally, retinotopic mapping and multiple behavioural tests based on visual stimulation suggested subtle but not significant alterations in mutant fish at larval stages.

La Mucopolisaccaridosi di tipo II (MPS II), conosciuta anche come Sindrome di Hunter, è una malattia da accumulo lisosomiale con ereditarietà legata al cromosoma X. Questa patologia è causata da mutazioni a livello del gene codificante per l’iduronato-2-sulfatasi, un enzima lisosomiale coinvolto nel primo step di degradazione di eparan e dermatan solfato. Lo spettro di sintomi che ne deriva è estremamente ampio con manifestazioni sia somatiche che legate al sistema nervoso centrale. Mentre l’approccio di terapia enzimatica sostitutiva risulta efficace nell’alleviare i sintomi di natura somatica, il trattamento del sistema nervoso centrale rimane tutt’ora di grande difficoltà. La patogenesi delle mucopolisaccaridosi è stata storicamente attribuita al progressivo accumulo di glicosamminoglicani e al conseguente instaurarsi di una condizione infiammatoria; tuttavia, è ormai chiaro che più complessi meccanismi, tra cui deregolazione della via autofagica e alterazione di vie di segnale durante lo sviluppo, contribuiscano all’insorgenza della patologia. In questo contesto, mi sono servita del modello zebrafish per l’MPS II per studiare i meccanismi patologici precoci relativi allo sviluppo cerebrale. In particolare, la mia ricerca si è focalizzata sull’analisi di Netrin/Dcc (Deleted in colorectal cancer), una delle più importanti vie di segnale coinvolte nel processo noto come axon guidance. Sebbene sia Netrin che Dcc mostrassero un alterato profilo di espressione, solo Dcc si è rilevato consistentemente deregolato a livello proteico, sia nell’intera testa che nel cervello isolato di larve ids mutanti. L’ottimizzazione di un protocollo per colture primarie di zebrafish ha inoltre consentito di attribuire questa alterazione specificamente al comparto neuronale. Tale modello in vitro ha evidenziato difetti nella via di segnale regolata da Dcc, nell’acidificazione lisosomiale (Lysotracker) e nei livelli proteici di Rab7 nei neuroni derivati da ids mutanti. In aggiunta, con l’intento di valutare la morfologia assonale, ho applicato le colture di neuroni primari ad un supporto di microfluidica: nello specifico, ho osservato una riduzione nella lunghezza assonale dei neuroni mutanti rispetto ai controlli. Poiché la regolazione del recettore Dcc è strettamente dipendente dal traffico vescicolare, ho successivamente analizzato la sua localizzazione intracellulare nella testa delle larve MPS II. A tal proposito, sono stata impegnata nella messa a punto di un nuovo protocollo di precipitazione frazionata applicabile ad estratti proteici di zebrafish. Questo mi ha permesso di osservare una alterata localizzazione di Dcc a livello intracellulare nelle larve ids mutanti. In aggiunta, l’alterazione dei livelli di Dcc si è dimostrata un fenomeno non solo relativo ai primi stadi di sviluppo, ma anche a fasi più tardive della vita dello zebrafish. Questo aspetto è accompagnato da anomalie nei livelli proteici della proteina acida fibrillare gliale (Gfap), rintracciabili già a partire da 1 mese di età nei cervelli di zebrafish MPS II, suggerendo un'attivazione precoce delle cellule gliali. Per quanto riguarda l'analisi dei livelli di eparan solfato, non sono state rilevate significative differenze tra controlli sani e larve ids mutanti nelle prime fasi di sviluppo. Tuttavia, la valutazione tramite l'immunofluorescenza ha evidenziato, nelle larve MPS II, un'architettura anomala del plesso coroideo struttura rivelatasi arricchita di eparan solfato. Infine, analisi retinotopiche del tetto ottico e test basati su stimolazioni visive hanno suggerito alterazioni lievi ma non significative nei pesci mutanti a stadi larvali.

Identification and characterization of signaling and axonal migration defects in the MPS II zebrafish model / Manzoli, Rosa. - (2023 May 03).

Identification and characterization of signaling and axonal migration defects in the MPS II zebrafish model

MANZOLI, ROSA
2023

Abstract

Mucopolysaccharidosis type II (MPS II), also known as Hunter syndrome, is a rare X-linked lysosomal storage disorder caused by the lack or deficiency of iduronate 2-sulfatase (IDS), a lysosomal enzyme involved in the first step of heparan and dermatan sulfate degradative pathway. This results in a plethora of somatic and central nervous system (CNS)-related symptoms with high clinical variability and different age of onset. While enzyme replacement therapy can alleviate somatic manifestations, the CNS remains untreatable. Historically, the pathogenesis of MPSs has been attributed to the progressive intracellular accumulation of undegraded glycosaminoglycans (GAGs) and inflammation; however, it is now clear that more complex pathogenic mechanisms may contribute to the pathological manifestations, including impaired autophagy and altered developmental cell signalling. In this context, I exploited the MPS II zebrafish model to deepen the understanding of early pathological mechanisms during brain development. In particular, I focused my research on the investigation of Netrin and Deleted in colorectal cancer (Dcc), one of the most important pair of ligand and receptors, involved in axon guidance-mediated chemoattraction. While both Netrin and Dcc showed altered expression pattern in a in situ-based screening, only Dcc was consistently found altered at protein levels. To this purpose, I performed western blot analysis on dissected heads and isolated brains at early developmental stages. Moreover, to scale up the resolution of my investigation, I set up an optimized protocol for zebrafish primary neuronal-enriched cell culture. This tool allowed me to narrow down Dcc dysregulation specifically to the neuronal compartment. The in vitro neuronal model allowed to detect alterations in Dcc downstream cascade activation, lysosomal acidification and Ras-associated binding 7 (Rab7) protein levels in mutant cells. In addition, I applied zebrafish primary neurons to a microfluidic system to dissect axonal morphology. Indeed, mutant-derived neurons showed shorter axons when compared to control cells. Since Dcc regulation relies on vesicular trafficking, I analysed Dcc intracellular localization in the head of MPS II larvae. Toward this aim, I set up a novel protocol of fractional precipitation applied to zebrafish protein extracts that allowed me to find an altered Dcc localization in ids mutant conditions. Moreover, Dcc analysis at later time points highlighted a consistent dysregulation of this receptor beyond the developmental phase. In addition, a Glial fibrillary acidic protein (Gfap) protein levels analysis revealed that pathological abnormalities are traceable since 1 month of age in MPS II zebrafish brains, suggesting early glial cell activation. Western blot analysis of heparan sulfates (HS) showed no significant differences between wild type and ids mutant larvae at early developmental stages. On the other hand, whole mount brain HS immunofluorescence pointed out abnormal choroid plexus architecture in MPS II larvae. Finally, retinotopic mapping and multiple behavioural tests based on visual stimulation suggested subtle but not significant alterations in mutant fish at larval stages.
Identification and characterization of signaling and axonal migration defects in the MPS II zebrafish model
3-mag-2023
La Mucopolisaccaridosi di tipo II (MPS II), conosciuta anche come Sindrome di Hunter, è una malattia da accumulo lisosomiale con ereditarietà legata al cromosoma X. Questa patologia è causata da mutazioni a livello del gene codificante per l’iduronato-2-sulfatasi, un enzima lisosomiale coinvolto nel primo step di degradazione di eparan e dermatan solfato. Lo spettro di sintomi che ne deriva è estremamente ampio con manifestazioni sia somatiche che legate al sistema nervoso centrale. Mentre l’approccio di terapia enzimatica sostitutiva risulta efficace nell’alleviare i sintomi di natura somatica, il trattamento del sistema nervoso centrale rimane tutt’ora di grande difficoltà. La patogenesi delle mucopolisaccaridosi è stata storicamente attribuita al progressivo accumulo di glicosamminoglicani e al conseguente instaurarsi di una condizione infiammatoria; tuttavia, è ormai chiaro che più complessi meccanismi, tra cui deregolazione della via autofagica e alterazione di vie di segnale durante lo sviluppo, contribuiscano all’insorgenza della patologia. In questo contesto, mi sono servita del modello zebrafish per l’MPS II per studiare i meccanismi patologici precoci relativi allo sviluppo cerebrale. In particolare, la mia ricerca si è focalizzata sull’analisi di Netrin/Dcc (Deleted in colorectal cancer), una delle più importanti vie di segnale coinvolte nel processo noto come axon guidance. Sebbene sia Netrin che Dcc mostrassero un alterato profilo di espressione, solo Dcc si è rilevato consistentemente deregolato a livello proteico, sia nell’intera testa che nel cervello isolato di larve ids mutanti. L’ottimizzazione di un protocollo per colture primarie di zebrafish ha inoltre consentito di attribuire questa alterazione specificamente al comparto neuronale. Tale modello in vitro ha evidenziato difetti nella via di segnale regolata da Dcc, nell’acidificazione lisosomiale (Lysotracker) e nei livelli proteici di Rab7 nei neuroni derivati da ids mutanti. In aggiunta, con l’intento di valutare la morfologia assonale, ho applicato le colture di neuroni primari ad un supporto di microfluidica: nello specifico, ho osservato una riduzione nella lunghezza assonale dei neuroni mutanti rispetto ai controlli. Poiché la regolazione del recettore Dcc è strettamente dipendente dal traffico vescicolare, ho successivamente analizzato la sua localizzazione intracellulare nella testa delle larve MPS II. A tal proposito, sono stata impegnata nella messa a punto di un nuovo protocollo di precipitazione frazionata applicabile ad estratti proteici di zebrafish. Questo mi ha permesso di osservare una alterata localizzazione di Dcc a livello intracellulare nelle larve ids mutanti. In aggiunta, l’alterazione dei livelli di Dcc si è dimostrata un fenomeno non solo relativo ai primi stadi di sviluppo, ma anche a fasi più tardive della vita dello zebrafish. Questo aspetto è accompagnato da anomalie nei livelli proteici della proteina acida fibrillare gliale (Gfap), rintracciabili già a partire da 1 mese di età nei cervelli di zebrafish MPS II, suggerendo un'attivazione precoce delle cellule gliali. Per quanto riguarda l'analisi dei livelli di eparan solfato, non sono state rilevate significative differenze tra controlli sani e larve ids mutanti nelle prime fasi di sviluppo. Tuttavia, la valutazione tramite l'immunofluorescenza ha evidenziato, nelle larve MPS II, un'architettura anomala del plesso coroideo struttura rivelatasi arricchita di eparan solfato. Infine, analisi retinotopiche del tetto ottico e test basati su stimolazioni visive hanno suggerito alterazioni lievi ma non significative nei pesci mutanti a stadi larvali.
Identification and characterization of signaling and axonal migration defects in the MPS II zebrafish model / Manzoli, Rosa. - (2023 May 03).
File in questo prodotto:
File Dimensione Formato  
tesi_definitiva_Rosa_Manzoli.pdf

accesso aperto

Descrizione: tesi_definitiva_Rosa_Manzoli
Tipologia: Tesi di dottorato
Dimensione 4.88 MB
Formato Adobe PDF
4.88 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3478864
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact