Thermomechanical stress in microelectronics packaging systems is a very complex phenomenon. Understanding of behaviours of the systems, in terms of origin, assessment and impact of the stress on an assembly, is a successful strategy to develop devices with high performances and reliability. Based on the fine element method, virtual prototypes can be investigated to simulate the thermomechanical behaviour and stress in real assemblies. Micro-Raman spectroscopy is a valid method to determine the stress distribution in a material because the perturbation due to stress can be observed as variation of wavenumber of phonon modes. In this paper, a FEM model is developed and experimental results of Raman investigations are compared to the theoretical results obtained from the model. The model and the processing approach are validated by the analysis of the stress in test assembles where Si3N4 chips are bonded onto Cu substrates via AuSn-soldering, SAC305-soldering, and Cu-sintering. Compressive stress with values between 150 and 1100 MPa is determined in Si3N4/AuSn/Cu assemblies.

Simulations and Experiments to Analyze Stress Phenomena in Soldered and Sintered Interconnections between Silicon Nitride chips and Copper Substrates

Fosca Conti
;
2021

Abstract

Thermomechanical stress in microelectronics packaging systems is a very complex phenomenon. Understanding of behaviours of the systems, in terms of origin, assessment and impact of the stress on an assembly, is a successful strategy to develop devices with high performances and reliability. Based on the fine element method, virtual prototypes can be investigated to simulate the thermomechanical behaviour and stress in real assemblies. Micro-Raman spectroscopy is a valid method to determine the stress distribution in a material because the perturbation due to stress can be observed as variation of wavenumber of phonon modes. In this paper, a FEM model is developed and experimental results of Raman investigations are compared to the theoretical results obtained from the model. The model and the processing approach are validated by the analysis of the stress in test assembles where Si3N4 chips are bonded onto Cu substrates via AuSn-soldering, SAC305-soldering, and Cu-sintering. Compressive stress with values between 150 and 1100 MPa is determined in Si3N4/AuSn/Cu assemblies.
2021
22nd International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3487363
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact