The negative impact of using conventional fungicides in plant disease protection has increased the interest in safer alternatives such as plant secondary metabolites, generally having a better toxicological profile. However, cultivation conditions and plant material strongly affect the quality and quantity of secondary metabolites obtained from field grown plants, limiting the standardization needed for industrial production. Plant cell culture technology can provide highly homogeneous biomasses with specific chemical characteristics. A phytocomplex with high rosmarinic acid content (10.12% w/w) was obtained from a selected cell line of Salvia officinalis and was tested against the grapevine downy mildew pathogen, Plasmopara viticola. Grapevine leaf discs were sprayed with the phytocomplex at 5 g/L and then inoculated with P. viticola sporangia. Sporulation level on each disc was assessed after 7 days with an image processing software. The phytocomplex reduced by 95% the sporulation le...

A Phytocomplex Obtained from Salvia officinalis by Cell Culture Technology Effectively Controls the Grapevine Downy Mildew Pathogen Plasmopara viticola

Tundo S.;Lucchetta M.;Sella L.;Favaron F.
2022

Abstract

The negative impact of using conventional fungicides in plant disease protection has increased the interest in safer alternatives such as plant secondary metabolites, generally having a better toxicological profile. However, cultivation conditions and plant material strongly affect the quality and quantity of secondary metabolites obtained from field grown plants, limiting the standardization needed for industrial production. Plant cell culture technology can provide highly homogeneous biomasses with specific chemical characteristics. A phytocomplex with high rosmarinic acid content (10.12% w/w) was obtained from a selected cell line of Salvia officinalis and was tested against the grapevine downy mildew pathogen, Plasmopara viticola. Grapevine leaf discs were sprayed with the phytocomplex at 5 g/L and then inoculated with P. viticola sporangia. Sporulation level on each disc was assessed after 7 days with an image processing software. The phytocomplex reduced by 95% the sporulation le...
2022
Proceedings of the XXVII National Congress Italian Phytopathological Society (SiPaV)
XXVII National Congress Italian Phytopathological Society (SiPaV)
File in questo prodotto:
File Dimensione Formato  
plants-11-02675.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 2.17 MB
Formato Adobe PDF
2.17 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3495108
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact