The blend of carbon dioxide and R1132a has been suggested as a feasible alternative to R23 in lowtemperature devices. In this work, we present new experimental data for compressed-liquid density, vapour density and compressed-liquid speed of sound for the binary system CO2 + R1132a by means of a two-sinker densimeter and a pulse-echo-type instrument, respectively. The measurements cover the temperature range of 220 K to 350 K with pressures to 30 MPa for density; the speed of sound measurements cover the range 230 K to 350 K with pressures to 55 MPa; for both properties two mixture compositions were measured. Finally, we present an Equation of State (EoS) correlation for the experimental data based on a Helmholtz free energy model, which shows a good agreement with the measurements. The mixture strongly absorbed the sound pulse, and the usual dual-path analysis was not possible; thus, we developed a method using only the short-path signal.

Compressed liquid density and speed of sound measurements and correlation of the binary mixture {carbon dioxide (CO 2 ) + 1,1-difluoroethene (R1132a)} at temperatures from 220 K to 350 K

Davide Menegazzo
Writing – Original Draft Preparation
;
Giulia Lombardo;
2023

Abstract

The blend of carbon dioxide and R1132a has been suggested as a feasible alternative to R23 in lowtemperature devices. In this work, we present new experimental data for compressed-liquid density, vapour density and compressed-liquid speed of sound for the binary system CO2 + R1132a by means of a two-sinker densimeter and a pulse-echo-type instrument, respectively. The measurements cover the temperature range of 220 K to 350 K with pressures to 30 MPa for density; the speed of sound measurements cover the range 230 K to 350 K with pressures to 55 MPa; for both properties two mixture compositions were measured. Finally, we present an Equation of State (EoS) correlation for the experimental data based on a Helmholtz free energy model, which shows a good agreement with the measurements. The mixture strongly absorbed the sound pulse, and the usual dual-path analysis was not possible; thus, we developed a method using only the short-path signal.
2023
International Congress of Refrigeration (under submission)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3499195
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact