The IceCube Neutrino Observatory first observed a diffuse flux of high energy astrophysical neutrinos in 2013. Since then, this observation has been confirmed in multiple detection channels such as high energy starting events, cascades, and through-going muon tracks. Combining these event selections into a high statistics global fit of 10 years of IceCube’s neutrino data could strongly improve the understanding of the diffuse astrophysical neutrino flux: challenging or confirming the simple unbroken power-law flux model as well as the astrophysical neutrino flux composition. One key component of such a combined analysis is the consistent modelling of systematic uncertainties of different event selections. This can be achieved using the novel SnowStorm Monte Carlo method which allows constraints to be placed on multiple systematic parameters from a single simulation set. We will report on the status of a new combined analysis of through-going muon tracks and cascades. It is based on a consistent all flavor neutrino signal and background simulation using, for the first time, the SnowStorm method to analyze IceCube’s high-energy neutrino data. Estimated sensitivities for the energy spectrum of the diffuse astrophysical neutrino flux will be shown.

A Combined Fit of the Diffuse Neutrino Spectrum using IceCube Muon Tracks and Cascades

Bernardini E.;Mancina S.;
2022

Abstract

The IceCube Neutrino Observatory first observed a diffuse flux of high energy astrophysical neutrinos in 2013. Since then, this observation has been confirmed in multiple detection channels such as high energy starting events, cascades, and through-going muon tracks. Combining these event selections into a high statistics global fit of 10 years of IceCube’s neutrino data could strongly improve the understanding of the diffuse astrophysical neutrino flux: challenging or confirming the simple unbroken power-law flux model as well as the astrophysical neutrino flux composition. One key component of such a combined analysis is the consistent modelling of systematic uncertainties of different event selections. This can be achieved using the novel SnowStorm Monte Carlo method which allows constraints to be placed on multiple systematic parameters from a single simulation set. We will report on the status of a new combined analysis of through-going muon tracks and cascades. It is based on a consistent all flavor neutrino signal and background simulation using, for the first time, the SnowStorm method to analyze IceCube’s high-energy neutrino data. Estimated sensitivities for the energy spectrum of the diffuse astrophysical neutrino flux will be shown.
2022
Proceedings of Science
File in questo prodotto:
File Dimensione Formato  
ICRC2021_1129.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 883.18 kB
Formato Adobe PDF
883.18 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3503876
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact