The research here presented aims at characterizing the thermal behaviour of a PCM-based latent heat storage enhanced with graphene oxide. The heat storage tank is composed of two PVC coaxial cylinders and a smooth stainless-steel helical heat exchanger installed inside the smaller one. The heat exchanger is immersed in PCM, a commercial paraffin with a melting temperature of around 28°C. The melting and solidification of the PCM were forced through hot or cold water flowing in the heat exchanger. The purpose is to explore the melting and solidification process by monitoring the temperature in the PCM with multiple thermocouples placed at different heights and different radial distances from the centre of the heat exchanger. Initially, the system was studied with pure paraffin. Then, two different mass percentages (i.e., 1.5% and 3%) of graphene oxide were added, whose high thermal conductivity had to counterbalance the paraffin low thermal conductivity and thus enhance the overall perf...
Experimental analysis of a graphene oxide-enhanced paraffin PCM
Giacon, L;Zarrella, A;
2023
Abstract
The research here presented aims at characterizing the thermal behaviour of a PCM-based latent heat storage enhanced with graphene oxide. The heat storage tank is composed of two PVC coaxial cylinders and a smooth stainless-steel helical heat exchanger installed inside the smaller one. The heat exchanger is immersed in PCM, a commercial paraffin with a melting temperature of around 28°C. The melting and solidification of the PCM were forced through hot or cold water flowing in the heat exchanger. The purpose is to explore the melting and solidification process by monitoring the temperature in the PCM with multiple thermocouples placed at different heights and different radial distances from the centre of the heat exchanger. Initially, the system was studied with pure paraffin. Then, two different mass percentages (i.e., 1.5% and 3%) of graphene oxide were added, whose high thermal conductivity had to counterbalance the paraffin low thermal conductivity and thus enhance the overall perf...File | Dimensione | Formato | |
---|---|---|---|
Emmi_2023_J._Phys.__Conf._Ser._2648_012047.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
1.63 MB
Formato
Adobe PDF
|
1.63 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.