Personal Identification Numbers (PINs) are the most common user authentication method for in-person banking transactions at ATMs. The US Federal Reserve reported that, in 2018, PINs secured 31.4 billion transactions in the US, with an overall worth of US$ 1.19 trillion. One well-known attack type involves the use of cameras to spy on the ATM PIN pad during PIN entry. Countermeasures include covering the PIN pad with a shield or with the other hand while typing. Although this protects PINs from visual attacks, acoustic emanations from the PIN pad itself open the door for another attack type. In this paper, we show the feasibility of an acoustic side-channel attack (called PinDrop ) to reconstruct PINs by profiling acoustic signatures of individual keys of a PIN pad. We demonstrate the practicality of PinDrop via two sets of data collection experiments involving two commercially available metal PIN pad models and 58 participants who entered a total of 5,800 5-digit PINs. We simulated two realistic attack scenarios: (1) a microphone placed near the ATM (0.3 m away) and (2) a real-time attacker (with a microphone) standing in the queue at a common courtesy distance of 2 m. In the former case, we show that PinDrop recovers 96% of 4-digit, and up to 94% of 5-digits, PINs. Whereas, at 2 m away, it recovers up to 57% of 4-digit, and up to 39% of 5-digit PINs in three attempts. We believe that these results are both significant and worrisome.

We Can Hear Your PIN Drop: An Acoustic Side-Channel Attack on ATM PIN Pads

Cardaioli M.;Cecconello S.;Conti M.;
2022

Abstract

Personal Identification Numbers (PINs) are the most common user authentication method for in-person banking transactions at ATMs. The US Federal Reserve reported that, in 2018, PINs secured 31.4 billion transactions in the US, with an overall worth of US$ 1.19 trillion. One well-known attack type involves the use of cameras to spy on the ATM PIN pad during PIN entry. Countermeasures include covering the PIN pad with a shield or with the other hand while typing. Although this protects PINs from visual attacks, acoustic emanations from the PIN pad itself open the door for another attack type. In this paper, we show the feasibility of an acoustic side-channel attack (called PinDrop ) to reconstruct PINs by profiling acoustic signatures of individual keys of a PIN pad. We demonstrate the practicality of PinDrop via two sets of data collection experiments involving two commercially available metal PIN pad models and 58 participants who entered a total of 5,800 5-digit PINs. We simulated two realistic attack scenarios: (1) a microphone placed near the ATM (0.3 m away) and (2) a real-time attacker (with a microphone) standing in the queue at a common courtesy distance of 2 m. In the former case, we show that PinDrop recovers 96% of 4-digit, and up to 94% of 5-digits, PINs. Whereas, at 2 m away, it recovers up to 57% of 4-digit, and up to 39% of 5-digit PINs in three attempts. We believe that these results are both significant and worrisome.
2022
Computer Security – ESORICS 2022: 27th European Symposium on Research in Computer Security
ESORICS 2022: 27th European Symposium on Research in Computer Security
978-3-031-17139-0
978-3-031-17140-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3506518
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact