A description of the Data Processing Unit's (DPU) hardware and the Application Software (ASW) of the Near Infrared Spectro-Photometer (NISP) at EUCLID mission is given. NISP is composed by a focal plane of 16 H2RG HAWAII near infrared detectors (0.9÷2 μm) interfaced with 16 ASICs, both produced by Teledyne. The complete system is handled by two identical DPU units running in parallel and independently with the same ASW, and each governing 8 detector chains. Flight DPU units were used for validating the ASW as well as a single EQM model of the DPU (fully representative of the Flight model). Details of the DPU hardware components and its most relevant performances are described, focusing on the Digital Control Units' handling of data coming from the ASICs. It is also described the ASW architecture emphasizing the onboard data pre-processing in which a series of on-line operations are performed to reduce the amount of data sent to ground, thus guaranteeing its consistency and quality (i.e. multi accumulation charge slope fit calculation, quality factor evaluation, reference pixel correction, saturation pixels flagging and lossless compression). Finally, a description of the latest NISP system's test campaigns focusing on those for the Electromagnetic Compatibility, Susceptibility and Thermal Vacuum is provided; and a detail description of the results used to successfully validate the DPU ASW.

Data processing unit's hardware and application software description of the near Infrared Spectro-Photometer: Euclid mission

Sirignano C.;
2020

Abstract

A description of the Data Processing Unit's (DPU) hardware and the Application Software (ASW) of the Near Infrared Spectro-Photometer (NISP) at EUCLID mission is given. NISP is composed by a focal plane of 16 H2RG HAWAII near infrared detectors (0.9÷2 μm) interfaced with 16 ASICs, both produced by Teledyne. The complete system is handled by two identical DPU units running in parallel and independently with the same ASW, and each governing 8 detector chains. Flight DPU units were used for validating the ASW as well as a single EQM model of the DPU (fully representative of the Flight model). Details of the DPU hardware components and its most relevant performances are described, focusing on the Digital Control Units' handling of data coming from the ASICs. It is also described the ASW architecture emphasizing the onboard data pre-processing in which a series of on-line operations are performed to reduce the amount of data sent to ground, thus guaranteeing its consistency and quality (i.e. multi accumulation charge slope fit calculation, quality factor evaluation, reference pixel correction, saturation pixels flagging and lossless compression). Finally, a description of the latest NISP system's test campaigns focusing on those for the Electromagnetic Compatibility, Susceptibility and Thermal Vacuum is provided; and a detail description of the results used to successfully validate the DPU ASW.
2020
SPIE Proceedings
9781510636736
9781510636743
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3508017
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact