The paper promotes a relatively novel class of multi-agent control systems named “impulsive” continuity equations. Systems of this sort, describing the dynamics of probabilistically distributed “crowd” of homotypic individuals, are intensively studied in the case when the driving vector field is bounded and sufficiently regular. We, instead, consider the case when the vector field is unbounded, namely, affine in a control parameter, which is only integrally constrained. This means that the “crowd” can be influenced by “shock” impacts, i.e., actions of small duration but very high intensity. For such control continuity equations, we design an impulsive relaxation by closing the set of solutions in a suitable coarse topology. The main result presents a constructive form of the relaxed system. A connection of the obtained results to problems of contact dynamics is also discussed along with applications to optimal ensemble control and other promising issues.

Impulsive relaxation of continuity equations and modeling of colliding ensembles

Pogodaev N.
2019

Abstract

The paper promotes a relatively novel class of multi-agent control systems named “impulsive” continuity equations. Systems of this sort, describing the dynamics of probabilistically distributed “crowd” of homotypic individuals, are intensively studied in the case when the driving vector field is bounded and sufficiently regular. We, instead, consider the case when the vector field is unbounded, namely, affine in a control parameter, which is only integrally constrained. This means that the “crowd” can be influenced by “shock” impacts, i.e., actions of small duration but very high intensity. For such control continuity equations, we design an impulsive relaxation by closing the set of solutions in a suitable coarse topology. The main result presents a constructive form of the relaxed system. A connection of the obtained results to problems of contact dynamics is also discussed along with applications to optimal ensemble control and other promising issues.
2019
Communications in Computer and Information Science
9783030109332
9783030109349
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3508802
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact