The rapid integration of digital technologies into physical systems has given rise to cyber-physical systems, where the interaction between the computational and physical components plays a crucial role. This study explores optimal decision-making in event detection and transmission scheduling within cyber-physical systems, emphasizing the crucial aspect of efficient decision-making. We consider the problem of monitoring and reporting about a single event taking place within a finite time window achieving a reward related to the timeliness of the status update. Thus, the objective corresponds to minimizing the age of information between the instant of the event x and the status update time t, with a further penalty for a missed event. The monitoring apparatus decides when to perform the status update without knowing the value of x, but only knowing its statistical distribution. We assume a triangular probability density function for the instant of the event taking place, with a variable average. We provide an analytical derivation of the optimal choice of the status update, highlighting interesting trends, such as the saturation in the value of t as x grows close to the limit of the observation window. This proposed problem and its analytical formalization may serve as a further foundation for the general analysis of optimal monitoring of cyber-physical systems.

Optimizing Real-Time Decision-Making in Sensor Networks

Badia L.
2023

Abstract

The rapid integration of digital technologies into physical systems has given rise to cyber-physical systems, where the interaction between the computational and physical components plays a crucial role. This study explores optimal decision-making in event detection and transmission scheduling within cyber-physical systems, emphasizing the crucial aspect of efficient decision-making. We consider the problem of monitoring and reporting about a single event taking place within a finite time window achieving a reward related to the timeliness of the status update. Thus, the objective corresponds to minimizing the age of information between the instant of the event x and the status update time t, with a further penalty for a missed event. The monitoring apparatus decides when to perform the status update without knowing the value of x, but only knowing its statistical distribution. We assume a triangular probability density function for the instant of the event taking place, with a variable average. We provide an analytical derivation of the optimal choice of the status update, highlighting interesting trends, such as the saturation in the value of t as x grows close to the limit of the observation window. This proposed problem and its analytical formalization may serve as a further foundation for the general analysis of optimal monitoring of cyber-physical systems.
2023
Proceedings - International Conference on Developments in eSystems Engineering, DeSE
16th International Conference on Developments in eSystems Engineering, DeSE 2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3542230
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact