We study a 3-dimensional stratum ℳ3,V of the moduli space ℳ3 of curves of genus 3 parameterizing curves Y that admit a certain action of V = C2 × C2. We determine the possible types of the stable reduction of these curves to characteristic different from 2. We define invariants for ℳ3,V and characterize the occurrence of each of the reduction types in terms of them. We also calculate the j-invariant (respectively the Igusa invariants) of the irreducible components of positive genus of the stable reduction Y in terms of the invariants.

Reduction Types of Genus-3 Curves in a Special Stratum of their Moduli Space

Coppola N.;
2021

Abstract

We study a 3-dimensional stratum ℳ3,V of the moduli space ℳ3 of curves of genus 3 parameterizing curves Y that admit a certain action of V = C2 × C2. We determine the possible types of the stable reduction of these curves to characteristic different from 2. We define invariants for ℳ3,V and characterize the occurrence of each of the reduction types in terms of them. We also calculate the j-invariant (respectively the Igusa invariants) of the irreducible components of positive genus of the stable reduction Y in terms of the invariants.
2021
Association for Women in Mathematics Series
9783030776992
9783030777005
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3551905
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact