We study a 3-dimensional stratum ℳ3,V of the moduli space ℳ3 of curves of genus 3 parameterizing curves Y that admit a certain action of V = C2 × C2. We determine the possible types of the stable reduction of these curves to characteristic different from 2. We define invariants for ℳ3,V and characterize the occurrence of each of the reduction types in terms of them. We also calculate the j-invariant (respectively the Igusa invariants) of the irreducible components of positive genus of the stable reduction Y in terms of the invariants.
Reduction Types of Genus-3 Curves in a Special Stratum of their Moduli Space
Coppola N.;
2021
Abstract
We study a 3-dimensional stratum ℳ3,V of the moduli space ℳ3 of curves of genus 3 parameterizing curves Y that admit a certain action of V = C2 × C2. We determine the possible types of the stable reduction of these curves to characteristic different from 2. We define invariants for ℳ3,V and characterize the occurrence of each of the reduction types in terms of them. We also calculate the j-invariant (respectively the Igusa invariants) of the irreducible components of positive genus of the stable reduction Y in terms of the invariants.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




