For a finite extension $F$ of $\mathbb{Q}_p$ and $n \geq 1$, we show that the category of Lubin-Tate bundles on the $(n-1)$-dimensional Drinfeld symmetric space is equivalent to the category of finite-dimensional smooth representations of the group of units of the division algebra of invariant $1/n$ over $F$.
The Categories of Lubin-Tate and Drinfeld Bundles
James Taylor
2025
Abstract
For a finite extension $F$ of $\mathbb{Q}_p$ and $n \geq 1$, we show that the category of Lubin-Tate bundles on the $(n-1)$-dimensional Drinfeld symmetric space is equivalent to the category of finite-dimensional smooth representations of the group of units of the division algebra of invariant $1/n$ over $F$.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.