For a finite extension $F$ of $\mathbb{Q}_p$ and $n \geq 1$, we show that the category of Lubin-Tate bundles on the $(n-1)$-dimensional Drinfeld symmetric space is equivalent to the category of finite-dimensional smooth representations of the group of units of the division algebra of invariant $1/n$ over $F$.

The Categories of Lubin-Tate and Drinfeld Bundles

James Taylor
2025

Abstract

For a finite extension $F$ of $\mathbb{Q}_p$ and $n \geq 1$, we show that the category of Lubin-Tate bundles on the $(n-1)$-dimensional Drinfeld symmetric space is equivalent to the category of finite-dimensional smooth representations of the group of units of the division algebra of invariant $1/n$ over $F$.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3552253
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact