This work collects some methodological insights for numerical solution of a “minimum-dispersion” control problem for nonlinear stochastic differential equations, a particular relaxation of the covariance steering task. The main ingredient of our approach is the theoretical foundation called ∞-order variational analysis. This framework consists in establishing an exact representation of the increment (∞-order variation) of the objective functional using the duality, implied by the transformation of the nonlinear stochastic control problem to a linear deterministic control of the Fokker-Planck equation. The resulting formula for the cost increment analytically represents a “law-feedback” control for the diffusion process. This control mechanism enables us to learn time-dependent coefficients for a predefined Markovian control structure using Monte Carlo simulations with a modest population of samples. Numerical experiments prove the vitality of our approach.
On Minimum-Dispersion Control of Nonlinear Diffusion Processes
Pogodaev N.;
2025
Abstract
This work collects some methodological insights for numerical solution of a “minimum-dispersion” control problem for nonlinear stochastic differential equations, a particular relaxation of the covariance steering task. The main ingredient of our approach is the theoretical foundation called ∞-order variational analysis. This framework consists in establishing an exact representation of the increment (∞-order variation) of the objective functional using the duality, implied by the transformation of the nonlinear stochastic control problem to a linear deterministic control of the Fokker-Planck equation. The resulting formula for the cost increment analytically represents a “law-feedback” control for the diffusion process. This control mechanism enables us to learn time-dependent coefficients for a predefined Markovian control structure using Monte Carlo simulations with a modest population of samples. Numerical experiments prove the vitality of our approach.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.