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Abstract

We consider second-order ergodic Mean-Field Games systems in the whole space RN with coercive 
potential and aggregating nonlocal coupling, defined in terms of a Riesz interaction kernel. These MFG 
systems describe Nash equilibria of games with a large population of indistinguishable rational players 
attracted toward regions where the population is highly distributed. Equilibria solve a system of PDEs 
where an Hamilton-Jacobi-Bellman equation is combined with a Kolmogorov-Fokker-Planck equation for 
the mass distribution. Due to the interplay between the strength of the attractive term and the behavior of 
the diffusive part, we will obtain three different regimes for the existence and non existence of classical 
solutions to the MFG system. By means of a Pohozaev-type identity, we prove nonexistence of regular so-
lutions to the MFG system without potential in the Hardy-Littlewood-Sobolev-supercritical regime. On the 
other hand, using a fixed point argument, we show existence of classical solutions in the Hardy-Littlewood-
Sobolev-subcritical regime at least for masses smaller than a given threshold value. In the mass-subcritical 
regime we show that actually this threshold can be taken to be +∞.
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1. Introduction

In this paper, we study ergodic Mean-Field Games systems defined in the whole space RN

with a coercive potential V and attractive nonlocal coupling, defined in terms of a Riesz interac-
tion kernel. More in details, given M > 0, we consider elliptic systems of the form

⎧⎪⎨
⎪⎩

−�u + 1
γ
|∇u|γ + λ = V (x) − ∫

RN
m(y)

|x−y|N−α dy

−�m − div(m∇u(x) |∇u(x)|γ−2) = 0∫
RN m = M, m ≥ 0

in RN (1)

where γ > 1, α ∈ (0, N) are fixed. Note that the unknowns in the system (1) are the functions 
u, m and the constant λ ∈ R which can be interpreted as a Lagrange multiplier, related to the 
mass constraint 

∫
RN m = M .

We will assume that the potential V is a locally Hölder continuous coercive function, that is 
there exist b and CV positive constants such that

C−1
V (max{|x| − CV ,0})b ≤ V (x) ≤ CV (1 + |x|)b, ∀x ∈RN. (2)

The assumption of V to be non-negative is not restrictive, we can assume more generally that V
is bounded from below and shift appropriately λ.

Finally, the coupling in the system is given through the interaction term −m ∗ Kα , where Kα

is the Riesz potential of order α ∈ (0, N) defined as

Kα(x) = 1

|x|N−α
.

We assume the Hamiltonian in the system (1) has the form H(p) = 1
γ
|p|γ for sake of simplicity 

but actually it may be more general, namely we may assume that H :RN →R is strictly convex, 
H ∈ C2(RN \ {0}) and there exist CH, K > 0 and γ > 1 such that ∀p ∈ RN , it holds

CH |p|γ − K ≤ H(p) ≤ CH |p|γ

∇H(p) · p − H(p) ≥ K−1|p|γ − K

|∇H(p)| ≤ K|p|γ−1.

Mean-Field Games have been introduced in the seminal papers of Lasry and Lions [24] and 
by Huang, Caines and Malhamé [22] in order to describe Nash equilibria of differential games 
with infinitely many infinitesimal rational players; this led to a broader study, also encouraged 
by their powerful applications in a wide range of disciplines (equations of this kind arise in Eco-
nomics, Finance and models of social systems). The key idea underlying the theory comes from 
Statistical Mechanics and Physics, and consists in a mean-field approach to describe equilibria 
in a system of many interacting particles. The theory of Mean-Field Games models the behavior 
of a very large number of rational and indistinguishable players aiming at minimizing a certain 
cost, by anticipating the distribution of the overall population which result from the actions of 
all other players. We refer to [19,20] for a general presentation of Mean-Field Games and their 
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applications. In our setting, the dynamics of each player is described by the following controlled 
stochastic differential equation

dXt = −vt dt + √
2dBt

where vt is the controlled velocity and Bt is a standard N dimensional Brownian motion. Each 
agent chooses vt in order to minimize the following long time average cost

lim
T →∞

1

T
E

T∫
0

[
|vt |γ ′

γ ′ + V (Xt ) − Kα ∗ m(Xt)

]
dt

where γ ′ = γ
γ−1 is the conjugate exponent of γ and m(x) is the density of population at x ∈RN . 

In the ergodic setting, the distribution law of each player moving with optimal speed converges 
as t → +∞ to an invariant measure μ (independent of the initial position) and μ coincides, in 
a equilibrium regime for the game, with the density of the population m. From a PDE view-
point, equilibria of the differential game are encoded by solutions of the system (1), where the 
Hamilton-Jacobi-Bellman equation takes into account the value of the game λ and the optimal 
speed −∇u|∇u|γ−2 of the optimal control problem of a typical agent, and the Kolmogorov-
Fokker-Planck equation gives the density of the overall population m.

In the case when γ = γ ′ = 2, as pointed out in [24], using the Hopf-Cole transformation 
v(x) := e−u(x)/2 we can reduce the MFG system (1) to a single PDE. In particular we observe 
that with the previous change of variable, setting m(x) = v2(x), the MFG system (1) is equivalent 
to the normalized Choquard equation

{
−2�v + (V (x) − λ)v = (Kα ∗ v2)v∫
RN v2(x)dx = M, v > 0

in RN, (3)

with associated energy

E(v) =
∫
RN

2|∇v|2 + V (x)v2dx − 1

2

∫
RN

∫
RN

v2(x) v2(y)

|x − y|N−α
dx dy.

Choquard-type equations have been intensively studied during the last decades and have ap-
peared in the context of various mean-field type physical models (refer to [26,29,30,33,34] and 
references therein for a complete overview). Indeed their solutions are steady states of a gen-
eralized nonlinear Schrödinger equation, with an attractive interaction potential given in terms 
of the Riesz interaction kernel, which is therefore weaker and with longer range than the usual 
power-type potential in nonlinear Schrödinger equation. We recall that the relation between MFG 
systems and normalized nonlinear elliptic equations has been exploited in the recent work [36]
in the case of nonlinear Schrödinger systems.

Going back to our Mean-Field Game system, the two distinctive features of our model are 
the following: the state space is the whole Euclidean space RN , and the coupling is aggregative 
and defined in terms of a Riesz-type interaction kernel. Usually, Mean-Field Game systems are 
considered in bounded domains, with Neumann or periodic boundary conditions, in order to 
avoid non-compactness issues. We recall some works in the non compact setting: in particular [3]
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in the linear-quadratic framework, [37] in the time-dependent case, [18] for regularity results and 
finally [6], where a system analogous to (1) has been considered, with power-type nonlinearity. In 
the unbounded setting, the dissipation induced by the Brownian motion has to be compensated by 
the optimal velocity, which is a priori unknown and depends by the distribution m itself and on the 
coercive potential V . The coercive potential V describes spatial preferences of agents and hence 
discourages them to be far away from the origin. Moreover, due to the presence of the Riesz-
type interaction potential −Kα ∗m which represents the coupling between the individual and the 
overall population, every player of the game is attracted toward regions where the population is 
highly distributed. Most of the MFG literature focuses on the study of systems with competition, 
namely when the coupling descourages aggregation: this assumption is essential if one seeks for 
uniqueness of equilibria, and it is in general crucial in many existence and regularity arguments 
(see [19]). Focusing MFG systems, namely models with coupling which encourages aggregation, 
have been studied for instance in [6,7,9,10,17] in the stationary setting.

In this paper we provide existence and nonexistence results of classical solutions solving 
the MFG system (1), where by classical solution we will mean a triple (u, m, λ) ∈ C2(RN) ×
W 1,p(RN) × R for every p ∈ (1, +∞). Our focus will be to obtain classical solutions which 
satisfy some integrability conditions and boundary conditions at ∞ which will be meaningful 
from the point of view of the game. In particular, we will require some integrability properties of 
the optimal speed with respect to m, namely

m|∇u|γ ∈ L1(RN) V m ∈ L1(RN) and |∇m||∇u| ∈ L1(RN). (4)

Indeed, if one looks at the Kolmogorov equation, such integrability properties are important 
to ensure some minimal regularity of m and uniqueness of the invariant distribution itself (see 
[21,35]). Regularity and boundedness of m is quite crucial in our setting: indeed, due to the ag-
gregating forces, m has an intrinsic tendency to concentrate and hence to develop singularities. 
Moreover the Lagrange multiplier λ will be uniquely defined as the generalized principal eigen-
value (see for details [4,8,23]): for fixed m ∈ L1(RN) such that Kα ∗ m ∈ C0,θ (RN) for some 
θ ∈ (0, 1), we define λ as

λ := sup

{
c ∈R

∣∣∣∣∃v ∈ C2(RN) solving �v + 1

γ
|∇v|γ + c = V (x) − Kα ∗ m

}
.

Once that we know this value exists, it is possible to show that there exists u ∈ C2(RN) solving 
the HJB equation with such value λ, and that such solution u is coercive i.e.

u(x) → +∞ as |x| → +∞ (5)

and moreover its gradient has polynomial growth (see Section 2 and the references [4,8,23]). 
Note that (5) is a quite natural “boundary” condition for ergodic HJB equations on the whole 
space: indeed the optimal speed would give rise to an ergodic process, so in particular, at least 
heuristically −∇u ·x < 0 for |x| → +∞, (refer to [21] and references therein, for more informa-
tion about ergodic problems on the whole space and their characterization in terms of Lyapunov 
functions). Existence results for such classical solutions will depend on the interplay between 
the dissipation (i.e. by the diffusive term in the system) and the aggregating forces (described in 
terms of the Riesz potential Kα and the coercive potential V ). So, we get that the MFG system 
(1) shows three different regimes which correspond to α ∈ (0, N − 2γ ′), α ∈ (N − 2γ ′, N − γ ′)
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and α ∈ (N − γ ′, N). We will refer to α = N − 2γ ′ as the Hardy-Littlewood-Sobolev-critical 
exponent and to α = N − γ ′ as the mass-critical (or L2-critical) exponent, in analogy with the 
regimes appearing in the study of the Choquard equation (3) when γ ′ = 2. Obviously if γ ′ ≥ N , 
there exists just one regime, which will be the mass-subcritical regime α ∈ [0, N), whereas if 
N
2 ≤ γ ′ < N there will be just 2 regimes.

First of all we observe that for classical solutions to (1) with V ≡ 0 and which satisfy (4), a 
Pohozaev type identity holds (see Proposition 3.2):

(2 − N)

∫
RN

∇u · ∇mdx +
(

1 − N

γ

) ∫
RN

m|∇u|γ dx = λNM + α + N

2

∫
R2N

m(x)m(y)

|x − y|N−α
dxdy.

(6)
Also in presence of the potential a similar identity holds, under the additional integrability con-
dition that m∇V · x ∈ L1(RN). For MFG in the periodic setting with polynomial interaction 
potential an analogous Pohozaev identity has been proved in [9]. For the case of the Choquard 
equation we refer to [33] and references therein.

In the Hardy-Littlewood-Sobolev-supercritical regime 0 < α < N − 2γ ′, the Pohozaev iden-
tity, together with the fact that λ ≤ 0 (see Lemma 2.11), implies that solutions to the MFG system 
(1) do not exist. More precisely, we obtain the following nonexistence result.

Theorem 1.1. Assume that α ∈ (0, N − 2γ ′) and V ≡ 0. Then, the MFG system (1) has no 

classical solutions (u, m, λ) ∈ C2(RN) × W 1, 2N
N+α (RN) ×R which satisfy (4) and (5).

In the case when N −2γ ′ < α < N we obtain existence of classical solutions to the MFG sys-
tem (1) by means of a Schauder fixed point argument (refer to [2] and see also [9]). More in detail, 
we consider a regularized version of problem (1), obtained by convolving the Riesz-interaction 
term with a sequence of standard symmetric mollifiers (see (54) below). Taking advantage of 
the fixed-point structure associated to the MFG system and exploiting the Schauder Fixed Point 
Theorem, we show that solutions to the “regularized” version of the MFG system do exist. Then 
we provide a priori uniform estimates on the solutions to the regularized problem, which allow 
us to pass to the limit and obtain a classical solution of the MFG system (1).

Theorem 1.2. Assume that the potential V is locally Hölder continuous and satisfies (2). We 
have the following results:

i. if N − γ ′ < α < N then, for every M > 0 the MFG system (1) admits a classical solution 
(u, m, λ);

ii. if N − 2γ ′ < α ≤ N − γ ′ then, there exists a positive real value M0 = M0(N, α, γ, CV , b)

such that if M ∈ (0, M0) the MFG system (1) admits a classical solution (u, m, λ).

Moreover in both cases there exists a constant C > 0 such that

|∇u(x)| ≤ C(1 + |x|) b
γ u(x) ≥ C|x| b

γ
+1 − C−1,

where C = C(CV , b, γ, N, λ, α), 
√

m ∈ W 1,2(RN) and it holds

m|∇u|γ ∈ L1(RN), mV ∈ L1(RN), |∇u| |∇m| ∈ L1(RN).
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Note that in the mass-subcritical case, solutions to the MFG exist for every mass M , whereas 
in the mass-supercritical case and mass-critical case (namely for α ∈ (N − 2γ ′, N − γ ′]) we 
provide existence just for sufficiently small masses, below some threshold M0, due to the fact 
that in this case the interaction attractive potential is stronger than the diffusive part.

The Hardy-Littlewood-Sobolev critical exponent is not covered by our analysis. Indeed it 
is possible to prove existence of solutions to the regularized problem also in this case, for 
sufficiently small masses (see Theorem 4.7). Nevertheless in order to pass to the limit in the reg-
ularization, we need to obtain a priori L∞ bounds on solutions mk to the regularized problem, 

starting from uniform bounds in L
2N

N+α ∩L1. This is not possible at the critical level α = N −2γ ′, 
due to critical rescaling properties of the Sobolev critical exponent: a priori uniform L∞ bounds 
on mk only hold in the range when we have a uniform bound in Lq , for q > N

γ ′+α
(see Theo-

rem 2.12) and 2N
N+α

> N
γ ′+α

only in the Hardy-Littlewood-Sobolev subcritical regime. One way 
to circumvent this difficulty would be to obtain at the critical level α = N − 2γ ′, by using reg-
ularity estimates on the viscous Hamilton-Jacobi equation and on the Fokker Planck equation 
and a smallness condition on ‖m‖ N

N−γ ′ , a priori uniform bounds on m in Lq for some q > N
N−γ ′ , 

in order to be able to apply Theorem 2.12. This kind of result has been obtained recently in 
[11] for MFG in bounded domains with Neumann boundary conditions, and with a nonlinear 
Schrödinger type potential. This problem is related to the maximal regularity of solutions to vis-

cous Hamilton-Jacobi equation −�u + |∇u|γ = f (x) (see [12,13,16]). When m ∈ L
N

N−γ ′ , then 

by Hardy-Littlewood-Sobolev inequality (refer to Theorem 2.6) Kα ∗m ∈ L
N
γ ′ , which is a critical 

threshold in this setting.
To understand better this difference and also the deep analogy with normalized Choquard-type 

equations, it will be useful to analyze the problem from a variational point of view. Existence 
of solutions to the normalized Choquard equations has been first investigated using variational 
methods by E.H. Lieb [27] and P.-L. Lions [29,31], while more recently Li-Ye [25] studied 
existence of positive solutions to (3) by using a minimax procedure and the concentration-
compactness principle. As Lasry and Lions first pointed out in [28], solutions to (1) correspond 
to critical points of the following energy

E(m,w) :=
⎧⎨
⎩
∫
RN

m
γ ′
∣∣w
m

∣∣γ ′ + V (x)mdx − 1
2

∫
RN

∫
RN

m(x)m(y)

|x−y|N−α dx dy if (m,w) ∈ KM,

+∞ otherwise
(7)

where w := −m|∇u|γ−2∇u and the constraint set is defined as

KM :=
{
(m,w) ∈(L1(RN) ∩ Lq(RN)) × L1(RN) s.t.

∫
RN

mdx = M, m ≥ 0 a.e.

∫
RN

m(−�ϕ)dx =
∫
RN

w · ∇ϕ dx ∀ϕ ∈ C∞
0 (RN)

} (8)

with

q :=
{

N
N−γ ′+1 if γ ′ < N

γ ′ if γ ′ ≥ N
. (9)
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If N − γ ′ < α < N , so in the mass-subcritical regime, the energy E is bounded from below, 
indeed using elliptic regularity results for the Kolmogorov equation (see Proposition 2.4 below, 
in this case 1 < 2N

N+α
< 1 + γ ′

N
hence we can use (18)), the Hardy-Littlewood-Sobolev inequality 

(see (24)) and the fact that V ≥ 0, we get

E(m,w) ≥ C1ε
γ ′ ‖m‖

2γ ′
N−α

Lβ(RN)
− C2‖m‖2

Lβ(RN)

where we denoted β = 2N
N+α

. Hence, inf(m,w)∈KM
E(m, w) is well defined and by means of clas-

sical direct methods and compactness arguments, it is possible to construct global minimizers. 
Then a linearization argument and a convex duality theorem allow us to show that minimiz-
ers (m, w) of E correspond to solutions to the MFG system (1) (for more details we refer to 
[6,7]). In the mass-critical regime, namely for α = N − γ ′, the energy is bounded from below 
just for sufficiently small masses M , and we may construct in this range global minimizers. 
In the mass-supercritical regime, namely for 0 < α < N − γ ′, the energy is not bounded from 
below in general so no global minimum can be found. Nonetheless some compactness of se-
quences with finite energy is still available in the Hardy-Littlewood-Sobolev-subcritical regime
N − 2γ ′ ≤ α < N − γ ′. In particular, we may consider a minimization problem adding a small-

ness constraint on the L
2N

N+α (RN) norm of m and we may show that if the total mass of m
is sufficiently small, then the constrained minimizers are actually local free minimizers of the 
problem. This procedure would provide solutions to the Mean-Field Game which should coin-
cide with the solutions we obtained in Theorem 1.2 for α ∈ (N −2γ ′, N −γ ′) by using Schauder 

Fixed Point Theorem and imposing a smallness condition on the L
2N

N+α (RN) norm of m. A simi-
lar procedure for constructing local minimizers has recently been developed for MFG in bounded 
domains with Neumann boundary conditions and local aggregative interaction potential of poly-
nomial type (i.e. with a nonlinear Schrödinger type potential), we refer to [11]. Moreover, since 

the energy is becoming more and more negative as the L
2N

N+α (RN) norm of m increases (as it can 
be observed by a simple rescaling argument), then we expect that with a nontrivial adaptation of 
the mountain-pass theorem, it should be possible to construct in the Hardy-Littlewood-Sobolev-
subcritical regime N − 2γ ′ < α < N − γ ′ also solutions to the MFG with a min-max procedure 
(analogously to what is done in the case of normalized Choquard equation, see [25]). We plan to 
investigate this issue in a forthcoming paper.

Finally we leave open the problem of existence of classical solutions to the MFG system for 
α ∈ [N − 2γ ′, N) when V ≡ 0. Using the variational approach, and an appropriate adaptation of 
the concentration-compactness Lions theorem, one of the author provided existence of solution 
in the mass subcritical regime α ∈ (N −γ ′, N) as global minimizers of the energy (7) with V ≡ 0
among competitors with appropriate integrability condition at infinity, see [5]. We expect that in 
the supercritical mass regime α ∈ (N − 2γ ′, N − γ ′) local minimizers of the free energy are 
not present, but that it could be possible to construct a critical point of the energy by means of 
concentration-compactness arguments together with a min-max procedure. We plan to investigate 
this issue in a forthcoming paper.

The paper is organized as follows. Section 2 contains some preliminary results. In particular 
we recall regularizing properties of the Riesz interaction kernel, some a priori elliptic estimates 
for solutions to the Kolmogorov equation, a priori gradient estimates for solutions to the Hamil-
ton Jacobi Bellman equation and finally uniform L∞ bounds for m, solution to (1). In Section 3
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we provide the Pohozaev identity and the proof of the non-existence result Theorem 1.1. Sec-
tion 3 contains the proof of the existence result Theorem 1.2.

In what follows, C, C1, C2, K1, . . . denote generic positive constants which may change from 
line to line and also within the same line. Moreover γ ′ denotes the conjugates exponent of γ , 
that is γ ′ = γ

γ−1 .

2. Preliminaries

2.1. Regularity results for the Kolmogorov equation

Lemma 2.1. Let u ∈ C2,θ (RN) and m ∈ W 1,2(RN) be a solution (in the distributional sense) to

−�m(x) − div
(
m(x)∇u(x) |∇u|γ−2

)
= 0 in RN, (10)

where γ > 1 is fixed. Then, m ∈ C2,α(RN). Moreover, if m ≥ 0 and m �≡ 0, then m(x) > 0 for 
any x ∈ RN .

Proof. If γ ≥ 2, then m solves

−�m − b(x) · ∇m(x) − m(x)divb(x) = 0

where b(x) := |∇u|γ−2∇u(x) ∈ C1,θ (RN) and divb(x) ∈ C0,θ (RN). By elliptic regularity (see 
e.g. [15, Theorem 8.24]) we get that m ∈ C0,α . Denoting by f := m∇u|∇u|γ−2 we have −�m =
divf where f ∈ C0,α , then by [15, Theorem 4.15] we get that m ∈ C1,α and hence

−�m = div
(
m∇u|∇u|γ−2

)
∈ C0,min{α,θ}

so m ∈ C2,min{α,θ}, and iterating we finally obtain that m ∈ C2,θ . If 1 < γ < 2, b(x) is just an 
Hölder continuous function, hence m is a weak solution of equation (10). In this case, we can 
replace b(x) with bε(x) := ∇u(x)(ε + |∇u|2) γ

2 −1 and mε is a-posteriori a classical solution to 
the approximate equation

−�m − div (m(x)bε(x)) = 0.

We can conclude letting ε → 0. If m ≥ 0 on RN , we also have that m satisfy

−�m − b(x) · ∇m(x) − (
divb(x)

)+
m(x) ≤ 0,

since 
∫
RN m dx = M > 0, the Strong Minimum Principle (refer e.g. to [15, Theorem 8.19]) 

implies that m > 0 in RN (indeed m can not be equal to 0, unless it is constant, which is impos-
sible). �

We will use the following result (proved in [6, Proposition 2.4]) which takes advantage of 
some classical elliptic regularity results of Agmon [1].
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Proposition 2.2. Let m ∈ Lp(RN) for p > 1 and assume that for some K > 0

∣∣∣∣∣∣∣
∫
RN

m�ϕ dx

∣∣∣∣∣∣∣≤ K‖∇ϕ‖
Lp′

(RN)
, ∀ϕ ∈ C∞

0 (RN).

Then, m ∈ W 1,p(RN) and there exists a constant C > 0 depending only on p such that

‖∇m‖Lp(RN) ≤ C K.

We prove now some a priori estimates for solutions to the Kolmogorov equation. Let us fix 
p ∈ (1, +∞) and M > 0.

Proposition 2.3. Let us consider a couple (m, w) ∈ (Lp(RN) ∩ W 1,1(RN)) × L1(RN) which 
solves weakly

−�m + divw = 0, in RN.

Assume also that 
∫
RN m(x) dx = M , m ≥ 0 a.e. and

E :=
∫
RN

m

∣∣∣w
m

∣∣∣γ ′
dx < +∞. (11)

Then, we have that

m ∈ W 1,r (RN)

for r such that 1
r

=
(

1 − 1
γ ′
)

1
p

+ 1
γ ′ (i.e. r = pγ ′

γ ′+p−1 ) and there exists a constant C, depending 
on r , such that

‖m‖W 1,r (RN) ≤ C(E + M)
1
γ ′ ‖m‖

1
γ

Lp(RN)
. (12)

Proof. By definition of weak solution we have

−
∫
RN

m�ϕ dx =
∫
RN

w · ∇ϕ dx, for every ϕ ∈ C∞
0 (RN),

using Hölder inequality (since 1
r

=
(

1 − 1
γ ′
)

1
p

+ 1
γ ′ , it holds 1

pγ
+ 1

γ ′ + 1
r ′ = 1) we obtain

∣∣∣∣∣∣∣
∫
N

m�ϕ dx

∣∣∣∣∣∣∣≤
∫
N

|w| |∇ϕ|dx =
∫
N

(∣∣∣w
m

∣∣∣γ ′
m

) 1
γ ′

m
1
γ |∇ϕ|dx
R R R
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≤
⎛
⎜⎝∫
RN

∣∣∣w
m

∣∣∣γ ′
mdx

⎞
⎟⎠

1
γ ′

‖m‖
1
γ

Lp(RN)
‖∇ϕ‖

Lr′ (RN)

and hence

∣∣∣∣∣∣∣
∫
RN

m�ϕ dx

∣∣∣∣∣∣∣≤ E
1
γ ′ ‖m‖

1
γ

Lp(RN)
‖∇ϕ‖

Lr′ (RN)
.

Since ‖m‖L1(RN) = M and m ∈ Lp(RN), by interpolation we get

‖m‖Lr(RN) ≤ ‖m‖
1
γ

Lp(RN)
M

1
γ ′ (13)

therefore m ∈ Lr(RN). From Proposition 2.2 with K = E
1
γ ′ ‖m‖

1
γ

Lp(RN)
, we obtain that m ∈

W 1,r (RN) and there exists a constant C > 0, depending on r , such that

‖∇m‖Lr(RN) ≤ C E
1
γ ′ ‖m‖

1
γ

Lp(RN)
. (14)

By (13) and (14), we can conclude that

‖m‖W 1,r (RN) ≤
(

M
1
γ ′ + CE

1
γ ′
)

‖m‖
1
γ

Lp ≤ C(E + M)
1
γ ′ ‖m‖

1
γ

Lp(RN)
. �

Proposition 2.4. Under the assumption of Proposition 2.3, we have the following results:

i) if 1 < p < 1 + γ ′
N

then, there exists δ1 = 1
p−1

(
γ ′
N

+ 1 − p
)

such that

‖m‖(1+δ1)p

Lp(RN)
≤ C M(1+δ1)p−1 E (15)

where C is a constant depending on N , γ and p;

ii) if γ ′ < N and 1 < p ≤ N
N−γ ′ then, there exists δ2 = 1

p−1
γ ′
N

and a constant C depending on 
N , γ and p such that

‖m‖pδ2
Lp(RN)

≤ C(E + M)Mpδ2−1. (16)

Proof. i) The proof of (15) follows from [6, Lemma 2.8]. ii) As before let 1
r

= 1
p

(
1 − 1

γ ′
)

+ 1
γ ′ , 

if γ ′ < N then r < γ ′ < N , so by Gagliardo-Niremberg inequality and (12) we get

‖m‖ r∗ N ≤ C‖m‖
1
γ

p N (E + M)
1
γ ′ (17)
L (R ) L (R )
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where 1
r∗ = 1

r
− 1

N
and C is a constant depending on N , p and γ ′. One can observe that 1

r∗ − 1
p

=
pN−N−pγ ′

pγ ′N ≤ 0, that is r∗ ≥ p, by interpolation there exists θ ∈ (0, 1] such that

‖m‖
1
θ

Lp(RN)
≤ M

1−θ
θ ‖m‖Lr∗ (RN)

and from (17) we get that

‖m‖
(

1
θ
− 1

γ

)
γ ′

Lp(RN)
≤ C(E + M)M

1−θ
θ

γ ′
.

By simple computations we have that

(
1

θ
− 1

γ

)
γ ′ = γ ′

N

p

p − 1

and

(
1

θ
− 1

)
γ ′ = γ ′

N

p

p − 1
− 1

denoting by δ2 the quantity 1
p−1

γ ′
N

, we finally obtain (16). �
Remark 1. In the following we will use (15) and (16) in the case when p = 2N

N+α
. It will be 

useful to observe that if γ ′ ≥ N then 1 < 2N
N+α

< 2 ≤ 1 + γ ′
N

, hence estimate (15) holds. In the 

case when γ ′ < N , if N − γ ′ ≤ α < N then, 1 < 2N
N+α

< 1 + γ ′
N

and hence from (15) we get that

‖m‖
2γ ′

N−α

L
2N

N+α (RN)

≤ CM
2γ ′

N−α
−1E; (18)

whereas if N − 2γ ′ ≤ α < N − γ ′, we may use estimate (16), which gives us

‖m‖
2γ ′

N−α

L
2N

N+α (RN)

≤ C(E + M)M
2γ ′

N−α
−1. (19)

Finally, we recall the following a priori elliptic regularity result (see [6, Proposition 2.8, Corol-
lary 2.9]).

Proposition 2.5. Let

q :=
{

N
N−γ ′+1 if γ ′ < N

γ ′ if γ ′ ≥ N

and let (m, w) ∈ (Lq(RN) ∩ L1(RN)) × L1(RN) be a weak solution to
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−�m + divw = 0, in RN

with 
∫
RN m(x) dx = M , m ≥ 0 a.e. and

E :=
∫
RN

m

∣∣∣w
m

∣∣∣γ ′
dx < +∞.

Then the following hold:

i)

m ∈ Lβ(RN), ∀β ∈
[

1,
N

N − γ ′

)
(∀β ∈ [1,+∞), if γ ′ ≥ N)

and there exists a constant C depending on N , β and γ ′ such that

‖m‖Lβ(RN) ≤ C(E + M);

ii)
m ∈ W 1,�(RN), ∀� < q

and there exists a constant C depending on N , � and γ ′ such that

‖m‖W 1,�(RN) ≤ C(E + M).

Proof. From Proposition 2.3 we have

m ∈ W 1,r0(RN) for
1

r0
=
(

1 − 1

γ ′

)
1

q
+ 1

γ ′ .

Case γ ′ < N . Since 1 < r0 < γ ′ < N , by Sobolev embedding theorem and interpolation, we 
get that

m ∈ Lβ(RN) ∀β ≤ q1 (20)

where q1 is the Sobolev critical exponent, i.e.

q1 := Nr0

N − r0
= qNγ ′

Nγ ′ − N + q(N − γ ′)
,

(notice that q1 > q since q < N
N−γ ′ ). From (20), using Proposition 2.3 again, we have

m ∈ W 1,�(RN) ∀� ≤ r1 = q1γ
′

γ ′ − 1 + q1
.

As before, by Sobolev embedding theorem and interpolation, we have that
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m ∈ Lβ(RN) ∀β ≤ q2 = q1Nγ ′

Nγ ′ − N + q1(N − γ ′)
.

Iterating the previous argument, we observe that qj+1 = f (qj ) where f (s) := sNγ ′
Nγ ′−N+s(N−γ ′) . 

Since f is an increasing function if s < N
N−γ ′ and it has a fixed point for s̄ = N

N−γ ′ , we obtain 
that

m ∈ Lβ(RN), ∀β <
N

N − γ ′

and

m ∈ W 1,�(RN), ∀� <
N

N − γ ′ + 1
.

Moreover, for any fixed β < N
N−γ ′ , taking r = r(β) such that 1

r
=
(

1 − 1
γ ′
)

1
β

+ 1
γ ′ , from estimate 

(12) and the Sobolev embedding theorem (notice that r∗ > β) we get that there exists a constant 
C depending on N and r such that

‖m‖Lβ(RN) ≤ C(E + M)
1
γ ′ ‖m‖

1
γ

Lβ(RN)
. (21)

and hence

‖m‖Lβ(RN) ≤ C1(E + M). (22)

Putting (22) in (12) we obtain

‖m‖W 1,�(RN) ≤ C2(E + M).

Case γ ′ = N . Since r0 < γ ′ = N , we can apply the Sobolev embedding theorem and with the 
same argument as before we obtain

qj+1 = N

N − 1
qj .

Obviously qj+1 > qj , by iteration we get that

m ∈ Lβ(RN), ∀β < +∞

and

m ∈ W 1,�(RN), ∀� < γ ′.

The estimates on the norms follow in the same way as the previous case.
Case γ ′ > N . Since m ∈ Lγ ′

(RN), by interpolation m ∈ LN(RN) and we can go back to the 
previous case. �
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2.2. Some properties of the Riesz potential

We recall here some properties of the Riesz potential, which will be useful in the following in 
order to deal with the Riesz-type interaction term.

Definition 2.1. Given α ∈ (0, N) and a function f ∈ L1
loc(R

N), we define the Riesz potential of 
order α of f as

Kα ∗ f (x) :=
∫
RN

f (y)

|x − y|N−α
dy, x ∈ RN.

The Riesz potential Kα is well-defined as an operator on the whole space Lr(RN) if and 
only if r ∈ [1, N

α

)
. We state now the following well-known theorems (for which refer e.g. to [38, 

Theorem 14.37] and [28, Theorem 4.3]).

Theorem 2.6 (Hardy-Littlewood-Sobolev inequality). Let 0 < α < N and 1 < r < N
α

. Then for 
any f ∈ Lr(RN)

‖Kα ∗ f ‖
L

Nr
N−αr (RN)

≤ C‖f ‖Lr(RN)

where C is a constant depending only on N , α and r .

Theorem 2.7. Let 0 < λ < N and p, r > 1 with 1
p

+ λ
N

+ 1
r

= 2. Let f ∈ Lp(RN) and g ∈
Lr(RN). Then, there exists a sharp constant C(N, λ, p) (independent of f and g) such that

∣∣∣∣∣∣∣
∫
RN

∫
RN

f (x)g(y)

|x − y|λ dx dy

∣∣∣∣∣∣∣≤ C‖f ‖Lp(RN)‖g‖Lr(RN). (23)

Remark 2. It follows immediately that if 0 < α < N and f ∈ L
2N

N+α (RN), then there exists a 
sharp constant C, depending only on N and α, such that

∣∣∣∣∣∣∣
∫
RN

∫
RN

f (x)f (y)

|x − y|N−α
dx dy

∣∣∣∣∣∣∣≤ C‖f ‖2

L
2N

N+α (RN)
. (24)

As shown in [27], in this case the constant C can be computed explicitly and there exist explicit 
optimizers for (24) (while neither the constant nor the optimizers are known for p �= r , although 
do exist).

Regarding the L∞-norm and the Hölder continuity of the Riesz potential, we recall here the 
following results.
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Theorem 2.8. Let 0 < α < N , 1 < r ≤ +∞ be such that r > N
α

and s ∈ [1, N
α

)
. Then, for every 

f ∈ Ls(RN) ∩ Lr(RN) we have that

‖Kα ∗ f ‖L∞(RN) ≤ C1‖f ‖Lr(RN) + C2‖f ‖Ls(RN) (25)

where C1 = C1(N, α, r) and C2 = C2(N, α, s). Moreover, if 0 < α − N
r

< 1 then,

Kα ∗ f ∈ C0,α− N
r (RN)

and there exists a constant C, depending on r, α and N , such that

∣∣Kα ∗ f (x) − Kα ∗ f (y)
∣∣

|x − y|α− N
r

≤ C‖f ‖Lr(RN) for x �= y.

Proof. Concerning Hölder regularity results for the Riesz potential, one may refer to [32, Theo-
rem 2.2, p.155] and [14, Theorem 2].

As for (25), notice that

1

|x|N−α
∈ Lp(B1), ∀p ∈

[
1,

N

N − α

)

where B1 is the ball of radius 1 centered at 0 and it is well-known that 
∫
B1(0)

1
|x|(N−α)p dx =

ωN

N−(N−α)p
. By Holder inequality we get

∫
B1

|f (x − y)|
|y|N−α

dy ≤
(∫

B1

|f (x − y)|r dy

) 1
r
(∫

B1

1

|y|(N−α)r ′ dy

) 1
r′

≤ ‖f ‖Lr(RN)

(
ωN

N − (N − α)r ′

) 1
r′ ≤ C1‖f ‖Lr(RN)

using the fact that r ′ < N
N−α

, since by assumption r > N
α

. On the other hand

1

|x|N−α
∈ Lp(Bc

1), ∀p ∈
(

N

N − α
,+∞

]

hence

∫
RN\B1

|f (x − y)|
|y|N−α

dy ≤
⎛
⎜⎝ ∫
RN\B1

|f (x − y)|sdy

⎞
⎟⎠

1
s ∥∥∥∥ 1

|y|N−α
dy

∥∥∥∥
Ls′ (Bc

1)

≤ C‖f ‖Ls(RN),

since (N − α)s′ > N . �
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2.3. Some results on the Hamilton-Jacobi-Bellman equation

By a straightforward adaptation of [6, Theorem 2.5 and Theorem 2.6], we obtain some a 
priori regularity estimates for solutions to some Hamilton-Jacobi-Bellman equations defined on 
the whole euclidean space RN . The following propositions are stated under slightly more general 
assumptions than ones of our problem.

Proposition 2.9. Assume that Kα ∗m ∈ L∞(RN) and that V satisfies (2), with b ≥ 0. Let (u, c) ∈
C2(RN) ×R be a classical solution to the HJB equation

−�u + 1

γ
|∇u(x)|γ + c = V (x) − Kα ∗ m(x) in RN, (26)

for γ > 1 fixed. Then

i. there exists a constant C1 > 0, depending on CV , b, γ, N, c, ‖Kα ∗ m‖∞, such that

|∇u(x)| ≤ C1(1 + |x|) b
γ ;

ii. if u is bounded from below and b �= 0 in (2), then there exists a constant C2 > 0 such that

u(x) ≥ C2|x| b
γ

+1 − C−1
2 , ∀x ∈ RN.

The same result holds also in the case when b = 0, but we have to require in addition that 
there exists δ > 0 such that V (x) − Kα ∗ m(x) − c > δ > 0 for |x| sufficiently large.

Proof. The thesis follows applying [6, Theorem 2.5 and Theorem 2.6]. �
Let us define

λ := sup{c ∈ R | (26) has a solution u ∈ C2(RN)} (27)

Proposition 2.10. Besides the hypothesis of Proposition 2.9, let us assume also that V − Kα ∗ m

is locally Hölder continuous. Then

i) λ < +∞ and there exists u ∈ C2(RN) such that the pair (u, λ) solves (26).
ii) if b �= 0 in (2), u is unique up to additive constants (namely if (v, λ) ∈ C2(RN) × R solves 

(26) then there exists k ∈ R such that u = v + k) and there exists a constant K > 0 such that

u(x) ≥ K|x| b
γ

+1 − K−1, ∀x ∈RN.

Proof. It follows by [6, Theorem 2.7]. We may observe also that

λ = sup{c ∈R | (26) has a subsolution u ∈ C2(RN)}. �
Finally, we conclude with an estimate on the Lagrange multiplier λ defined in (27).
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Lemma 2.11. Let (u, λ) ∈ C2(RN) ×R be a solution to the HJB equation (26). Then

i if V ≡ 0, then λ ≤ 0;
ii if V satisfies (2) then λ ≤ C for some constant depending on b, CV , γ, N .

Proof. The proof is based on the same argument of [9, Lemma 3.3]. Let us consider the func-

tion μδ(x) := (
δ

2π

)N/2
e

−δ|x|2
2 for x ∈ RN and δ > 0. Obviously 

∫
RN μδ(x) dx = 1. From the 

definition of Legendre transform we get that

1

γ
|∇u|γ = sup

α∈RN

(
∇u · α − |α|γ ′

γ ′

)
≥ ∇u · (δx) − |δx|γ ′

γ ′

hence

−�u(x) + ∇u · (δx) − 1

γ ′ |δx|γ ′ + λ ≤ V (x) − m ∗ Kα(x). (28)

Multiplying (28) by μδ and integrating over BR we obtain

−
∫
BR

�u(x)μδ +
∫
BR

∇u · (δx)μδ −
∫
BR

1

γ ′ |δx|γ ′
μδ + λ

∫
BR

μδ ≤
∫
BR

(V (x) − m ∗ Kα)μδ.

Integrating by parts (notice that 
∫
BR

∇u · ∇μδ = − 
∫
BR

∇u · (δx)μδ) we get

−
∫

∂BR

μδ∇u · ν dσ − 1

γ ′

∫
BR

|δx|γ ′
μδ dx + λ

∫
BR

μδ dx ≤
∫
BR

(V (x) − m ∗ Kα)μδ dx

and since 
∫
BR

m ∗ Kα(x)μδ(x) dx ≥ 0, we have

λ

∫
BR

μδ dx ≤
∫

∂BR

μδ∇u · ν dσ + 1

γ ′

∫
BR

|δx|γ ′
μδ dx +

∫
BR

V (x)μδ dx. (29)

For δ > 0 fixed, the first integral in the RHS of (29) can be estimated as follows

∣∣∣∣
∫

∂BR

μδ∇u · ν dσ

∣∣∣∣≤ Cδ
N
2 e− δR2

2 ‖∇u‖L∞(∂BR)|∂BR| → 0, as R → +∞

using the gradient estimates on ∇u proved in Proposition 2.9. So, sending R → +∞ in (29) and 
using (2) we get

λ ≤ 1

(2π)
N
2

δ
γ ′
2

γ ′

∫
N

|y|γ ′
e− |y|2

2 dy + 1

(2π)
N
2

∫
N

V

(
y√
δ

)
e− |y|2

2 dy.
R R
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If V ≡ 0, then sending δ → 0 in the previous inequality, we conclude immediately λ ≤ 0. If 
V �≡ 0, we may choose δ = 1 in the previous inequality and conclude recalling (2). �
2.4. Uniform a priori L∞-bounds on m

We state now the following result, which provides uniform a priori L∞ bounds on m.

Theorem 2.12. We consider a sequence of classical solutions (uk, mk, λk) to the following MFG 
system

⎧⎪⎨
⎪⎩

−�u + 1
γ
|∇u|γ + λ = Wk(x) − Gk,α[m](x)

−�m − div
(
m∇u|∇u|γ−2

)= 0∫
RN m = M, m ≥ 0

in RN (30)

where Wk : RN → R satisfies assumption (2) with constant CV , b independent of k. Let Gk,α :
L1(RN) → L1(RN) such that Gk,α[m] ≥ 0 for all m ∈ L1, with m ≥ 0, and moreover we assume 
that there exists α ∈ (0, N) such that for all s ∈ [1, N

α

)
and r ∈ (N

α
,+∞]

there holds for m ∈
Ls(RN) ∩ Lr(RN)

‖Gk,α[m]‖L∞(RN) ≤ C1‖m‖Lr(RN) + C2‖m‖Ls(RN) (31)

where C1 = C1(N, α, r) and C2 = C2(N, α, s).
If uk are bounded from below and satisfy (5), and mk ∈ L1(RN) ∩ L∞(RN), with ‖mk‖Lq ≤

Cq for some q > N
α+γ ′ then, there exists a positive constant C not depending on k such that

‖mk‖L∞(RN) ≤ C, ∀k ∈N.

Proof. We follow the argument of the proof of [6, Theorem 4.1] (refer also to [9] for the analo-
gous result on TN ), but we have to define a different rescaling in this case.

Up to addition of constants we may assume infuk(x) = 0.
We assume by contradiction that

sup
RN

mk = Lk → +∞

and we define

δk :=
⎧⎨
⎩

L
−β
k , if γ ′ ≤ N and q ≤ N

γ ′

L
− 1

γ ′
k , if either γ ′ > N or γ ′ ≤ N,q > N

γ ′

where β > 0 (so δk → 0) has to be chosen in the following way. We fix

r ∈
(

N
,

Nq

′

)
. (32)
α N − qγ
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Note that since q > N
γ ′+α

the interval is not empty. If q = N
γ ′ it is sufficient to choose N

α
< r <

+∞. Then we choose β such that

1

γ ′
(

1 − q

r

)
≤ β <

q

N
.

We rescale (uk, mk, λk) as follows:

vk(x) := δ

2−γ
γ−1
k uk(δkx) + 1, nk(x) := L−1

k mk(δkx), λ̃k := δ
γ ′
k λk.

Observe that 0 ≤ nk(x) ≤ 1 and supnk = 1 and moreover that vk(x) ≥ 1 for all x. So we obtain 
that (vk, nk, ̃λk) is a solution to

{
−�vk + 1

γ
|∇vk|γ + λ̃k = Vk(x) − g̃k(x)

−�nk − div(nk∇vk|∇vk|γ−2) = 0

where

Vk(x) := δ
γ ′
k Wk(δkx) and g̃k(x) := δ

γ ′
k Gk,α[mk](δkx).

Observe that by assumption (2) there holds

C−1
V δ

γ ′
k (max{|δkx| − CV ,0})b ≤ Vk(x) ≤ CV (1 + δ

γ ′+b

k |x|)b, ∀x ∈RN.

Computing the equation in a minimum point of uk we obtain λk ≥ −‖Gk,α[mk]‖∞ and reasoning 
as in Lemma 2.11, we get that λk ≤ C, for some C just depending on γ, CV , b, so we get

−‖g̃k‖∞ = −δ
γ ′
k ‖Gk,α[mk]‖∞ ≤ λ̃k ≤ δ

γ ′
k C.

If γ ′ > N or γ ′ ≤ N and q > N
γ ′ we apply (31) with r = +∞ and s = 1 and we get

‖g̃k‖∞ ≤ δ
γ ′
k (C1Lk + C2M) = L−1

k (C1Lk + C2M) ≤ C

which in turns gives also that |λ̃k| ≤ C. Moreover if γ ′ > N there holds

‖nk‖L1 =
∫
RN

nk(x)dx = δ
γ ′−N

k ‖mk‖L1 = δ
γ ′−N

k M → 0 and 0 ≤ nk ≤ 1 = supnk

if on the other side γ ′ ≤ N and q > N
γ ′ we have that

‖nk‖Lq = L−1
k δ

− N
q

k ‖mk‖Lq ≤ L

N
qγ ′ −1

k Cq → 0 and 0 ≤ nk ≤ 1 = supnk.

If γ ′ ≤ N and q ≤ N′ first of all we observe that, since β <
q ,
γ N
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‖nk‖Lq = L−1
k δ

− N
q

k ‖mk‖Lq ≤ L
β N

q
−1

k Cq → 0 and 0 ≤ nk ≤ 1 = supnk.

We apply (31) with r as in (32) and s = 1 and we get, using interpolation between Lq and L∞
to estimate the norm ‖mk‖Lr , that there holds

‖g̃k‖∞ ≤ δ
γ ′
k (C1‖mk‖

L
N

N−2γ ′ + C2Cq) ≤ L
−βγ ′
k (CL

1− q
r

k + C2Cq) ≤ CL
1−βγ ′− q

r

k ≤ C

since βγ ′ > 1 − q
r

. This in turns implies that |λ̃k| ≤ C.
The rest of the proof follows exactly the same lines of the proof of [6, Theorem 4.1], since 

we have uniform bounds on λ̃k and on ‖g̃k‖∞, either the L1 or the Lq norm of nk vanishing as 
k → +∞, whereas ‖nk‖∞ = 1. In particular one shows that if xk is an approximated maximum 
point of nk (that is nk(xk) = 1 − δ), then necessarily δγ ′+b

k |xk|b → +∞. If it is not the case, 
using a priori gradient estimates on vk as in Proposition 2.9, we get that nk is uniformly (in k) 
Holder continuous in the ball B1(xk), contradicting the fact that nk ≥ 0 and either ‖nk‖Lq → 0

or ‖nk‖L1 → 0. On the other hand, if δγ ′+b

k |xk|b → +∞, we may construct a Lyapunov function 
for the system, which allows for some integral estimates on nk showing again a uniform (in k) 
Holder bound for nk in B1/2(xk) and again getting a contradiction. Therefore one concludes that 
Lk → +∞ is not possible. �
3. Pohozaev identity and nonexistence of solutions

In this section, we study the MFG system (1) in the case V ≡ 0, i.e.

⎧⎪⎨
⎪⎩

−�u + 1
γ
|∇u(x)|γ + λ = −Kα ∗ m(x)

−�m − div
(
m(x)∇u(x) |∇u(x)|γ−2

)= 0∫
RN m = M, m ≥ 0

in RN. (33)

The following Lemma (see Lemma 3.2 in [9]) will be useful in order to control the behavior of 
m, ∇u, ∇m at infinity.

Lemma 3.1. Let h ∈ L1(RN). Then, there exists a sequence Rn → ∞ such that

Rn

∫
∂BRn

|h(x)|dx → 0, as n → ∞.

In order to prove nonexistence of solutions to the MFG system (33) in the supercritical regime
0 < α < N − 2γ ′, we need a Pohozaev-type identity.

Proposition 3.2 (Pohozaev identity). Let (u, m, λ) ∈ C2(RN) × W 1, 2N
N+α (RN) ×R be a solution 

to (33) such that

m|∇u|γ ∈ L1(RN) and |∇m||∇u| ∈ L1(RN).

Then, the following equality holds
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(2 − N)

∫
RN

∇u · ∇mdx +
(

1 − N

γ

) ∫
RN

m|∇u|γ dx = λNM + α + N

2

∫
RN

m(x)(Kα ∗ m)(x)dx.

(34)

Proof. From Lemma 2.1, we get that m is twice differentiable, so the following computations 
are justified. Consider the first equation in (33), multiplying each term by ∇m · x and integrating 
over BR(0) for R > 0, we get

−
∫
BR

�u∇m · x dx + 1

γ

∫
BR

|∇u(x)|γ ∇m · x dx + λ

∫
BR

∇m · x dx = −
∫
BR

Kα ∗ m(x)∇m · x dx.

(35)
We take into account each term of (35) separately. Integrating by parts the first term, we have

−
∫
BR

�u∇m · x dx =
∫
BR

∇u · ∇(∇m · x)dx −
∫

∂BR

(∇u · ν)(∇m · x)dσ, (36)

we observe that

∫
BR

∇u · ∇(∇m · x)dx =
∫
BR

N∑
i=1

uxi
(∇m · x)xi

=
∫
BR

∇u · ∇m +
∫
BR

∑
i,j

uxi
mxi xj

xj

and integrating by parts the last term of the previous one, we get

∫
BR

∑
i,j

(uxi
xj )mxixj

=
∫

∂BR

∑
i,j

uxi
mxi

xj · xj

R
−
∫
BR

∑
i,j

mxi
uxi xj

xj − N

∫
BR

∑
i

uxi
mxi

=
∫

∂BR

(∇u · ∇m)x · νdσ −
∫
BR

∇m · ∇(∇u · x) + (1 − N)

∫
BR

∇u · ∇m.

Note that x · ν = R on ∂BR . Coming back to (36) we obtain

−
∫
BR

�u∇m · x dx = −
∫
BR

∇m · ∇(∇u · x)dx + (2 − N)

∫
BR

∇u · ∇mdx

+
∫

∂BR

(∇u · ∇m)(x · ν)dσ −
∫

∂BR

(∇u · ν)(∇m · x)dσ. (37)

Concerning the second and the third term in (35), we get that

1

γ

∫
|∇u(x)|γ ∇m · x dx = 1

γ

∫
|∇u|γ mx · ν dσ − 1

γ

∫
mdiv(|∇u|γ x)dx =
BR ∂BR BR
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= 1

γ

∫
∂BR

|∇u|γ mx · ν dσ − 1

γ

∫
BR

m∇(|∇u|γ ) · x dx − N

γ

∫
BR

m|∇u(x)|γ dx

(38)

and

λ

∫
BR

∇m · x dx = λ

∫
∂BR

mx · νdσ − λN

∫
BR

mdx. (39)

Similarly, multiplying the second equation in (33) by ∇u · x and integrating over BR(0) we get

∫
BR

�m∇u · x dx = −
∫
BR

div(m|∇u|γ−2∇u)∇u · x dx =

=
∫
BR

∇(∇u · x) · (m |∇u|γ−2∇u)dx −
∫

∂BR

(∇u · x)m|∇u|γ−2∇u · ν dσ =

=
∫
BR

1

γ
m∇(|∇u|γ ) · x dx +

∫
BR

m|∇u|γ dx −
∫

∂BR

(∇u · x)m|∇u|γ−2∇u · ν dσ (40)

where we have integrated by parts and then used the following identity

1

γ
∇(|∇u|γ ) · x = |∇u|γ−2∇u · ∇(∇u · x) − |∇u|γ .

Integrating by parts the LHS of (40) we get

∫
∂BR

(∇m · ν)(∇u · x)dσ −
∫
BR

∇m · ∇(∇u · x)dx =

=
∫
BR

m

γ
∇(|∇u|γ ) · x dx +

∫
BR

m|∇u|γ dx −
∫

∂BR

(∇u · x)m|∇u|γ−2∇u · ν dσ

and then isolating the first term in the second line

− 1

γ

∫
BR

m∇(|∇u|γ ) · x dx =
∫
BR

∇m · ∇(∇u · x)dx −
∫

∂BR

(∇m · ν)(∇u · x)dσ

+
∫
BR

m|∇u|γ dx −
∫

∂BR

(∇u · x)m|∇u|γ−2∇u · ν dσ (41)

plugging (41) in (38) we obtain
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1

γ

∫
BR

|∇u(x)|γ ∇m · x dx = 1

γ

∫
∂BR

m|∇u|γ x · ν dσ +
∫
BR

∇m · ∇(∇u · x)dx+

−
∫

∂BR

(∇m · ν)(∇u · x)dσ +
(

1 − N

γ

)∫
BR

m|∇u|γ dx −
∫

∂BR

(∇u · x)m|∇u|γ−2∇u · ν dσ.

(42)

For what concern the Riesz’s potential term, since m ∈ L
2N

N+α (RN) from Theorem 2.6 it follows 

that Kα ∗ m ∈ L
2N

N−α (RN), hence by Hölder inequality

∣∣∣∣
∫

BR(0)

Kα ∗ m(x)∇m · x dx

∣∣∣≤ R

∫
BR(0)

|Kα ∗ m| |∇m|dx

≤ R ‖Kα ∗ m‖
L

2N
N−α (RN)

‖∇m‖
L

2N
N+α (RN)

,

this proves that the term − 
∫
BR

Kα ∗ m(x)∇m · x dx is finite. We get

−
∫
BR

Kα ∗ m(x)∇m · x dx = −
∫
BR

∫
RN

m(y)∇m(x) · x
|x − y|N−α

dy dx = −
∫
RN

∫
BR

m(y)∇m(x) · x
|x − y|N−α

dx dy =

= −
∫
RN

∫
∂BR

m(x)m(y)

|x − y|N−α
(x · ν)dσ (x) dy +

∫
RN

∫
BR

m(x)divx

(
m(y)

|x − y|N−α
x

)
dx dy (43)

and furthermore,

∫
RN

∫
BR

m(x)divx

(
m(y)

|x − y|N−α
x

)
dx dy =

= (α − N)

∫
RN

∫
BR

m(x)m(y)

|x − y|N−α

(x − y) · x
|x − y|2 dx dy + N

∫
RN

∫
BR

m(x)m(y)

|x − y|N−α
dx dy =

= α + N

2

∫
RN

∫
BR

m(x)m(y)

|x − y|N−α
dx dy + α − N

2

∫
RN

∫
BR

m(x)m(y)

|x − y|N−α

(x + y) · (x − y)

|x − y|2 dx dy

(44)

where we used that x·(x−y)

|x−y|2 = 1
2 + (x+y)·(x−y)

2|x−y|2 . Summing up (37), (39), (42), (43) and (44) we get 
the following identity

(2 − N)

∫
∇u · ∇mdx +

(
1 − N

γ

)∫
m|∇u|γ dx − λN

∫
m(x)dx
BR BR BR
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− α + N

2

∫
RN

∫
BR

m(x)m(y)

|x − y|N−α
dx dy − α − N

2

∫
RN

∫
BR

m(x)m(y)

|x − y|N−α

(x + y) · (x − y)

|x − y|2 dx dy

= I∂BR
(45)

where

I∂BR
=
∫

∂BR

[
− (∇u · ∇m) − 1

γ
m|∇u|γ − λm

]
(x · ν)dσ −

∫
RN

∫
∂BR

m(x)m(y)

|x − y|N−α
(x · ν)dσ (x) dy

+
∫

∂BR

(∇u · ν)(∇m · x) + (∇m · ν)(∇u · x) + m|∇u|γ−2(∇u · x)(∇u · ν)dσ.

Now, we let R go to infinity in (45). We observe that (changing variables x and y)

∫
RN

∫
RN

m(x)m(y)

|x − y|N−α

(x + y) · (x − y)

|x − y|2 dx dy = 0.

Moreover

|I∂BR
| ≤ R

∫
∂BR

(
3|∇u| |∇m| + 2m |∇u|γ + |λ|m)dσ +

∫
RN

R

∫
∂BR

m(x)m(y)

|x − y|N−α
dσ(x) dy

since by assumption |∇u| |∇m|, m|∇u|γ and m ∈ L1(RN), by Lemma 3.1, we get that for some 
sequence Rn → +∞

Rn

∫
∂BRn

(
3|∇u| |∇m| + 2m |∇u|γ + |λ|m

)
dσ → 0, as n → +∞.

By means of the same argument, since m ∈ L
2N

N+α (RN) implies that G(x) := ∫
RN

m(x)m(y)

|x−y|N−α dy ∈
L1(RN) (by Theorem 2.7), we get that there exists a sequence Rn → +∞ such that

Rn

∫
∂BRn

G(x)dx → 0, as n → +∞,

which conclude the proof of the Pohozaev-type equality (34). �
We are now in position to prove nonexistence of classical solutions with prescribed integra-

bility and boundary conditions at ∞.

Proof of Theorem 1.1. We argue by contradiction. Let (u, m, λ) ∈ C2(RN) ×W 1, 2N
N+α (RN) ×R

be a solution to (33) such that u → +∞ as |x| → +∞ and it holds

m|∇u|γ , |∇m||∇u| ∈ L1(RN).
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From Proposition 3.2 we have the following Pohozaev-type identity

(2 − N)

∫
RN

∇u · ∇mdx +
(

1 − N

γ

) ∫
RN

m|∇u|γ dx = λNM + α + N

2

∫
RN

m(Kα ∗ m)dx. (46)

Moreover, we obtain the following identities

∫
RN

∇u · ∇mdx = − 1

γ

∫
RN

m|∇u|γ dx − λM −
∫
RN

∫
RN

m(x)m(y)

|x − y|N−α
dx dy (47)

and ∫
RN

∇u · ∇mdx = −
∫
RN

m|∇u|γ dx. (48)

Proof of (47). Multiplying the first equation in (33) by m and integrating over BR we obtain

∫
BR

∇u · ∇mdx −
∫

∂BR

m∇u · ν dσ + 1

γ

∫
BR

m|∇u|γ dx + λ

∫
BR

mdx = −
∫
BR

∫
RN

m(x)m(y)

|x − y|N−α
dy dx.

(49)
By Holder’s inequality and using the fact that m|∇u|γ ∈ L1(RN), we have

∫
RN

|∇u|mdx ≤
⎛
⎜⎝∫
RN

|∇u|γ mdx

⎞
⎟⎠

1
γ

M
1
γ ′ < +∞,

hence |∇u|m ∈ L1(RN) and by Lemma 3.1, we get that for some sequence Rn → +∞
∫

∂BRn

m∇u · ν dσ → 0, as n → +∞.

Equality (47) follows letting R → ∞ in (49). Proof of (48). For any s > 0 let us define the set

Xs := {x ∈RN |u(x) ≤ s},

and the function

vs(x) := u(x) − s, ∀x ∈ RN.

After a translation we may assume u(0) = 0. In this way, ∪s>0Xs = RN , every Xs is non-empty 
and bounded since u(x) → +∞ as |x| → +∞. Multiplying the second equation in (33) by vs

and integrating by parts, we get
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∫
Xs

∇vs · ∇mdx = −
∫
Xs

m |∇u|γ−2∇u · ∇vs dx,

since ∇vs = ∇u, we obtain (48) letting s → +∞.
Plugging (48) in (47) we get

(
1 − 1

γ

) ∫
RN

m|∇u|γ dx = λM +
∫
RN

∫
RN

m(x)m(y)

|x − y|N−α
dx dy (50)

and hence ∫
RN

m|∇u|γ dx = λγ ′M + γ ′
∫
RN

∫
RN

m(x)m(y)

|x − y|N−α
dx dy. (51)

Using (48) in (46), we have

(
N

γ ′ − 1

) ∫
RN

m|∇u|γ dx = λN M + α + N

2

∫
RN

m(Kα ∗ m)dx

and finally from (51) we obtain

(
N − 2γ ′ − α

2

) ∫
RN

∫
RN

m(x)m(y)

|x − y|N−α
dx dy = γ ′λM. (52)

Recall that by Lemma 2.11, we have that λ ≤ 0 and by assumption N − 2γ ′ − α > 0, so we get 
a contradiction. �
Remark 3. One could observe that the previous proof (with slight changes) holds also in the case 
when u → −∞ as |x| → +∞, hence one may ask why we do not consider this possibility. This 
is due to the fact that the property of ergodicity for the process is strictly related to the existence 
of a Lyapunov function (refer to [21]). More in detail, a necessary condition to have an ergodic 
process is

∇u · x > 0, for x large

(see also [8] and references therein). As a consequence, the case u → −∞ as |x| → +∞ is not 
relevant.

4. Existence of classical solutions to the MFG system

First of all we consider a regularized version of problem (1), namely

⎧⎪⎨
⎪⎩

−�u + 1
γ
|∇u|γ + λ = V (x) − Kα ∗ m ∗ ϕk(x)

−�m − div
(
m(x)∇u(x) |∇u(x)|γ−2

)= 0∫
m = M, m ≥ 0

in RN (53)
RN
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where ϕk is a sequence of standard symmetric mollifiers approximating the unit as k → +∞ (i.e. 
a sequence of symmetric functions on RN such that ϕk ∈ C∞

0 (RN), suppϕk ⊂ B1/k(0), 
∫

ϕk = 1
and ϕk ≥ 0). For every k fixed, using Schauder Fixed Point Theorem, we will prove existence of 
(uk, mk, λk) solution to (53), and then, exploiting a priori uniform estimates on these solutions, 
we will show that we may pass to the limit as k → +∞ and get a solution of the MFG system 
(1).

4.1. Solution of the regularized problem

We consider (53) with k fixed:

⎧⎪⎨
⎪⎩

−�u + 1
γ
|∇u|γ + λ = V (x) − Kα ∗ m ∗ ϕ(x)

−�m − div
(
m(x)∇u(x) |∇u(x)|γ−2

)= 0∫
RN m = M, m ≥ 0

in RN (54)

We are going to construct solution to (54) by using the following version of the well-known 
Schauder Fixed Point Theorem. Construction of solutions to MFG systems by exploiting fixed 
point arguments is quite classical in the literature, see [2,9,19,24].

Theorem 4.1 (Corollary 11.2 [15]). Let A be a closed and convex set in a Banach space X and 
let F be a continuous map from A into itself such that the image F(A) is precompact. Then, F
has a fixed point.

Let ξ, C > 0 (which will be chosen later), M > 0 and p̄ > N
α

, we define the set

Aξ,M,C :=

⎧⎪⎨
⎪⎩μ ∈ Lp̄(RN) ∩ L1(RN)

∣∣∣∣ ‖μ‖
L

2N
N+α (RN)

≤ ξ,

∫
RN

μdx = M, μ ≥ 0,

∫
RN

μV (x)dx ≤ C

⎫⎪⎬
⎪⎭ . (55)

Lemma 4.2. For any choice of ξ, M, C > 0, the set Aξ,M,C ⊂ Lp̄(RN) is closed and convex.

Proof. The set Aξ,M,C is convex since it is intersection of convex sets.
Let now (μn)n be a sequence in Aξ,M,C which converges in Lp̄ to μ̄. Obviously μ̄ ≥ 0 and 

since μn ⇀ μ̄ in L
2N

N+α (RN) by weak lower semicontinuity of the norm we have that

‖μ̄‖
L

2N
N+α (RN)

≤ lim inf‖μn‖
L

2N
N+α (RN)

≤ ξ.

From Fatou’s Lemma we get also that 
∫
RN μ̄V (x) ≤ lim inf

∫
RN μnV (x) ≤ C. Note that due to 

the fact that 0 ≤ ∫
RN μnV (x) ≤ C, and that V is coercive, see (2), μn are uniformly integrable, 

since for every R >> 1, 0 ≤ ∫
|x|≥R

μndx ≤ CV

Rb

∫
RN V (x)μndx ≤ CCV

Rb . Due to the fact that 

μn → μ̄ in Lp̄ , we have also that they have uniformly absolutely continuous integrals, so we may 
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apply the Vitali convergence theorem and obtain that μn → μ̄ in L1(RN) and hence 
∫
RN μ̄ dx =

M . This proves that μ̄ ∈ Aξ,M,C , and hence that Aξ,M,C is closed. �
We define the map F : Aξ,M,C → C2(RN) ×R which to every element μ ∈ Aξ,M,C associates 

a solution (u, ̄λ) ∈ C2(RN) ×R to the HJB equation

−�u + 1

γ
|∇u|γ + λ = V (x) − Kα ∗ μ ∗ ϕ(x), in RN (56)

where λ̄ is defined as in (27) (refer to [4]); and the map G which to the couple (u, ̄λ) associates 
the function m which solves (weakly)

{
−�m − div

(
m(x)∇u(x) |∇u(x)|γ−2

)= 0∫
RN m = M, m ≥ 0

. (57)

We look for a fixed point of the map F : μ �→ m defined as the composition of F and G, namely 
F(μ) := G(F(μ)).

We are going to show that, once we have fixed M (in an appropriate range), it is possible 
to choose appropriately ξ and C in such a way that the map F defined on Aξ,M,C satisfies the 
assumptions of the Schauder Fixed Point Theorem 4.1. As we will see the regularization with ϕ
in the system (54) is necessary in order to get precompactness of the image of F . We start with 
some preliminary results.

Proposition 4.3. Let us consider μ ∈ Aξ,M,C , (u, ̄λ) = F(μ) and m = G(u, ̄λ) = F(μ). Then,

i) there exists a constant C > 0 such that

|∇u(x)| ≤ C(1 + |x|) b
γ (58)

where C depends on CV , b, γ, N, ̄λ, ‖Kα ∗ μ ∗ ϕ‖∞.
ii) the function u is unique up to addition of constants and there exists C > 0 such that

u(x) ≥ C|x| b
γ

+1 − C−1. (59)

iii) it holds

−K1 ≤ λ̄ ≤ K2 (60)

where K1 and K2 are positive constants depending respectively on ‖Kα ∗ μ ∗ ϕ‖∞ and on 
CV , b, γ, N .

iv) the function m is unique, m ∈ (W 1,1 ∩L∞)(RN), 
√

m ∈ W 1,2(RN), m ∈ W 1,p(RN) ∀p > 1
and it holds

‖∇m‖Lp(RN) ≤ C‖m 1
p |∇u|γ−1‖Lp(RN)‖m1− 1

p ‖L∞(RN). (61)
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Moreover, the following integrability properties are verified

m|∇u|γ ∈ L1(RN), mV ∈ L1(RN), |∇u| |∇m| ∈ L1(RN). (62)

Proof. i) Since μ ∗ ϕ ∈ L1(RN) ∩ Lp̄(RN) with p̄ > N
α

, by Theorem 2.8 we obtain Kα ∗ (μ ∗
ϕ) ∈ C0,θ (RN) for some θ ∈ (0, 1) and ‖Kα ∗ μ ∗ ϕ‖∞ ≤ CN,α,p̄‖μ ∗ ϕ‖Lp̄ + ‖μ ∗ ϕ‖L1 ≤
CN,α,p̄‖μ‖Lp̄ + M . We can apply therefore Proposition 2.9, which gives us the following esti-
mate

|∇u(x)| ≤ C(1 + |x|) b
γ (63)

where C is a constant depending on CV , b, γ, N, ̄λ, ‖Kα ∗ (μ ∗ ϕ)‖∞. This proves (58).
ii) Since, by construction, u is a solution to (56) with λ = λ̄ then by Proposition 2.10 ii) it 

follows uniqueness up to additive constants and (59).
iii) The fact that λ̄ ≤ K2 is a direct consequence of Lemma 2.11. Furthermore, if x̄ is a 

minimum point of u, evaluating (56) at x̄ we have that

λ̄ ≥ V (x̄) − Kα ∗ μ ∗ ϕ(x̄) ≥ −‖Kα ∗ μ ∗ ϕ‖∞ ≥ −K1

since V (x) ≥ 0 in RN .
iv) For r > 1, let us consider the function h(x) := u(x)r , one can observe that

−�h + |∇u|γ−2∇u · ∇h = rur−1
(

−(r − 1)
|∇u|2

u
− �u + |∇u|γ

)

= rur−1
(

−�u + 1

γ
|∇u|γ − (r − 1)

|∇u|2
u

+ 1

γ ′ |∇u|γ
)

= rur−1
(

−λ̄ + V − Kα ∗ μ ∗ ϕ − (r − 1)
|∇u|2

u
+ 1

γ ′ |∇u|γ
)

,

where in the last equality we used the fact that u solves (56). Denoting by

H(x) := −λ̄ + V (x) − Kα ∗ μ ∗ ϕ(x) − (r − 1)
|∇u|2

u
+ 1

γ ′ |∇u|γ ,

from (60), (2) and the fact that Kα ∗ μ ∗ ϕ ∈ L∞, we get

H(x) ≥ (r − 1)|∇u|γ
(

1

γ ′(r − 1)
− |∇u|2−γ

u

)
+ C−1

V |x|b − C ≥ 1, for |x| > R

taking R sufficiently large. Hence, for |x| > R

−�h + |∇u|γ−2∇u · ∇h ≥ C|x|( b
γ

+1)(r−1)
> 0

this means that h is a Lyapunov function for the stochastic process with drift |∇u|γ−2∇u. Since 
m solves (57), it is the density of the invariant measure associated to this process. So, from [35, 
Proposition 2.3] we get that
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m|x|( b
γ

+1)(r−1) ∈ L1(RN). (64)

More in general, since the value of r > 1 can be chosen arbitrarily, from (64) we have that for 
any q > 0

m|x|q ∈ L1(RN), (65)

in particular m|x|b ∈ L1(RN), so taking into account estimates (63) and (2) we obtain that

m|∇u|γ ∈ L1(RN) and mV ∈ L1(RN).

With the same argument (since |∇u|p(γ−1) has polynomial growth) it follows that

m|∇u|p(γ−1) ∈ Lp(RN), ∀p > 1

hence from [35, Corollary 3.2 and Theorem 3.5] we get that

m ∈ W 1,1(RN) ∩ L∞(RN).

Moreover, using the fact that m is a weak solution to the Kolmogorov equation and Hölder 
inequality, we obtain that for any φ ∈ C∞

0 (RN) we have

∣∣∣∣
∫
RN

m�φ dx

∣∣∣∣≤
∫
RN

m|∇u|γ−1| |∇φ|dx ≤ ‖m 1
p |∇u|γ−1‖p‖m1− 1

p ‖∞‖∇φ‖p′ .

Since m
1
p |∇u|γ−1 ∈ Lp(RN) and m1− 1

p ∈ L∞(RN), by Proposition 2.2 we get that

m ∈ W 1,p(RN), ∀p > 1

and estimate (61) holds. Finally, from [35, Theorem 3.1] we have that 
√

m ∈ W 1,2(RN) and ∫
RN

|∇m|2
m

< +∞, so using Hölder inequality we obtain

∫
RN

|∇u| |∇m| ≤ ∥∥ |∇u|√m
∥∥

2

∥∥∥∥ |∇m|√
m

∥∥∥∥
2
< +∞.

Since the function u is unique up to additive constants, ∇u is fixed and hence, by existence 
of a Lyapunov function, it follows immediately uniqueness of m solution to the Kolmogorov 
equation. �

We show now that once we fix the mass M (in (0, +∞) in the mass-subcritical case, or below 
a certain threshold in the mass-supercritical and mass-critical regime), then we may choose the 
constant ξ, C in the definition (55) of the set Aξ,M,C such that the map F maps Aξ,M,C into 
itself.
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Lemma 4.4. We have the following results:

i) if N − γ ′ < α < N , then for any M > 0, there exist ξ, C > 0 such that F maps Aξ,M,C into 
itself;

ii) if N − 2γ ′ ≤ α ≤ N − γ ′ then there exists a positive real value M0 = M0(N, α, γ, CV , b)

such that if M ∈ (0,M0) there exist ξ, C > 0 such that F maps the set Aξ,M,C into itself.

Proof. Let μ ∈ Aξ,M,C , m = F(μ) and (u, ̄λ) = F(μ) as above. Since by Proposition 4.3 iv)

m ∈ L∞(RN), by interpolation it follows that m ∈ Lp̄(RN). Multiplying (56) by m and integrat-
ing over BR , we obtain

−
∫
BR

m�udx + 1

γ

∫
BR

m|∇u|γ dx + λ̄

∫
BR

mdx =
∫
BR

V (x)mdx −
∫
BR

m(Kα ∗ μ ∗ ϕ)dx

and integrating by parts the first term

∫
BR

∇m · ∇udx −
∫

∂BR

m∇u · ν dσ + 1

γ

∫
BR

m|∇u|γ dx + λ̄

∫
BR

mdx

=
∫
BR

V (x)mdx −
∫
BR

m(Kα ∗ μ ∗ ϕ)dx. (66)

From the fact that 
∫
RN m = M and m|∇u|γ ∈ L1(RN), by Hölder inequality we get that m|∇u| ∈

L1(RN), hence by Lemma 3.1 for some sequence Rn → +∞ we have that 
∫
∂BRn

m∇u · ν dσ →
0. Since m(Kα ∗ μ ∗ ϕ) ∈ L1(RN) and (62) holds, letting R go to +∞ in (66) we obtain that

∫
RN

∇u · ∇mdx = − 1

γ

∫
RN

m|∇u|γ dx − λ̄M +
∫
RN

V (x)mdx −
∫
RN

m(Kα ∗ μ ∗ ϕ)dx. (67)

Moreover, from the fact that m solves (weakly) the Kolmogorov equation in (57), following the 
proof of identity (48), we have that

∫
RN

∇u · ∇mdx = −
∫
RN

m|∇u|γ dx. (68)

Putting together (67) and (68) we get that

1

γ ′

∫
RN

m|∇u|γ dx +
∫
RN

mV dx = λ̄M +
∫
RN

m(Kα ∗ μ ∗ ϕ)dx. (69)

Since λ̄ ≤ K2 (from (60)), using (23) we have
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∫
RN

m|∇u|γ dx ≤ C1M + C2 ‖m‖
L

2N
N+α (RN)

‖μ ∗ ϕ‖
L

2N
N+α (RN)

≤ C1M + C2 ‖m‖
L

2N
N+α (RN)

‖μ‖
L

2N
N+α (RN)

≤ C1M + C2 ξ ‖m‖
L

2N
N+α (RN)

(70)

where C1 = C1(γ, CV , b, N) and C2 = C2(α, N, γ ).
Choice of ξ . First of all we show that we may choose ξ in such a way that if μ ∈ Aξ,M,C then 
‖m‖

L
2N

N+α (RN)
= ‖F(μ)‖

L
2N

N+α (RN)
≤ ξ .

Let us fix a := 2γ ′
N−α

. Notice that a > 2 if α > N − γ ′, a = 2 if α = N − γ ′, a ∈ (1, 2) if 
N − 2γ ′ < α < N − γ ′ and a = 1 when α = N − 2γ ′.

In the case when N − γ ′ ≤ α < N , using estimate (18), we get

‖m‖a

L
2N

N+α (RN)

≤ CMa−1
∫
RN

m|∇u|γ dx (71)

where C is a constant depending on N , α and γ ; whereas if N −2γ ′ ≤ α < N −γ ′ using estimate 
(19), we get

‖m‖a

L
2N

N+α (RN)

≤ CMa−1

⎛
⎜⎝∫
RN

m|∇u|γ dx + M

⎞
⎟⎠ (72)

where C is a constant depending on N , α and γ .
From (70) and either (71) or (72) we obtain that

‖m‖a

L
2N

N+α (RN)

≤ C1M
a + C2M

a−1ξ ‖m‖
L

2N
N+α (RN)

. (73)

We define the function

f (t) := ta − C2M
a−1ξ t − C1M

a

and observe that (73) is equivalent to f (‖m‖
L

2N
N+α (RN)

) ≤ 0. When a > 1, f (‖m‖
L

2N
N+α (RN)

) ≤ 0

is equivalent to ‖m‖
L

2N
N+α (RN)

≤ t0, where t0 is the unique zero of f . So, in order to conclude 

that ‖m‖
L

2N
N+α (RN)

≤ ξ it is sufficient to choose ξ such that f (ξ) ≥ 0.

Case N − γ ′ < α < N . In this case since a > 2 and f (ξ) = ξa − C2M
a−1ξ2 − C1M

a then 
for every fixed M > 0, there exists ξM such that f (ξ) ≥ 0 for every ξ ≥ ξM and we have done.

Case α = N − γ ′. In this case a = 2, so arguing as before, and recalling that f (ξ) = ξ2 −
C2Mξ2 − C1M

2, we get that whenever M < 1
C2

:= M0 there exists ξM such that f (ξ) ≥ 0 for 
every ξ ≥ ξM .
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Case N −2γ ′ < α < N −γ ′. In this case a ∈ (1, 2). Denote g(t) := ta −C2M
a−1t2 −C1M

a . 
We aim to find ξ such that g(ξ) ≥ 0. This is possible if and only if g(tmax) ≥ 0, where tmax =(

a
2C2M

a−1

) 1
2−a

is the maximum point of g. Evaluating g in this point we get

g(tmax) =
(

2 − a

2

)
C

− a
2−a

2

(a

2

) a
2−a

M
a(1−a)

2−a − C1M
a.

Since a ∈ (1, 2) we have that 2−a
2 > 0 and a(1−a)

2−a
< 0, hence

g(tmax) ≥ 0

provided that M is sufficiently small. We may choose ξ = tmax (or more generally ξ in the range 
of values t such that g(t) ≥ 0).

Case α = N − 2γ ′. Since a = 1, the function f reads f (t) = t − C2ξ t − C1M and since 
f (‖m‖

L
2N

N+α (RN)
) ≤ 0 we have, if ξ < 1

C2
,

‖m‖
L

2N
N+α (RN)

≤ C1M

1 − C2ξ
. (74)

We look for some condition on M under which we may choose ξ such that C1M
1−C2ξ

≤ ξ . Observe 

that this is equivalent to C2ξ
2 − ξ + C1M ≤ 0. If M ≤ 1

4C1C2
, then it is sufficient to choose ξ in 

the range 
[

1−√
1−4C1C2M

2C2
,

1+√
1−4C1C2M

2C2

]
∩
(

0, 1
C2

)
.

Choice of C. Notice that in each of the previous cases, from (69), (70) and the fact that 
‖m‖

L
2N

N+α (RN)
≤ ξ , we get

∫
RN

mV dx ≤ C1M + C2ξ
2.

So it is sufficient to choose C greater or equal to C1M + C2ξ
2.

We can conclude that F maps the set Aξ,M,C into itself. �
We show now that the image of F is precompact, that is relatively compact. Here is the main 

point in which the regularization with the mollifier ϕ comes into play.

Lemma 4.5. Let M and ξ, C as given by Lemma 4.4. Then the image F(Aξ,M,C) is precompact.

Proof. Let us consider a sequence (mn)n ⊂ F(Aξ,M,C), in order to prove that F(Aξ,M,C) is 
precompact in Aξ,M,C , we have to show that (mn)n admits a subsequence converging in Lp̄-norm 
to a point belonging to Aξ,M,C . There exists a sequence (μn)n ⊂ Aξ,M,C such that F(μn) = mn

for every n ∈ N , considering also (un, ̄λn) = F(μn), we have that for every n ∈ N the triple 
(un, mn, ̄λn) is such that
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⎧⎪⎨
⎪⎩

−�un + 1
γ
|∇un|γ + λ̄n = V (x) − Kα ∗ μn ∗ ϕ(x)

−�mn − div(mn∇un|∇un|γ−2) = 0∫
RN mn = M mn ≥ 0

.

Note that by Young’s convolution inequality ‖μn ∗ ϕ‖Lq(RN) ≤ ‖μn‖L1(RN)‖ϕ‖Lq(RN) =
M‖ϕ‖Lq(RN) for every q . Therefore by Proposition 2.8 we get that Kα ∗ μn ∗ ϕ ∈ L∞ ∩ C0,θ

for some θ ∈ (0, 1) uniformly in n, that is ‖Kα ∗ μn ∗ ϕ‖L∞(RN) ≤ C, for some C indepen-
dent of n. By Proposition 4.3 we have that un are bounded from below, that mn ∈ L∞ and 
that λ̄n are equibounded in n, so we may apply Theorem 2.12 (actually a simpler version, with 
Wn(x) = V (x) − Kα ∗ μn ∗ ϕ and Gk,α ≡ 0). So we obtain that there exists a positive constant 
C not depending on n such that

‖mn‖L∞(RN) ≤ C, ∀n ∈N. (75)

Now we use Proposition 2.5 ii), since mn ∈ Lq(RN) (where q is defined as in Proposition 2.5) 
and En ≤ C1M + C2ξ

2 and we get that

‖mn‖W 1,�(RN) ≤ C, ∀� < q

where the constant C does not depend on n. Hence, by Sobolev compact embeddings, mn →
m̄ strongly in Ls(K) for 1 ≤ s < q∗ and for every K ⊂⊂ RN . Moreover, using the fact that ∫
RN mnV dx ≤ C uniformly in n and (2) we get that for R > 1

C ≥
∫
RN

mnV dx ≥
∫

|x|≥R

mnV dx ≥ CRb

∫
|x|≥R

mn(x)dx

that is ∫
|x|≥R

mn(x)dx → 0, as R → +∞.

Using also the uniform estimate (75), from the Vitali Convergence Theorem we obtain that up to 
sub-sequences

mn → m̄ in L1(RN) (76)

and as a consequence 
∫
RN m̄(x)dx = M . Finally, from (75) and (76), we deduce that mn → m̄

strongly in Lp̄(RN). Since Aξ,M,C is closed and by Lemma 4.4 we have that F(Aξ,M,C) ⊂
Aξ,M,C , we may conclude that m̄ ∈ Aξ,M,C . �

Finally we show that F is continuous.

Lemma 4.6. Let ξ , M and C as given by Lemma 4.4. Then, the map F is continuous.
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Proof. Let (μn)n be a sequence in Aξ,M,C such that μn → μ̃ ∈ Aξ,M,C strongly in Lp̄(RN). In 
order to prove that the map F is continuous, we have to show that F(μn) → F(μ̃) with respect 
to the Lp̄-norm, that is mn → m̃ strongly in Lp̄(RN). We consider the sequence made by the 
couples (un, ̄λn) ∈ C2(RN) × R, where (un, ̄λn) = F(μn) ∀n ∈ N , as previously defined. As 
observed in Lemma 4.5, Kα ∗ μn ∗ ϕ is uniformly bounded in L∞. So by Proposition 4.3 we 
have that λ̄n are uniformly bounded, that

|∇un(x)| ≤ C(1 + |x| b
γ ) uniformly in n

and then consequently

|�un| ≤ C(1 + |x|b), uniformly in n. (77)

Up to extracting a subsequence we assume that λ̄n → λ(1). Since un is a classical solution to the 
HJB equation, by classical elliptic regularity estimates applied to vn(x) := un(x) − un(0) (refer 
e.g. to [15, Theorem 8.32]) for any θ ∈ (0, 1] and K ⊂⊂ RN we get

‖vn‖C
1,θ
loc (K)

≤ C uniformly in n

(notice that the previous estimate holds for θ = 1 thanks to (77)). By Arzelà-Ascoli Theorem, up 
to extracting a subsequence, we get that

vn → u(1) locally uniformly in C1,θ

and hence

∇un → ∇u(1) locally uniformly in C0,θ .

Since ‖(μn − μ̃) ∗ ϕ‖Lp̄(RN) ≤ 2M‖ϕ‖Lp̄(RN), by Theorem 2.8 we get that

‖Kα ∗ ϕ ∗ μn‖C0,α−N/p̄ ≤ C, uniformly in n

and

‖Kα ∗ ϕ ∗ μn − Kα ∗ ϕ ∗ μ̃‖L∞(RN) ≤ CN,α,p̄‖μn − μ̃‖Lp̄(RN) + ‖μn − μ̃‖L1(RN).

Since μn → μ̃ in L1(RN) ∩ Lp̄(RN), then up to subsequences

Kα ∗ ϕ ∗ μn −→ Kα ∗ ϕ ∗ μ̃ locally uniformly in RN .

By stability with respect to locally uniform convergence, we get that (u(1), λ(1)) is a solution (in 
the viscosity sense) to the HJB equation

−�u + 1 |∇u|γ + λ = V (x) − Kα ∗ ϕ ∗ μ̃(x), on RN.

γ
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Let (ũ, ̃λ) = F(μ̃), we want to show that λ̃ = λ(1). Assume by contradiction that λ̃ �= λ(1), with-
out loss of generality we can assume that λ(1) < λ̃−2ε for a certain ε > 0. Then, for n sufficiently 
large λ̄n < λ̃− ε and, possibly enlarging n, we have also ‖Kα ∗ϕ ∗μn −Kα ∗ϕ ∗ μ̃‖∞ ≤ ε. One 
can observe that

−�ũ + 1

γ
|∇ũ|γ + λ̃ − ε − V (x) + Kα ∗ ϕ ∗ μn(x) ≤ 0,

i.e. ũ is a subsolution to the equation

−�u + 1

γ
|∇u|γ + λ̃ − ε = V (x) − Kα ∗ ϕ ∗ μn(x). (78)

Since by definition (see [6, Theorem 2.7 (i)])

λ̄n := sup

{
λ ∈R

∣∣∣∣−�u+ 1

γ
|∇u|γ +λ = V (x)−Kα ∗μn∗ϕ(x) has a subsolution in C2(RN)

}

it must be λ̄n ≥ λ̃ − ε, which yields a contradiction. Therefore λ̃ = λ(1). By Proposition 4.3 ii)

ũ is unique up to addition of constants, namely there exists c ∈ R such that ũ = u(1) + c, it 
follows that ∇ũ = ∇u(1). Once we have the sequence of function un, we construct the sequence 
(mn)n ⊂ F(Aξ,M,C) such that for every n ∈N fixed, it holds

{
−�mn − div(mn ∇un|∇un|γ−2) = 0∫
RN mn = M, mn ≥ 0

.

From Lemma 4.5, up to extracting a subsequence

mn → m(1) in Lp̄(RN)

where m(1) ∈ Aξ,M,C . Since ∇un|∇un|γ−2 → ∇ũ|∇ũ|γ−2 locally uniformly in RN , we get that 
m(1) is a weak solution to

−�m − div(m∇ũ|∇ũ|γ−2) = 0

that has m̃ = F(μ̃) as unique solution. This proves that mn → m̃ in Lp̄(RN). �
We are ready to prove the following result on existence of solutions to the regularized MFG 

system (54).

Theorem 4.7. We get the following results:

i. if N − γ ′ < α < N then, for every M > 0 the MFG system (54) admits a classical solution;
ii. if N − 2γ ′ ≤ α ≤ N − γ ′ then, there exists a positive real value M0 = M0(N, α, γ, CV , b)

such that if M ∈ (0, M0) the MFG system (54) admits a classical solution.
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Proof. From Lemma 4.2, Lemma 4.4, Lemma 4.5 and Lemma 4.6 assumptions of Theorem 4.1
are verified, hence the map F has a fixed point mϕ . The fixed point mϕ together with the couple 
(uϕ, ̄λϕ) = F(mϕ) obtained solving the Hamilton-Jacobi-Bellman equation with Riesz potential 
term equal to Kα ∗ mϕ ∗ ϕ, will be a solution to the MFG system (54). �
4.2. Limiting procedure

Let (ϕk)k be a sequence of standard symmetric mollifiers approximating the unit as k → +∞. 
For every k ∈ N (under the additional assumption that the constraint mass M is sufficiently small 
in the case when N − 2γ ′ < α ≤ N −γ ′) from Theorem 4.7 we can construct a classical solution 
(uk, mk, ̄λk) to the corresponding regularized MFG system (53). Our aim now is passing to the 
limit as k → +∞ and prove that (uk, mk, ̄λk) converges to a solution of the MFG system (1).

We need some preliminary apriori estimates.

Lemma 4.8. Let α ∈ (N −2γ ′, N) and (uk, mk, ̄λk) be a solution to the regularized MFG system 
(53) as constructed in Theorem 4.7. Then, there exist C1, C2, C3 positive constants independent 
of k such that

‖mk‖L∞(RN) ≤ C1, ∀k ∈N

|λ̄k| ≤ C2

and

|∇uk| ≤ C3(1 + |x| b
γ ) |�uk| ≤ C3(1 + |x|b). (79)

Proof. Note that if m ∈ L1(RN) ∩ L∞(RN) by Theorem 2.8, we have that

‖Kα ∗ ϕk ∗ m‖L∞(RN) ≤ CN,α,r,s(‖ϕk ∗ m‖Lr(RN) + ‖ϕk ∗ m‖Ls(RN))

≤ C1‖m‖Lr(RN) + C2‖m‖Ls(RN)

for every r ∈ (N
α

,+∞]
and s ∈ [1, N

α

)
. So, since mk ∈ L1(RN) ∩ L∞(RN) with ‖mk‖ 2N

N+α
≤ ξ , 

and uk are bounded from below, we may apply Theorem 2.12 with Wk ≡ V , Gk,α[m] = Kα ∗ϕk ∗
m and q = 2N

N+α
> N

α+γ ′ and conclude the uniform L∞ bounds on mk . Now, by Proposition 4.3, 

we get that λ̄k are equibounded in k and that

|∇uk(x)| ≤ C(1 + |x| b
γ ) |�uk| ≤ C(1 + |x|b)

where C is independent of k. �
Proof of Theorem 1.2. Since for any k ∈N , uk is a classical solution to the HJB equation

−�u + 1

γ
|∇u|γ + λ̄k = V (x) − Kα ∗ ϕk ∗ mk

by Lemma 4.8 and elliptic estimates (refer to [15, Theorem 8.32]) applied to vk(x) := uk(x) −
uk(0), we obtain that for every K ⊂⊂RN and θ ∈ (0, 1]
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‖vk‖C
1,θ
loc (K)

≤ C uniformly with respect to k

hence up to extracting a subsequence

vk → ū locally uniformly in C1 on compact sets.

Similarly, since mk weak solution to −�m − div(m|∇uk|γ−2∇uk) = 0, for every φ ∈ C∞
0 (K) it 

holds ∣∣∣∣
∫
K

mk�φ dx

∣∣∣∣≤ ‖∇φ‖L1(K)‖mk|∇uk|γ−1‖L∞(K).

Using the uniform L∞ estimates on mk and the estimates (79), by Proposition 2.2 and Sobolev 
embedding, we get that for every β ∈ (0, 1)

‖mk‖C0,β (K) ≤ C uniformly with respect to k

so up to extracting a subsequence

mk → m̄ locally uniformly.

Since the values of λ̄k are equibounded with respect to k, we have that λ̄k → λ̄ up to a subse-
quence. Again recalling that 

∫
V (x)mk ≤ C uniformly in k, we conclude by Vitali Convergence 

Theorem that mk → m̄ in L1(RN) and hence 
∫
RN m̄ = M . From the strong convergence in 

L1(RN) and the uniform L∞ estimates, we obtain also that

mk → m̄ in Lp(RN)

for every p ∈ [1, +∞). We finally have that

Kα ∗ ϕk ∗ mk → Kα ∗ m locally uniformly.

We can pass to the limit and obtain that (ū, m̄, ̄λ) is a solution to the MFG system (1). �
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