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ABSTRACT 
 
 

In the modern livestock sector, several applications of Precision Livestock Farming 

(PLF) have been designed for improving efficiency, productivity, sustainability, and 

welfare of different farming systems. Precision dairy farming systems, in particular, 

enable to manage larger herds in a more time-efficient manner, through automated 

monitoring of individual cow health and welfare. Dairy farmers can be assisted in the 

identification of unexpected behaviors or in the early detection of pathologies, with the 

possibility to decide whether and how to act. Furthermore, the analysis of big data from 

PLF technologies can help dairy farmers in phenotyping the animals for complex traits 

such as resilience, longevity, or productive life span, bringing to optimized breeding, 

treatment, and culling decisions. The aim of this thesis was to present different PLF 

applications to the dairy sector, that can serve as support tools for the optimization of 

farm management strategies and cows’ welfare. A general introductive chapter (Chapter 

1) focused on an overview about PLF systems, objectives, and limitations, specifically 

addressed to the dairy sector. Afterwards, a new statistical model within the animal 

science field (i.e., joint model for longitudinal and time-to-event data) was tested to 

predict cow’s survival using first-parity sensor data as input (Chapter 2). The algorithm 

had good repeatability across farms with modest performances. However, joint models 

offer such interesting opportunities in terms of applicability and flexibility to justify further 

research for improving the overall predictive accuracy in the dairy sector. Further 

research investigated heat wave effects on dairy cows’ behaviors registered with sensors 

(Chapter 3). The output revealed that ‘heat-sensitive’ subjects were more active and 

spent more time chewing during a heat wave challenge compared to 'heat-tolerant' ones, 

as an attempt to better dissipate heat load. This suggested that the information provided 

by high-frequency sensor data can assist farmers in the early identification of cows for 

which personalized interventions to alleviate heat stress are needed. In a dedicated 

study, three different mathematical methods to estimate dairy cows’ expected 

production, milk losses, and perturbations of the lactation curve were analyzed and 

compared (Chapter 4). The output of this study can help dairy practitioners in choosing 

the method that best fits their management strategies, to understand, for example, how 

the animals cope with challenges, or to optimize their production system. Finally, a pilot 

study addressed to early detect cows at risk of metabolic disorders was conducted, using 

milk fatty acids analysis obtained with FTIR spectroscopy (Chapter 5). Preliminary 

reference intervals for de novo, mixed, and preformed fatty acids were calculated for 

healthy cows’ during early and mid-lactation. These reference ranges could help farmers 
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to screen cows at risk of specific health disorders (e.g., subclinical ketosis) even before 

clinical signs are visible. In conclusion (Chapter 6), this thesis highlighted the potential 

of PLF in assisting dairy farmers to make better choices about the sustainability and the 

efficiency of their production system, by providing more objective information about 

health and productivity of the animals. 
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RIASSUNTO 
 
 

Recentemente, il settore zootecnico è stato caratterizzato da numerose applicazioni 

dell’Allevamento di Precisione (PLF) progettate per migliorare l'efficienza, la produttività, 

la sostenibilità e il benessere di diversi sistemi di allevamento. In particolare, i sistemi di 

allevamento di precisione per il settore lattiero-caseario consentono di gestire mandrie 

più grandi in modo più efficiente nel tempo, attraverso il monitoraggio automatizzato della 

salute e del benessere delle singole vacche. Gli allevatori possono essere assistiti 

nell'identificazione di comportamenti inaspettati o nella rilevazione precoce di patologie, 

con la possibilità di decidere se e come intervenire. Inoltre, l'analisi di ‘big data’ 

provenienti dalle tecnologie PLF può aiutare gli allevatori nel fenotipizzare gli animali per 

tratti complessi come la resilienza o la longevità, portando ad ottimizzare decisioni 

riguardanti la selezione, il trattamento o la macellazione degli animali. L'obiettivo di 

questa tesi consiste nel presentare diverse applicazioni PLF al settore lattiero-caseario, 

in particolare come strumenti di supporto per l'ottimizzazione delle strategie di gestione 

dell'azienda e del benessere delle vacche. Un capitolo introduttivo generale (Capitolo 

1) si è concentrato su una panoramica di sistemi, obiettivi, e limitazioni dell’allevamento 

di precisione, specialmente nel settore lattiero-caseario. Successivamente, è stato 

testato un nuovo modello statistico nel campo delle scienze animali (i.e., ‘joint model’) 

per prevedere la sopravvivenza delle vacche da latte utilizzando i dati dei sensori nei 

soggetti primipari come input (Capitolo 2). L'algoritmo ha avuto una buona ripetibilità tra 

gli allevamenti considerati, con prestazioni modeste. Tuttavia, i ‘joint models’ offrono 

opportunità talmente interessanti in termini di applicabilità e flessibilità da giustificare 

ulteriori ricerche per migliorarne l'accuratezza predittiva. Ulteriori ricerche hanno 

indagato gli effetti delle ondate di calore sui comportamenti delle vacche da latte 

registrati tramite sensori (Capitolo 3). L'output ha rivelato che i soggetti ‘heat-sensitive’ 

erano più attivi e trascorrevano più tempo a masticare durante le ondate di calore, nel 

tentativo di dissipare meglio il carico termico. Ciò ha suggerito che le informazioni fornite 

dai dati ad alta frequenza possono assistere gli allevatori nell'identificazione precoce 

delle vacche per cui sono necessari interventi personalizzati per alleviare lo stress da 

caldo. In uno studio dedicato, sono stati analizzati e confrontati tre diversi metodi 

matematici per stimare la produzione prevista delle vacche, le perdite di latte, e le 

perturbazioni della curva di lattazione (Capitolo 4). L'output di questo studio può aiutare 

allevatori o veterinari a scegliere il metodo che meglio si adatta alle loro strategie di 

gestione, per capire, ad esempio, come gli animali affrontano le sfide, o per ottimizzare 

il sistema produttivo. Infine, è stato condotto uno studio pilota per rilevare le vacche a 
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rischio di disturbi metabolici, utilizzando l'analisi degli acidi grassi del latte ottenuta con 

spettroscopia FTIR (Capitolo 5). Gli intervalli di riferimento preliminari per acidi grassi 

de novo, misti, e preformati sono stati calcolati per vacche sane durante le prime fasi 

della lattazione. Questi intervalli di riferimento potrebbero aiutare gli allevatori ad 

identificare le vacche a rischio di specifici disturbi di salute (chetosi subclinica) anche 

prima che siano visibili i segni clinici. In conclusione (Capitolo 6), questa tesi ha 

evidenziato il potenziale dell’allevamento di precisione nell'assistere gli allevatori nelle 

scelte riguardanti la sostenibilità e l'efficienza del loro sistema produttivo, fornendo 

informazioni più oggettive sulla salute e sulla produttività degli animali. 
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ABBREVIATIONS 
 
 

ACT = activity time 

AFC = age at first calving 

AMS = automatic milking system 

AUC = Area Under the Curve 

BW = body weight 

CIC = correlation information criteria 

CV = cross validation 

CHEW = chewing time 

DIM = days in milk 

FA = fatty acids 

FTIR = Fourier-transformed mid-infrared 

GEE = generalized estimating equations 

GP = Grana Padano 

HW = heat wave 

IW = iterative Wood model 

LIE = lying time 

ML = milk loss 

MY = milk yield 

PE = prediction error 

PLF = precision livestock farming 

PLM = perturbed lactation model 

PR = Parmigiano Reggiano 

QR = quantile regression 

RH = relative humidity 

RUM = rumination time 

SEAS = season 

T = temperature 

THI = temperature-humidity index 

ULC = unperturbed lactation curve 
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General introduction 
 
 

PRECISION LIVESTOCK FARMING 

From the beginning of the new century, Precision Livestock Farming (PLF) has 

represented a paradigm shift in the approach to livestock management (Morrone et al., 

2022). It has emerged as a multidisciplinary science dedicated to improving efficiency, 

productivity, sustainability, and welfare within animal farming systems. The integration of 

information and communication technologies, automation, bio-sensing, and data 

analytics have opened the way to innovative solutions to long-standing challenges in the 

livestock sector (Berckmans, 2014). While conventional livestock management relies on 

the producer’s experience and, if available, on population-level data to make decisions, 

PLF emphasizes the continuous, automated monitoring of each animal within a herd, 

allowing for more personalized strategies that address individual needs in every specific 

rearing environment (Jiang et al., 2023). 

In the context of PLF, various technologies like cameras or sound devices can be 

used to monitor the animals, and different types of sensor systems (e.g., accelerometers, 

infrared thermography) allow to register physiological parameters and behavioral data 

(Stygar et al., 2021). To obtain useful information from the enormous amount of data 

extracted, data analysis, machine learning, and control systems techniques are used 

(García et al., 2020). Among the numerous applications, animal health monitoring is one 

of the most crucial. Early detection of diseases allows for timely interventions, minimizing 

the impact on welfare and productivity (Neethirajan, 2017). Reproduction management 

represents another area of application: accurate prediction of estrus and parturition 

timing can contribute to improved reproductive efficiency (Lopes et al., 2016). Some 

technologies also enable precision and automated feeding, resulting in optimized animal 

growth, minimized resource wastage, and reduced environmental footprint (Tullo et al., 

2019). 

As reported by many authors, livestock environmental impact mitigation can be 

obtained by enhancing productivity levels, reproduction traits, and maintaining good 

health (Tullo et al., 2019). Rapid intervention, in case of disease, or modification in the 

management strategy, in case of stress, can actually and effectively improve the animals’ 

status. Thus, good productive performance that relies on animal health and welfare 

achieved through PLF, can mitigate the environmental impact of livestock, as shown in 

Figure 1. 
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Figure 1. Precision livestock farming as a strategy to mitigate environmental risks (from Tullo et al., 2019). 

 

Despite the multiple advantages of PLF, its implementation is not without challenges. 

The initial high cost of technology, the still limited technical knowledge among farmers, 

and the ethical concerns about the objectification of animals and further intensification, 

represent some factors limiting PLF adoption (Banhazi et al., 2012; Schillings et al., 

2021). Furthermore, issues related to data management, such as data integration, 

interpretation, and privacy, pose non-negligible limitations (Schillings et al., 2021). Table 

1 reports some advantages and disadvantages emerged among farmers in the adoption 

of PLF (Lovarelli et al., 2020). 

Table 1. Main positive and negative aspects from the adoption of precision livestock farming. 

1 Greenhouse gases. 

 
 

PLF IN THE DAIRY SECTOR 

Milk and dairy products are an important source of dietary energy, protein, and fat for 

the global population. As reported by Norton and Berckmans (2017), milk is the EU's first 

agricultural product, accounting for 15% of agricultural output in terms of value 

(European Parliament, 2015). The EU dairy sector is supported by 650,000 specialized 

Positive effect Negative effect 

Better environmental performances (less GHG1 
emissions, less nitrogen release) 

Initial investment costs 

Optimization of production 
Need of identifying the added value of production 
from PLF: the outcome of a decision taken with PLF 
tools minus the decision taken without PLF tools 

Focus on single animal health and welfare 
conditions 

Need of experts able to analyze and understand the 
collected data 

Alleviation of food security challenges Issues related to data privacy 

Economic sustainability (economic costs and 
benefits) 

 

Improved work conditions (social aspects)  
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dairy farmers and 18 million milking cows and has a labor force of about 1.2 million 

people (European Parliament, 2015). However, since the abolishment of milk quotas in 

2015, farmers are facing increased pressures to exploit the economies of scale by 

increasing the size of their herds. But with larger herds, farmers no longer have the time 

to care for their animals as they traditionally used to do. Therefore, the implementation 

of technology on farms is becoming increasingly necessary, both in terms of animal 

welfare and economic success. 

According to Lovarelli et al. (2020), the main PLF applications in the dairy sector 

regard: 

• health and estrus phases: instrumentation to control animals’ health, 

including devices that measure the motor activity and the health state (e.g., 

accelerometers, cameras, microphones); 

• management: instrumentation to control productive variables (e.g., milk 

quality and quantity); 

• environment: instrumentation to control the environmental conditions in the 

barn such as temperature, humidity, radiation, wind; 

• behavior: including cameras to control the behavior of single animals and/or 

the relations among the animals. 

Precision dairy farming systems enable to manage larger herds in a more time-efficient 

manner (Rutten et al., 2013), through automated monitoring of individual cow health and 

welfare. Farmers are assisted in the identification of stress or unexpected behaviors, and 

in the early detection of pathologies, with the possibility to decide whether and how to 

act (Rojo-Gimeno et al., 2019). Alternatively, visualizing images as video-recordings 

helps identifying aggressive behaviors (such as biting, head knock, nose-to-nose cases) 

and operates to reduce social problems (Oczak et al., 2013). 

To have a more general overview, Table 2 summarizes a literature review by Lovarelli 

et al. (2020) on the use of PLF on dairy cattle farms. Carpentier et al. (2018), for example, 

investigated whether monitoring of coughing in a calf house had the potential to detect 

cases of respiratory infection before they became too severe. They developed an 

algorithm that, using sound data, forecasted the infection with a precision higher than 

80%. Shahriar et al. (2016) used an unsupervised learning technique to detect heat 

events in pasture-based dairy cows. Accelerometer data from the cow collars were used 

to identify increased activity levels associated with recorded heat events, with an overall 

accuracy higher than 80%. Zebari et al. (2018) studied whether the number of steps, 

lying time, lying bouts, dry matter intake, feeding duration, and number of visits to feed 

were affected by behavioral or silent estrus in lactating dairy cows. Using video cameras 

and accelerometer data, they found that, during behavioral estrus, the number of steps 
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increased, while lying time, lying bouts, dry matter intake, and feeding duration 

decreased, whereas during silent estrus only feeding duration significantly decreased. 

 

The Italian scenario 

Italy has more than 1,600,000 dairy cows across the country; most of the dairy herds 

are located in the north (78%), with Lombardy region being at first place for the total 

number of cows (579,042 cows) and the total amount of milk produced per cow (10,938 

kg) (CLAL, 2022). The incidence of the dairy cattle sector on the value of Italian animal 

productions is about 30% (CREA - Research Centre for Agricultural Policies and 

Bioeconomy, 2022). After Germany, France, and the Netherlands, Italy is the fourth 

European country for total cow milk production (EUROSTAT, 2020). 

Despite the importance of the dairy cattle sector in the agricultural economy of the 

country, the diffusion of farm technology in the Italian dairies does not seem to be as 

extensive as it is in other countries, particularly in Northern Europe (Bianchi et al., 2022). 

Many Italian researchers have investigated the presence of PLF tools in Italian dairy 

farms. Lora et al. (2020) conducted a large survey on 964 dairy farms located in Veneto 

region. Farmers were interviewed by technicians of the regional breeders’ association to 

collect information on the type of sensors installed on farms and the main parameters 

recorded. Overall, 42% of the surveyed farms had at least one sensor system, and most 

of them (72%) reared more than 50 cows (Figure 2). Sensors for measuring individual 

cow milk yield (MY) were the most prevalent type installed (39%), whereas only 15% of 

farms had systems for estrus detection (Figure 2). More sophisticated parameters, such 

as rumination, were automatically monitored in less than 5% of the farms. Bianchi et al. 

(2022) distributed an online questionnaire to dairy farmers from Lombardy. Precision 

systems that provide information on animal activity (heat detection) and on MY and flow 

were the most popular and were considered among the most useful. Management of 

reproduction and milk production were the areas where farmers showed interest for 

future investments. Younger farmers appeared to have implemented more PLF systems 

than older ones, and they showed more willingness to invest in more sophisticated 

precision tools of the latest generation. Similar results to the ones of Lora et al. (2020) 

and Bianchi et al. (2022) were reported by Abeni et al. (2019) in a survey to assess the 

propensity to invest in PLF tools carried out in the province of Cremona (Lombardy).
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Table 2. Results of a literature review on the use of precision livestock farming in the dairy industry. 

Authors Goal Sensor used What is analyzed 

Arcidiacono et al., 2017 
Detect real-time behavior and improve a 
software 

Neck collar with accelerometer Feeding and standing behavior 

Arcidiacono et al., 2018 
Detect velocity through software for estrus 
detection 

Neck collar tag and sensor in barn Visualization of velocity during motion 

Benaissa et al., 2018 Test model Accelerometers Exposure to the wireless power transfers 

Carpenteir et al., 2018 Detect bovine respiratory disease Microphones for cough sounds Label cough in calves 

Gernand et al., 2019 Heat stress Temperature and humidity data loggers THI3 

Grinter et al., 2018 Validate precision and accuracy of collars Behavior-monitoring collar 
Rumination, heat detection, feeding and resting 
behavior 

Mattachini et al., 2019 Barn and cow monitoring Hobo sensors, activity sensors, and AMS2 
Temperature and humidity, leg orientation, lying 
time, bout frequency and duration, milking data 

Mayo et al, 2018 Estrus detection 6 accelerometers compared Lying time and estrus 

Meen et al., 2015 
Verify if vocalization is correlated with 
behavior 

Cameras and microphones Behavior analyzing video and sound recording 

Meunier et al., 2018 
Identify cow positions/activities in the barn 
through images 

Collar tag, video from performance tags, 
wireless sensors on the barn 

Methodology to evaluate behavior from tools 

Potter et al., 2018 Evaluate SCC1 and milk losses Algorithm SCC content and milk 

Shahriar et al., 2016 Estrus identification Accelerometers + algorithm Motor activity 

Tullo et al., 2019 Evaluate lying time and behavior 
Accelerometers and temperature-humidity 
data loggers 

Lying time 

Van Hertem et al., 2013 Test algorithm Videocameras for computer vision Motion 

Van Hertem et al., 2013 
Develop a model to detect clinical lameness 
as function of behavior and milk performance 

Neck collar tag for neck activity and 
rumination 

Lameness 

Vandermeulen et al., 2016 Bovine respiratory disease Cough monitor with microphone Continuous cough sound 

Viazzi et al., 2014 Test algorithm Videocameras for computer vision Back posture 

Zebari et al., 2018 Estrus identification 
Videocameras plus IceQubes 
accelerometers for cow activity 

Spontaneous behavioral estrus, analysis of 
progesterone in milk 

1 Somatic cell count; 2 automatic milking system; 3 temperature-humidity index.
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Figure 2. Distribution of the surveyed Italian dairy farms according to herd size, and proportion of farms 
equipped with sensor systems to monitor at least either individual cow milk yield (MY), estrus (ED), or 
both. Variables of the same color with different letters (a, b, c) differ (p < 0.05) (from Lora et al., 2020). 

 

 
 

PRECISION DAIRY FARMING TECHNOLOGIES 

Automatic milking systems 

Automatic milking systems (see an example in Figure 3) were one of the earliest PLF 

tools developed in the dairy sector. Robotic milking by automatic milking systems (AMS) 

has revolutionized dairy farming around the world, both in terms of milking process and 

farm management (John et al., 2016). Milking is controlled by fully automated equipment, 

and it is no longer performed in defined sessions; rather, the cow can choose when to 

be milked in AMS, allowing milking to be distributed throughout a 24-h period. 

Figure 3. Robotic arm of an automatic milking system (from delaval.com). 

 

An AMS is equipped with a variety of sensors to control the milking process and 

detect any abnormalities. Some sensors control the technical functioning of the system, 

such as cow identification, nipple cleaning, teat-cup attachment, vacuum level, and onset 

of the milk letdown process. Other sensors control the quality of the milking process by 

measuring MY and checking on anomalies in the milk and on udder health. Some AMS 

also have online measurement of milk temperature, cow feed intake, cow body weight, 
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and body condition score. All measurements (e.g., quarter yield, quarter conductivity, 

color, fat, protein, somatic cell count) are automatically stored in a database, and a 

dedicated software is used to analyze the collected data and to control the settings and 

conditions for the cows to be milked. Attention lists and reports are available to the farmer 

on a computer screen or portable tools. In urgent cases like a breakdown of the 

equipment, or a severe problem with a cow, the system immediately warns the worker 

by sending an alarm or a text message (de Koning, 2002). 

In Europe, the United States, Australia, and New Zealand, AMS have had a positive 

effect on the quality of dairy farmers' lives. When operating optimally, in fact, AMS has 

many benefits: improved cow health, quick and easier health detection, increased milk 

production, less routine activities, and a more flexible lifestyle for the farmer (Tse et al., 

2018). 

 

Accelerometer-based technologies 

Wearable accelerometers (see an example in Figure 4) can remotely and efficiently 

collect data related to measures of cow behavior. The accelerometer measures changes 

in velocity over time and it is attached to the animal in a specific location so that the 

orientation of the device can provide detailed information about movement and body 

position relating to the behavior of interest (Hendriks et al., 2020). Change in velocity can 

be recorded along 2 (2D accelerometer) or 3 (3D accelerometer) axes, separately, per 

unit of time; sampling frequencies usually range from 1 to 100 Hz and are predetermined 

by the product manufacturer. The accelerometers can be offered with different animal 

attachment solutions (collar, leg, ear, halter), depending on the provider and the behavior 

of interest (Stygar et al., 2021). Measures of behavior may concern activity (heat 

detection), lying bouts, lying time, eating time, rumination time, chewing time, and visits 

to the feed bunk. 

Figure 4. Accelerometer-based collar (from tdm.it). 
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Load cells 

In the systematic review by Stygar et al. (2021), load cells, together with 

accelerometer-based systems, were the most spread technologies on dairy farms. Load 

cells can be used for many purposes, such as tracking the feeding program, measuring 

milk quantity, and weighing of the animals. Dickinson et al. (2013), for instance, 

described the functioning of an automatic walk-over weighing system with load cells 

placed under the weighing platform within load bars (see an example in Figure 5). As a 

cow traverses the platform, the weight of the cow bends the load cell and produces a 

change in electrical resistance between 2 points, which is converted to a weight. 

Liveweight, cow ID, and time of weighing are then automatically recorded. 

Figure 5. Automatic walk-over weighing system through load cells (from odonovaneng.ie). 

 

 

Other technologies 

As herd size increases, there is a growing demand for tools to quickly trace individual 

cows that need particular attention (for insemination or medical treatments). For 

localization, GPS sensors and RFID tags are commonly used on farms (Achour et al., 

2022). Video recordings are sometimes utilized to monitor the herd: specific cameras 

can be dedicated to body thermal monitoring (thermal cameras), body condition scoring, 

feeding monitoring, and general behavior monitoring (Stygar et al., 2021b). Sound 

analysis can be performed to monitor the animal welfare when microphones are installed 

on the barn or on wearable sensors (Meen et al., 2015). Bolus sensors can be inserted 

into the rumen to measure body temperature, pH, and rumen activity, as well as for 

animal identification (Mottram et al., 2008; Stygar et al., 2021b). 

Portable infrared spectrometers (near infrared – NIR, or mid infrared – MIR) can be 

a versatile technology that rapidly gives information on the chemical-physical 

composition of raw materials, total mixed ration, milk, and feces (Evangelista et al., 

2021). In addition, thermal images obtained by infrared thermography can be used to 

detect lesions or pathologies (Machado et al., 2021). 
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BIG DATA IN PRECISION DAIRY FARMING 

Big data plays a key role in applying advanced technologies to dairy farming 

practices. Statistical methods, machine learning algorithms, and artificial intelligence can 

make use of this extensive data to analyze, predict and notify farmers in case there is 

something abnormal (Neethirajan, 2020). A graphical representation of this process is 

shown in Figure 6. 

Figure 6. Process for obtaining information within PLF (from Neethirajan, 2020). 

 

To get insights into the type of big data recorded by sensor systems, these are the 

main categories (Lokhorst et al., 2019): 

• time-series data: sequences of values or events obtained over repeated 

measurements of time; 

• streaming data: they are constantly arriving, for instance, from remote sensors or 

surveillance systems, and should be processed in an online fashion; 

• sequence data: sequences of ordered elements or events that are recorded with 

or without a concrete notion of time; 

• graph data: where problems are modeled as graphs, like in biological networks; 

• spatial data: place-related data or remote-sensing data; 

• multimedia data: images, videos, audio, text mark-ups. 

Based on the type of data, specific models and algorithms are used to automatically learn 

patterns and make inference. The main categories of machine learning algorithms are 

(Lokhorst et al., 2019): 

• supervised learning: the outcome of interest is known for each record used for 

model development, which can be ‘regression’ or ‘classification’. For regression, 

the outcome variable has a numerical value; possible techniques involve linear 

regression, polynomial regression, and multivariate adaptive regression splines. 

For classification, the outcome variable is categorical; possible techniques 

include logistic/multinomial regression, neural networks, decision trees, naive 

Bayes model, and support vector machines; 

• unsupervised learning: the outcome of interest is unknown for each record used 

for model development, which can be ‘clustering’ or ‘dimensionality reduction’. 

Clustering techniques include, for example, K-means and hierarchical clustering. 
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Dimensionality-reduction techniques include, for example, principal component 

analysis; 

• reinforcement learning: a mapping function is learnt to maximize a reward 

function. This technique is used, for example, in Markov decision processes. 

Lokhorst et al. (2019) expect that the full potential of big data, within the precision 

dairy farming area, will be reached when multiple big data characteristics (Volume, 

Velocity, Variety, and Other V’s; De Mauro et al., 2016) and sources (animal, groups, 

farms, and chain parts) will be used simultaneously, adding value to operational and 

strategic decisions. 

 
 

PRECISION PHENOTYPING OF DAIRY COWS 

Besides health and welfare monitoring, many researchers within the dairy sector 

have recently investigated the possibility of using big data extracted from sensor systems 

for precision phenotyping of complex traits such as resilience, longevity, or productive 

life span. Cows with a long productive life span typically exhibit good reproductive 

performance, few health problems, and efficient milk production (Adriaens et al., 2020). 

Early culling and short longevity thus clearly have a negative influence on the economic 

efficiency of a herd. Correct and timely identification of resilient animals, namely the ones 

that avoid early culling by coping well with the farm management conditions, would allow 

for optimization of breeding, treatment, and culling decisions (Adriaens et al., 2020). 

Today, many breeding decisions are still made based on habit; to rely on the cows’ actual 

performance on farm, sensor data can be combined into mathematical models to be 

used for both decision support and precision phenotyping. 

Adriaens et al. (2020), for example, investigated whether resilience and productive 

life span of dairy cows could be predicted using proxies of first-parity sensor data. The 

authors analyzed high-frequency milk and activity data retrieved from the AMS of 27 

different dairy farms. Using a multivariate linear regression, they concluded that proxies 

of first-lactation sensor data had the potential to predict cows’ resilience rankings within 

farms. They did not find a common model structure across all farms due to too much 

variability in culling, reproduction, and health management strategies. In the wake of 

Adriaens et al. (2020), Ouweltjes et al. (2021) developed a data-driven random forest 

algorithm with daily aggregated sensor data as input that provided at least as good 

resilience predictions as the models with sensor-derived proxies as input. In the context 

of MY dynamics modelling, Ben Abdelkrim et al. (2021) developed a model that allows 

dairy cows’ precision phenotyping by estimating their individual milk production potential 

(as if there was no perturbation), the characteristics of each perturbation occurring during 
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the lactation, and the overall consequence of perturbations on milk losses. Similarly, 

Adriaens et al. (2021) proposed an iterative procedure fitting a model on daily MY data 

to determine the potential production, and a criterion to identify perturbations of the 

lactation curve. 

 
 

NEAR FUTURE OF PLF 

To meet the growing demand for animal products while addressing concerns about 

environmental sustainability, public health, and animal welfare, the livestock sector along 

with animal scientists will increasingly rely on PLF technologies. Moreover, as climate 

change intensifies, the risk of diseases, heat stress, and other health issues among 

animals may increase. Therefore, there is greater urgency to identify health problems 

and disease outbreaks early on, understand disease transmission, and take preventative 

measures to avoid large-scale economic losses (Neethirajan & Kemp, 2021). 

Blockchain may represent a new type of PLF technology (Figure 7). It could provide 

important benefits to livestock farming, including decentralized transactions throughout 

the life of an animal from farm to table, and transactions that could contribute to more 

efficient auditing systems for certification organizations (Neethirajan & Kemp, 2021; 

Picchi et al., 2020). Blockchain could be extremely useful in detecting and tracking 

disease breakouts, such as H1N1 swine flu, Mad Cow diseases, Avian influenza, and 

Salmonella (Neethirajan & Kemp, 2021). In addition, it could help trace harmful foods 

back to the source, increasing traceability and accountability for problematic practices 

within livestock farming (Lin et al., 2018). Bioengineers and data scientists may play a 

significant role in formulating appropriate criteria for deciding which type of blockchain 

solution is the most beneficial for specific livestock farming sectors (Neethirajan & Kemp, 

2021). 

A branch of PLF that will see new developments is automated video-based animal 

detection. Computer vision and image analysis are still nonfunctional within farming 

(Wurtz et al., 2019). These technologies, for example, cannot yet track individual 

animals, at least not for a sufficiently long period to obtain meaningful information about 

the behaviors of interest. Furthermore, many of the studies testing computer vision 

techniques in livestock have been performed on pigs. More work is necessary to assess 

their applicability to other species (Neethirajan & Kemp, 2021). However, computer 

science is constantly growing; it is just a matter of time before new deep learning 

algorithms with greater predictive ability are implemented in agriculture and livestock 

areas. 
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To widespread PLF technologies on farms, the information, communication, and 

telecommunications industry must address accessibility issues, as well as push to create 

easy-to-use software and data visualization. At the same time, as technology advances, 

PLF systems will become increasingly accessible to farmers around the world (Alonso 

et al., 2020). 

Figure 7. Blockchain within precision livestock farming (from Neethirajan & Kemp, 2021). 

 

  



 

 25 

Background of the thesis 
 
 

The general purpose of this Ph.D. thesis was to analyze different precision dairy 

farming applications concerning, partially or entirely, the concepts of decision support, 

precision phenotyping, and resilience. Some of the studies included in the thesis were, 

in fact, carried out within the European project ‘GenTORE’ (Genomic management Tools 

to Optimise Resilience and Efficiency; see https://www.gentore.eu/, Figure 8). This was 

a 5-year (2017 – 2022) EU funded project involving 21 academic and non-academic 

partners (e.g., breeding associations, farm technology suppliers). The main aim of the 

project was to give metrics for quantifying resilience and efficiency in dairy and beef 

cattle, which are very difficult to be measured under commercial conditions. The balance 

of resilience and efficiency determines the animal’s ability to adapt to changes, which is 

crucial especially in view of future challenges. Livestock, in fact, will be exposed to 

increasing challenges under different production systems and grazing environments, 

making the need for resilient systems particularly urgent (GenTORE, 2017). The 

involvement of PLF technologies enable to develop data-based metrics and tools, and 

to perform predictive modelling to optimize resilience and efficiency both at animal level 

and system level. Within GenTORE, improved methods for genomic analysis and new 

indicators for on-farm phenotyping were developed, such as on-farm management 

indices and new ways to measure local production environments. Last but not least, most 

of the works presented in the thesis were realized in collaboration with ‘Livestock 

Technology’ research group of KU Leuven (Geel, Belgium). The cooperation with this 

group was fundamental for the analysis of dairy cows’ lactation dynamics and their 

modelization starting from high-frequency milk sensor data. 

Figure 8. Logo of the European GenTORE project. 
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CHAPTER 2 
 

 
Artificially generated image (DALL∙E 2, OpenAI) 
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Summary 

Early predictions of cows’ probability of survival to different lactations would help 

farmers in making successful management and breeding decisions. For this purpose, 

this research explored the adoption of joint models for longitudinal and survival data in 

the dairy field. An algorithm jointly modelled daily first-lactation sensor data (milk yield, 

body weight, rumination time) and survival data (i.e., time to culling) from 6 Holstein dairy 

farms. The algorithm was set to predict survival to the beginning of the second and third 

lactations (i.e., second and third calving) from sensor observations of the first 60, 150, 

and 240 days in milk of cows’ first lactation. Using 3-time-repeated 3-fold cross-

validation, the performance was evaluated in terms of Area Under the Curve and 

expected error of prediction. Across the different scenarios and farms, the former varied 

between 45% and 76%, while the latter was between 3.5% and 26%. Significant results 

were obtained in terms of expected error of prediction, meaning that the method provided 

survival probabilities in line with the observed events in the datasets (i.e., culling). 

Furthermore, the performances were stable among farms. These features may justify 

further research on the use of joint models to predict the survival of dairy cattle. 
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INTRODUCTION 

Cow survival is a complex trait that depends on multiple factors, such as milk 

production, fertility, health, and farm management conditions (van der Heide et al., 2020). 

If survival is computed from the day of the first calving, it coincides with the productive 

life of the animal, which represents a very important trait in the dairy practice (van Pelt 

et al., 2015). Typically, cows with longer productive lives are more resilient, exhibiting 

good productive and reproductive performances and having few health problems that 

they overcome rapidly (Adriaens et al., 2020). Nowadays, the average cow productive 

life ranges from 2.5 to 3.5 lactations (Dallago et al., 2021; Schuster et al., 2020), while a 

dairy cow is biologically capable of a life span up to 20 years (Hoffman & Valencak, 

2020). Additionally, the research by Bach (2011) reported a decline in survival rates of 

first-parity cows. When dairy cows do not manage to survive beyond the first lactation, 

the rearing costs are not paid back; cows start making profit for the farmer only during 

the second lactation, reaching the full production potential during the third lactation 

(Cabrera, 2018). Moreover, Grandl et al. (2019) showed that cows that do not complete 

the first lactation perform particularly unfavorably with regard to their greenhouse gas 

emissions per unit of produced milk. Moreover, from an ethical perspective, short 

longevity is typically an indicator of poor animal welfare, being a sign of impaired 

biological functions and health conditions (Bruijnis et al., 2013). 

Dairy farmers would benefit from a tool able to provide information about the future 

prospect of the first-parity cows in their herds. Based on survival predictions at farm level, 

they could select the ones that better cope with the existing housing and management 

conditions, optimizing culling decisions and breeding schemes. To date, no decision 

support tools have been implemented to help farmers in selecting the cows that are more 

likely to thrive in their own farm environment. Nowadays, some possibilities can arise 

from the great amount of information provided by the increasing number of sensor 

systems operating on many dairy farms (Lora et al., 2020; Steeneveld & Hogeveen, 

2015). These new technologies provide a constant flow of high-frequency repeated 

measures of parameters, such as MY and quality (e.g., somatic cell count) or a cow’s 

activity (e.g., locomotion and rumination), which can reflect changes in the physiological 

and health status of the animal (King & DeVries, 2018; Rutten et al., 2013). These 

measurements can be used to predict cow survivability using new statistical methods. 

These methods are based on the joint modelling of longitudinal and time-to-event data 

(Rizopoulos, 2012). Joint models are used in the field of biomedicine to predict patients’ 

survival probabilities based on temporal trajectories of disease-specific biomarkers and 

to discriminate between patients with a low or high risk of mortality. These models are 

versatile, being easily adapted to different recording periods of longitudinal data, time 
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points of survival prediction, and variables to be used in the models. Furthermore, joint 

models avoid deriving biologically meaningful proxies from time-series data, since they 

directly estimate the information provided by the raw (nearly unprocessed) longitudinal 

data. 

The aim of the present study was to explore the adoption of a joint model that used 

first-lactation longitudinal sensor data of MY, body weight (BW), and rumination time 

(RUM) to predict cows’ survival to subsequent lactations. 

 
 

MATHERIALS AND METHODS 

Data 

Data were retrieved from 6 Holstein dairy farms (3 British, 2 Belgian, and 1 Italian) 

equipped with AMS of Lely Industries (Lely Industries N.V., Maasluis, The Netherlands). 

Farms were selected based on data availability and on farmers’ willingness to participate 

in the study. Daily records of individual cow MY, BW, and RUM were collected from the 

AMS database, to be used as potential indicators of lactating cows’ health status 

(Ouweltjes et al., 2021; Steensels et al., 2016) and, therefore, as information possibly 

related to their survival. Dates of cows’ birth, calving, and culling were also retrieved from 

the farm databases. The time period covered by all the datasets varied between 2013 

and 2020. Descriptive information for each farm is reported in Table 1. 

Table 1. Overview of the available datasets. 

Farm Time Period Cows (n) 𝒕𝟏
1 Culled before 𝒕𝟏 𝒕𝟐

2 Culled before 𝒕𝟐 

Italian 2014–2020 98 414 12% 828 41% 

Belgian 1 2014–2020 169 422 18% 843 34% 

Belgian 2 2013–2019 182 397 9% 793 21% 

British 1 2013–2019 266 384 9% 768 24% 

British 2 2013–2019 101 402 11% 805 26% 

British 3 2013–2019 226 400 6% 799 17% 

1 Average number of days between the first and second calving; 2 average number of days between the first and third 
calving. 

 

Data processing 

Data processing and analysis were performed with RStudio software (R version 

4.1.2; RStudio PBC, Boston, MA) and equally conducted for each dataset (i.e., farm). 

The survival time (T) of each cow was computed as the number of days between the 

first calving and the culling, coinciding with the productive life of the animal. Culling dates 

were derived from the last date on which milk production was registered. If no culling 

date was available, the cow was considered still alive at the final date of the dataset (i.e., 

censored), and the survival time was computed as the difference in days between the 

final date and the date of the first calving; the cow was removed if she had not yet 
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completed the first lactation at the end date of the dataset. The age at first calving (AFC) 

of each cow was expressed as a 3-category variable: ‘low’ if it was below the first quartile 

of herd AFC, ‘medium’ if it was within the interquartile range, and ‘high’ if it was above 

the third quartile. The season of the data recording period (SEAS) was transformed into 

a binary variable: ‘warm’ if between April and October, ‘cold’ if otherwise. 

Individual cow raw sensor data of MY, BW, and RUM recorded during first lactations 

were used in the study. Farm databases provided daily MY and BW in kilograms, while 

RUM data consisted of 2-hourly measures that were summed into single daily records 

expressed in minutes. According to Adriaens et al. (2020), values of each sensor variable 

that fell outside of 3 SD from the respective herd means were treated as outliers and 

removed from the dataset, except when they were present more than 30 times for the 

same cow. The rationale was to clean the dataset of errors in the data recording while 

keeping the information related to possible real disturbances (such as diseases). This 

was assuming a cow had an actual ‘abnormal behavior’ when outliers characterized a 

total of at least 30 days of the whole lactation time. Table 2 reports means and SD of 

daily MY, BW, and RUM for every farm. 

Table 2. Means and SD of the recorded sensor data. 

Farm 
MY1  BW2  RUM3 

Mean SD  Mean SD  Mean SD 

Italian 32.8 6.60  595 62.1  458 94.2 

Belgian 1 27.5 6.33  530 65.9  470 98.0 

Belgian 2 32.4 6.57  548 109  487 126 

British 1 31.9 8.01  634 65.1  491 102 

British 2 24.2 6.11  567 60.0  500 120 

British 3 33.9 6.84  578 59.0  484 125 

  1 Milk yield (kg/d); 2 body weight (kg/d); 3 rumination time (min/d). 

All the cows culled before 50 days in milk of the first lactation (i.e., T < 50) were 

deleted from the dataset to examine only animals with a reasonable amount of sensor 

observations. Moreover, we considered first-lactation sensor measurements in the 

interval 5 – 305 DIM; the starting point was set at 5 DIM to avoid missing data associated 

with the very first days after calving, while the maximum observed time was set at 305 

DIM, as it is the standard lactation length used for genetic evaluations in cattle (Græsbøll 

et al., 2016). After the data-filtering and cleaning procedures, a cow was removed from 

the dataset if she remained with less than 90% daily observations with respect to the 

first-lactation length (maximum 305 DIM). 
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Algorithm development 

An algorithm based on multivariate joint modelling of longitudinal and time-to-event 

data was built to predict cow survival from raw daily data of MY, BW, and RUM recorded 

during the first lactation; ‘multivariate’ refers to the presence of 3 longitudinal variables 

to be modelled simultaneously. 

The joint modelling technique has been studied by Rizopoulos (2012). It consists of 

two steps: (i) description of the evolution of the longitudinal variable over time using a 

(generalized) linear mixed model (G. Fitzmaurice et al., 2008) and (ii) estimation of the 

survival probabilities using the estimated evolution within a survival Cox model 

(Kalbfleisch & Prentice, 2002). Assuming 𝑖 = 1, … , 𝑛 is the statistical unit (e.g., patient) 

and 𝑘 = 1, … , 𝐾 identifies the different longitudinal outcomes, the evolution over time 𝑡 of 

each outcome 𝑦𝑖𝑘 can be described by the following linear mixed model: 

{
𝑦𝑖𝑘(𝑡) = 𝑥𝑖

Τ(𝑡)𝛽𝑘 + 𝑧𝑖
Τ(𝑡)𝑏𝑖𝑘 + 𝜀𝑖𝑘(𝑡)

𝑏𝑖𝑘~𝒩(0, 𝐷𝑘), 𝜀𝑖𝑘(𝑡)~𝒩(0, 𝜎𝑘
2)

, 

where 𝑥𝑖 are the predictors associated with the fixed effects 𝛽𝑘, 𝑧𝑖 are the predictors 

associated with the random effects 𝑏𝑖𝑘, and 𝜀𝑖𝑘 is the error term. Both the vector of the 

random effects and the vector of the errors have a normal distribution. The correlation 

between the different longitudinal variables 𝑦𝑖𝑘 is then captured by setting a multivariate 

normal distribution for the random effects 𝑏𝑖 = (𝑏𝑖1, … , 𝑏𝑖𝐾)T ~ 𝒩(0, 𝐷). Assuming 

𝑚𝑖𝑘(𝑡) = 𝑥𝑖
Τ(𝑡)𝛽𝑘 + 𝑧𝑖

Τ(𝑡)𝑏𝑖𝑘 is the ‘true’ value of each outcome at time 𝑡, we can define 

the following multivariate joint model (i.e., Cox hazard model containing the evolution 

processes of the longitudinal outcomes): 

ℎ𝑖(𝑡|ℳ𝑖1(𝑡), … , ℳ𝑖𝐾(𝑡)) = ℎ0(𝑡) exp (𝛾Τ𝜔𝑖 + ∑ 𝛼𝑘𝑚𝑖𝑘(𝑡)

𝐾

𝑘=1

). 

The equation ℳ𝑖𝑘(𝑡) = {𝑚𝑖𝑘(𝑠), 0 ≤ 𝑠 ≤ 𝑡} represents the longitudinal history of 𝑚𝑖𝑘 until 

𝑡, where ℎ0(𝑡) is the baseline hazard function at time 𝑡, 𝛼𝑘 measures the association 

between 𝑚𝑖𝑘 and the risk of an event, and 𝜔𝑖 are baseline variables. The joint estimation 

process is carried out with a Markov Chain Monte Carlo algorithm (van Ravenzwaaij et 

al., 2018). 

According to this theoretical approach, in the present study, the 𝐾 longitudinal 

variables were represented by first-lactation daily sensor data: 

(𝑀𝑌𝑖(𝑡), 𝐵𝑊𝑖(𝑡), 𝑅𝑈𝑀𝑖(𝑡)) = (𝑦𝑖1(𝑡), 𝑦𝑖2(𝑡), 𝑦𝑖3(𝑡)). The evolution of each 𝑦𝑖𝑘 , 𝑘 = 1, 2, 3 

over 𝑡 was described by the following linear mixed model: 

𝑦𝑖𝑘(𝑡) = 𝛽0𝑘 + 𝛽1𝑘ns(𝑡) + 𝛽2𝑘𝐴𝐹𝐶𝑖 + 𝛽3𝑘𝑆𝐸𝐴𝑆𝑖(𝑡) + 𝑏𝑖0𝑘 + 𝑏𝑖1𝑘ns(𝑡) + 𝜀𝑖𝑘 , 𝑖 = 1, … 𝑛, 

where 𝑛 was the number of cows in the dataset. The fixed effects 𝛽𝑘 =

(𝛽0𝑘, 𝛽1𝑘, 𝛽2𝑘, 𝛽3𝑘)T were respectively associated with the intercept of the model, the time 
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𝑡 expressed as DIM (5 ≤ DIM ≤ 305), the cow’s AFC, and SEAS at 𝑡. More specifically, 

the time was modelled with a natural cubic spline (ns). The spline was set to have one 

knot at the median DIM of the dataset (resulting in 2 different cubic sub-polynomials) 

when RUM was the longitudinal outcome. For MY and BW, the splines were set to have 

3 knots at the 3 quartiles of DIM of the dataset (resulting in 4 different cubic sub-

polynomials) to capture the well-defined shapes of the trend of these two traits over an 

entire lactation (VandeHaar & St-Pierre, 2006). The random effects 𝑏𝑖𝑘 = (𝑏𝑖0𝑘, 𝑏𝑖1𝑘)T 

were respectively associated with the cow-specific intercept and the cow-specific time 

slope. The random intercept was necessary to capture the variation of the parameters of 

the 𝑖th animal from those in the dataset, while the random slope allowed the evolution in 

time described by ns(𝑡) to be different from one cow to another. The correlation between 

𝑦𝑖1, 𝑦𝑖2, and 𝑦𝑖3 was captured using 𝑏𝑖 = (𝑏𝑖01, 𝑏𝑖11, 𝑏𝑖02, 𝑏𝑖12, 𝑏𝑖03, 𝑏𝑖13)T ~ 𝒩(0, 𝐷) with 

unstructured covariance matrix 𝐷. Assuming 𝑚𝑖𝑘(𝑡) = 𝛽0𝑘 + 𝛽1𝑘ns(𝑡) + 𝛽2𝑘𝐴𝐹𝐶𝑖 +

𝛽3𝑘𝑆𝐸𝐴𝑆𝑖(𝑡) + 𝑏𝑖0𝑘 + 𝑏𝑖1𝑘ns(𝑡) (i.e., the sensor value without error), we defined the 

following multivariate joint model: 

ℎ𝑖(𝑡|ℳ𝑖1(𝑡), ℳ𝑖2(𝑡), ℳ𝑖3(𝑡))

= ℎ0(𝑡) exp(𝛾1𝐴𝐹𝐶𝑖 + 𝛼1𝑚𝑖1(𝑡) + 𝛼2𝑚𝑖2(𝑡) + 𝛼3𝑚𝑖3(𝑡)), 

(Eq.1) 

where the event was represented by ‘the cow was culled by the last date of the dataset’. 

The risk of being culled at 𝑡 could then be associated with the first-lactation levels of MY, 

BW, and RUM at 𝑡, adjusted by the animal’s AFC (baseline variable). 

We supposed it was more likely that the risk of being culled at 𝑡 could be associated 

with the slopes of the trajectories of the sensor variables at 𝑡, and not with their current 

values as in the previous model specification (Eq.1). In this way, the joint estimation 

process could identify fluctuations in the sensor measurements resulting from possible 

disturbances (such as diseases) and examine their relationship with the cow at risk of 

being culled. An illustrative example is reported in Figure 1 for the MY variable related to 

one cow; the lactation curve deviates from the typical lactation curve of dairy cattle, and 

this deviation is captured by the slope. The final model used in the study was then 

expressed by the following equation: 

ℎ𝑖(𝑡|ℳ𝑖1(𝑡), ℳ𝑖2(𝑡), ℳ𝑖3(𝑡)) = ℎ0(𝑡) exp(𝛾1𝐴𝐹𝐶𝑖 + 𝛼1𝑚𝑖1
′ (𝑡) + 𝛼2𝑚𝑖2

′ (𝑡) + 𝛼3𝑚𝑖3
′ (𝑡)), 

where 𝑚𝑖𝑘
′ (𝑡) =

𝑑

𝑑𝑡
{𝛽0𝑘 + 𝛽1𝑘ns(𝑡) + 𝛽2𝑘𝐴𝐹𝐶𝑖 + 𝛽3𝑘𝑆𝐸𝐴𝑆𝑖(𝑡) + 𝑏𝑖0𝑘 + 𝑏𝑖1𝑘ns(𝑡)} was the 

time-dependent slope of the sensor variable 𝑘, 𝑘 = 1,2,3, for cow 𝑖 (i.e., the first derivative 

of 𝑚𝑖𝑘(𝑡)). 

The modelling was carried out with R package ‘JMbayes2′ (Rizopoulos et al., 2022). 
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Figure 1. Tangent (blue) lines to the estimated milk yield trajectory (red curve) at time points 𝑡 = 110 DIM 

and 𝑡 = 180 DIM for one cow (5 ≤ DIM ≤ 290) of one farm randomly chosen. The joint model examines 

the association between the slope of the tangent line at 𝑡 and the risk of being culled at 𝑡. 

 

 

Algorithm Evaluation 

To evaluate the performance of the algorithm, avoiding data underfitting or overfitting, 

repeated 3-fold cross-validation (CV) was used in every farm dataset. All the cows of the 

dataset were randomly partitioned into 3 groups of similar sizes; then 2 of these groups 

were used to train the model, and the third group was used to test it. This operation was 

repeated 3 times, rotating the groups (Stone, 1974). The same procedure was again 

repeated 3 times in total, and the mean performance across all folds from all runs was 

reported (i.e., mean of 9 single results per farm). 

During the training, 67% of the animals in the dataset were used to fit the joint model. 

The model was trained on sensor data recorded during 5 – 305 DIM of the first lactation 

and on the cows’ observed survival times, and the effect of the trajectory of each sensor 

variable on the risk of being culled was estimated. The testing used 33% of the cows to 

evaluate the prediction performance. The model accuracy in predicting cow survival was 

tested under 6 different scenarios: 2 different time points of prediction (i.e., second and 

third calving) from sensor data recorded during 3 different observation periods of the 

cow’s first lactation (i.e., 60, 150, and 240 DIM). Survival was therefore predicted at 𝑡1 = 

‘second calving’ and 𝑡2 = ‘third calving’, respectively, and estimated as once and twice 

the average calving interval (in days) after the date of the first calving for all the cows of 

the farm. A summary of the values of 𝑡1 and 𝑡2, along with the number of cows that were 

culled before them, is reported for each dataset in Table 1. 

Given that 𝛶𝑖(𝑣) = {𝑦𝑖𝑘(𝑠), 5 ≤ 𝑠 ≤ 𝑣, 𝑣 = 60, 150, 240, 𝑘 = 1,2,3} represented the 

available first-lactation sensor measurements for a ‘new’ cow 𝑖 of the testing set that had 
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provided MY, BW, and RUM values up to 𝑣, individualized predictions of the survival 

probabilities up to 𝑡𝑗, 𝑗 = 1,2, for cow 𝑖 was obtained by estimating 

𝜋𝑖(𝑢|𝑣) = Pr{𝑇𝑖 ≥ 𝑢|𝑇𝑖 > 𝑣, 𝛶𝑖(𝑣), ℛ} 

where 𝑣 < 𝑢 ≤ 𝑡𝑗, and ℛ denoted the sample on which the model was fitted (i.e., the 

training set). Providing measurements up to time 𝑣 implied that the cow was still alive at 

𝑣 (i.e., 𝑇𝑖 > 𝑣); in every testing set, only the animals that had survived at least up to 240 

DIM (i.e., the maximum period of days considered) were then examined. Assuming a 

specific threshold value 𝑐 ∈ (0,1) (here 𝑐 = 0.5), cow 𝑖 was finally predicted ‘culled at 𝑡𝑗’, 

 𝑗 = 1,2, if 𝜋𝑖(𝑡𝑗|𝑣) ≤ 𝑐. Two measures of prediction accuracy were accordingly computed 

based on the value of 𝜋𝑖(𝑡𝑗|𝑣): the Area Under the Curve (AUC) (Heagerty & Zheng, 

2005) and the expected prediction error (PE) (Gerds & Schumacher, 2006). The AUC 

measured the ability of the model to distinguish between the classes ‘culled at 𝑡𝑗’ and 

‘still on farm at 𝑡𝑗’, representing a measure of its discrimination capability (0 ≤ AUC ≤ 1). 

The PE measured the accuracy of the obtained survival predictions by computing the 

average squared distance between the survival status (i.e., culled or alive) and the 

predicted survival probability, making it a measure of the calibration capability of the 

model (0 ≤ PE ≤ 1). The higher the AUC, the better the model performed at predicting 

the cows that were culled within 𝑡𝑗 as actually ‘culled at 𝑡𝑗’ and the cows that were still 

on the farm at 𝑡𝑗 as ‘still on farm at 𝑡𝑗’; the lower the PE, the more the survival predictions 

were aligned with the observed events (i.e., culling) within 𝑡𝑗. 

 
 

RESULTS 

To clearly illustrate the algorithm training phase, Table 3 shows the output of the 

fitting obtained in one training set (148 cows; 40,995 observations) of the repeated CV 

procedure for one of the available farms. In this case, the longitudinal modelling process 

highlighted the presence of between-cow variability, expressed by the estimated SD of 

the random effects for the three sensor outcomes (MY, BW, and RUM). Focusing on the 

survival process, the slope of RUM (𝛼3) was negatively associated with the risk of being 

culled, keeping all other variables constant. This implied that a lower value of the slope 

was associated with poorer survival probability. 
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Table 3. Output from the fitted multivariate joint model in one dataset. 

Survival outcome 

Parameters  coeff.1  p 

𝛾1,1 (AFC2 medium)  0.997  ∗ 

𝛾1,2 (AFC high)  1.35  ∗ 

𝛼1 (slope MY3)  0.005  n.s. 

𝛼2 (slope BW4)  0.178  n.s. 

𝛼3 (slope RUM5)  -0.633  ∗∗ 

Longitudinal outcomes 

Parameters MY (𝑘 = 1)  BW (𝑘 = 2)  RUM (𝑘 = 3) 

Fixed coeff. p  coeff. p  coeff. p 

𝛽0𝑘 (intercept) 28.0 ∗∗∗  469 ∗∗∗  472 ∗∗∗ 

𝛽1,1𝑘 (ns(DIM) 1)6 6.42 ∗∗∗  95.2 ∗∗∗  −18.6 ∗∗ 

𝛽1,2𝑘 (ns(DIM) 2) 4.34 ∗∗∗  68.9 ∗∗∗  34.6 ∗∗∗ 

𝛽1,3𝑘 (ns(DIM) 3) 13.8 ∗∗∗  86.3 ∗∗∗  - - 

𝛽1,4𝑘 (ns(DIM) 4) −13.5 ∗∗∗  99.7 ∗∗∗  - - 

𝛽2,1𝑘 (AFC medium) −0.268 n.s.  −3.64 n.s.  −21.3 ∗∗∗ 

𝛽2,2𝑘 (AFC high) 1.24 ∗  50.9 ∗∗∗  −24.8 ∗∗∗ 

𝛽3𝑘 (SEAS7 warm) −0.021 n.s.  0.918 n.s.  −9.03 ∗ 

Random SD  SD  SD 

𝑏𝑖0𝑘 (intercept) 4.61  48.3  129 

𝑏𝑖1,1𝑘 (ns(DIM) 1) 7.56  43.3  191 

𝑏𝑖1,2𝑘 (ns(DIM) 2) 6.64  44.8  106 

𝑏𝑖1,3𝑘 (ns(DIM) 3) 11.4  74.5  - 

𝑏𝑖1,4𝑘 (ns(DIM) 4) 10.1  45.4  - 

∗∗∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05, n.s. p ≥ 0.05 
1 Mean estimate of the effect; 2 age at first calving; 3 milk yield (kg/d); 4 body weight (kg/d); 5 rumination time (min/d); 6 

natural spline of days in milk (1, 2, 3, 4: sub-polynomials); 7 season of the recording period. 

The mean AUC and mean PE over the 9 CV runs (3 × 3 folds) are reported in Table 

4. For some farms (‘Belgian 2′ and ‘British 2′), there were no culling events registered 

within 𝑡1 (i.e., second calving) in any testing set of the CV procedure; therefore, the 

performance metrics at 𝑡1 could not be estimated. To determine the significance of the 

performance metrics over 0.50 for AUC and below 0.25 for PE (i.e., algorithm performing 

random guessing between ‘culled’ and ‘alive’ (Goldstein-Greenwood, 2021), we 

constructed a 95% confidence interval using the mean and the standard deviation 

obtained from the 9 CV repetitions for each farm in each scenario. The PE values were 

always significantly lower than 0.25 at 𝑡1 (i.e., second calving) and, in most cases, at 𝑡2 

(i.e., third calving) (Table 4); PE was generally low at 𝑡1, suggesting that the model 

accurately predicted the events within the second calving. The AUC was significantly 

higher than 0.50 only in a few cases, both for the predictions at 𝑡1 and at 𝑡2, remaining 

generally close to 0.50 (Table 4). Only one farm reported an average AUC of 0.76 at 𝑡1, 

with 240 DIM of first lactation sensor observations to obtain predictions. It is worth noting 

that this was the dataset that, across training sets, had the highest number of significant 
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associations between the sensor variables and survival, meaning that the sensor 

information was, in this case, particularly useful for predicting the animals’ survival. 

These results revealed that the algorithm had a good calibration capability (PE), but the 

same did not apply for its discrimination capability (AUC). However, the average model 

performance metrics tended to improve with more days of longitudinal information (i.e., 

240 vs. 150 vs. 60 DIM) and when predicting survival at closer endpoints (i.e., 𝑡1 vs. 𝑡2). 

Furthermore, the results from Levene’s tests (Levene, 1960) conducted in each scenario 

to verify the homogeneity of variances of the AUC and PE among farms revealed that 

the performance metrics of the algorithm were stable. Only AUC values estimated at the 

third calving with 60 or 150 DIM information had different variances among farms 

(respectively, p = 0.01 and p = 0.02). 

Table 4. Predictive accuracy measures (Area Under the Curve – AUC; prediction error – PE) of the 
algorithm. 

DIM Farm 
AUC  PE 

𝑡1
1 𝑡2

2  𝑡1 𝑡2 

60 

Italian 0.558 0.505  0.098 † 0.263 

Belgian 1 0.580 * 0.497  0.091 † 0.228 † 

Belgian 2 - 0.451  - 0.146 † 

British 1 0.526 0.519  0.061 † 0.202 † 

British 2 - 0.498  - 0.196 † 

British 3 0.476 0.508  0.037 † 0.164 † 

150 

Italian 0.605 0.556  0.096 † 0.256 

Belgian 1 0.578 0.513  0.085 † 0.225 † 

Belgian 2 - 0.475  - 0.143 † 

British 1 0.562 0.526 *  0.060 † 0.202 † 

British 2 - 0.520  - 0.194 † 

British 3 0.535 0.514  0.036 † 0.164 † 

240 

Italian 0.616 0.566 *  0.096 † 0.259 

Belgian 1 0.597 * 0.533  0.083 † 0.229 

Belgian 2 - 0.507  - 0.143 † 

British 1 0.577 0.539  0.060 † 0.200 † 

British 2 - 0.593 *  - 0.189 † 

British 3 0.763 * 0.559 *  0.035 † 0.158 † 

* Significantly higher than 0.5; † significantly lower than 0.25. 
1 Average second calving time; 2 average third calving time. 

Figure 2 represents a possible output of the algorithm, obtained by a farmer for a 

‘new’ cow of his/her herd. The farmer may decide to keep this cow for breeding purposes, 

given that at 150 DIM of the first lactation, she has a predicted probability of surviving to 

the second calving equal to 90%. 
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Figure 2. Predicted survival function from 150 DIM of the first lactation (dotted line) to the second calving 
(414 days post-first calving) for one cow of one farm, randomly chosen. The multivariate joint model 
estimates the evolutions of the sensor data (MY = milk yield (kg/d), BW = body weight (kg/d), RUM = 

rumination time (min/d)) until 150 DIM of the first lactation (red curves) and, based on those, predicts the 
survival function until the second calving (black curve). 

 

 
 

DISCUSSION 

This study explored the possibility of using joint models to predict dairy cow survival 

at different lactations, starting from raw daily sensor data recorded on-farm during 

different (early) stages of the first lactation. The algorithm implemented in this work could 

represent the basis for a prognostic model-based tool able to inform farmers of the future 

prospect of each first-parity cow in their herds. This may be very useful in the early 

adjustment of herd breeding and management decisions, improving farm efficiency and 

sustainability; farmers could, for instance, optimize the use of dairy sexed and beef 

semen or decide whether to give another chance to those cows that are not pregnant 

after two or three inseminations. 

The performances of the algorithm were compared with the results of the few similar 

studies dealing with dairy cow survival predictions and/or longitudinal sensor data 

extracted from AMS. Van der Heide et al. (2019) predicted survival to the second 

lactation using breeding and phenotypic variables from different moments in the heifer’s 

life. The authors compared three different machine-learning methods for many 

performance metrics, including AUC. Average AUC was 0.67 when using the information 

available at 6 weeks post-first calving (i.e., 40–50 DIM) and 0.68 when using the 

information at 200 DIM. The performance of these models was then higher compared to 

our average results (AUC = 0.54 ± 0.05 at second calving using 60 DIM, and AUC = 0.64 
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± 0.09 at second calving using 240 DIM; mean ± SD), but their ability to correctly identify 

non-surviving animals was very low (average positive predictive value of 0.17). The same 

authors tried to improve these performances by using ensemble-learning approaches 

(van der Heide et al., 2020), which were expected to have better performances and more 

robustness, but the results remained quite poor (average positive predictive value of 

0.20). Adriaens et al. (2020) studied the possibility of predicting lifetime resilience and 

the productive life of dairy cows starting from sensor-derived proxies of first-parity daily 

sensor data, obtaining a mean classification performance (‘low’ vs. ‘medium’ vs. ‘high’ 

lifetime resilience rank) of 47 ± 8% (± SD), when using milk yield features alone, and of 

56 ± 12% when using lactation and activity features together. Ouweltjes et al. (2021) 

assessed the performance of different models that included milk yield, body weight, 

rumination, and activity sensor data of cows in first lactation to predict lifetime resilience. 

Model performances, expressed in the percentage of correctly classified cows (‘low’ vs. 

‘medium’ vs. ‘high’ lifetime resilience rank), ranged between 45 ± 8% (mean ± SD) and 

51 ± 6%. 

The results of this research, in line with the results of the other works, confirm that 

cow survival is a complex trait, difficult to accurately predict (van der Heide et al., 2020). 

It indeed combines several different factors, such as fertility, health, milk production, farm 

management, and environmental conditions (Olechnowicz et al., 2016). With the only 

information at our disposal (i.e., AFC, SEAS, MY, BW, RUM), we could capture a small 

portion of these aspects; for instance, having information on disease occurrence would 

have likely improved the predictive performance of the algorithm. Furthermore, to build 

an algorithm applicable to all the farms with MY, BW, and RUM data from AMS, we had 

to ignore all the local and evidence-based farm management rules, which are particularly 

relevant when developing decision support tools for dairy farms (Adriaens et al., 2020). 

We identified two main strengths of the methodology presented in this study. First, in 

contrast to other works with similar research goals (Adriaens et al., 2020; Poppe et al., 

2020), the present joint modelling approach has the practical advantage of not requiring 

the translation of sensor time-series data into biologically meaningful sensor features. 

Using raw sensor data to obtain longevity predictions avoids proper feature definition 

and a lot of pre-processing (thus reducing the chance of errors) and provides at least the 

same performance as models with pre-processed data, as demonstrated by Ouweltjes 

et al. (2021). Second, joint models have the advantage of being very flexible; they allow 

for the dynamic update of predicted survival probabilities as additional longitudinal data 

are recorded, as well as for the easy change of the final time point of prediction based 

on the target the user wants to test. These features may justify future research to improve 

the current performance within a farm. The model, for instance, could be tested by 
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including additional variables from automated technologies (e.g., cow activity, somatic 

cell count) or cows’ additional information from other sources (e.g., test days, health 

records). 

 
 

CONCLUSIONS 

This study explored the potential of using joint models for longitudinal and time-to-

event data to predict dairy cow survival at different lactations from raw sensor data 

recorded during different stages of the cow’s first lactation. The algorithm tested in this 

study had a modest performance in terms of discrimination accuracy (Area Under the 

Curve) but good results in terms of calibration accuracy (expected error of prediction), 

as well as good repeatability across different farms. The interesting opportunities that 

joint models offer in applicability and flexibility should justify further research in the 

attempt to improve the overall predictive accuracy in the dairy field. 

 
 

ACKNOWLEDGMENTS 

This research was funded by the European Union’s Horizon 2020, GenTORE project 

grant number 727213. 

  



 

 42 

  



 

 43 

 
CHAPTER 3 

 

 
Artificially generated image (DALL∙E 2, OpenAI) 



 

 44 

  



 

 45 

Sensor-based behavioral patterns can identify heat-sensitive 

lactating dairy cows 

 
 
G. Ranzato1,2, I. Lora1, B. Aernouts2, I. Adriaens2, F. Gottardo1, G. Cozzi1 

 

1 Department of Animal Medicine, Production and Health (MAPS), University of Padova, Viale 

dell’Università 16, 35020 Legnaro (PD), Italy 

2 Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, 

Kleinhoefstraat 4, 2440 Geel, Belgium 

 

Accepted for publication in International Journal of Biometeorology (2023) 

 
 

Summary 

Heat stress impairs the health and performance of dairy cows, yet only a few studies 

have investigated the diversity of cattle behavioral responses to heat waves. This 

research was conducted on an Italian Holstein dairy farm equipped with precision 

livestock farming sensors to assess potential different behavioral patterns of the animals. 

Three heat waves, defined as at least five consecutive days with mean daily 

temperature-humidity index higher than 72, were recorded in the farm area during the 

summer of 2021. Individual daily milk yield data of 102 cows were used to identify ‘heat-

sensitive’ animals, meaning the cows that, under a given heat wave, experienced a milk 

yield drop that was not linked with other health events (e.g., mastitis). Milk yield drops 

were detected as perturbations of the lactation curve estimated by iteratively using 

Wood’s equation. Individual daily minutes of lying, chewing, and activity were retrieved 

from ear-tag-based accelerometer sensors. Semi-parametric generalized estimating 

equations models were used to assess behavioral deviations of heat-sensitive cows from 

the herd means under heat stress conditions. Heat waves were associated with an 

overall increase in the herd’s chewing and activity times, along with an overall decrease 

of lying time. Heat-sensitive cows spent approximately 15 min/d more chewing and 

performing activities (p < 0.05, respectively). The findings of this research suggest that 

the information provided by high-frequency sensor data could assist farmers in 

identifying cows for which personalized interventions to alleviate heat stress are needed. 

 
 

INTRODUCTION 

The effect of environmental heat on livestock species is a topic of growing concern, 

especially in light of the current climate change (Vitali et al., 2015). Future scenarios for 

the temperature-humidity index (THI) are not promising: Segnalini et al. (2013) 
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forecasted an increase of THI in the Mediterranean area which will cause growing 

thermal discomfort to the animals, with negative consequences on their welfare, 

performance, health, and survival (Vitali et al., 2015). In addition to the overall increase 

in temperatures, heat waves (HW) are becoming more and more frequent, intense, and 

extended (Beniston et al., 2007). In the next decades, the Mediterranean basin is 

expected to be dominated by increased droughts and HW (Gao & Giorgi, 2008) to the 

point that it has been categorized as a global warming hotspot (Segnalini et al., 2013). 

Lactating dairy cows produce a large quantity of metabolic heat, that under heat 

stress periods is coupled with a compromised cooling capability because of 

environmental conditions (West, 2003). This brings heat load in the cows to raise, 

causing an increase of body temperature and the inability to maintain thermal energy 

balance (Becker et al. 2020). As adaptive response, the animals show physiological and 

behavioral changes (Islam et al., 2021): increased respiration rate (de Andrade Ferrazza 

et al. 2017), decreased lying time (Allen et al. 2015), increased shade utilization (Brown-

Brandl et al. 2003), increased water intake (Coimbra et al. 2012), and reduced feed 

intake resulting in reduced milk yield (Bohmanova et al. 2007). Each of these adaptations 

aims at mitigating metabolic heat production and promoting the dissipation of body 

temperature (Islam et al., 2021). Furthermore, thermal stress may partially suppress the 

innate immune functions in lactating cows, leading to a higher risk of clinical diseases 

such as mastitis and metritis (Becker et al., 2020). 

Monitoring dairy cows is crucial to identify and manage heat stress  to limit its 

negative impact on welfare, health, and production (Hut et al., 2022). Nowadays, many 

sensor systems are commercially available to replace visual observation of the animals, 

which can be impractical in large commercial herds (Barriuso et al., 2018). 

Accelerometer-based systems are the most widely available and validated technology 

for continuous, real-time, and autonomous monitoring of core behaviors like eating, 

rumination, lying, and walking (Allen et al., 2015; Islam et al., 2021; Stygar et al., 2021b). 

The information provided by sensor-based behavioral data can be used to assist farmers 

in the early identification of climate-related distress (Abeni & Galli, 2017), minimizing the 

negative economic and welfare implications of heat stress. 

Several studies have already investigated the main overall effects of heat stress on 

dairy cows’ behavior, as described above. However, to our knowledge, only Islam et al. 

(2021) analyzed changes in cows’ behavior based on the animals’ different responses 

to thermal stress. To further explore this topic, we retrospectively identified the ‘heat-

sensitive’ cows of a dairy herd based on their drop in milk yield associated with summer 

heat waves. Individual high-frequency sensor data were analyzed to detect different 

behavioral patterns of heat-sensitive animals, and to explore the potential of sensor 
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systems to early identify cows for which personalized interventions to alleviate heat 

stress are needed. 

 
 

MATERIALS AND METHODS 

Dataset 

The study used data (Ranzato, 2023) of 369 Holstein-Friesian cows (43% 

primiparous, 57% multiparous) from a dairy farm located in the Po Valley, Italy 

(45.263791, 9.021119; temperate climate). The animals were housed in two barns 

equipped with high-volume low-speed horizontal ceiling fans and with cooling showers 

along the feeding alleys (‘new ventilation system’) in the period between 25 DIM and 280 

DIM. During the post-partum days and in the late lactation phases, the cows were moved 

to two barns equipped with only old vertical fans (‘old ventilation system’). For the period 

from 28th March to 30th September 2021 covered by the study, cows were fed total mixed 

rations based on maize silage, grass silage, maize and soybean meals (average dry 

matter content of 53%, and crude protein, NDF, starch, ether extracts and ash mean 

contents of 15.8%, 31%, 28.8%, 4.3% and 6.2% of dry matter, respectively). 

Behavioral data regarding lying (LIE), chewing (CHEW), and activity (ACT) times 

were collected by an ear-tag-based accelerometer (Smartbow GmbH, Weibern, Austria) 

that registered the time budgets of each cow by measuring head and ear movements 

(Krieger et al., 2019). The ear tag captured and sent acceleration data once per second 

(1 Hz); daily minutes of LIE (lying + standing = 1440 min/d), CHEW (chewing + ‘not 

chewing’ = 1440 min/d), and ACT (activity + inactivity = 1440 min/d) were used in the 

study. Individual cow health events and individual daily milk yield (MY) data, 

automatically recorded in the milking parlor, were also retrieved from the farm databases. 

Climate data were restored from the online archive of the local environmental 

protection agency (Agenzia Regionale Protezione Ambiente, 2022), by referring to the 

nearest weather station to the farm (7 km of distance). The average daily temperature 

(T, in °C) and average daily relative humidity (RH, in %) were used to compute average 

daily THI according to the equation by Kelly and Bond (1971): 

𝑇𝐻𝐼 = (1.8 ∙ 𝑇 + 32) − (0.55 − 0.55 ∙ 𝑅𝐻 100⁄ ) ∙ {(1.8 ∙ 𝑇 + 32) − 58}. 

A HW is generally described as a prolonged period of excessively hot weather, but no 

official definition is available (Maggiolino et al., 2022). Commonly, a THI of 72 is 

considered the threshold after which milk production starts to decrease in Holstein cows 

because of thermal discomfort (Heinicke et al., 2018; Segnalini et al., 2013). In this study, 

a HW was then defined as a period of at least 5 consecutive days (Frich et al., 2002) 

with a mean daily THI ≥ 72. If successive HW were less than three days apart from each 
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other, they were considered as one HW (therefore, one HW could contain days with THI 

< 72). Three HW were identified during the study period (Fig.1): from 11/06 (dd/mm) to 

18/06; from 17/07 to 31/07; from 08/08 to 16/08. Table 1 gives an overview of the 

meteorological characteristics of each HW. 

Data mining, processing steps, and statistical analyses were carried out with RStudio 

software (R version 4.1.2; RStudio PBC, Boston, MA). 

Figure 1. Average daily temperature-humidity index (THI) during the period of the study (28th March – 30th 
September 2021) and identified heat waves in pink-colored areas (the dashed line represents the 

threshold of THI = 72). 

 

 

Heat-sensitive cows 

Daily MY data were used to identify the cows that were more sensitive to thermal 

heat. Given that at any production level dairy cattle show an inverse relationship between 

milk yield and heat stress (Becker et al., 2020; Ravagnolo et al., 2000; West, 2003), we 

assumed ‘heat-sensitive’ cows to be the ones that started at least one consistent drop in 

milk production during a HW. Following the work by Adriaens et al. (2021), drops in milk 

production were identified as perturbations in the lactation curve compared with the 

theoretical production for that lactation (i.e., potential milk production when no 

disturbances are present). Unlike in Adriaens et al. (2021), we didn’t have access to 

complete lactations data due to the restricted time period of the study. Therefore, 

lactations were selected based on the following criteria: (i) MY data were available from 

before DIM 30 for at least 100 days, or (ii) MY data were available from beyond DIM 150 

for at least 50 days. These filters were necessary to grasp a proper image of the lactation 

curves in the observation period. We removed records beyond DIM 305 for 
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standardization purposes, because the last part of the lactation curve can be influenced 

by the gestation stage and feed changes towards dry-off (Adriaens et al., 2021; Ben 

Abdelkrim et al., 2021). After data editing to remove recording errors (e.g., MY = 0 kg/d), 

we kept only lactations with no more than 2 gaps of at most 5 days each. To determine 

the theoretical shape of the lactation curves of the 108 cows left in the dataset, a Wood 

model (Wood, 1967) was iteratively fitted on the MY data of each animal (for more details 

see Adriaens et al., 2021). Next, the periods classified as perturbations of the milk 

production curve were identified as at least 5 days of successively negative residuals 

with at least one day of MY lower than 80% of the theoretical curve. To illustrate this 

methodology, MY data of 4 cows are plotted in Figure 2, and MY perturbations, if present, 

are highlighted in blue. 

Figure 2. Estimated theoretical milk production curve (solid line; respective 80% in dashed line) and 
identified perturbations (blue dots) for different lactations during the observation period (a: 1 ≤ DIM ≤ 157; 

b: 5 ≤ DIM ≤ 180; c: 204 ≤ DIM ≤ 305; d: 221 ≤ DIM ≤ 305). The pink-colored areas identify the heat 
waves during the observation period. 

 

Cows with registered pathologies or health events that influenced their lactation 

curve (e.g., mastitis) were removed from the dataset to retain only animals with MY 

perturbations potentially due to heat stress. Nonetheless, for some lactations, 

perturbations of MY were detected also outside HW. These were handled with the 

following criteria: (i) when they started before a HW and overlapped with the HW itself, 

the respective records during HW days were removed to consider only perturbations 

originated under thermal stress; (ii) when they started during a HW and continued under 

the next HW, they were kept as prolonged heat stress effects; (iii) when they were 
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completely outside HW, they were kept as perturbations caused by unknown reasons. 

Two examples of cows found to be heat-sensitive to one or more heat waves are shown 

in Figure 2b and Figure 2d. 

 

Data processing and statistical analysis 

A categorical variable identifying the stage of the lactation was created according to 

the observed time period of each animal: ‘early lactation’ when DIM  100, ‘mid lactation’ 

when 100 < DIM  200, and ‘late lactation’ when DIM > 200 (Niozas et al., 2019). A binary 

variable was created to indicate the type of barn where the cows were housed (i.e., ‘old 

ventilation system’ vs. ‘new ventilation system’). On specific dates, the sum of daily 

minutes of each behavior (i.e., LIE, CHEW, ACT) with its complementary (i.e., standing, 

not chewing, inactivity) was lower than 1440 min/d, probably due to recording errors: 

when the sum was below 1320 min/d (i.e., more than 2 hours of the day were missing), 

that record was deleted from the dataset; when the sum was between 1320 and 1439 

min/d, the respective values were reproportioned to sum to 1440 min/d. The final dataset 

contained 102 cows, each one with a number of records ranging between 48 and 159 

days of data, for a total amount of 12,949 records. 

To detect different behavioral trends of heat-sensitive cows, we first used linear 

mixed-effects models, which are traditionally applied for analyzing longitudinal data. 

They produced non-normal residuals, even when using transformations of the response 

variables (i.e., LIE, CHEW, ACT). Accordingly, we used a semi-parametric technique 

that handles repeated measures, referred to as generalized estimating equations (GEE; 

R package ‘geepack’, Halekoh et al., 2006). Generalized estimating equations are used 

to estimate the parameters of a (generalized) linear model specifying a working 

correlation structure that accounts for within-subject correlation of the response variable 

(Hardin & Hilbe, 2013). Different correlation structures can be specified, including 

independence of observations, exchangeable correlation, first-order autoregressive 

structure, and unstructured correlation; the most appropriate working correlation 

structure is the one that produces the smallest correlation information criterion (CIC; Hin 

and Wang 2009). Generalized estimating equations models are population average 

models, meaning that the estimated effects are interpreted as for (generalized) linear 

models but at ‘population’ level (Hubbard et al., 2010). 

The GEE models for the different behaviors were specified as follows: 

𝜇𝑖𝑗 = 𝛽0 + 𝛽1𝑚𝑢𝑙𝑡𝑖𝑝𝑎𝑟𝑜𝑢𝑠𝑖 + 𝛽2𝑚𝑖𝑑 𝑙𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛𝑖𝑗 + 𝛽3𝑙𝑎𝑡𝑒 𝑙𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛𝑖𝑗

+ 𝛽4𝑛𝑒𝑤 𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑦𝑠𝑡𝑒𝑚𝑖𝑗 + 𝛽5𝐻𝑊𝑖𝑗 + 𝛽6𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛𝑖𝑗

+ 𝛽7𝐻𝑊𝑖𝑗 ∙ 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛𝑖𝑗, 

(Eq.1) 
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where 𝜇𝑖𝑗 represents the mean of the response variable 𝑦𝑖𝑗 (𝑗 = 1, … ,159 daily 

measurement of cow 𝑖 = 1, … ,102) corresponding to LIE, CHEW, or ACT times. The 

variance of 𝑦𝑖𝑗 is a function of a known variance function 𝑣 of the mean and a known 

scale parameter 𝜙 (𝑉(𝑦𝑖𝑗) = 𝑣(𝜇𝑖𝑗)𝜙), accounting for within-subject correlation of the 

observations. The information on the HW was expressed by a binary time-dependent 

variable (‘no HW’ as reference class, and ‘HW’), as well as for the presence of drops in 

the milk curve (‘no perturbation’ as reference class, and ‘perturbation’). The interaction 

term referred to heat-sensitive cows, i.e., cows experiencing one or more MY 

perturbations (𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 = 1) started during a HW (𝐻𝑊 = 1). The reference 

categories of the variables used to adjust the comparison between cows were: 

‘primiparous’ for the parity information, ‘early lactation’ for the variable indicating the 

stage of the lactation, and ‘old ventilation system’ for the variable distinguishing the barn 

based on the type of ventilation system. 

The effect of each variable in Eq.1 was quantified by the estimation of the related 

regression parameter. The effect of 𝐻𝑊 and 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 had to be averaged over the 

levels of the other variable involved in the interaction term (e.g., 𝐻𝑊 effect = �̂�𝐻𝑊 −

�̂�𝑛𝑜 𝐻𝑊 = �̂�5 + �̂�7𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 = {�̂�5 + (�̂�5 + �̂�7)} 2⁄ ). The behavioral variation of heat-

sensitive cows with respect to the farm means during HW (i.e., 𝐻𝑊 = 1, 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 = 

1 vs. 𝐻𝑊 = 1, 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 = 0) was estimated by �̂�6 + �̂�7. 

 
 

RESULTS AND DISCUSSION 

Three HW were identified during the summer of 2021 (June – September) in the area 

of the Po Valley where the farm was located. The percentage of heat-sensitive cows in 

the herd, i.e., the percentage of cows that experienced one or more MY perturbations 

during a HW, increased from the first to the last HW (Table 1). This result was somehow 

expected, as the last HW (from 8th to 16th August) was the most severe with a maximum 

daily THI of 78.2. A THI ≥ 75, in fact, generates alarming conditions for both the welfare 

and performance of dairy cows (Segnalini et al., 2013). However, we cannot exclude that 

a heat stress carry-over effect may also have played a role in the increase of the 

percentage of heat-sensitive cows as a function of the number of HW (Herbut et al., 

2018). 
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Table 1. Characteristics of the three heat waves (HW) identified during the study period (28th March – 30th 

September 2021): mean daily temperature (T), mean daily relative humidity (RH), mean daily temperature-

humidity index (THI), minimum daily THI, maximum daily THI, number of cows (overall n = 102), number of 

records (overall n = 12,949), percentage of heat-sensitive cows (i.e., cows that started one or more 

perturbations of the lactation curve during the heat wave). 

1 dd/mm. 

 
Sensor technologies provide opportunities to constantly monitor dairy cattle behavior, 

and they may assist farmers in the early identification of thermal stress symptoms (Abeni 

& Galli, 2017; Hut et al., 2022). To our knowledge, the ear-tag-based accelerometer 

sensor used in this study has been validated for chewing monitoring (Borchers et al., 

2016; Reiter et al., 2018), but no references could be found for lying and activity times in 

dairy cows. Only Roland et al. (2018) reported that the ear tag reached a satisfying 

accuracy in detecting posture (i.e., lying vs. standing) and a substantial agreement for 

some activities in dairy calves. The average sensor-based LIE time of the herd, recorded 

in the period 28th March – 30th September 2021, was 693 min/d, while mean CHEW and 

ACT times were respectively 596 min/d and 1097 min/d (Table 2). Data available in the 

literature show that lactating dairy cows spend 660 to 840 min/d lying down under 

thermoneutral conditions (Becker et al., 2020). Chewing time may vary across dairy 

herds as chewing activity can be affected by physical properties of the diet (Beauchemin 

et al., 2003) and selective feed intakes of the animals (Maulfair et al., 2010), but also by 

farmers’ decisions on cows’ grouping (Grant & Albright, 2001). Even activity is a rather 

variable measure for which it is difficult to define a reference range, as it can vary due to 

barn design, herd management, and especially type of sensor system used for its 

recording. 

Table 2. Minimum, first quartile (Q1), median, mean, third quartile (Q3), and maximum of the behavioral 
data retrieved from ear-tag-based accelerometer sensors (lying, LIE; chewing, CHEW; activity, ACT). 

 LIE (min/d) CHEW (min/d) ACT (min/d) 

min. 156 125 442 

Q1 592 537 1023 

median 700 592 1089 

mean 693 596 1087 

Q3 801 650 1153 

max. 1212 1085 1426 

 

 
T 

(°C) 
RH 
(%) 

THI 
Cows 

(n) 
Records 

(n) 

Heat-
sensitive 
cows (%)  mean min. max. 

HW 1(11/061 – 18/06) 25.6 61.6 73.8 72.1 75.6 85 670 12 

HW 2 (17/07 – 31/07) 24.8 75.3 74.1 70.9 75.8 66 945 18 

HW 3 (08/08 – 16/08) 25.5 72.2 74.8 72.0 78.2 57 478 37 
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Results from the three GEE models fitted on LIE, CHEW, and ACT times are reported 

in Table 3. No model simplification strategy was applied. The working correlation 

structure that produced the smallest CIC was, for all the models, the exchangeable 

structure, meaning that all pairs of observations within a subject could be considered 

equally correlated. 

Cow’s parity affected all the recorded behaviors (Table 3). Multiparous cows had 

longer LIE and CHEW times being less active than primiparous ones. Behavioral 

differences across parities have been described earlier, although mostly focused on the 

animals’ transition period (Azizi et al., 2010; Neave et al., 2017). As an effect of 

hierarchical differences between primiparous and multiparous cows, younger animals 

entering the milking herd for the first time spend less time lying down and increase their 

daily activity. Cows in mid lactation tended to be more active compared to cows in early 

lactation (0.01 < p < 0.05), while no differences across lactation stages were found for 

the other behaviors. Also the type of ventilation system did not appear to affect, on 

average, the behavior of the animals. 

Table 3. Results from the Generalized Estimating Equations models on cows’ daily minutes of lying (LIE), 
chewing (CHEW), and activity (ACT): estimated parameters (coeff.) associated to the variables of the 

model, standard errors in brackets, and corresponding observed levels of significance. 

Variables 
LIE (min/d)  CHEW (min/d)  ACT (min/d) 

coeff. (SE) p  coeff. (SE) p  coeff. (SE) p 

intercept 679 (18.7) ∗∗∗  557 (9.19) ∗∗∗  1096 (12.7) ∗∗∗ 

multiparous 86.7 (22.1) ∗∗∗  40.0 (13.1) ∗∗  -54.8 (13.5) ∗∗∗ 

mid lactation -3.70 (9.78) n.s.  5.95 (5.89) n.s.  15.2 (6.45) ∗ 

late lactation -18.7 (11.2) n.s.  4.75 (7.30) n.s.  6.15 (8.45) n.s. 

new ventilation system -14.4 (8.36) n.s.  7.32 (5.84) n.s.  1.05 (8.12) n.s. 

HW1 -37.0 (3.30) ∗∗∗  38.8 (3.92) ∗∗∗  43.8 (3.11) ∗∗∗ 

perturbation 12.0 (7.53) n.s.  -10.3 (4.58) ∗  -23.9 (6.30) ∗∗∗ 

HW × perturbation -9.87 (12.5) n.s.  25.5 (13.1) ∗  39.4 (21.3) ∗∗ 

1 Heat wave. 

 
Overall, the average LIE time of the herd decreased during HW periods by 42 min/d. 

By standing, in fact, cattle expose a greater body surface to the air which helps heat loss 

due to the convection phenomenon (Allen et al., 2015). Chewing time increased by 52 

min/d under prolonged periods of environmental heat. This result may seem in 

contradiction with some works affirming a tendency of chewing activity to decrease under 

heat stress conditions (Karimi et al., 2015; Maia et al., 2020). Considering chewing time 

as the summation of rumination and eating times (Perdomo et al., 2020), the increase of 

CHEW found in this study could be determined by an increase of eating time due to the 

presence of cooling systems along the feeding alleys. However, the accuracy of 

accelerometer ear tags in monitoring chewing activity can be variable depending on the 

conditions of use, and it can be biased by other movements of the animal’s head 
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(Beauchemin, 2018). The average ACT time increased by 64 min/d during HW. The ear 

tag recorded a cow being active when the animal was actively moving either standing or 

lying down. Therefore, ACT could include walking, exploring, drinking, urination, 

defecation, grooming, head swing, and estrus expression (Becker et al., 2020; Zambelis 

et al., 2019). Consistent with this finding, Abeni and Galli (2017) reported higher daily 

activity times associated with higher THI exposure in dairy cows: the animals tend to 

have more frequent movements of the head, recorded by the sensor, when the 

environmental temperature increases (Cook et al., 2007). Brzozowska et al. (2014) 

stated that also the number of steps per day increases during heat stress periods. 

Focusing on the heat-sensitive cows (�̂�7, 𝐻𝑊 ∗ 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 effect in Table 3), their 

behavioral patterns were similar to those of all the cows exposed to HW, but more severe 

variations were detected for CHEW and ACT times. Heat-sensitive cows chewed 15 

min/d more and were 16 min/d more active with respect to the herd means during HW. 

To our knowledge, only Islam et al. (2021) compared the behavior of ‘heat-susceptible’ 

and ‘heat-tolerant’ heifers by making a distinction based on their panting scores. These 

authors compared sensor-based eating, rumination, and lying times of the two groups of 

cows during 3 different HW events, but without involving thermoneutral conditions in the 

study. They found that heat-susceptible animals spent more time eating (+17 min/d; p < 

0.001) and less time lying down (-61 min/d; p = 0.039) compared to heat-tolerant ones, 

suggesting that heat-tolerance can be at the expense of reduced production either by 

inborn genetic merit or by adaptive reduced feed intake. Similarly, we could assume that 

heat-sensitive cows increased their daily eating time resulting in longer chewing times. 

Our results indicate that cows belonging to the same herd, therefore under the same 

environmental and management conditions, can have different behavioral adaptations 

to heat stress. Figure 3 is an example of different CHEW (Figure 3a) and ACT (Figure 

3b) patterns of two cows of the herd, one of which resulted to be sensitive to the HW 

from 17th to 31st July. The identification of the more sensitive animals to thermal distress 

through the monitoring of their behavioral responses could allow targeted interventions 

by the farmers to alleviate heat stress symptoms. Farmers could decide to create specific 

groups of heat-sensitive cows to be housed in areas where the cooling is more effective, 

or to adjust their feeding schedule as limiting feed availability during the hottest hours of 

the day can reduce heat stress (Davis et al., 2003). In parallel, they could select ‘heat-

tolerant’ cows (i.e., the ones that didn’t experience any MY perturbations during HW) for 

breeding purposes, and optimize breeding schemes and culling decisions (Ranzato et 

al., 2022). Recent studies have in fact shown that selection for heat-tolerant cows’ 

genotypes is feasible and leads to improvements in milk production and feed intake 

during and after heat stress events (Liu et al., 2017). 
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Figure 3. Chewing (a) and activity (b) patterns of two cows during one period of summer 2021. One cow 
(green line) was not sensitive to the heat wave from 17th to 31st July (pink-colored area), the other (purple 

line) was sensitive to the same heat wave. 

 

As sensors systems are in continuous progress in the dairy farming sector, it is 

possible that heat stress sensitivity will be even more accurately assessed combining 

behavioral information with additional parameters automatically detected. Chen et al. 

(2018) found that cows more sensitive to thermal stress have higher rectal temperature 

than less sensitive ones, along with upregulated metabolisms and downregulated 

neurodegenerative disease pathways. Liu et al. (2017) obtained differences in lipid 

concentration of milk between heat-sensitive and heat-tolerant cows during heat stress. 

Finally, Herbut et al. (2018) affirmed that the time of the year and the breed of the cows 

may have a big impact on when the animals become sensitive to increasing heat loads. 

Under heat stress conditions, a consistent decrease in daily milk production is usually 

registered 48 hours after the thermal stress onset (Spiers et al., 2004). The advantage 

of referring to high-frequency behavioral data for heat stress detection is that the sensor 

system could immediately give an alarm when, for example, chewing and activity times 

overpass specific thresholds, thus preceding the actual milk yield drop. Further research 

involving more farms and covering more years of recorded behavioral data could be 

useful to lay the foundations for a decision-support tool for dairy farmers. 

 
 

CONCLUSIONS 

The identification of more sensitive animals to thermal distress through automatic 

monitoring of deviations in their behavior could allow targeted interventions by the 

farmers to alleviate heat stress symptoms. This study aimed at exploring differences in 
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Holstein-Friesian dairy cows’ lying, chewing, and activity times, recorded by ear-tag-

based accelerometer sensors, when exposed to heat waves. ‘Heat-sensitive’ cows were 

identified by the presence of one or more drops in milk yield that started during a given 

heat wave. The percentage of animals that resulted to be sensitive to heat stress 

increased progressively from the first to the last heat wave detected during the 

observation period. Heat-sensitive cows revealed significant deviations from the herd 

mean behaviors during heat waves. In particular, they spent more daily time chewing 

and being active, probably in the attempt to better cope with the environmental heat. The 

analysis of individual high-frequency data from sensor systems gives therefore the 

chance to early identify those cows for which personalized interventions to alleviate 

thermal stress are needed. Further research involving more years of data and dairy farms 

could strengthen the promising outcomes of this study. 
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Summary 

Milk yield dynamics and production performances reflect how dairy cows cope with 

their environment. To optimize farm management, time-series of individual cow milk yield 

have been studied in the context of precision livestock farming, and many mathematical 

models have been proposed to translate raw data into useful information for the 

stakeholders of the dairy chain. To gain better insights on the topic, this study aimed at 

comparing three recent methods that allow to estimate individual cow milk lactation 

performances, using daily data recorded by the automatic milking systems of 14 dairy 

farms (7 Holstein, 7 Italian Simmental) from Belgium, the Netherlands, and Italy. Iterative 

Wood model (IW), perturbed lactation model (PLM), and quantile regression (QR) were 

compared in terms of estimated total unperturbed (i.e., expected) milk production and, 

with respect to it, estimated total milk loss. The IW and PLM can also be used to identify 

perturbations of the lactation curve and were thus compared in this regard. The outcome 

of this study may help a given end-user in choosing the most appropriate method 

according to his specific requirements. If there is a specific interest in the post-peak 

lactation phase, IW fits best. If one wants to accurately characterize the perturbations of 

the lactation curve, PLM is the most suitable method. If there is need for a fast and ‘rough’ 

approach on a very large dataset, QR is the best choice. Finally, as an example of 

application, PLM was used to analyze the effect of cows’ parity, calving season, and 

breed on their estimated lactation performances. 
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INTRODUCTION 

Dairy cows’ lactation curve represents MY as a reproducible pattern that can be 

expressed mathematically as a function of time: an ascending phase leading up to the 

peak production, and a following descending phase (Li et al., 2022). Many factors can 

affect the lactation dynamics and, accordingly, milk production throughout the lactation. 

Farm housing and management strategies are just as crucial as genetic and 

environmental factors (Adriaens et al., 2021). Aspects like the type of flooring or stocking 

density can affect dairy herd performance through the occurrence of lameness, and feed-

bunk space may influence MY due to competition and stress at the feeding rack (Bach 

et al., 2008). Recently, precision livestock farming has contributed to improving 

production performances through the continuous monitoring of cows’ health, 

reproduction, and welfare, optimized milking routines, and suitable feed and nutrition 

strategies (Balaine et al., 2020). 

A substantial part of the economic challenge of a dairy farm is linked to losses of milk 

production that manifest in altered MY dynamics, seen as perturbations of the lactation 

curve (Hertl et al., 2014). Perturbations are mainly the result of health problems or 

diseases, impaired feed quality, and extreme weather conditions. Understanding how 

cows cope with those challenges could help to gain insights into their resilience and 

robustness (Adriaens et al., 2020; Ben Abdelkrim et al., 2021). As a result, the correct 

identification of robust and resilient dairy cows would allow the optimization of breeding, 

treatment, and culling decisions (Adriaens et al., 2020; Ranzato et al., 2022). 

Perturbations cause drops in MY that pull the fitted lactation curve downwards. Many 

phenotyping tools have been proposed to estimate dairy cows’ expected milk production 

in the absence of perturbations. Thanks to high-frequency milk meter data and advanced 

computation, the most recent tools enable to study lactation dynamics in great detail. 

Adriaens et al. (2021) proposed to iteratively use Wood’s model (Wood, 1967) to 

determine the expected production and characterize perturbations of the lactation curve, 

Ben Abdelkrim et al. (2021) implemented a lactation model with explicit representation 

of perturbations, and Poppe et al. (2020) suggested to use a 4th order quantile 

regression model to make the resulting lactation curve fitting less sensitive to drops in 

MY. 

This study aimed at analyzing the methods proposed by Adriaens et al. (2021), Ben 

Abdelkrim et al. (2021), and Poppe et al. (2020) considering their mathematical 

complexity, and gathering insights into their strengths and weaknesses. The end-user 

(e.g., farmer, veterinarian, researcher) can decide to utilize the method that best fits his 

specific application, to monitor the herd or to optimize breeding schemes and culling 

decisions. Moreover, the model by Ben Abdelkrim et al. (2021) was used as an 
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application example to test the differences in cows’ average lactation performances 

across breeds, parities, and calving seasons. 

 
 

MATERIALS AND METHODS 

Data collection and pre-processing 

Back-up files of the management software of 14 AMS were collected at 10 farms with 

Lely AMS (Lely Industries N.V., Maassluis, the Netherlands) and 4 farms with DeLaval 

AMS (DeLaval, Tumba, Sweden). Half of the farms housed Italian Simmental dairy cows 

in the north of Italy, whereas the remaining were Holstein dairy farms from Belgium and 

the south of the Netherlands. The data tables containing daily historical MY data, 

together with cow and lactation identifiers with calving dates, were extracted from the 

AMS software back-up files of each farm using an automated pipeline in Python (Gote 

et al., 2022). The MY data in DeLaval software back-ups differed from the Lely ones: 

DeLaval takes the sum of the milkings of a day (24-hour period) as the daily value, Lely 

corrects for the varying number of milkings between days by taking a 3-day moving 

average of the MY time-series. Daily MY data from the DeLaval farms were therefore 

corrected by replacing each value with the average of the current and previous days 

(Adriaens et al., 2021). 

The maximum time-period covered by each farm data ranged between 2015 and 

2022. Lactations were selected based on the following criteria: (1) MY data were 

available from before 5 DIM to at least 200 DIM (Adriaens et al., 2020; Ben Abdelkrim et 

al., 2021), and (2) no more than 10% missing daily MY records were present. For each 

of the selected lactations, data up to 305 DIM were included in the analysis. After 305 

DIM, indeed, the lactation dynamics can be influenced by the gestation stage and feed 

changes towards dry-off (Dematawewa et al., 2007), which was not of interest to this 

study. 

The data processing and further modelization were performed with RStudio software 

(R version 4.2.3; Posit Software PBC, Boston, MA). 

 

Iterative Wood model 

The iterative Wood model (IW) presented hereafter was based on the work by 

Adriaens et al. (2021). 

The unperturbed lactation curve (ULC), meaning the estimated expected milk 

production in the absence of perturbations, is calculated for each lactation using the 

nonlinear Wood model: 
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𝑀𝑌 = 𝑎 ∙ 𝐷𝐼𝑀𝑏 ∙ 𝑒−𝑐∙𝐷𝐼𝑀 + 𝜀, (Eq.1) 

where 𝜀 is the error term, and 𝑎, 𝑏, 𝑐 are positive parameters that define the shape of the 

lactation curve. Parameter 𝑎 mainly determines the scaling of the curve, 𝑏 and 𝑐 

determine, respectively, the moment of the peak production and the slope. An iterative 

fitting procedure is applied to gradually remove MY data during perturbations, following 

the steps below: 

(1) iteration 𝑖 = 1: fit the Wood’s model (𝑈𝐿𝐶1) on all MY data of the lactation (‘nlsLM’ 

function of the ‘minpack.lm’ package; Elzhov et al., 2023); 

(2) remove MY data below 𝑈𝐿𝐶1 − 1.6 × standard deviation (𝑆𝐷1) of the residuals of 

the model estimated at 𝑖 = 1; 

(3) iteration 𝑖 > 1: fit Wood’s model (𝑈𝐿𝐶𝑖) on the filtered MY data resulting from the 

previous iteration 𝑖 − 1; 

(4) remove MY data below 𝑈𝐿𝐶𝑖 − 1.6 × 𝑆𝐷𝑖 of the residuals of the model estimated 

at 𝑖; 

(5) repeat (3) to (4) until the improvement in the root mean squared error of the model 

estimated at 𝑖 compared with the previous iteration 𝑖 − 1 is smaller than 0.1 kg, 

or after 20 iterations. 

To increase the fitting stability in the first part of the lactation, MY values below 𝑈𝐿𝐶𝑖 −

1.6 × 𝑆𝐷𝑖 are not removed when DIM < 30. The parameters 𝑎, 𝑏, 𝑐 estimated at the 

previous iteration are used as the starting values for the next iteration (first iteration: 𝑎 = 

5; 𝑏 = 0.2; 𝑐 = 0.004). 

Starting from the ULC, it is possible to identify the perturbations in the actual milk 

production. After computing the residuals by subtracting ULC from the original MY data, 

a perturbation is defined as a period of at least 5 successive days of negative residuals 

with at least one day in which MY is below 80% of ULC. The start and end DIM of each 

perturbation correspond to the first and last residual below zero, respectively. The days 

before the largest negative residual are identified as the development phase of the 

perturbation, while the days afterwards represent the recovery phase. 

 

Perturbed lactation model 

The perturbed lactation model (PLM) presented below was based on the work by 

Ben Abdelkrim et al. (2021). 

The formula of PLM for a lactation with 𝑃 individual perturbations is given by: 

𝑀𝑌 = 𝑎 ∙ 𝐷𝐼𝑀𝑏 ∙ 𝑒−𝑐∙𝐷𝐼𝑀 ∙ ∏ (1 −
𝑘0𝑝 ∙ 𝑘1𝑝

𝑘1𝑝 − 𝑘2𝑝
∙ (𝑒−𝑘2𝑝∙𝛥𝑝(𝐷𝐼𝑀) − 𝑒−𝑘1𝑝∙𝛥𝑝(𝐷𝐼𝑀))) + 𝜀,

𝑃

𝑝=1
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where 𝜀 is the error term. The model is composed of an unperturbed lactation model 

corresponding to Wood’s equation (Eq.1) and a perturbation model that represents the 

global proportion of milk affected by the 𝑃 perturbations. The parameter 𝑘0𝑝 ∈ (0,1) is 

the intensity of the 𝑝th perturbation, 𝑘1𝑝 the collapse speed of the 𝑝th perturbation, and 

𝑘2𝑝 the recovery speed of the same perturbation; Δ𝑝(𝐷𝐼𝑀) is the elapsed time since the 

beginning of the 𝑝th perturbation and is given by: 

𝛥𝑝(𝐷𝐼𝑀) = {
0                           𝑖𝑓 𝐷𝐼𝑀 < 𝐷𝐼𝑀𝑝

𝐷𝐼𝑀 − 𝐷𝐼𝑀𝑝     𝑖𝑓 𝐷𝐼𝑀 ≥ 𝐷𝐼𝑀𝑝
, 

where 𝐷𝐼𝑀𝑝 is the time of start of the 𝑝th perturbation. The total number of parameters 

of the model is then equal to 4 + 4 × 𝑃 (i.e., 𝑎, 𝑏, 𝑐, 𝑃, {𝑘0𝑝, 𝑘1𝑝, 𝑘2𝑝, 𝐷𝐼𝑀𝑝} × 𝑃). The 

fitting strategy consists of 2 steps: (1) repeated fittings to estimate the most frequent 

number of detected perturbations, and (2) fix the number of perturbations to the value 

determined in the first step and estimate the remaining parameters of the model. 

Arbitrary values can be set in step (1) for the number of fittings to be performed and the 

maximum number of perturbations to be detected, as well as for the maximum number 

of iterations to be used in step (2) to reach the convergence of the estimation procedure. 

We performed 50 fittings in step (1) and set the maximum number of perturbations and 

the maximum number of iterations at 10 and 1000, respectively. The PLM provides an 

explicit representation of the ULC and the perturbed lactation curve where perturbations 

can occur one inside another. 

 

Quantile regression 

The approach of using quantile regression (QR) to estimate the ULC was based on 

the work by Poppe et al. (2020). 

The QR estimates the conditional median or other quantiles of the outcome, instead 

of the conditional mean as for classical linear regression (Koenker, 2005). By using a 

quantile higher than 0.5, low values of the outcome have less impact on the estimated 

curve than high values. To estimate the ULC, Poppe et al. (2020) chose a 4th order 

polynomial quantile regression using a 0.7 quantile (‘quantreg’ package; Koenker, 2023): 

𝑀𝑌 = 𝛽0 + 𝛽1 ∙ 𝐷𝐼𝑀 + 𝛽2 ∙ 𝐷𝐼𝑀2 + 𝛽3 ∙ 𝐷𝐼𝑀3 + 𝛽4 ∙ 𝐷𝐼𝑀4 + 𝜀, 

where 𝜀 is the error term and 𝛽 contains the regression coefficients. 

 

Comparison of methods 

To compare IW, PLM, and QR, the cumulative 305-DIM unperturbed milk production 

(ULC305) and the percentage of total milk loss (ML) were estimated for each lactation of 

the dataset. The ULC305 was calculated as the sum of the predicted unperturbed daily 
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production until DIM 305 of the lactation. The ML was computed using the following 

formula: 

𝑀𝐿 = 100 ∙ (1 −
∑ 𝑈𝐿𝐶𝐷𝐼𝑀

∑ 𝑀𝑌𝐷𝐼𝑀
), 

where ∑ 𝑈𝐿𝐶𝐷𝐼𝑀  is the total estimated unperturbed production for that lactation and 

∑ MYDIM  the respective observed total MY (200 ≤ max (DIM) ≤ 305). Furthermore, every 

lactation is divided into ‘early’ (DIM ≤ 60), ‘mid’ (60 < DIM ≤ 150), and ‘late’ (150 < DIM 

≤ 305), and the sum of the estimated unperturbed daily production and percentage of 

ML were computed at each lactation stage (ULCearly and MLearly, ULCmid and MLmid, and 

ULClate and MLlate). 

The PLM estimates an ULC as well as a perturbed lactation curve representing 

overlapping deviations from the ULC. The IW, on the other hand, comes with a criterion 

to identify individual perturbations. When the relative milk loss of an overlapping PLM 

perturbation was lower than 5%, that perturbation was considered as the same 

perturbation as the one it overlaps with and was not taken into account to determine the 

final number of perturbations. The IW and PLM were thus compared in terms of number 

of detected perturbations per lactation (NP), and number of detected perturbations per 

lactation stage (NP,early, NP,mid, and NP,late). 

The outcomes of interest from each lactation of each farm (i.e., ULC305 and ML, also 

divided by lactation stage, estimated with all the methods; NP, also divided by lactation 

stage, estimated with IW and PLM) were merged into one global table, keeping the 

information on cow’s breed, parity, and calving dates. Pearson correlation coefficients 

were computed for ULC305 and ML to detect the degree of linear relationship between 

each pair of methods. A Kruskal-Wallis statistical test (Dodge, 2008) was applied to 

compare the outcomes estimated with the 3 methods, and a post-hoc Wilcoxon test with 

Holm correction (Holm, 1979) was performed if the median results differed among 

methods. 

 

Application example 

After selecting PLM as estimation method, a multivariate mixed-effects model 

(Fitzmaurice et al., 2004) was used to evaluate the effect of breed, parity, and calving 

season on ULC305, ML, and NP. The models were specified as follows (‘lme4’ package; 

Bates and Maechler, 2017): 
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𝑦𝑔ℎ𝑗𝑙𝑚𝑞 = 𝜇 + 𝑝𝑎𝑟𝑖𝑡𝑦ℎ + 𝑐𝑎𝑙𝑣𝑖𝑛𝑔 𝑠𝑒𝑎𝑠𝑜𝑛𝑗 + 𝑏𝑟𝑒𝑒𝑑𝑙

+ 𝑝𝑎𝑟𝑖𝑡𝑦ℎ ∙ 𝑐𝑎𝑙𝑣𝑖𝑛𝑔 𝑠𝑒𝑎𝑠𝑜𝑛𝑗

+ 𝑝𝑎𝑟𝑖𝑡𝑦ℎ ∙ 𝑏𝑟𝑒𝑒𝑑𝑙 + 𝑐𝑎𝑙𝑣𝑖𝑛𝑔 𝑠𝑒𝑎𝑠𝑜𝑛𝑗 ∙ 𝑏𝑟𝑒𝑒𝑑𝑙 + 𝑐𝑜𝑤𝑚 + 𝑓𝑎𝑟𝑚𝑞

+ 𝜀𝑔ℎ𝑗𝑙𝑚𝑞, 

(Eq.2) 

where 𝑦𝑔ℎ𝑗𝑙𝑚𝑞 was the outcome variable (i.e., ULC305, ML, or NP) related to the 𝑔th 

lactation of the 𝑚th cow in the 𝑞th farm of the 𝑙th breed, that calved in season 𝑗 within 

parity ℎ. The ULC305 and ML were continuous variables that were log-transformed if they 

did not have a normal distribution; NP was a counting variable with a Poisson distribution. 

The fixed effects of the models corresponded to the variables ‘parity’ (3 categories: ‘1’, 

‘2’, ‘≥3’), ‘calving season’ (4 categories: ‘summer’ when the cow calved between June 

and August, ‘autumn’ when the cow calved between September and November, ‘winter’ 

when the cow calved between December and February, ‘spring’ otherwise), ‘breed’ (2 

categories: ‘Holstein’, ‘Italian Simmental’), and the interaction terms between couples of 

those variables. The random effects corresponded to the ‘cow’ and the respective ‘farm’ 

variables (nested random effects). First, a likelihood ratio test (Silvey, 1975) was used to 

test the significance of including the random effects, then the effect of each fixed term 

on each response variable was investigated by examining the ANOVA tables. When a 

term was not significant, a reduced version of the model with respect to Eq.2 was built 

and evaluated. 

 
 

RESULTS 

The final data consisted of 2,250 cows (65% Holstein; 35% Italian Simmental) and 

4,441 individual lactations with parity ranging from 1 to 12 (33% parity 1; 26% parity 2; 

41% parity ≥3). Descriptive statistics over farms are given in Table 1. 

Table 1. Descriptive statistics of the dataset (farms n = 14). 

 Mean ± SD over farms Range over farms [min; max] 

Time period covered (yr) 6.2 ± 1.0 [4.3; 7.2] 

Lactations (n) 317.2 ± 177.4 [61; 674] 

Parity 1 104.9 ± 68.4 [0; 254] 

Parity 2 82.4 ± 47.6 [25; 193] 

Parity ≥ 3 129.9 ± 66.1 [31; 247] 

Average daily MY1 in first 305 d (kg) 30.6 ± 4.6 [24.1; 38.4] 

Total sum of MY in first 305 d (kg) 9,119.3 ± 2,253.9 [1,447.1; 16,704.8] 

1 Milk yield. 
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Comparison of methods 

Unperturbed lactation curve 

First, the 3 mathematical methods were used to estimate the unperturbed MY for 

each lactation of the dataset. An example of ULC obtained with each method for one 

randomly selected lactation is shown in Figure 1. Second, starting from the ULC, ULC305 

and ML were computed for every lactation. Table 2 reports Pearson correlation 

coefficients calculated for ULC305 and ML between pairs of estimation methods, while 

Figures 2A and 2B compare the distributions of ULC305 and ML (respectively) across 

estimation methods. The median ULC305 were 9,632 kg, 9,693 kg, and 9,814 kg when 

estimated with IW, PLM, and QR, respectively. The median ML was 3.5% using IW, 4.3% 

using PLM, and 4.8% using QR. Based on Kruskal-Wallis statistical tests, the medians 

ULC305 and ML resulted different across methods (p < 0.001, respectively). Afterwards, 

by performing post-hoc Wilcoxon tests with Holm correction between pairs of methods, 

only the ULC305 median estimated with IW and with PLM did not result statistically 

different (p = 0.108), whereas all the pairs of ML comparisons were statistically different 

(p < 0.001 in all scenarios). 

Figure 1. Unperturbed lactation curves estimated using iterative Wood model (pink), perturbed lactation 
model (green), and quantile regression (blue) for one lactation randomly selected. 
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Figure 2. (A) Distribution (boxplot and violin plot) of the estimated total unperturbed milk yield (‘tot. unp. 
MY’) across different estimation methods (iterative Wood model – IW, perturbed lactation model – PLM, 

quantile regression – QR); distributions with different letters differ (p < 0.05). (B) Distribution (boxplot and 
violin plot) of the estimated total milk loss across different estimation methods (top limit of the y-axis is 

reduced); distributions with different letters differ (p < 0.05). 

 

 
Table 2. Pearson correlation coefficients for the total unperturbed milk yield (ULC305) and the total milk 

loss (ML) between couples of estimation methods (iterative Wood model – IW, perturbed lactation model – 

PLM, quantile regression – QR). 

ULC305 IW PLM QR 

IW 1 0.992 0.988 

PLM 0.992 1 0.984 

QR 0.988 0.984 1 

ML IW PLM QR 

IW 1 0.543 0.769 

PLM 0.543 1 0.400 

QR 0.769 0.400 1 

 
To analyze more in detail IW, PLM, and QR performances, the total unperturbed MY 

and ML were estimated for each stage of each lactation, obtaining ULCearly and MLearly, 

ULCmid and MLmid, and ULClate and MLlate. Figures 3A and 3B show the boxplots by stage 

of lactation for the total unperturbed MY and ML, respectively. The median ULCearly was 

2,132 kg when estimated with IW, 2,092 kg when estimated with PLM, and 1,931 kg 

when estimated with QR; the median ULCmid were 3,239 kg, 3,305 kg, and 2,896 kg, 

respectively; the median ULClate were 4,229 kg, 4,294 kg, and 4,987 kg, respectively. 

The median MLearly was 3.1% using IW, 0.9% using PLM, and 0.0% using QR; the median 

MLmid were 3.5%, 5.4%, and 0.0%, respectively; the median MLlate were 2.8%, 4.1%, and 

19.4%, respectively. The medians of the total estimated unperturbed MY and ML at each 

lactation stage were significantly different across estimation methods (Kruskal-Wallis 
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tests; p < 0.001 in all scenarios), and also between all pairs of methods (post-hoc 

Wilcoxon tests; p < 0.05 in all scenarios). 

Figure 3. (A) Boxplot of the estimated total unperturbed milk yield (‘tot. unp. MY’) per lactation stage 
(early: DIM ≤ 60, mid: 60 < DIM ≤ 150, late: 150 < DIM ≤ 305) using different estimation methods 

(iterative Wood model – IW, perturbed lactation model – PLM, quantile regression – QR); distributions with 
different letters within lactation stage differ (p < 0.05). (B) Boxplot of the estimated total milk loss per 

lactation stage using different estimation methods; distributions with different letters within lactation stage 
differ (p < 0.05). 

 

Perturbations of the lactation curve 

The IW and PLM were used to detect the perturbations of every lactation of the 

dataset. Using the same MY data plotted in Figure 1, Figure 4A shows the ULC and the 

perturbations estimated with IW, whereas Figure 4B shows the ULC and the perturbed 

lactation curve estimated with PLM. The distribution of NP across the 2 methods is 

represented in Figure 5. The mode of NP was 3 when applying IW and 4 when applying 

PLM. 

To better compare IW and PLM performances, Figure 6 shows the distribution of the 

number of perturbations identified by the 2 methods at each lactation stage. The modes 

of NP,early, NP,mid, and NP,late were 1 at each lactation stage using both IW and PLM. 
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Figure 4. (A) Unperturbed lactation curve (pink line) estimated with iterative Wood model and 
perturbations identified (red points). (B) Unperturbed (green line) and perturbed (red line) lactation curves 

estimated with perturbed lactation model. 

 

 
Figure 5. Histogram of the number of perturbations identified across lactations using iterative Wood model 

(pink) and perturbed lactation model (green). 

 

 

 

 

 

 

 

 

 

 

 



 

 70 

Figure 6. Histogram of the number of perturbations identified across lactation stages (early: DIM ≤ 60, 

mid: 60 < DIM ≤ 150, late: 150 < DIM ≤ 305) with iterative Wood model (pink) and perturbed lactation 
model (green). 

 

 

Application example: effect of parity, calving season, and breed on lactation 

performances 

The PLM was chosen to analyze the effect of parity, calving season, and breed on 

cows’ lactation performances (i.e., ULC305, ML, and NP). Visual inspection of the residual 

plots of the linear regression on ULC305, the linear regression on the logarithmic 

transformation of ML, and the Poisson regression on NP did not reveal any important 

deviations from homoscedasticity and normality. As measured by the likelihood ratio 

tests, the inclusion of farm and cow as random effects improved the fitting of the models 

on ULC305 and ML, whereas it was sufficient to include only the farm random variable for 

the model on NP. The ANOVA revealed that the parity and the season of calving had a 

highly significant effect on cows’ lactation performances, whereas the breed had a 

significant effect only on ULC305 and NP. The interaction parity × breed had a highly 

significant effect on ULC305 and ML. Milk losses were also influenced by the combined 

effect of calving season and breed (p < 0.05), while the interaction between parity and 

calving season highly affected ULC305 (p < 0.001). 

The non-significant terms resulted from the ANOVA tables were removed from the 

models on ULC305, ML, and NP, and the final estimated fixed effects are reported in Table 

3. Multiparous cows of the same breed that calved in the same season potentially 

produce, on average, 1,500 kg (combined effect of main effect and interaction terms) of 

milk more during a whole lactation with respect to primiparous ones. High parity cows 

(parity ≥3) calving in winter produce 700 kg (combined effect of main effect and 

interaction term) of milk more than the ones calving in summer in the absence of 
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perturbations of the lactation curve; high parity Holstein cows potentially produce around 

2,000 kg (combined effect of main effect and interaction term) of milk more than high-

parity Italian Simmental ones. Multiparous cows have more relative milk losses with 

respect to the unperturbed production than primiparous ones (𝑒0.13% = 1.1% × 

primiparous ML); the cows calving in winter have fewer relative milk losses than the cows 

calving in summer (𝑒−0.09% = 0.9% × summer ML). Last, summer-calving cows have 

fewer perturbations in the lactation curve than spring-calving ones (0.25 perturbations 

less), whereas the animals at parity 2 have fewer perturbations than the primiparous 

ones (0.25 perturbations less). 

 
 

DISCUSSION 

Comparison of methods 

This work compared 3 existing mathematical methods (i.e., IW, PLM, and QR) to 

estimate dairy cows’ lactation performances. The IW, PLM, and QR were found to be 

valuable methods to obtain cows’ expected production and ML, each one with 

advantages and disadvantages depending on the specific application (see Table 4 for a 

summary). 

From a mathematical and computational point of view, PLM is quite complex. 

Depending on the number of iterations imposed and the computational power of the 

machine, the estimation procedure of 4 + 4 × 𝑃 parameters can take several hours to fit 

the individual curves of an entire set of lactation data. For instance, setting 1000 

iterations and using a simple machine with a 1.8 GHz Intel Core i5 dual-core processor 

and a RAM of 8 GB, it takes around 5 hours for a set of 300 lactations, compared to 

about 20 seconds for IW and 10 seconds for QR. In addition, PLM requires a maximum 

number of perturbations to be set, with the computational burden of the algorithm raising 

as this number increases. We set a maximum of 10 perturbations to be identified per 

lactation, knowing that higher numbers may occur especially in case of severe metabolic 

disorders or chronic mastitis (Hostens et al., 2012). Nonetheless, the resulting 

unperturbed and perturbed lactation curves obtained with PLM always fit the data well, 

as shown in the example of Figure 4B. The IW and QR are easier in terms of 

mathematical complexity. Yet, also these methods depend on meta-parameters that can 

significantly change the performances based on their values. The IW relies on the 

threshold for removing low MY values at each iteration of the algorithm, whereas QR 

relies on the reference quantile of MY data points. Both Adriaens et al. (2021) and Poppe 

et al. (2020) selected those meta-parameters upon thorough visual observation of 

numerous fitted lactation curves. 
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Table 3. Estimates of the fixed effects of the mixed models on the total unperturbed milk yield (ULC305), the logarithm of the total milk loss (ML), and the number of 
perturbations (NP), with relative standard errors (SE) and observed levels of significance (p). 

 ULC305 (kg)  log(ML) (%)  NP 

Fixed effect Estimate SE p  Estimate SE p  Estimate SE p 

Intercept 9088 412 ***  1.4 0.07 ***  4.2 0.09 *** 

Parity 2 1329 108 ***  0.06 0.02 **  -0.25 0.08 ** 

Parity ≥3 1777 104 ***  0.13 0.02 ***  -0.09 0.07 n.s. 

Calving season autumn 227 103 *  0.002 0.02 n.s.  -0.20 0.08 * 

Calving season winter 176 105 n.s.  -0.09 0.03 ***  0.06 0.08 n.s. 

Calving season spring 127 105 n.s.  0.002 0.03 n.s.  0.25 0.09 ** 

Breed Italian Simmental -1516 578 *  0.15 0.10 n.s.  0.21 0.09 * 

Parity 2 × calving autumn 53 140 n.s.  - - -  - - - 

Parity ≥3 × calving autumn 431 134 **  - - -  - - - 

Parity 2 × calving winter 375 142 **  - - -  - - - 

Parity ≥3 × calving winter 580 133 ***  - - -  - - - 

Parity 2 × calving spring 318 147 *  - - -  - - - 

Parity ≥3 × calving spring 377 141 **  - - -  - - - 

Parity 2 × breed I.S.1 -137 97.7 n.s.  -0.03 0.04 n.s.  - - - 

Parity ≥3 × breed I.S. -543 98.8 ***  -0.10 0.03 **  - - - 

Calving autumn × breed I.S. - - -  -0.08 0.04 *  - - - 

Calving winter × breed I.S. - - -  0.02 0.04 n.s.  - - - 

Calving spring × breed I.S. - - -  0.02 0.04 n.s.  - - - 

∗∗∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05, n.s. p ≥ 0.05. Reference categories of the variables (parity 1; calving season summer; breed Holstein) are not reported. 
1 Italian Simmental. 
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The correlation coefficients between the different methods revealed that they were 

perfectly linearly related in the case of ULC305 estimation, whereas they were only 

moderately correlated in the case of ML estimation. The distribution of ULC305 was very 

similar among methods, but the same did not apply for ML especially when using QR 

compared to the other 2 methods. The QR, indeed, produces less variable milk losses 

estimates compared to IW and PLM because it tends to ‘follow’ the observed MY data 

closer. This is due both to the intrinsically higher sensibility of QR to very large 

perturbations from the expected lactation curve, and to the 4th order polynomial 

regression that can take more variable shapes (Lever et al., 2016). The 3 methods 

performed differently according to the lactation stage. The IW estimated the ML to be 

higher during the early stage of the lactation with respect to the other 2 methods. As 

shown in Figure 1, indeed, IW is less performant in capturing the ascending phase of the 

ULC, although we set to never exclude MY values below 𝑈𝐿𝐶 − 1.6 × 𝑆𝐷 when DIM < 30 

in the estimation process. The PLM, on the other hand, produced higher ML estimates 

during the mid-stage of the lactation, whereas QR ‘underestimated’ ML in the mid-stage 

and highly ‘overestimated’ it in the last stage of the lactation due to too much fitting 

flexibility. The IW and PLM were compared also in terms of number of estimated MY 

perturbations. Both the distributions of NP estimated using the 2 methods were right-

skewed, but PLM detected on average more perturbations than IW. The IW detected 

more perturbations during the early stage of the lactation compared to PLM, which is 

mostly due to the poor adaptation of ULC estimated with IW on the first days after calving. 

Contrarily, PLM tended to find more perturbations during the mid and late stages of the 

MY curve, mainly because multiple perturbations can overlap, also affecting all the 

previous perturbations in the estimation process. 

Both IW and PLM are Wood model-based, producing ULC with better shape stability 

compared to QR. The Wood model is one of the easiest and most used mathematical 

models for estimating a lactation curve (Ben Abdelkrim et al., 2021) because it describes 

its shape very well during the first 305 DIM; more complex models are preferred only 

when it comes to estimate the curve after 305 DIM (Dematawewa et al., 2007). On the 

other hand, polynomial QR is very flexible, fast, and easy to implement. The QR, as well 

as IW, can also operate with less frequent than daily MY data, while this is not yet verified 

for PLM. Finally, IW and PLM enable to detect perturbations of the lactation curve, within 

the estimation process in the case of PLM and using a characterization criterion in the 

case of IW. The PLM, in particular, allows to capture multiple (overlapping) perturbations 

with contrasted features (e.g., due to gestation, drying off, disease) and to produce 

metrics to compare the effect of perturbations on MY (i.e., parameters of scale and shape 

of each perturbation). 
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Possible improvements 

The QR could also be used for the detection of perturbations using a criterion like the 

one of IW (i.e., at least 5 days of negative residuals with at least one day of MY below 

80% of ULC), bearing in mind that QR does not produce ULC with robust shape, running 

the risk of not identifying relevant perturbations. 

Specific adaptations of the 3 methods could further improve their performances, 

besides further tuning of their meta-parameters. Optimizing the weights of specific 

phases of the lactation during the model fitting could enhance the performances of both 

IW and QR. For example, the conditional quantile of QR could change based on DIM, in 

order to avoid the ‘overestimation’ or ‘underestimation’ of ULC during specific stages. As 

an alternative to the 4th order polynomial, a linearized Wood model could be used in 

combination with QR, to keep at the same time the ease of a regression and the stability 

of shape produced by the Wood model. Finally, PLM and the iterative approach of 

Adriaens et al. (2021) could be tested by substituting the Wood model with other typical 

lactation models, such as the one developed by Wilmink (Wilmink, 1987). 

 

Practical implications 

Dairy practitioners and researchers can choose the mathematical method that best 

fits their specific needs. Farmers, veterinarians, or technicians may need a tool for 

phenotyping purposes; they generally require a fast and ‘rough’ approach on large 

datasets with minimal computational effort, putting QR forward as the most suitable 

method. Farm technology suppliers may be interested in implementing one of these 

methods for cow monitoring; then IW or PLM would be preferable, considering that the 

former is less efficient during the pre-peak lactation phase than in the post-peak one, 

whereas the latter is very robust but requires significant computational power. If dairy 

practitioners are interested in perturbation detection, then IW is a fast and rather precise 

method for identifying individual perturbations of the herd lactation curves. Researchers 

that need a precise fitting of the expected production or want to characterize (i.e., 

parametrize) perturbations to link them with external factors or farm management 

practices, might be more interested in PLM. When high-frequency milk meter data are 

not available (e.g., a farm is not equipped with an AMS), then PLM should probably be 

avoided because it has not yet been tested in combination with less frequent than daily 

MY data. 

Thanks to the estimation of ULC, it is possible to compare the cows based on their 

potential of MY and rank them according to the production level they would have 

achieved in a non-perturbed environment (Ben Abdelkrim et al., 2021). With this 

information, farmers could optimize culling decisions and breeding schemes, identify the 
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animals that have both a high production potential and ability to cope with their 

environment, or understand which are the most resilient animals, namely the ones that 

are able to recover fast after a given challenge. Studying the characteristics of 

perturbations throughout many lactations and connecting them to genomic information 

could open the opportunity to evaluate their heritability and genetic impact (Ben 

Abdelkrim et al., 2021). Linking perturbations with other information on cows or farm 

environment, could help to detect sensitive periods where perturbations are more likely 

to occur or could assist the farmers in identifying the animals with greater adaptive 

capacities during the same stress phases (Ranzato et al., 2023). With a better 

understanding of environmental effects on animal production, on-farm preventive 

measures could be optimized (Ben Abdelkrim et al., 2021). 

 

Application example: effect of parity, calving season, and breed on lactation 

performances 

The results from the mixed-effects models on cows’ lactation performances 

estimated with PLM, chosen for its robustness, were consistent with the literature. The 

expected production was higher as parities progressed. The heifers, in fact, do not yet 

have reached adult body weight and fully developed udders, producing less milk than 

multiparous cows (Wathes et al., 2007; Siewert et al., 2019). Non-summer calving led to 

a higher MY potential compared to summer calving, especially for multiparous cows. It 

has been widely demonstrated that lactations that start during the hot season usually 

have lower-than-average production performances as an effect of thermal stress on the 

animals (Torshizi, 2016; Li et al., 2022). For the same reason, ML was higher for the 

cows calving in summer compared to the ones calving in winter. Moreover, ML was 

higher for multiparous cows than for primiparous ones. The same result was found by 

Carvalho et al. (2019) and Adriaens et al. (2021), and it could be explained by a higher 

incidence rate of diseases during higher parities (Lee and Kim, 2006). The number of 

perturbations was larger in first than second lactations, which could be explained by a 

higher susceptibility to stressors due to management changes (e.g., regrouping or 

milking) of first-parity cows (Proudfoot and Huzzey, 2022). The number of perturbations 

increased also for spring calvings compared to summer calvings and this could be linked 

with heat stress episodes the animals calving in spring have to face during the first critical 

months of the lactation (McNamara, 2002). Last, as expected (Knob et al., 2023), 

Holstein cows had higher production potential than Italian Simmental ones, especially at 

high parities (parity ≥3). 
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CONCLUSIONS 

This study compared 3 existing mathematical methods to estimate dairy cows’ 

lactation performances using high-frequency MY data from on-farm AMS. The IW, PLM, 

and QR were all valuable methods to obtain cows’ expected production and milk losses, 

each one with advantages and disadvantages that need to be considered depending on 

the specific application. The outcome of this study can help dairy practitioners in 

choosing the best decision-support method, or researchers in attempting to study MY 

dynamics. 
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Summary 

Detection of cows’ health problems has become important especially during early 

lactation, when animals experience a stressful period that often impairs their welfare 

status and productive response. Milk composition analysis has been recognized as a 

tool to detect cows that are exposed to critical feeding or management situations. In 

particular, the proportions of different milk fatty acids (FA) groups (i.e., de novo, 

preformed and mixed) are considered promising biomarkers of cows’ welfare and proper 

feeding. Understanding the trend of these groups of milk FA in healthy cows could be 

useful to identify animals in critical health conditions, even before clinical signs are 

visible. To define reference trends and confidence intervals for the three groups of FA in 

Holstein dairy cows according to days in milk (DIM), 300 individual milk samples were 

collected from 10 different herds belonging to Grana Padano (GP; 6 herds) and 

Parmigiano Reggiano (PR; 4 herds) dairy chains. In each farm, 10 multiparous cows (6 

with DIM ≤ 45, 4 with 45 < DIM ≤ 175) in good health status were monthly sampled from 

August to October 2020. Milk samples were analyzed for milk composition and FA 

profiles with a mid-infrared instrument. Analytical data were statistically pre-processed 

and modelled including the effects of DIM and type of milk. To model the trend of FA, 

linear mixed models with nested random effects (i.e., cows and farms) were used to 

account for repeated measures. The percentage of de novo FA had an increasing overall 

trend according to DIM, while the trend was opposite for preformed FA. No significant 

differences in de novo, mixed, and preformed FA trends were detected between GP and 

PR. However, the percentage of de novo in PR milk tended to be always lower (p = 0.11) 

than GP, as a possible sign of a greater risk of subacute ruminal acidosis promoted by 

PR diets through a potential increase of cows’ feed selection activity. Reference intervals 

for the three groups of FA estimated according to DIM and type of milk could help farmers 

assessing cows’ state of well-being during early and mid-lactation. 
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INTRODUCTION 

Among the several applications of PLF, the monitoring of animal health and welfare 

is one of the most crucial, especially under intensive production systems (Berckmans, 

2014). Within the dairy sector, health and welfare monitoring is particularly important at 

the onset of the lactation, when the cows are more susceptible to production disorders 

and diseases such as milk fever, ketosis, retained placenta, displaced abomasum, 

metritis, mastitis, and lameness (Mulligan et al., 2006; Roche et al., 2013). According to 

Cardoso et al. (2020), the peak of disease incidence after parturition corresponds with 

the time of greatest negative energy balance, the peak in blood concentrations of non-

esterified fatty acids (FA), and the greatest acceleration of MY. Several technologies like 

cameras or sound devices have been used for dairy cows monitoring; however, many of 

them are still too expensive to be adopted by many farms, and in particular by the small-

scale ones (Lora et al., 2020). 

Milk composition has been recognized as a good source of health and metabolic 

information, given that there is interaction between circulating blood and milk synthesis 

outcome (Gengler et al., 2016). Barbano et al. (2014) introduced the application of 

Fourier-transform mid-infrared spectroscopy (FTIR) for rapid milk FA analysis. Several 

studies have tested the use of FTIR estimates of milk β-hydroxybutyrate and milk FA as 

a method for assessing cow’s health in early lactation (Denis-Robichaud et al., 2014; 

Santschi et al., 2016). A large and systematic change in FA composition of milk fat 

occurs, in fact, with the progress of the lactation (Lynch et al., 1992). De novo FA (from 

C4 to C14), synthesized in the cow’s mammary gland from acetate and butyrate, start out 

as low proportion of total FA during early lactation and increase when cows reach a 

positive energy balance. An opposite trend is observed for preformed FA (≥ C18), which 

enter the mammary cells from the blood stream and originate from the cow’s intestinal, 

liver, or adipose tissues (Woolpert et al., 2017).  

The use of individual milk FA profiles obtained with FTIR represents a non-invasive, 

economic, and ready-to-use method to detect cows at risk of metabolic dysfunctions. To 

this end, the aim of this pilot study was to calculate reference intervals for de novo, mixed 

(C16, C16:1, and C17), and preformed FA from individual milk samples collected from 

healthy Holstein dairy cows during early and mid-lactation.  

 
 

MATERIALS AND METHODS 

Ten Holstein dairy farms were enrolled based on their willingness to participate in the 

study. Six farms belonged to the dairy chain of Grana Padano (GP) cheese and fed cows 

according to the P.D.O. specifications which allow the use of ensiled feedstuffs in the 
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ration of the lactating cows (Grana Padano, 2019). Four farms were part of Parmigiano 

Reggiano (PR) cheese chain, which restricts to hay and pasture the roughage to be 

included in the diets of the lactating cows (Parmigiano Reggiano, 2018). All farms fed 

the cows with total mixed rations that were delivered in the morning for ad libitum intake. 

In every farm, cows were milked twice a day, in the morning (around 6:00 AM) and in 

late afternoon (after 5:30 PM). 

Individual milk samples were collected through an automatic milk sampler from 10 

multiparous Holstein cows of each farm during the evening milking, for 3 following 

sampling sessions from August to October 2020. Sampled cows were considered 

healthy by the farm veterinarian according to the lack of any peripartum disorder. Each 

sampling session considered 6 cows in early lactation (DIM ≤ 45), and 4 cows in mid-

lactation (45 < DIM ≤ 175). Ear tag ID, DIM, and daily MY of the selected cows were 

recorded at every sampling. From each milk sample, 120 ml aliquots were placed on ice 

and stored at 4°C and transported on the next morning to Rumilab (Nutristar S.p.A., 

Reggio Emilia, Italy) for milk composition analysis. The content of milk protein and fat 

was predicted with a Lactoscope FT-A (PerkinElmer, Waltham, USA), and the somatic 

cells count was assessed using a Fossomatic FC (Foss Electric A/S, Hillerød, Denmark). 

De novo, mixed, and preformed FA were predicted by FTIR using the PLS prediction 

model described by Woolpert et al. (2017). 

A total of 300 milk samples from 214 multiparous cows were collected and analyzed. 

The editing criteria included restrictions to discriminate between ‘healthy’ and ‘non-

healthy’ cows. All samples with more than 400,000 n/ml somatic cells were discarded 

from the dataset (Agriculture and Horticulture Development Board, 2023). Furthermore, 

de novo, mixed, and preformed concentrations expressed in mass percentage that 

exceeded their mean value ± 3 SD were considered outliers and excluded from the 

analysis. After assessing the normality assumption of the outcomes, one linear mixed-

effects model was used to estimate the trend of the FA according to DIM, while another 

one was used to evaluate the association between the type of dairy chain (GP vs. PR) 

and the FA percentages in time. The models were specified as follows: 

𝑦ℎ𝑖𝑗𝑙 = 𝜇 + ns(𝐷𝐼𝑀𝑖, 𝑘 = 45) + 𝑐𝑜𝑤𝑗 + 𝑓𝑎𝑟𝑚𝑙 + 𝜀ℎ𝑖𝑗𝑙 , (Eq.1) 

 
𝑦ℎ𝑖𝑗𝑙𝑚 = 𝜇 + ns(𝐷𝐼𝑀𝑖 , 𝑘 = 45) + 𝑚𝑖𝑙𝑘𝑚 + ns(𝐷𝐼𝑀𝑖, 𝑘 = 45) ∙ 𝑚𝑖𝑙𝑘𝑚 + 𝑐𝑜𝑤𝑗 + 

𝑓𝑎𝑟𝑚𝑙 + 𝜀ℎ𝑖𝑗𝑙𝑚, 

(Eq.2) 

where 𝑦 was the outcome variable (i.e., de novo, mixed, or preformed FA in mass 

percentages) related to the ℎ milk sample at DIM 𝑖 from cow 𝑗 of farm 𝑙 (belonging to the 

dairy chain 𝑚). The fixed effect was associated to DIM modelled with a natural cubic 

spline with a knot at DIM 45 to distinguish the trends between early and mid-lactation 
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(and to the type of dairy chain 𝑚𝑖𝑙𝑘 and the interaction between 𝑚𝑖𝑙𝑘 and DIM); the 

random effects were associated to the ‘cow’ (n = 214) and the respective ‘farm’ (n = 10) 

variables. 

 
 

RESULTS AND DISCUSSION 

The final dataset considered 288 individual records of 214 healthy cows (58% in early 

lactation, 42% in mid-lactation) from 10 different dairy farms (59% of GP dairy chain, 

41% of PR dairy chain). To have a general overview, Table 1 reports the means (±SD) 

of MY and milk content across lactation stages and dairy chains. The only statistically 

significant difference (p < 0.05) was the milk protein content in the two dairy chains: PR 

milk had a higher protein content compared to GP milk. Focusing on milk FA 

concentrations, PR tended to have lower de novo percentages compared to GP (p = 

0.11), but no significant differences (p < 0.05) were detected for average concentrations 

between the two types of milk (Figure 1). 

Table 1. Effect of lactation stage (early: DIM ≤ 45, mid: 45 < DIM ≤ 175) and type of dairy chain (Grana 

Padano – GP, Parmigiano Reggiano – PR) on milk yield and milk protein and fat content. 

 Lactation stage  Dairy chain 

 Early Mid p  GP PR p 

Milk yield (kg/d) 37.4 (±2.04) 38.6 (±2.09) 0.15  38.4 (±2.74) 37.0 (±3.35) 0.77 

Milk protein (%m/m) 3.09 (±0.04) 3.09 (±0.04) 0.88  3.03 (±0.04) 3.18 (±0.04) 0.02 

Milk fat (%m/m) 3.73 (±0.24) 3.51 (±0.25) 0.08  3.82 (±0.31) 3.40 (±0.38) 0.41 

 

Figure 1. Boxplots of fatty acids percentages for Grana Padano (GP) and Parmigiano Reggiano (PR) 
milks. 

 

The monitoring of individual cows’ health in the opening of lactation is a target for 

dairy farmers to reduce milk losses and medical treatments. During early lactation, 

dietary intake is unable to meet the demand of energy and nutrients for milk production. 

Therefore, cows enter a period of negative balance, which requires the mobilization of 
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body reserves to balance the deficit between intake and milk production (Bauman and 

Bruce Currie, 1980). The process of mobilization affects cow’s welfare and other 

biological pathways; the reproduction status, for example, can be impaired by a too 

negative energy balance post-calving (Butler and Smith, 1989). To identify a simple 

system for assessing the animal’s health status, milk has been used as an alternative to 

determinations based on blood parameters, which additionally eliminates the problem of 

variation in the values observed for blood parameters due to the timing of the sampling. 

It has been observed that milk de novo FA and the concentration of non-esterified blood 

FA, the main marker of cows’ energy deficit, have an inversely proportional trend in cows 

in good health and correctly fed. In particular, in the opening of the lactation, de novo FA 

are low while NEFA are high (Bach et al., 2019). 

In the present study, results from Eq.1 confirmed the increase of de novo and mixed 

FA, and an opposite trend for preformed FA especially during the early lactation. 

Specifically, de novo FA significantly increased during mid-lactation (p = 0.02), while 

mixed FA during both early (p = 0.03) and mid-lactation (p = 0.001); preformed FA 

significantly decreased during early lactation (p < 0.001). References intervals were 

obtained starting from the estimation of the fixed effect, and they are reported in Table 

2, Table 3, and Table 4 for de novo, mixed, and preformed FA, respectively. These would 

represent the range of ‘standard’ values for milk FA at different moments of cows’ early 

and mid-lactation. The trends and reference intervals of de novo, mixed, and preformed 

FA are also shown in Figure 2, Figure 3, and Figure 4, respectively. 

Results from Eq.2 did not reveal any differences of FA trends between GP and PR 

milk, except for a slightly significant effect of the interaction term in the case of de novo 

FA (p = 0.055). As it is also visible in Figure 5, de novo FA were always lower in PR milk, 

and were more stable during the early lactation for GP milk compared to PR milk. Specific 

limitations of feeds, described by the Parmigiano Reggiano cheese consortium 

(Parmigiano Reggiano, 2018), restrict to dry hay (primarily alfalfa and grass) and pasture 

the roughage to be included in the diets of the lactating cows. This could promote a more 

selective feed intake by the cows, leading to a greater risk of subacute ruminal acidosis 

(Fustini et al., 2016). The differences between the two types of milk were, instead, less 

pronounced for mixed and preformed FA as shown in Figure 6 and Figure 7, respectively. 
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Table 2. 95% confidence intervals (CI) for de novo fatty acids at specific DIM. 

DIM 95% CI (%m/m) 

5 [0.25, 1.12] 

31 [0.27, 1.13] 

56 [0.29, 1.16] 

78 [0.31, 1.18] 

104 [0.34, 1.21] 

 
Figure 2. De novo fatty acids trend with confidence intervals during early and mid-lactation. 

 
 

Table 3. 95% confidence intervals (CI) for mixed fatty acids at specific DIM. 

DIM 95% CI (%m/m) 

5 [0.57, 1.86] 

31 [0.61, 1.89] 

56 [0.65, 1.93] 

78 [0.69, 1.97] 

104 [0.75, 2.03] 

 
Figure 3. Mixed fatty acids trend with confidence intervals during early and mid-lactation. 
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Table 4. 95% confidence intervals (CI) for preformed fatty acids at specific DIM. 

DIM 95% CI (%m/m) 

5 [0.76, 2.39] 

31 [0.53, 2.14] 

56 [0.35, 1.97] 

78 [0.28, 1.90] 

104 [0.26, 1.89] 

 
Figure 4. Preformed fatty acids trend with confidence intervals during early and mid-lactation. 

 

 

Figure 5. De novo fatty acids trends with confidence intervals during early and mid-lactation for Grana 
Padano (GP) and Parmigiano Reggiano (PR) milk. 
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Figure 6. Mixed fatty acids trends with confidence intervals during early and mid-lactation for Grana 
Padano (GP) and Parmigiano Reggiano (PR) milk. 

 

Figure 7. Preformed fatty acids trends with confidence intervals during early and mid-lactation for Grana 
Padano (GP) and Parmigiano Reggiano (PR) milk. 

 

Through the analysis of a greater number of milk samples from a larger number of 

farms, and considering other potential factors such as calving season and parity, these 

reference ranges could help farmers to screen cows at risk for a specific health disorder 

(i.e., subclinical ketosis), even before its clinical signs are visible. A further step should 

consider the inclusion of this screening system into a decision support tool for the end-

user. The best option would be its installation within the software operating in the milking 

parlor. 

 
 

CONCLUSIONS 

The outcomes of this pilot study showed the promising feasibility of the use of milk 

FA trends according to the progress of the lactation as biomarkers for the early detection 
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of cows at risk of specific health problems. The trends observed with the progress of the 

lactation for de novo, mixed, and preformed FA were consistent with their expected 

pattern in healthy cows. Their reference intervals according to DIM may help farmers to 

detect cows having too marked energy deficits. However, it must be pointed out that the 

reference intervals values of this study must be considered as preliminary and need to 

be reinforced by further research with more cows and farms. No statistically significant 

differences in de novo, mixed, and preformed FA reference intervals were detected 

between GP and PR dairy chains. 

 
 

ACKNOWLEDGMENTS 

This research was funded by the project n.PG-2019-916776 within POR FESR Emilia 

Romagna with Rumilab Nutristar S.p.A.  



 

 88 

  



 

 89 

 

CHAPTER 6 
 

 
Artificially generated image (DALL∙E 2, OpenAI)  
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General conclusions 

 
 

This thesis presented four studies regarding different PLF applications to the dairy 

sector. We explored the development and feasibility of different decision support tools 

addressed to optimize farm management strategies and cows’ welfare. In particular, 

specific solutions have been tested to identify the cows that better cope with the housing 

conditions and the surrounding environment or to early identify animals at risk of specific 

metabolic disorders. Dairy farmers and dairy farm advisers are, in fact, increasingly using 

decision support tools for better decision-making, which is translated into reduced health 

problems and culling rates, lower environmental impact, and enhanced performance and 

profitability. For example, based on survival predictions at farm level, dairy farmers could 

decide to select the cows that better cope with the pathological and environmental 

challenges of their specific farms, optimizing breeding schemes and culling decisions. 

Furthermore, sensor data could assist farmers in the early identification of cows for which 

personalized interventions to alleviate heat stress are needed. Mathematical modelling 

of high-frequency milk yield data could support them in improving milk production through 

continuous monitoring of cow health and reproduction, reducing losses in milk yield. In 

addition, reference ranges of milk contents could help them in screening the cows at risk 

of specific health disorders, even before clinical signs are visible. 

This work highlighted the potential of PLF in assisting dairy farmers to make better 

choices about the sustainability of their production system, by providing more objective 

information about health and productivity of their animals. Precision livestock farming 

introduced a degree of management control over the component processes that was 

previously impossible. The basis of this control is the detailed knowledge, provided by 

technology, of individual animals or herds. But as stated by Norton et al. (2019), PLF is 

much more than ‘farming by numbers’: technologies are used to support the farmers, not 

to substitute them. Farmers, in fact, can collect relevant information about the animals in 

a continuous manner and thereby build more in-depth insights into their needs, making 

choices that are not only driven on profits. However, PLF systems do not guarantee 

improved herd performance unless they are managed by skilled personnel who can 

professionally translate in practice the impressive amount of information generated by 

sensors.  
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