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Abstract

A robust fixed-lag smoothing approach is proposed in the case there is a
mismatch between the nominal model and the actual model. The resulting
robust smoother is characterized by a dynamic game between two players:
one player selects the least favorable model in a prescribed ambiguity set,
while the other player selects the fixed-lag smoother minimizing the smooth-
ing error with respect to least favorable model. We propose an efficient
implementation of the proposed smoother. Moreover, we characterize the
corresponding least favorable model over a finite time horizon. Finally, we
test the robust fixed-lag smoother in two examples. The first one regards a
target tracking problem, while the second one regards a parameter estimation
problem.

Keywords: Robust fixed-lag smoothing; minimax problem; reduced order
smoothing; least favorable model.

1. Introduction

Fixed-lag smoothing aims to estimate the state of a dynamical system at
time t using the observations in the interval [0, t+L−1] with L > 1. This al-
gorithm is fundamental in various applications, e.g. tracking and navigation
because it can handle online requirements, see [1, 2, 3]. Moreover, it can be
used in the expectation maximization (EM) algorithm to compute the max-
imum likelihood (ML) estimator of the unknown parameters characterizing
the matrices of a state space model, see e.g. [4, 5, 6]. Indeed, although the
EM algorithm is based on the Rauch-Tung-Striebel (RTS) smoother, [7], its
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estimate can be approximated by the one given by the fixed-lag smoother
provided that L is taken sufficiently large. However, in all the aforemen-
tioned applications, the actual model is typically known only imprecisely
that is only the nominal model is known. In this situation, these smoothers
could perform poorly.

Model uncertainty is traditionally addressed by risk sensitive filtering,
see e.g. [8, 9, 10, 11, 12, 13] . Here, the robust estimator minimizes an
exponential loss function which severely penalizes large errors. These filters
can be also interpreted as the solution of a dynamic minimax game [14], see
also [15, 16, 17, 18]. Then, [19] proposed a robust estimator which solves
an incremental minimax game. At time t the actual model belongs to the
ambiguity set which is a ball, in the Kullback-Leibler (KL) topology, about
the nominal model. In this way, the uncertainty is “spread” along the time
and not concentrated in specific time steps. Then, there are two players which
operate against. One player, say nature, selects the least favorable model in
this prescribed “ball”, and the other player designs the optimum estimator
for the least favorable model. It is worth noting that many extensions of this
paradigm have been proposed such as: the case with different ambiguity sets
[20, 21, 22, 23]; the distributed case [24, 25]; the case with external input
[26]; the case of degenerate densities [27, 28].

In the literature, the robust smoothing problems mainly consider two
situations. In the first case, the noise distribution is known but it is not
necessarily Gaussian [29, 30, 31, 32, 33, 34, 35, 36, 37, 38], for instance
the noise process is assumed to have a non-Gaussian distribution in order
to model outliers, temporary model uncertainties, missing observations or
sensor delays. Some of these robust paradigms are adaptive because the
parameters of the noises characterizing the state space model are inferred
from the collected data. In the second situation, the noise distribution is
not known but this process takes values in a bounded set, e.g. an ellipsoidal
set [39, 40]. However, there are relatively few studies on robust smoothing
problems which use the risk sensitive philosophy, see [41, 42].

In this paper, we propose a new robust fixed-lag smoothing problem where
the model uncertainty is expressed incrementally as in [19, 27]. Thus, at each
time step we have to solve a dynamic game between two players: the nature
which selects the least favorable model in the ambiguity set and the other
player which designs the optimal fixed-lag smoother according to the least
favorable model. The resulting smoother is characterized by matrices whose
dimension is proportional to the lag L. On the other hand, the typical value of
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the lag is large. Accordingly, numerical instabilities and high computational
burden characterize the algorithm. In order to avoid those issues, we propose
an efficient implementation drawing inspiration from the reduced order fixed-
lag smoother proposed in [43]. Then, the corresponding least favorable model
over a finite simulation horizon is derived to evaluate the performance of the
smoother. Finally, we consider a target tracking problem and a parameter
estimation problem to test the performance of the robust fixed-lag smoother.

The outline of the paper is as follows. In Section 2, we introduce the prob-
lem formulation about robust fixed-lag smoothing. In Section 3 we derive
the robust fixed-lag smoother. The corresponding algorithm is then refor-
mulated in an efficient way to reduce the computational burden in Section
4. In Section 5, we derive the least favorable model corresponding to the
robust fixed-lag smoother. The numerical examples are provided in Section
6, which is devoted to the target tracking problem, and in Section 7, which is
devoted to the parameter estimation problem. Finally, in Section 8 we draw
the conclusions.

2. Problem Formulation

We consider the nominal state space model:

xt+1 = Axt +Bvt
yt = Cxt +Dvt

(1)

where A ∈ Rn×n, B ∈ Rn×(m+n), C ∈ Rm×n and D ∈ Rm×(m+n), xt is the
state vector, yt is the observation vector, and vt ∈ Rm+n is normalized white
Gaussian noise. Moreover, x0 ∼ N (x̂0, V0), with V0 > 0, which is indepen-
dent from vt. We also assume that BD⊤ = 0, rank(B) = n and rank(D) = m.
In this way, the process noise, say wt := Bvt, and the measurement noise,
say vt := Dvt, are independent and their covariance matrices are BB⊤ and
DD⊤, respectively. Fixed-lag smoothing aims to find an estimate of x̂t−L+1|t
of xt−L+1 given Yt = {y0 · · · yt} and L denotes the lag. It is well-known that
such a problem can be interpreted as a Kalman prediction problem corre-
sponding to the following nominal augmented state space model [43]:

ξt+1 = Ãξt + B̃vt
yt = C̃ξt + D̃vt

xt−L+1 = H̃ξt+1

(2)
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where Ã ∈ R(L+1)n×(L+1)n, B̃ ∈ R(L+1)n×(m+n), C̃ ∈ Rm×(L+1)n, D̃ ∈ Rm×(m+n)

and H̃ ∈ Rn×(L+1)n are such that

ξt =


xt

xt−1
...

xt−L

 , Ã =


A 0 · · · 0
I · · · 0 0
...

. . .
...

...
0 · · · I 0

 , B̃ =


B
0
...
0


C̃ =

[
C 0 · · · 0

]
, D̃ = D, H̃ =

[
0 0 · · · I

]
.

Then,
x̂t−L+1|t = H̃ξ̂t+1

where ξ̂t+1 is the one step-ahead predictor of ξt+1 given Yt. We define
zt := [ ξ⊤t+1 y⊤t ]⊤. Let ϕ(zt|ξt) be the transition probability density func-
tion of zt given ξt corresponding to the nominal model (2). Then, ϕt(zt|ξt) ∼
N (mzt , Kzt) with

mzt =

[
Ã

C̃

]
ξt, Kzt =

[
B̃B̃⊤ 0

0 D̃D̃⊤

]
.

Notice that ϕt(zt|ξt) is a degenerate probability density function because
B̃B̃⊤ is singular and thus Kzt as well. More precisely, rank(Kzt) = n + m.
Accordingly, the support of ϕt(zt|ξt) is the n+m-dimensional affine subspace

At = {mzt + v, v ∈ Im (Kzt)}

which depends on ξt. Then,

ϕt(zt|ξt) =
[
(2π)n+m det+ (Kzt)

]−1/2 × exp

[
−1

2
(zt −mzt)

⊤K+
zt (zt −mzt)

]
whereK+

zt is the pseudo-inverse ofKzt and det+(Kzt) is the pseudo-determinant
of Kzt .

The nominal model in (2) in the time horizon [0, N ] is described by the
joint probability density

f (ΞN+1, YN) = f̃0 (ξ0)
N∏
t=0

ϕt (zt|ξt) (3)
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where

Ξ⊤
N+1 =

[
ξ⊤0 . . . ξ⊤t . . . ξ⊤N+1

]
Y ⊤
N =

[
y⊤0 . . . y⊤t . . . y⊤N

]
,

f̃0(ξ0) ∼ N (ξ̂0, Ṽ0) with

ξ̂0 =

[
x̂0

⋆

]
, Ṽ0 =

[
V0 0
0 ⋆

]
. (4)

In the above equations the star symbol means that it is an arbitrary vector
or matrix. Indeed, since x0 is independent from xt with −L ≤ t < 0, the
smoother does not depend on those parameters for t ≥ 0. Accordingly,
without loss of generality, we assume that Ṽ0 > 0.

In this paper, we consider the situation in which the actual model does
not coincide with the nominal one in (2). In particular, we assume that the
probability density of the actual model has a structure similar to the one in
(3):

f̃ (ΞN+1, YN) = f̃0 (ξ0)
N∏
t=0

ϕ̃t (zt|ξt)

where we assume that ϕ̃t has the same support of ϕt. In this way, we can
measure the discrepancy between f and f̃ through the KL-divergence:

D(f̃Z , fZ) :=

∫
AΞ

∫
AY

f̃ (ΞN+1, YN) ln
f̃ (ΞN+1, YN)

f (ΞN+1, YN)
dYNdΞN+1

where Ẽ[·] is the expected value operator with respect to the actual proba-
bility density f̃ and AΞ ×AY is the support of f and f̃ . It is worth noting
that the KL divergence is the natural metric to measure such a mismatch in
the case the nominal model is inferred from data, see [44]. It is not difficult
to see that

D(f̃ , f) =
N∑
t=0

D
(
ϕ̃t, ϕt

)
(5)

where

D(ϕ̃t, ϕt) = Ẽ

[
ln

(
ϕ̃t (zt|ξt)
ϕt (zt|ξt)

)]

:=

∫
Āt

∫
At

ϕ̃t (zt|ξt) f̃t (ξt) ln

(
ϕ̃t (zt|ξt)
ϕt (zt|ξt)

)
dztdξt
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where Āt is the support of f̃t(ξt) which denotes the actual marginal density
of ξt.

Since the actual model is not known, we assume the latter belongs to the
ambiguity set which is a ball about f formed by placing an upper bound
on D(f̃ , f). However, this ambiguity set contains models which concentrate
the uncertainty in a unique time step, i.e. a situation which is unrealistic in
practice. On the other hand, in view of Equation (5), we can express such a
mismatch incrementally through ϕt and ϕ̃t. Accordingly, we assume that ϕ̃t

given Yt−1 belongs to the following ambiguity set:

Bt :=

{
ϕ̃t s.t. Ẽ

[
ln

(
ϕ̃t (zt|ξt)
ϕt (zt|ξt)

)∣∣∣∣Yt−1

]
≤ ct

}
where

Ẽ

[
ln

(
ϕ̃t (zt|ξt)
ϕt (zt|ξt)

)∣∣∣∣Yt−1

]

:=

∫
Ǎt

∫
At

ϕ̃t (zt|ξt) f̃t (ξt|Yt−1) ln

(
ϕ̃t (zt|ξt)
ϕt (zt|ξt)

)
dztdξt,

(6)

and Ǎt is the support of f̃t(ξt|Yt−1). It is worth noting that ct > 0, hereafter
called tolerance, is the mismodeling budget allowed at time step t. Our aim
is to address the following problem.

Problem 1. Design a fixed-lag smoother with respect to the ambiguity set Bt

for t = 0 . . . N .

3. Robust smoothing

We propose a robust fixed-lag smoother of xt−L+1 given Yt with respect
to Bt solving the following minimax problem:

x̂t−L+1|t = H̃ξ̂t+1

ξ̂t = argmin
gt∈Gt

max
ϕ̃t∈Bt

Jt(ϕ̃t, gt) (7)

where

Jt(ϕ̃t, gt) =
1

2
Ẽ
[
∥H̃ (ξt+1 − gt (yt)) ∥2|Yt−1

]
=
1

2

∫
Ǎt

∫
At

∥H̃ (ξt+1 − gt (yt)) ∥2ϕ̃t (zt|ξt)× f̃t (ξt|Yt−1) dztdξt,
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Gt denotes the class of estimators with finite second-order moments with
respect to all the densities ϕ̃t (zt|ξt) f̃t(ξt|Yt−1) such that ϕ̃t ∈ Bt. Notice that
ϕ̃t must satisfy the constraint:

It(ϕ̃t) ≜
∫
Ǎt

∫
At

ϕ̃t (zt|ξt) f̃t (ξt|Yt−1) dztdξt = 1. (8)

It is worth noting that problems like (7) can be written as a risk-sensitive
problem, i.e. as a minimization problem where the standard quadratic cost
function is replaced by an exponential cost function, see [45] for more details.

Lemma 1. For a fixed estimator gt ∈ Gt, the density ϕ̃t (zt|ξt) ∈ Bt that
maximizes the objective function

Jt(ϕ̃t, gt) = Ẽ
[
∥H̃ (ξt+1 − gt (yt)) ∥2|Yt−1

]
under constraint Dt(ϕ̃t, ϕt) ≤ ct is given by

ϕ̃0
t =

1

Mt (λt)
exp

(
1

2λt

∥∥∥H̃(xt+1 − gt (yt))
∥∥∥2)ϕt (9)

where Mt(λt) is the normalizing constant defined as follows:

Mt (λt) =

∫
Ǎt

∫
At

exp

(
1

2λt

∥H̃(ξt+1 − gt (yt)) ∥2
)
ϕt × f̃t (ξt|Yt−1) dztdξt.

Moreover, for ct > 0 sufficiently small, there exists a unique λt > 0 such that
D(ϕ̃0

t , ϕt) = ct.

Proof. The proof is similar to the one of [27, Lemma2]. □

Once we get the function ϕ̃0
t , the estimator gt ∈ Gt minimizing the objec-

tive function Jt(ϕ̃
0
t , gt) is given by

ξ̂t+1 = g0t (yt) = Ẽ [ξt+1|Yt] =

∫
Ǎt+1

ξt+1f̃t+1 (ξt+1|Yt) dξt+1

where

f̃t+1 (ξt+1|Yt) =

∫
Ǎt

ϕ̃0
t (zt|ξt) f̃t (ξt|Yt−1) dξt∫

Ǎt

∫
A⋆

t
ϕ̃0
t (zt|ξt) f̃t (ξt|Yt−1) dξt+1dξt

(10)
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where A⋆
t is defined as follows: ξt+1 ∈ A⋆

t if and only if there exists at least
one yt for which [ ξ⊤t+1 y⊤t ]⊤ ∈ At. The optimal estimator g0t solution to (7)

relies on the least-favorable density ϕ̃0
t (zt|ξt). On the other hand, the latter

depends on the estimator g0t . In order to break this deadlock problem, an
additional assumption is needed. More precisely, we assume that the a priori
conditional density f̃t(ξt|Yt−1) is Gaussian f̃t(ξt|Yt−1) ∼ N (ξ̂t, Ṽt). In view of
(2), the marginal density

f̄t (zt|Yt−1) :=

∫
At

ϕt (zt|ξt) f̃t (ξt|Yt−1) dξt

is Gaussian so that

f̄t (zt|Yt−1) ∼ N
(
mzt|Yt−1 , Kzt|Yt−1

)
(11)

where

mzt|Yt−1 =

[
Ã

C̃

]
ξ̂t,

Kzt|Yt−1 =

[
Ã

C̃

]
Ṽt

[
Ã⊤ C̃⊤

]
+

[
B̃

D̃

] [
B̃⊤ D̃⊤

]
.

Then, on the basis of Lemma 1, we have that the least favorable density of
zt given Yt−1 is

f̃t (zt|Yt−1) :=

∫
At

ϕ̃0
t (zt|ξt) f̃t (ξt|Yt−1) dξt

=
1

Mt (λt)
exp

(
1

2λt

∥H̃ (ξt+1 − gt (yt)) ∥2
)
f̄t (zt|Yt−1) .

(12)

Accordingly, f̃t (zt|Yt−1) is a Gaussian probability density.

Lemma 2. Consider the state space model (1) with rank(B) = n and rank(D) =
m. If Ṽt > 0 then Kzt|Yt−1 > 0, i.e. f̄t (zt|Yt−1) is a non-degenerate density.
Moreover,

P̃t+1 := ÃṼtÃ
⊤ − ÃṼtC̃

⊤(C̃ṼtC̃
⊤ + D̃D̃⊤)−1C̃ṼtÃ

⊤ + B̃B̃⊤

is positive definite.
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Proof. First, notice that the block in position (2,2) of Kzt|Yt−1 is C̃ṼtC̃
⊤ +

D̃D̃⊤. The latter is positive definite because C̃ṼtC̃
⊤ + D̃D̃⊤ ≥ D̃D̃⊤ > 0.

Accordingly, in order to prove that Kzt|Yt−1 > 0 it is sufficient to prove that

P̃t+1, which is the Schur complement of the block (2,2) of Kzt|Yt−1 , is positive

definite. Since Ṽt is invertible we can rewrite P̃t+1 by using the Woodbury
formula:

P̃t+1 = Ã[Ṽ −1
t + C̃⊤(D̃D̃⊤)−1C̃]−1Ã⊤ + B̃B̃⊤.

Let v = [ v1 v2 ]
⊤ ∈ R(n+1)L be such that v1 ∈ Rn and v2 ∈ RnL. Notice that

v⊤P̃t+1v = v⊤Ã[Ṽ −1
t + C̃⊤(D̃D̃⊤)−1C̃]−1Ã⊤v + v⊤1 BB⊤v1

and thus

v⊤P̃t+1v ≥ v⊤1 BB⊤v1 (13)

v⊤P̃t+1v ≥ v⊤Ã[Ṽ −1
t + C̃⊤(D̃D̃⊤)−1C̃]−1Ã⊤v. (14)

Assume that v⊤P̃t+1v = 0. Since BB⊤ > 0, by (13) we have that v1 = 0.
Accordingly, the inequality in (14) for v1 = 0 becomes

v⊤P̃t+1v ≥
[
0 v⊤2

]
Ã[Ṽ −1

t + C̃⊤(D̃D̃⊤)−1C̃]−1Ã⊤
[

0
v2

]
.

Moreover, in view of the particular structure of Ã, we have that [ 0 v⊤2 ]Ã =
[ v⊤2 0 ] = 0 if and only if v2 = 0. Since [Ṽ −1

t + C̃⊤(D̃D̃⊤)−1C̃]−1 > 0, because
Ṽt > 0, it follows that v2 = 0 and thus v = 0. We proved that if v⊤P̃t+1v = 0
then v = 0, i.e. P̃t+1 is positive definite. □

Finally, if f̃t (ξt|Yt−1) is Gaussian then, in view of (10), also f̃t+1 (ξt+1|Yt)
is Gaussian. Accordingly, the assumption that f̃0 (ξ0) is Gaussian, implies
that f̃t (ξt|Yt−1) is Gaussian for any t.

Theorem 3. Consider the state space model (1) where we recall that rank(B) =
n and rank(D) = m. Let f̃t(ξt|Yt−1) ∼ N (ξ̂t, Ṽt) with Ṽt > 0. Then, the esti-
mator

g0t (yt) = Ãξ̂t + G̃t(yt − C̃ξ̂t) (15)

with
G̃t = ÃṼtC̃

⊤(C̃ṼtC̃
⊤ + D̃D̃⊤)−1
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solves Problem (7). The nominal error covariance of ξt+1 given yt is

P̃t+1 = ÃṼtÃ
⊤ − G̃t(C̃ṼtC̃

⊤ + D̃D̃⊤)G̃⊤
t + B̃B̃⊤

and the perturbed error covariance of ξt+1 given Yt is

Ṽt+1 = (P̃−1
t+1 − λ−1H̃⊤H̃)−1.

If we denote r(P ) as the largest eigenvalue of P , then the Lagrange multiplier
λt > r(H̃P̃t+1H̃

⊤) is unique and such that

γ (λt) =
1

2

[
tr
(
(I − λ−1

t H̃⊤H̃P̃t+1)
−1 − I

)
+ ln det(I − λ−1

t H̃⊤H̃P̃t+1)
]
= ct.

(16)
Finally, the least favorable density f̃ 0

t (zt|Yt−1) corresponding to the solution
of (7) is a non-degenerate Gaussian density.

Proof. As we already noticed, f̄t(zt|Yt−1) is Gaussian, and in view of Lemma
2, non-degenerate. Accordingly, in view of (12), f̃t (zt|Yt−1) is Gaussian and
non-degenerate. Let

f̃t (zt|Yt−1) ∼ N (m̃zt|Yt−1 , K̃zt|Yt−1)

with

m̃zt|Yt−1 =

[
m̃ξt+1|Yt−1

m̃yt|Yt−1

]
,

and

K̃zt|Yt−1 =

[
K̃ξt+1|Yt−1 K̃ξt+1yt|Yt−1

K̃ytξt+1|Yt−1 K̃yt|Yt−1

]
.

In view of (11) and (12), the conditional KL-divergence in (6) admits the
closed-form expression

Ẽ
[
ln(ϕ̃◦

t/ϕt)|Yt−1

]
= Ẽ

[
ln(f̃t/f̄t)|Yt−1

]
=
1

2

[
∥∆m∥2K−1

zt|Yt−1

+ tr(K−1
zt|Yt−1

K̃zt|Yt−1 − I)− ln det(K−1
zt|Yt−1

K̃zt|Yt−1)

] (17)

where
∆m = m̃zt|Yt−1 −mzt|Yt−1 .
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Therefore, we can rewrite the minimax game (7) with respect to f̃t (zt|Yt−1)
and f̄t(zt|Yt−1):

(g0t , f̃
0
t ) = arg min

gt∈Ḡt

max
f̃t∈B̄t

Jt(f̃t, gt)

where
B̄t =

{
f̃t(zt|Yt−1) s.t. Ẽ

[
ln(f̃t/f̄t)|Yt−1

]
≤ ct

}
,

Ḡt is the set of estimators with finite second order moments with respect to
all the densities f̃t ∈ B̄t and

Jt(f̃t, gt) :=
1

2

∫
R(L+1)n+m

∥H̃(ξt+1 − gt(yt))|Yt−1∥2 × f̃t (zt|Yt−1) dzt.

Next, we prove that f̃ 0
t and g0t are such that

Jt(f̃t, g
0
t ) ≤ Jt(f̃

0
t , g

0
t ) ≤ Jt(f̃

0
t , gt), (18)

where f̃ 0
t (zt|Yt−1) ∼ N (m̃0

zt|Yt−1
, K̃0

zt|Yt−1
) with

m̃0
zt|Yt−1

= mzt|Yt−1 ,

K̃0
zt|Yt−1

=

[
K̃ξt+1|Yt−1 Kξt+1yt|Yt−1

Kytξt+1|Yt−1 Kyt|Yt−1

]
.

(19)

Since f̃ 0
t is Gaussian, the optimal estimator satisfying the second inequality

in (18) is (15). Then, it remains to prove that the least favorable density f̃ 0
t

is such that (19) holds.
It is not difficult to see that

Jt(f̃t, g
0
t ) =

1

2
tr

{[
I

−G̃⊤
t

]
H̃⊤H̃

[
I − G̃t

]
×
(
K̃zt|Yt−1 +∆m∆m⊤

)}
.

(20)
Then, based on the parametric structure of the KL divergence in (17) and
the objective function in (20), we consider the corresponding Lagrangian as
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a function of m̃zt|Yt−1 and K̃zt|Yt−1 as follows:

L(m̃zt|Yt−1 , K̃z1|Yt−1 , λt)

=J(m̃z|Yt−1 , K̃zt|Yt−1) + λt

(
ct − Ẽ[ln(f̃t/f̄t)|Yt−1]

)
=
1

2
tr

{[
I

−G̃⊤
t

]
H̃⊤H̃

[
I − G̃t

]
(K̃zt|Yt−1 +∆m∆m⊤)

}
− λt

2
∆m⊤K−1

zt|Yt−1
∆m− λt

2
tr(K−1

zt|Yt−1
K̃zt|Yt−1) +

λt

2
tr(I)

+
λt

2
In det(K−1

zt|Yt−1
K̃zt|Yt−1) + λtct

=λtct +
λt

2
tr(I) +

λt

2
ln det(K−1

zt|Yt−1
K̃zt|Yt−1)

+
1

2
tr(W (λt)K̃zt|Yt−1) +

1

2
∆m⊤W (λt)∆m

where

W (λt) ≜

[
I

−G̃⊤
t

]
H̃⊤H̃

[
I −G̃t

]
− λtK

−1
zt|Yt−1

.

The first variation and the second variation of L with respect to m̃zt|Yt−1 are,
respectively,

δL(m̃zt|Yt−1 , K̃zt|Yt−1 , λt; δm̃zt|Yt−1)

=
1

2
δm̃⊤

zt|Yt−1
W (λt)∆m+∆m⊤W (λt)δm̃zt|Yt−1 ,

δ2L(m̃zt|Yt−1 , K̃zt|Yt−1 , λt; δm̃zt|Yt−1 , δm̃zt|Yt−1) = δm̃zt|Yt−1W (λt)δm̃zt|Yt−1

so that δ2L < 0, for any m̃zt|Yt−1 ̸= 0 if and only if W (λt) < 0, which means
L is strictly concave if and only if W (λt) is negative definite. Next, we find
the condition on λt for which W (λt) < 0. We denote M = H̃[ I −G̃t ]Ozt ,
where Kzt|Yt−1 = OztO

⊤
zt , so that

MM⊤ = H̃
[
I −G̃t

]
OztO

⊤
zt

[
I

−G̃⊤
t

]
H̃⊤

= H̃
(
Kξt+1|Yt−1 −Kξt+1yt|Yt−1K

−1
yt|Yt−1

Kytξt+1|Yt−1

)
H̃⊤ = H̃P̃t+1H̃

⊤.

Therefore,

W (λt) = O−⊤
zt

(
O⊤

zt

[
I

−G̃⊤
t

]
H̃⊤H̃

[
I −G̃t

]
Ozt − λtI

)
O−1

zt

= O−⊤
zt

(
M⊤M − λI

)
O−1

zt

12



and it is congruent to W̄ (λt) = M⊤M − λI, which means W̄ (λt) < 0 if
and only if W (λt) < 0, meanwhile, it is not difficult to see that r(M⊤M) =
r(MM⊤) = r(H̃Pt+1H̃

⊤). Hence, W (λt) < 0 as long as the Lagrange mul-
tiplier λt > r(H̃P̃t+1H̃

⊤). In such a situation the minimum is such that
∆m = 0, which implies

m̃0
zt|Yt−1

= mzt|Yt−1 . (21)

The first variation and the second variation of L with respect to K̃z1|Yt−1 are,
respectively,

δL(m̃zt|Yt−1 , K̃zt|Yt−1 , λt; δK̃zt|Yt−1)

=
1

2
tr
{
λtK̃

−1
zt|Yt−1

δK̃zt|Yt−1 +W (λt)δK̃zt|Yt−1

}
and

δ2L(m̃zt|Yt−1 , K̃zt|Yt−1 , λt; δK̃zt|Yt−1 , δK̃zt|Yt−1)

= −1

2
λt tr

{
(K̃−1

zt|Yt−1
δK̃zt|Yt−1)

2
}
< 0.

Accordingly, L is strictly concave in K̃zt|Yt−1 . Thus, the minimum point

K̃0
zt|Yt−1

is given by imposing the stationarity condition

δL(m̃zt|Yt−1 , K̃
0
zt|Yt−1

, λt; δK̃zt|Yt−1) = 0.

The latter implies that such a point is

K̃0,−1
zt|Yt−1

= K−1
zt|Yt−1

− 1

λt

[
I

−G̃⊤
t

]
H̃⊤H̃

[
I −G̃t

]
. (22)

Notice that the block upper diagonal lower (UDL) form of Kzt|Yt−1 is

Kzt|Yt−1 =

[
I G̃t

0 I

] [
P̃t+1 0
0 Kyt|Yt−1

] [
I 0

G̃⊤
t I

]
(23)

and its inverse admits the following UDL decomposition

K−1
zt|Yt−1

=

[
I 0

−G̃⊤
t I

] [
P̃−1
t+1 0
0 K−1

yt|Yt−1

] [
I −G̃t

0 I

]
. (24)

Therefore, substituting Equation (24) in Equation (22), we have

K̃0,−1
zt|Yt−1

=

[
I 0

−G̃⊤
t I

] [
P̃−1
t+1 − λ−1

t H̃⊤H̃ 0
0 K−1

yt|Yt−1

] [
I −G̃t

0 I

]
,

13



so that

K̃0
zt|Yt−1

=

[
I G̃t

0 I

] [
Ṽt+1 0
0 Kyt|Yt−1

] [
I 0

G̃⊤
t I

]
(25)

where
Ṽt+1 = (P̃−1

t+1 − λ−1
t H̃⊤H̃)−1.

Then, let γ(λt) := Ẽ[ln(f̃ 0
t /f̄t)|Yt−1]. By taking into account (17) and using

Equations (21), (23) and (25), we obtain (16). The first derivative of γ(λt)
is

∂γ(λt; δλt)

∂λt

=
λ−2
t

2
tr
[
(I − λ−1

t H̃⊤H̃⊤P̃t+1)
−1

×H̃⊤H̃P̃t+1(I − (I − λ−1
t H̃⊤H̃P̃t+1)

−1)
]

=
λ−2
t

2
tr
[
(I − λ−1

t H̃⊤H̃P̃t+1)
−1H̃⊤H̃P̃t+1

×(I − λ−1
t H̃⊤H̃P̃t+1)

−1((I − λ−1
t H̃⊤H̃⊤P̃t+1)− I)

]
=− λ−3

t

2
tr
[
((I − λ−1

t H̃⊤H̃P̃t+1)
−1H̃⊤H̃P̃t+1)

2
]
< 0.

Therefore, γ(λt) is strictly monotone decreasing. Moreover, it is not difficult
to see that

lim
λt→∞

γ(λt) = 0, lim
λt→r(Q̃)

γ(λt) = +∞ (26)

where r(Q̃) = r(H̃P̃t+1H̃
⊤). As a consequence, there exists a unique La-

grangian multiplier λt > r(Q̃) > 0 such that D(f̃ , f) = ct. The fact that
f̃ 0
t (zt|Yt−1) is non-degenerate follows from the fact that K̃0

zt|Yt−1
≥ Kzt|Yt−1 >

0. □

Corollary 1. Consider the state space model (1) where we recall: rank(B) =
n, rank(D) = m and ξ0 ∼ N (ξ̂0, Ṽ0) with Ṽ0 > 0. Then, f̃ 0

t (zt|Yt−1) is non-
degenerate for any t ≥ 0.

Proof. We prove the claim by induction. Let f̃t(ξt|Yt−1) ∼ N (ξ̂t, Ṽt) with
Ṽt > 0. By Theorem 3 we have that f̃ 0

t (zt|Yt−1) is Gaussian non-degenerate
and Vt+1 > 0. From, f̃t(zt|Yt−1) we have that f̃t+1(ξt+1|Yt) ∼ N (ξ̂t+1, Ṽt+1)
which is non-degenerate. Finally, at the initial time t = 0, we have f̃0(ξ0|Y−1) :=
f̃0(ξ0) ∼ N (ξ̂0, Ṽ0) and Ṽ0 is positive definite by assumption. □

14



The resulting robust fixed-lag smoother is outlined in Algorithm 1 where
θt := λ−1

t is the risk sensitivity parameter and

γ(P̃t+1, θt) :=
1

2

[
tr
(
(I − θtH̃

⊤H̃P̃t+1)
−1 − I

)
+ ln det(I − θtH̃

⊤H̃P̃t+1)
]
.

(27)

Algorithm 1 Robust fixed-lag smoother with lag L

Input: y0 . . . yN , ξ̂0, Ṽ0, ct
Output: x̂t−L+1|t, t = L− 1 . . . N
1: for t = 0 : N do
2: G̃t = ÃṼtC̃

⊤(C̃ṼtC̃
⊤ + D̃D̃⊤)−1

3: ξ̂t+1 = Ãξ̂t + G̃t(yt − C̃ξ̂t)
4: x̂t−L+1|t = H̃ξ̂t+1

5: P̃t+1 = ÃṼtÃ
⊤ − G̃t(C̃ṼtC̃

⊤ + D̃D̃⊤)G̃⊤
t + B̃B̃⊤

6: Find θt s.t. γ(P̃t+1, θt) = ct
7: Ṽt+1 = (P̃−1

t+1 − θtH̃
⊤H̃)−1

8: end for

Finally, in the case that ct = 0, i.e. the nominal model coincides with the
actual one, it is not difficult to see that θt = 0 that is we obtain the standard
fixed-lag smoother.

Remark 1. In the presence of a deterministic input ut, then it is possible
to derive the corresponding robust fixed-lag smoother by using arguments
similar to the ones in [26]. For instance, if the input acts only in the state
equation, i.e. we have xt+1 = Axt+Bvt+ut, then Step 3 in Algorithm 1 is sub-
stituted with ξ̂t+1 = Ãξ̂t+G̃t(yt−C̃ξ̂t)+wt, where wt := [u⊤

t u⊤
t−1 . . . u

⊤
t−L+1 ]

⊤.

4. Efficient implementation

Algorithm 1 is not numerically robust and efficient in terms of compu-
tational burden. Since the dimension of P̃t and Ṽt is proportional to L,
which is typically large, their inversion is time consuming and not accurate.
Accordingly, there is the need to develop an efficient strategy which avoids
those matrix inversions as it has been done in [43] for the standard fixed-lag
smoother. The efficient procedure for our robust smoother is outlined in Al-
gorithm 2. Next, we explain how to derive the salient steps. In what follows
we always refer to the steps of Algorithm 2 if not specified.

15



First, we rewrite the risk-sensitive Riccati iteration in Step 5 of Algorithm
1 as:

L̃t = ṼtC̃
⊤(C̃ṼtC̃

⊤ + D̃D̃⊤)−1 (28)

P̃t|t = (I − L̃tC̃)Ṽt (29)

P̃t+1 = ÃP̃t|tÃ
⊤ + B̃B̃⊤ (30)

where P̃t|t := Ẽ[(ξt − ξ̂t|t)(ξt − ξ̂t|t)
⊤] and ξ̂t|t is the estimator of ξt given Yt.

Then, we parameterize Ṽt and L̃t in blocks of n× n matrices as follows:

Ṽt =



Vt (V 1
t )

⊤ · · · (V j
t )

⊤ · · · (V L
t )⊤

V 1
t V 1,1

t · · · (V j,1
t )⊤ · · · (V L,1

t )⊤

...
...

. . .
...

. . .
...

V j
t V j,1

t · · · V j,k
t · · · (V L,k

t )⊤

...
...

. . .
...

. . .
...

V L
t V L,1

t · · · V L,k
t · · · V L,L

t


L̃t =

[
(Lt)

⊤ (L1
t )

⊤ · · · (Lj
t)

⊤ · · · (LL
t )

⊤
]⊤

.

With some abuse of notation: Vt is also denoted by V 0,0
t ; V j

t is also denoted
by V j,0

t . Substituting the above parametrizations in (28), we obtain Steps 3,
7. In regard to the initial conditions: we only need x̂0 and V0, we set V

j
0 = 0

and V j,k
0 > 0, with j, k > 1, are set arbitrary such that Ṽ0 > 0, see (4). Using

a parametrization for P̃t|t and P̃t+1 as the one for Ṽt: from (29) and (30) we
obtain Steps 4, 6, 9 and Steps 13, 15, 17, respectively. Regarding Step 12,
recall that from Step 3 in Algorithm 1 we have

ξ̂t+1 = Ãξ̂t + G̃t(yt − C̃ξ̂t), (31)

where G̃t = ÃL̃t. Notice that ξ̂t is the predictor of ξt given Yt−1, and it
can be partitioned as ξ̂t := [ (x̂0

t|t−1)
⊤ (x̂1

t|t−1)
⊤ · · · (x̂j

t|t−1)
⊤ · · · (x̂L

t|t−1)
⊤ ]⊤

where x̂j
t|t−1 = x̂t−j|t−1, j ≥ 0. Substituting the definitions of Ã, C̃, L̃t

in (31) we obtain Step 12. It remains to find an efficient way to find the
risk sensitivity parameter θt. Indeed, in order to evaluate γ(P̃t+1, ·) for a
specific θ in Step 6 of Algorithm 1, we have to perform the inversion and the
eigenvalue decomposition of a matrix whose dimension is proportional to L.
The next result shows that it is possible to find θt by considering a function
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which requires to perform the inversion and the eigenvalue decomposition of
matrices of dimension n × n, see Step 20. In this way, θt can be computed
in a numerically robust way in the case that L is large.

Proposition 1. Consider γ defined in (27). Then, θt is the unique solution
to γ(P̃t+1, θt) = ct if and only if θt is the unique solution to γ̄(PL,L

t+1 , θt) = ct
where

γ̄(PL,L
t+1 , θt) =− 1

2

{
tr
[
PL,L
t+1 (P

L,L
t+1 − θtI)

−1
]

+ ln det
[
I − PL,L

t+1 (P
L,L
t+1 − θtI)

−1
]}

= ct.

Proof. First, notice that H̃P̃t+1H̃
⊤ = PL,L

t+1 . Thus, condition

θt < r(H̃P̃t+1H̃
⊤)−1

is equivalent to θt < r(PL,L
t+1 )

−1. By (27), we know

γ(P̃t+1, θt) =
1

2
[tr(K1) + ln det(K2)] (32)

where
K1 = (I − θtH̃

⊤H̃P̃t+1)
−1 − I, K2 = I − θtH̃

⊤H̃P̃t+1.

Then,

tr(K1) = tr

{[
(P̃−1

t+1 − θtH̃
⊤H̃)P̃t+1

]−1
}
− (L+ 1)n

= tr
[
P̃−1
t+1(P̃

−1
t+1 − θtH̃

⊤H̃)−1
]
− (L+ 1)n

= tr
{
P̃−1
t+1

[
P̃t+1 − P̃t+1H̃

⊤ × (H̃P̃t+1H̃
⊤ − θ−1

t I)−1H̃P̃t+1

]}
− (L+ 1)n

= tr
{[

I − (H̃P̃t+1H̃
⊤ − θ−1

t I)−1H̃P̃t+1H̃
⊤
]}

− n

= − tr(Γ−1
t+1P

L,L
t+1 ) (33)

where Γt+1 := PL,L
t+1|t−θ−1

t In and we exploited the Woodbury matrix identity.
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Then,

ln det(K2) = ln det
[
(P̃−1

t+1 − θtH̃
⊤H̃)P̃t+1

]
= − ln det

[
P̃−1
t+1(P̃

−1
t+1 − θtH̃

⊤H̃)−1
]

= − ln det
[
P̃−1
t+1(P̃t+1 − P̃t+1H̃

⊤Γ−1
t+1H̃P̃t+1)

]
= − ln det(I − H̃⊤Γ−1

t+1H̃P̃t+1)

= − ln det(I − H̃P̃t+1H̃
⊤Γ−1

t+1)

= − ln det(I − PL,L
t+1Γ

−1
t+1) (34)

where we exploited the fact that det(Im+AB) = det(In+BA) and A ∈ Rm×n,
B ∈ Rn×m. Substituting (33) and (34) in (32), we get the claim. □

Using the Woodbury formula, we have

Ṽt+1 = (P̃−1
t+1 − θtH̃

⊤H̃)−1

= P̃t+1 − P̃t+1H̃
⊤Γ−1

t+1H̃
⊤P̃t+1

and using the parametrization of Ṽt+1 and P̃t+1 in terms V j,k
t+1 and P j,k

t+1, we
obtain Steps 21, 22, 24, 26. Finally, Step 31 is derived as follows. The
estimate of ξt+1 given Yt+1 is obtained by the update step of the standard
Kalman filter:

ξ̂t+1|t+1 = Ãξ̂t|t + L̃t+1(yt+1 − C̃Ãξ̂t|t). (35)

Notice that ξ̂t|t can be partitioned as

ξ̂t|t := [ (x̂0
t|t)

⊤ (x̂1
t|t)

⊤ · · · (x̂j
t|t)

⊤ · · · (x̂L
t|t)

⊤ ]⊤

where x̂j
t|t = x̂t−j|t, j ≥ 0. Substituting the definitions of Ã, C̃, L̃t in (35), we

obtain

x̂j
t+1|t+1 = x̂j−1

t|t + Lj
t+1(yt+1 − CAx̂t|t), j ≥ 0. (36)

Note that when j = 0, x̂j−1
t|t = x̂−1

t|t = x̂t+1|t = Ax̂t|t. In addition, from

Equation (29), it is not difficult to see (the derivation is the same of the one
in [43])

Lj
t+1 = V j

t+1C
⊤(CVtC

⊤ +DD⊤)−1 = V j
t+1V

−1
t+1Lt+1, j ≥ 0
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where L0
t+1 = Lt+1 and while V 0

t+1 = Vt+1. Substituting the latter in (36) we
have

x̂j
t+1|t+1 = x̂j−1

t|t + V j
t+1V

−1
t+1Lt+1(yt+1 − CAx̂t|t). (37)

from which Step 31 can be established.

Algorithm 2 Robust efficient version
Input: y0 . . . yN , x̂0, V0, ct
Output: x̂t−L+1|t, t = L− 1 . . . N

1: Set V j,k
0 = 0 for j ̸= k, V j,j

0 positive definite for j > 0
2: for t = 0 : N do
3: Lt = VtC⊤(CVtC⊤ +DD⊤)−1

4: Pt|t = Vt(I − C⊤L⊤
t );

5: for j = 1 : L do
6: P j

t|t = V j
t (I − C⊤L⊤

t );

7: Lj
t = V j

t C⊤(CVtC⊤ +R)−1;
8: for k = 1 : L do
9: P j,k

t|t = V j,k
t − V j

t C⊤(Lk
t )

⊤;

10: end for
11: end for
12: x̂t+1 = Ax̂t +ALt(yt − Cx̂t);
13: Pt+1 = APt|tA

⊤ +BB⊤;

14: for j = 1 : L do
15: P j

t+1 = P j−1
t|t A⊤;

16: for k = 1 : L do
17: P j,k

t+1 = P j−1,k−1
t|t ;

18: end for
19: end for
20: Find θt s.t. γ̄(PL,L

t+1 , θt) = ct;

21: Γt+1 = PL,L
t+1 − θ−1

t In;

22: Vt+1 = Pt+1 − (PL
t+1)

⊤Γ−1
t+1P

L
t+1;

23: for j = 1 : L do

24: V j
t+1 = P j

t+1 − (PL,j
t+1)

⊤Γ−1
t+1P

L
t+1;

25: for k = 1 : L do
26: V j,k

t+1 = P j,k
t+1 − (PL,j

t+1)
⊤Γ−1

t+1P
L,k
t+1 ;

27: end for
28: end for
29: end for
30: for t = L− 1 : N do

31:
x̂t−L+1|t = x̂t−L+1 +

t∑
j=t−L+1

V j+L−t−1
j V −1

j Lj (yj − Cx̂j)

32: end for

Computational complexity. We perform the asymptotic analysis of
the computational complexity, understood as the number of floating point
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Figure 1: Computational time of ARFLS (corresponding to the red part) and RFLS
(corresponding to the green part).

operations (flops) by using big O notation, of the efficient version of the
robust fixed-lag smoother (RFLS), i.e. Algorithm 2, versus the one of the
augmented robust fixed-lag smoother (ARFLS), i.e. Algorithm 1.

First, referring to ARFLS, Steps 2-5 have the same complexity of the
standard Kalman predictor, that is:

O(n3(L+ 1)3) +O(mn2(L+ 1)2) +Q(m2n(L+ 1)) +O(m3).

Here, it is worth noting that Q̃ = B̃B̃⊤ and R̃ = D̃D̃⊤ are computed of-
fline. Then, in regard to Step 6, the complexity to evaluate γ(P̃t+1, θt) is
O(n3(L + 1)3), see [46, Section 13.1 and 13.4]. Then, the computation of
θt ∈ (0, r(P̃t+1)

−1) is accomplished by a bisection method, see Algorithm 2
in [47]. Since at each step we spend constant time to reduce the problem to
an instance half its size [46, Section 4.10.2], the complexity of Step 6 is

O(n3(L+ 1)3log2(r(P̃t+1)
−1/ε))

where ε > 0 is the selected accuracy, i.e. the solution found satisfies the
condition |γ(P̃t+1, θt)− ct| ≤ ε. Step 7 has complexity O(n3(L+ 1)3). Thus,
the computational complexity of Algorithm 1 is:

O(n3(L+ 1)3) +O(mn2(L+ 1)2) +Q(m2n(L+ 1)) +O(m3)

+O(n3(L+ 1)3log2(r(P̃t+1)
−1/ε)).
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Accordingly, the complexity of Algorithm 1 with respect to the instance L is
O(L3).

Referring to RFLS, the total complexity of Steps 3-4, 12-13 and 21-22 is
O(n3) + O(mn2) +Q(m2n) + O(m3). Then, the complexity of Steps 5-11 is
O(n3L) + O(mn2L2) +Q(m2nL2) + O(Lm3); the complexity of Steps 14-19
is O(n3L); the complexity of Steps 23-28 is O(n3L2). Next, Step 20 has the
complexity of O(n3log2(r(P

L,L
t+1 )

−1/ε)); it is worth noting thay in Step 20 the
computation of θt is done by using the same bisection method of Step 6 in
Algorithm 1: the difference is the dimension of matrices P̃t+1, of dimension
n(L + 1), and PL,L

t+1 , of dimension n. Finally, Step 31 has the complexity of
O(mn2L)+O(n3L). Hence, the computational complexity of Algorithm 2 is:

O(n3L2) +O(mn2L2) +Q(m2nL2) +O(m3L) +O(n3log2(r(P
L,L
t+1 )

−1/ε)).

Thus, the complexity of Algorithm 2 with respect to the instance L is O(L2).
We conclude that Algorithm 2 is computationally more efficient than Algo-
rithm 1 and this advantage will become more pronounced as L grows.

Finally, we also analyze the computational time with respect to the lag
L through a Monte Carlo study. In the latter, the lag ranges from L = 3 up
to L = 50. Each case is composed by 100 trials. In each trial, the matrices
A,B,C,D of Model (1) with n = 2 and m = 1 are randomly generated
as follows. Each entry is drawn according to a uniform distribution in the
interval [0, 1]. Then, matrix A is rescaled in such a way that its maximum
eigenvalue (in modulus) is equal to 0.95. Then, an output sequence YN with
N = 500 is generated. Fig. 1 shows the average value of the computational
time over 100 trials required by RFLS and ARFLS with ct = 10−3 to estimate
the state trajectory from YN . The results were obtained using a Huawei
MateBook X Pro Laptop with Intel Core I5-8250U CPU and 8GB RAM. The
dashed lines defines the corresponding confidence intervals (with level 0.95).
It is possible to note that the computational time of these two algorithms
grows polynomially. As expected, the growth rate of RFLS is much smaller
than the one of ARFLS, i.e. RFLS drastically reduces the computational
time.

5. Least-Favorable Model

In order to evaluate the performance of the robust fixed-lag smoother, we
need to construct its least favorable model solution to (7). The latter can be
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characterized over a finite time interval [0, T ] by using arguments similar to
the ones in [27, Section V]. More precisely, the least favorable model takes
the form

ηt+1 = Ātηt + B̄tϵt

yt = C̄tηt + D̄tϵt
(38)

where ηt ≜ [ ξ⊤t ẽ⊤t ]⊤. Moreover,

Āt :=

[
Ã B̃S̃t

0 Ã− G̃tC̃ + (B̃ − G̃tD̃)S̃t

]
B̄t :=

[
B̃

B̃ − G̃tD̃

]
Lt

C̄t :=
[
C̃ D̃S̃t

]
, D̄t := D̃Lt.

(39)

The matrices above are computed through the backward recursion illustrated
in Algorithm 3.

Algorithm 3 Backward recursion

Input: G̃0 . . . G̃N , θ0 . . . θN , Ω̃
−1
N+1

Output: Āt, B̄t, C̄t, D̄t, t = 0 . . . N
1: Ω̃−1

N+1 = 0
2: for t = N : 0 do
3: W−1

t+1 = Ω̃−1
t+1 + θtH̃

⊤H̃

4: K̃vt = (I − (B̃ − G̃tD̃)⊤W−1
t+1(B̃ − G̃tD̃))−1

5: S̃t = K̃vt(B̃ − G̃tD̃)⊤W−1
t+1(Ã− G̃tC̃)

6: Compute Lt such that K̃vt = LtL
⊤
t

7: Compute Āt, B̄t, C̄t, D̄t as in (39)
8: Ω̃−1

t = (Ã− G̃tC̃)⊤W−1
t+1(Ã− G̃tC̃) + S̃⊤

t K̃
−1
vt S̃t

9: end for

It is worth noting that (38) is the least favorable model corresponding to
the augmented state ξt. It is then natural to wonder whether such a least
favorable model reduces to a least favorable model corresponding to the state
xt. The answer is affirmative. This justifies why in the minimax problem (7)
we did not need to impose that ϕ̃t(zt|xt) preserve the same structure of the
augmented state space model in (2). Substituting Āt, B̄t, C̄t, D̄t in (38), we
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obtain
ξt+1 = Ãξt + B̃(S̃tẽt + Ltϵt)

yt = C̃ξt + D̃(S̃tẽt + Ltϵt)

which is the augmented state space of the least favorable model

xt+1 = Axt +B(S̃tẽt + Ltϵt)

yt = Cxt +D(S̃tẽt + Ltϵt).
(40)

Finally, consider a fixed-lag smoother of the form

x̂′
t−L+1|t = x̂′

t−L+1 +
t∑

j=t−L+1

G′L−t+j
j (yj − Cx̂′

j)

where G′ j
t , with 0 ≤ j ≤ L, are the arbitrary gains of a fixed-lag smoothing

algorithm. It is not difficult to see that we can rewrite such a smoother as
x̂′
t−L+1|t = H̃ξ̂′t+1 where

ξ̂′t+1 = Ãξ̂′t + G̃′
t(yt − C̃ξ̂′t)

G̃′
t =

[
(G′ 0

t )
⊤ . . . (G′L

t )⊤
]⊤

.

To evaluate its performance under the least favorable model in (40), we define
the corresponding smoothing error e′t−L+1 = xt−L+1− x̂′

t−L+1|t. Then it is not
difficult to see that e′t−L+1 is zero mean and with covariance matrix

Π̄t+1 = H̃Π̃t+1H̃
⊤

where: Π̃t+1 is the (L+ 1)n× (L+ 1)n submatrix of Πt+1 in position (1, 1);
Πt+1 is the solution to the Lyapunov equation

Πt+1 =

(
Āt −

[
G̃′

t

0

]
C̄t

)
Πt

(
Āt −

[
G̃′

t

0

]
C̄t

)⊤

+

(
B̄t −

[
G̃′

t

0

]
D̄t

)(
B̄t −

[
G̃′

t

0

]
D̄t

)⊤

with initial condition Π0 = 12 ⊗ Ṽ0 and 12 is the 2× 2 matrix whose entries
are equal to one.
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6. Robust Target Tracking

We compare the performance of the robust and standard fixed-lag smoothers
in a maneuvering target tracking problem where model uncertainty is present.
More precisely, we consider as nominal model the second-order Singer model
with an exponentially autocorrelated noise, see [31, 48, 49]. The state vector

is defined as x :=
[
plat, vlat, plon, vlon

]⊤
where plat and vlat denote the target

position and velocity along the latitudinal direction, respectively; plon and
vlon denote the target position and velocity along the longitudinal direction,
respectively. This model can be written as (1) with

A =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1


where T = 0.01 denotes the sampling period; B is such that BB⊤ = Q and

Q = 2ασ2
m


T 3/3 T 2/2 0 0
T 2/2 T 0 0
0 0 T 3/3 T 2/2
0 0 T 2/2 T

 .

where we assume that σ2
m = 5 and 1/α = 0.5 which are the instantaneous

variance of the velocity and the time constant of the target velocity autocor-
relation, respectively. Moreover,

C =

[
1 0 0 0
0 0 1 0

]
, DD⊤ = I2

and the output yt denotes the noisy position measurements along the two
directions. Finally, x0 is Gaussian distributed with zero mean and covariance
matrix V0 = diag(50, 5, 50, 5).

In practice, the nominal model above does not coincide with the actual
one (e.g. the nominal parameters α and σ2

m are typically imprecise). In
what follows, we assume that the actual model belongs to the ambiguity set
Bt. More precisely, we consider two scenarios: the first one considers the
ambiguity set with ct = 10−3, while the second one with ct = 5 ·10−3, i.e. the
latter is larger than the former. We compare the proposed robust fixed-lag
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smoother, denoted by RFLS, and the standard fixed-lag smoother, denoted
by FLS, both with L = 20.

Fig. 2(a) shows the variances of the smoothing error under the least
favorable model in the first ambiguity set with ct = 10−3, while Fig. 2(b)
shows the variances of the smoothing error under the least favorable model
in the second ambiguity set with ct = 5 ·10−3. It is possible to see that RFLS
outperforms FLS. It is also worth noting that the higher ct is, the more RFLS
outperforms FLS.
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(a) Ambiguity set with c = 10−3
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Figure 2: Scalar variances of the smoothing error for RFLS and FLS under the least
favorable models in the different ambiguity sets.
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Figure 3: Trajectories generated by the least favorable models in the different ambiguity
sets (black line) and the estimated trajectories with RFLS (blue line) and FLS (red line).
The cross denotes the endpoint of the target trajectory.
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RFLS FLS RFLS FLS
ct = 10−3 ct = 10−3 ct = 5 · 10−3 ct = 5 · 10−3

RMSElat 0.2918 0.4093 0.4962 0.6112
RMSElon 0.2891 0.3280 0.4804 0.6115

Table 1: RMSE along the latitudinal direction and longitudinal direction.

In what follows, we consider a sample YN = {y0, y1 . . . yN} with N = 500
generated by the least favorable model (40) in the first ambiguity set with
ct = 10−3 and ξ0 = 0. Fig. 3(a) shows the target trajectory (black line)
and the ones estimated with RFLS (blue line) and FLS (red line). We also
perform the same experiment using the least favorable model in the second
ambiguity set with ct = 5× 10−3. Moreover, we quantify the performance of
the smoothers in these two experiments through the root mean-square error
(RMSE) along the latitudinal direction and longitudinal direction

RMSElat =

√√√√ 1

N

N∑
t=1

(
platt − p̂latt

)2
,

RMSElon =

√√√√ 1

N

N∑
t=1

(
plont − p̂lont

)2
whose values are displayed in Table 1. As expected, RFLS better reduces
the influence of the modeling error on the estimation accuracy than others.

7. Robust parameter estimation

Consider the following state space model

M̃(α) : xt+1 = A(α)xt +B(α)υ̃t

yt = C(α)xt +D(α)υ̃t
(41)

where x0 ∼ N (x̂0, V0), υ̃t ∼ N (0, R̃t), i.e. ṽt is a nonstationary process, and
the matrices A(α), B(α), C(α) and D(α) are parameterized by α. In many
practical applications, α is not known and needs to be estimated from the
observed data YN = {y0, y1 . . . yN}. In plain words, the latter is a system
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identification problem where the model class is M̃ = {M̃(α), α ∈ Θ} and Θ
is the parameter space. A well established paradigm to find α is the maximum
likelihood (ML) principle. However, it is usually difficult to find an explicit
expression of the ML function under Model (41). Such a problem is typically
addressed by using the expectation-maximization (EM) algorithm, see [6,
Algorithm 12.3], which computes a lower bound of the ML function through
the iterative scheme:

� Set up an initial guess α0;

� For n = 0, 1, ...:

• E-step: compute

Q(α, αn) :=

∫
f̃αn(XN+1|YN) log f̃α(YN , XN+1)dXN+1

• M-step: compute α(n+1) = argmaxα Q(α, αn)

where f̃α(YN , XN+1) is the joint density of YN = {y0, y1 . . . , yN} and XN+1 =
{x0, x1, . . . , xN+1} under M̃(α). In most cases, however, the covariance ma-
trix R̃t of the noise process ṽt is not known and it is also time-varying. Such a
matrix is typically designed empirically. However, this would require to have
the possibility to make more experiments on the system, i.e. a requirement
that is not always met. Alternatively, we can select a nominal covariance
matrix for the noise process using some a priori knowledge. However, this
causes the nominal model to be inconsistent with the actual one and thus
the reliability of the estimate of α will be compromised.

A possible way to address this model uncertainty is to understand (41) as
the least favorable model (40) where υ̃t is equal to S̃tẽt+Ltϵt. More precisely,
assume that we want to estimate α only knowing the nominal state space
model M, i.e.

M(α) : xt+1 = A(α)xt +B(α)υt

yt = C(α)xt +D(α)υt
(42)

where vt is normalized WGN, in particular it is a stationary process. It is
worth noting that the least favorable model in (41) does not belong to M.
Notice that, it is not restrictive to assume that the covariance matrix of vt is
equal to the identity. Indeed, in the case its covariance matrix is R, then we
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can always take B̃(α) = B(α)R1/2 and D̃(α) = D(α)R1/2. Then, the least
favorable model, solution to (7), is (41) with ṽt = S̃tẽt + Ltϵt. Hence,

R̃t = S̃t

[
0 In

]
Πt

[
0
In

]
S̃T
t + LtL

T
t .

At this point we can use the density, say f̃ 0
αn(XN+1, YN), of the least favorable

model in order to compute the lower bound Q(α, αn). On the other hand, an
approximation of the moments of f̃ 0

αn required inQ(α, αn) can be constructed
by the robust fixed-lag smoother of Algorithms 2 and 3 leading to

Q(α, αn) ∝ −1

2

N−1∑
t=0

log |2πB(α)R̃tB
T (α)|

− 1

2
tr

{
N−1∑
t=0

[(
B(α)R̃tB

T (α)
)−1

(Φ1,t

−Φ2,tA
T (α)− A(α)ΦT

2,t + A(α)Φ3,tA
T (α)

)]}
− 1

2

N−1∑
t=0

log |2πD(α)R̃t+1D
T (α)|

− 1

2
tr

{
N−1∑
t=0

[(
D(α)R̃t+1D

T (α)
)−1

(Φ4,t

−C(α)ΦT
5,t − Φ5,tC

T (α) + C(α)Φ1,tC
T (α)

)]}
where

Φ1,t = Π̄L,L
t+L−1 + x̂t+1|t+L−1x̂

T
t+1|t+L−1,

Φ2,t = (Π̄L,L−1
t+L−1)

T + x̂t+1|t+L−1x̂
T
t|t+L−1,

Φ3,t = Π̄L,L
t+L−1 + x̂t|t+L−1x̂

T
t|t+L−1,

Φ4,t = yt+1y
T
t+1, Φ5,t = yt+1x̂

T
t+1|t+L−1,

and Π̄j,k
t is the n×n block in position (j, k) of Π̃t. Then, x̂t|t+L−1, x̂t−1|t+L−1

and yt are given by Algorithm 2. Clearly, such an approximation is legitimate
if the lag L is chosen big enough.

Next, we show a numerical example. We consider the problem to estimate
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Figure 4: Estimation error for EM, EM-FL and REM in the Monte Carlo experiment.

the parameter α = [α1 α2 ] using the nominal model class (42) with

A(α) =

[
α1 1
0 α2

]
, B =

[
0.01 0 0
0 0.45 0

]
C =

[
1 −1

]
, D =

[
0 0 0.01

]
,

and the collected data YN = {y0, y1 . . . yN}. We assume x0 ∼ N (0, V0) with
V0 = 0.0001I2. We assume that the actual model has the same structure
of (42) with α⋆ = [ 0.1 0.9 ], but the actual noise process, say ṽt, is not
stationary and not known. We solve the aforementioned system identification
problem by means of the REM method introduced in Section 7 with L = 50.
Moreover, we compare it with: the standard EM method where the state
estimation task is performed by the RTS smoother; the “fixed-lag” EM (EM-
FL) method where the state estimation task is performed by the standard
fixed-lag smoother. To estimate the effectiveness of the REM method we
assume that the actual model is the least favorable one belonging to the
ambiguity set with c = 2 · 10−2. Moreover, we consider a Monte Carlo
experiment with 100 trials. More precisely, in each trial, we generate the
data set YN according to (40) with α = α⋆ and N = 1000. The initial
parameter estimates α0

1 and α0
2, with α0 := [α0

1 α
0
2 ], are drawn from a uniform

distribution with interval [0.4, 0.9] and [0.07, 0.13], respectively. Then, the
termination condition is ∥αn+1 − αn∥ ≤ ϵ where ϵ = 10−3.
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Figure 5: Comparison among the actual state components and the estimated ones obtained
by EM and REM over the interval [600, 800].

Then, in order to compare the performance of these algorithms, we con-
sider the estimation error ∥α̂ − α⋆∥ where α̂ is the parameter estimate ob-
tained at the last stage by EM/EM-FL and REM. Fig. 4 shows the boxplot
of the estimation error for EM, EM-FL and REM. We see that REM out-
performs EM and EM-FL. It is worth noting that EM and EM-FL perform
in the same way. This means that the value of the lag L has been chosen
large enough in EM-FL and thus the fixed-lag smoother represents a good
approximation of the RTS smoother.

Finally, Fig. 5 shows the estimated state trajectory in the last stage by
EM and REM, with t ∈ [600, 800], in a trial of the Monte Carlo experiment.
As we can see, the one obtained with REM, and thus using RFLS, is slightly
better than the one with EM, and thus using RTS. Although this advantage
is not prominent, it made a dramatic improvement in the performance of the
parameter estimator.

8. Conclusion

In this paper, we have proposed a robust fixed-lag smoother in the case
that the actual model is different from the nominal one. More precisely,
this paradigm solves a minimax game with two players: one selects the least
favorable model in a prescribed ambiguity set, the other designs the opti-
mal estimator based on the least favorable model. We also proposed an
efficient implementation of the robust fixed-lag smoother in order to reduce
the computational burden and avoid numerical instabilities. Then, we have
characterized the least favorable model for the robust smoother over a finite
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time horizon. Finally, we have presented some numerical examples showing
the effectiveness of the proposed robust fixed-lag smoother.
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