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Abstract: Thanks to its favorable properties, the multivariate normal dis-
tribution is still largely employed for modeling phenomena in various sci-
entific fields. However, when the number of components p is of the same
asymptotic order as the sample size n, standard inferential techniques are
generally inadequate to conduct hypothesis testing on the mean vector
and/or the covariance matrix. Within several prominent frameworks, we
propose then to draw reliable conclusions via a directional test. We show
that under the null hypothesis the directional p-value is exactly uniformly
distributed even when p is of the same order of n, provided that conditions
for the existence of the maximum likelihood estimate for the normal model
are satisfied. Extensive simulation results confirm the theoretical findings
across different values of p/n, and show that under the null hypothesis
the directional test outperforms not only the usual first and higher-order
finite-p solutions but also alternative methods tailored for high dimensional
settings. Simulation results also indicate that the power performance of the
different tests depends on the specific alternative hypothesis.
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1. Introduction

Hypothesis testing on the multivariate normal distribution is a subject of great
interest in multivariate statistical analysis [see, e.g., 1, 25]. It is widely ap-
plied in various fields, such as social sciences, biomedical sciences and finance.
Under fixed dimension p of the observation vector and large sample size n, stan-
dard asymptotic results are available for testing hypotheses on the mean vector
and/or the covariance matrix. For instance, for sufficiently large n, the classical
log-likelihood ratio statistic, its Bartlett correction [3], and the large-deviation
modification to the log-likelihood ratio statistic proposed by Skovgaard [29] have
an approximate χ2

d null distribution, with d equal to the number of constraints
on the parameters imposed under the null hypothesis. Yet, in many modern
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applications the dimension p, while being lower than n, is large and often com-
parable with n.

Taking inspiration from a classification recently proposed by Battey and Cox
[4], we distinguish between three asymptotic regimes where p and n diverge,
namely low dimensional, high dimensional and ultra-high dimensional. In the
first case p/n goes to zero, in the second case p/n → κ ∈ (0, 1], while in the third
case p/n tends to infinity or to a limit greater than one. It is well known that
inferential problems arise in regression settings where the number of covariates
increases with the sample size, both in low and high dimensional regimes; see,
for instance, [11], [30] and [31] for results on logistic regression, and [32] for
results on exponential family models.

Even for the special p-variate normal distribution case, the classical likelihood-
based testing procedures may be already invalid in low dimensional settings.
Indeed, He, Meng, Zeng and Xu [14] considered the case where p = O(nα),
0 < α ≤ 1, and showed that the log-likelihood ratio statistic’s distribution ap-
proximates to a χ2

d if and only if p = o(n1/2), while the analogous condition for
the Bartlett correction is p = o(n2/3). On the other hand, for the high dimen-
sional setting Jiang and Yang [18] derived a central limit theorem that allows to
construct reliable tests for hypotheses on the mean vector and/or the covariance
matrix. Specifically, they proved that the distribution of the log-likelihood ratio
statistic, suitably standardized, converges to a standard normal when both p
and n tend to infinity, provided that p/n → κ ∈ (0, 1].

Under the same high dimensional setting of Jiang and Yang [18], we propose
the use of a directional approach for testing general hypotheses on multivariate
normal distributions. Directional inference on a vector parameter of interest was
first introduced by Fraser and Massam [12] and later developed by Skovgaard
[28] and Cheah, Fraser and Reid [6] using saddlepoint approximations for the
distribution and analytical approximations for the required tail probability inte-
grals in regular asymptotic scenarios. More recently, still assuming the classical
scenario with fixed parameter dimension and increasing sample size, Davison,
Fraser, Reid and Sartori [9] and Fraser, Reid and Sartori [13] proposed to com-
pute the directional p-value by replacing the analytical approximations with
one-dimensional numerical integration. The empirical evidence in these papers
showed the excellent performance of the proposed method in many examples of
practical interest. In fact, later the directional p-value was proven to coincide
with that of an exact F -test in a few prominent modeling frameworks [23].

For multivariate normal distributions, a first example of the directional ap-
proach was given in [9, Example 5.3], who considered testing some conditional
independence among the components starting from the full dependence struc-
ture. Although their simulations illustrated that the empirical extreme accuracy
of directional inference is not limited to simple low-dimensional situations, those
results were not formally justified within the asymptotic framework of the high
dimensional regime.

We prove that the directional p-value is exact when testing a number of
hypotheses on the multivariate normal distribution, even in the high dimensional
scenario. Precisely, it is only required that n ≥ p + 2, which is the condition
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for the existence of the maximum likelihood estimate for the covariance matrix.
Consequently, we shall not deal here with the ultra-high dimensional regime.
The exact uniform null distribution of the directional p-value follows from the
exactness of the normalized saddlepoint approximation to the distribution of
the canonical sufficient statistic in the multivariate normal model. We focus
here on hypotheses that compare multiple multivariate normal distributions,
while results on hypotheses regarding a single distribution are reported in the
Supplementary Material [15].

Several simulation studies are conducted for comparing the proposed method
with the usual χ2

d approximations for the log-likelihood ratio statistic, the
Bartlett correction, the modifications of the log-likelihood ratio statistic by
Skovgaard [29] and the central limit theorem method by Jiang and Yang [18].
The results confirm the theoretical properties of the directional test under the
null hypothesis. Indeed, the method proves uniformly more accurate than the
alternative approaches. Only the central limit theorem test gives a compara-
ble accuracy when the number of components p is large, but it is less reliable
for small to moderate values of p. The various methods are assessed also in
terms of power, after adjusting for Type I error. The approach leading to higher
power depends on the specific alternative setting. In this respect the directional
test, which does not need any adjustment, is competitive with the central limit
theorem test and overperforms the other candidates across various alternative
scenarios.

2. Background

2.1. Notation

Assume that the model for the data y = (y1, . . . , yn)T is an exponential family
with canonical parameter ϕ = ϕ(θ) and canonical sufficient statistic u = u(y).
The distribution of y can then be expressed as

f(y; θ) = exp
[
ϕ(θ)Tu(y) −K{ϕ(θ)}

]
h(y),

with corresponding log-likelihood function �(θ; y) = log f(y; θ). When the di-
mension q of θ is equal to the dimension of ϕ and ϕ(θ) is one-to-one, the
statistic u(y) has a full natural exponential family distribution in the canon-
ical parameterization. Hence, we can write f(u;ϕ) = exp

{
ϕTu−K(ϕ)

}
h̃(u)

with associated log-likelihood �(ϕ;u) = ϕTu−K(ϕ). However, h̃(u) can rarely
be derived explicitly.

For the development of the directional p-value in Section 2.2, it is notationally
convenient to center the sufficient statistic at the observed data point y0. Hence
we let s = u− u0, with u0 = u(y0), and write

�(ϕ; s) = ϕT s + �0(ϕ) = ϕT (u− u0) + �(ϕ;u0), (2.1)

where �0(ϕ) = �(ϕ; s = 0q) = �(ϕ;u = u0), with 0q denoting the q-dimensional
vector of zeroes. This centering ensures that the observed value of s is s0 = 0q.
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Suppose the parameter vector is partitioned as ϕ = (ψT , λT )T , and thus (2.1)
can be written as

�(ϕ; s) = ψT s1 + λT s2 + �0(ψ, λ), (2.2)

where ψ is a d-dimensional parameter of interest, λ is a (q − d)-dimensional
nuisance parameter, and (sT1 , sT2 )T is the corresponding partition of s. Assume
we are interested in testing the hypothesis Hψ: ψ(ϕ) = ψ. To a first order of
approximation, a parameterization-invariant measure of departure of s from Hψ

is given by the log-likelihood ratio statistic

W = 2{�(ϕ̂) − �(ϕ̂ψ)},

where ϕ̂ is the maximum likelihood estimate and ϕ̂ψ = (ψT , λ̂T
ψ)T denotes the

constrained maximum likelihood estimate of ϕ under Hψ. When q is fixed and
n → +∞, the statistic W follows asymptotically a χ2

d distribution with relative
error of order O(n−1) under Hψ.

Higher-order improvements of likelihood inference for a vector parameter of
interest are available. A first proposal is the Bartlett correction [3, 20], which
rescales the log-likelihood ratio statistic by its expectation Eψ(W ) under Hψ,
i.e.

WBC = d

Eψ(W )W,

and has a χ2
d asymptotic null distribution with relative error of order O(n−2)

[8, Section 7.3; 24, Section 7.4]. Since the calculation of Eψ(W ) is generally not
feasible, Lawley [20] gave an asymptotic expansion for the exact expectation
under Hψ with error of order O(n−1). However, the accuracy of Bartlett correc-
tion can be lost when the exact expectation is substituted with such asymptotic
expansion [29, 9]. Increasing the computational cost, it is possible to replace an-
alytical expansions by parametric bootstrap approximations [7, Section 2.7]. In
the present framework, Eψ(W ) can be computed exactly and the condition for
validity of the χ2

d approximation for the distribution of the Bartlett correction
of W is p = o(n2/3) [14]. The quantities needed for the Bartlett correction can
be found in [18].

Starting from the extremely accurate r∗ statistic for inference on a scalar ψ
[2], for a vector parameter of interest Skovgaard [29] proposed two modifications
of W designed to maintain high accuracy in the tails of the distribution:

W ∗ = W

(
1 − 1

W
log γ

)2

and W ∗∗ = W − 2 log γ. (2.3)

The statistics W ∗ and W ∗∗ are generally easier to calculate than the Bartlett
correction and, under standard regularity conditions [see, e.g., 27, Section 3.4],
they are also approximately distributed as χ2

d when the null hypothesis holds.
Even though the relative error is of order O(n−1), as for W , they exhibit higher
accuracy due to large-deviation properties of the saddlepoint approximation
involved in their derivation [29]. Among the two forms, W ∗ has the advantages
of being always non-negative and of reducing to the square of Barndorff-Nielsen’s
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r∗ statistic when d = 1 [29]. The general expression of the correction factor γ
in exponential families [29, Eq. (13)] simplifies to

γ =
{
(s− sψ)TJϕϕ(ϕ̂ψ)−1(s− sψ)

}d/2

W d/2−1(ϕ̂− ϕ̂ψ)T (s− sψ)

{
|Jϕϕ(ϕ̂ψ)|
|Jϕϕ(ϕ̂)|

}1/2

, (2.4)

where sψ is the expected value of the sufficient statistic s under Hψ and Jϕϕ(ϕ) =
−∂2�(ϕ; s)/∂ϕ ∂ϕT is the observed information matrix for ϕ, which coincides
with the expected Fisher information matrix since ϕ is the canonical parameter.
In order to calculate the p-value, the quantity (2.4) is evaluated at s = s0 = 0q,
corresponding to y = y0.

2.2. Directional tests in linear exponential families

Directional tests for a vector parameter of interest in exponential family models
were considered in [28], [6] and [9]. In particular, the latter proposed to com-
pute the directional p-value via one-dimensional integration. Directional tests in
linear exponential families are essentially developed in two dimension-reduction
steps, since the sufficient statistic has the same dimension of the canonical pa-
rameter ϕ. Specifically, the first step consists of reducing the dimension of the
sufficient statistic from q to the dimension of the parameter of interest d; in-
deed, the conditional distribution of the component relative to ψ of the sufficient
statistic in (2.2), s1, given the component relative to λ, s2, can be accurately ap-
proximated using saddlepoint approximations. The second step further reduces
the d-variate conditional distribution to a one-dimensional conditional distribu-
tion given the direction indicated by the observed data point. We review here
the key methodological steps, already detailed in [9], to derive the directional
p-value in linear exponential families.

The simplicity of exponential families makes conditional inference a practi-
cable strategy. In particular, the theory guarantees that the conditional distri-
bution of the component of interest s1 of the canonical sufficient statistic, given
s2, depends only on ψ [see, e.g., 26, Theorem 5.6]. Indeed, we have

f(s1|s2;ψ) = exp
{
ψT s1 −Ks2(ψ)

}
hs2(s1),

where the cumulant generating function Ks2(ψ) and the marginal density hs2(s1)
depend on the conditioning value s2 and can rarely be derived explicitly. How-
ever, as in [9], a saddlepoint approximation [see, e.g., 26, Section 10.10] can be
used instead. Under the null hypothesis Hψ, the saddlepoint approximation to
the density of s1 given s2 is expressed as

h(s;ψ) = c exp [�(ϕ̂ψ; s) − �{ϕ̂(s); s}] |Jϕϕ{ϕ̂(s); s}|−1/2, s ∈ L0
ψ, (2.5)

where c is a normalizing constant and L0
ψ is a d-dimensional plane defined by

setting s2 to its observed value, i.e. s2 = 0q−d. All values of s in L0
ψ have

the same constrained maximum likelihood estimate λ̂ψ = λ̂0
ψ, while they have

unconstrained maximum likelihood estimate ϕ̂(s).
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We construct a directional test for Hψ by considering the one-dimensional
model based on the magnitude of s, ||s||, conditional on its direction. This is
done by defining a line L∗

ψ in L0
ψ through the observed value of s, s0 = 0q, and

the expected value of s under Hψ, sψ, which depends on the observed data point
y0, i.e.

sψ = −�0ϕ
(
ϕ̂0
ψ

)
=

{
−�0ψ

(
ϕ̂0
ψ

)T
, 0Tq−d

}T

. (2.6)

We parameterize this line by t ∈ R, namely s(t) = sψ + t(s0 − sψ). In
particular, t = 0 and t = 1 correspond, respectively, to the expected value
sψ and to the observed value s0. The conditional distribution of ||s|| given
the unit vector s/||s|| is obtained from (2.5) by a change of variable from s
to (||s||, s/||s||). The Jacobian of the transformation is proportional to td−1.
The directional p-value to measure the departure from Hψ along the line L∗

ψ

is defined as the probability that s(t) is as far or farther from sψ than is the
observed value s0, that is,

p(ψ) =
∫ tsup
1 td−1h{s(t);ψ}dt∫ tsup
0 td−1h{s(t);ψ}dt

, (2.7)

where the denominator is a normalizing constant. See [9, Section 3.2] for more
details. The upper limit of the integrals in (2.7) is the largest value of t for which
the maximum likelihood estimate ϕ̂(t) corresponding to s(t) exists; depending on
the case, it can be found analytically or approximated numerically. The scalar
integrals in (2.7) can be accurately computed via numerical integration. The
error in (2.7) is therefore essentially given by the error from the saddelpoint
approximation used in (2.5). Some results on such an error when p increases
with n are given in [33]. However, in all settings described in Section 2.3, (2.5)
holds exactly, up to the normalizing constant c. Thus, since c simplifies in the
ratio (2.7), also the directional p-value is exact. The results are formally derived
in Section 3.

2.3. Multivariate normal distribution

Let y1, . . . , yn be a sample of independent observations from a multivariate nor-
mal distribution Np(μ,Λ−1), where both the mean vector μ and the concentra-
tion matrix Λ, symmetric and positive definite, are unknown. Let y = [y1 · · · yn]T
denote the n×p data matrix and tr(M) denote the trace of a square matrix M .
Define by vec(M) the operator which transforms the matrix M into a vector by
stacking its columns one underneath the other. When M is symmetric it is use-
ful to consider also vech(M), which is obtained from vec(M) by eliminating all
supradiagonal elements of M . The two operators satisfy Dpvech(M) = vec(M),
where Dp is the duplication matrix [22, Section 3.8]. The log-likelihood for the
parameter θ = {μT , vech(Λ−1)T }T is

�(θ; y) = μTΛyT 1n − 1
2tr(ΛyT y) + n

2 log |Λ| − n

2μ
TΛμ.
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The canonical parameter in this exponential family model is given by ϕ =
{ξT , vech(Λ)T }T = {μTΛ, vech(Λ)T }T with canonical sufficient statistic u =
{nȳT , −1

2vech(yT y)TDT
p Dp}T , and the corresponding log-likelihood is

�(ϕ; y) = nξT ȳ − 1
2tr(ΛyT y) + n

2 log |Λ| − n

2 ξ
TΛ−1ξ

= ξTnȳ − vech(Λ)T
{

1
2D

T
p Dpvech(yT y)

}
+ n

2 log |Λ| − n

2 ξ
TΛ−1ξ,

where ȳ = yT 1n/n with 1n a n-dimensional vector of ones. The score function
with respect to the canonical parameter ϕ is

�ϕ(ϕ) =
{
�ξ(ϕ)T , �vech(Λ)(ϕ)T

}T

=
{
nȳT − nξTΛ−1,

n

2 vech
(
Λ−1 − yT y/n + Λ−1ξξTΛ−1)T}T

.

The maximum likelihood estimates for μ and Λ−1 are μ̂ = ȳ and Λ̂−1 = yT y/n−
ȳȳT , respectively; thus, ξ̂ = Λ̂μ̂. Moreover, the observed information matrix for
components ξ and vech(Λ) of ϕ can be written in block form as

Jϕϕ(ϕ) =
[

nΛ−1 −n(ξTΛ−1 ⊗ Λ−1)Dp

−nDT
p (Λ−1ξ ⊗ Λ−1) n

2D
T
p {Λ−1(Ip + 2ξξTΛ−1) ⊗ Λ−1}Dp

]
,

where ⊗ denotes the Kronecker product [see, e.g., 19, Section 5.1]. Finally, the
determinant of the observed information matrix, appearing in (2.5), satisfies
|Jϕϕ(ϕ)| ∝ |Λ−1|p+2 (see Supplementary Material S1.1).

3. Directional test for multiple-sample hypotheses

We consider now testing two hypotheses on the parameters of the multivari-
ate normal model presented in Section 2.3. In particular, we concentrate here
on: (I) equality of covariance matrices in k independent groups; (II) equality
of multivariate normal distributions in k independent groups. We also obtained
similar theoretical results for four one-sample hypotheses about: (III) sphericity
of the covariance matrix; (IV) block-independence; (V) complete independence;
(VI) specified values for the mean vector and the covariance matrix. The de-
tailed results for cases (III)-(VI) are available in Supplementary Material S2. In
all hypotheses, it is shown that the saddlepoint approximation (2.5) is exact,
consequently leading to an exact directional p-value, up to the error from the
scalar numerical integrations in (2.7).

3.1. Testing the equality of covariance matrices in k independent
groups

Suppose yi1, . . . , yini , for i ∈ {1, . . . , k}, k ≥ 2, are independent realizations of
Np(μi,Λ−1

i ). We focus on testing the null hypothesis

Hψ : Λ1 = · · · = Λk. (3.1)
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In the following, with a slight abuse of notation, let yi denote the ni×p data
matrix of the i-th group. We then have ȳi = yTi 1ni/ni and Ai = yTi yi − niȳiȳ

T
i .

The unconstrained maximum likelihood estimates for all i ∈ {1, . . . , k} are μ̂i =
ȳi and Λ̂−1

i = Ai/ni; the constrained maximum likelihood estimates are instead
μ̂0i = ȳi and Λ̂−1

0 =
∑k

i=1 Ai/n, where n =
∑k

i=1 ni. Bartlett [3] suggested to
use the modified maximum likelihood estimator of Λ−1, that is Λ̃−1

i = Ai/(ni−1)
and Λ̃−1

0 =
∑k

i=1 Ai/(n− k). The modified log-likelihood ratio statistic is then
equal to

W̃ =
k∑

i=1
−(ni − 1) log |Λ̃−1

i Λ̃0|.

The null distribution of W̃ is approximately χ2
d with d = kp(p + 1)/2 − p(p +

1)/2 = p(p + 1)(k − 1)/2 if and only if p = o(n1/2
i ), and the analogous con-

dition for the Bartlett correction is p = o(n2/3
i ), for all i ∈ {1, . . . , k} with

finite k [14]. The expression for Skovgaard’s modifications [29] can be found in
Supplementary Material S1.2.

For the directional p-value, under Hψ, the expectation of s has components

−
{

0Tp ,
ni

2 vech
(
Λ̂−1

0 − Λ̂−1
i

)T
}T

, i ∈ {1, . . . , k},

and the tilted log-likelihood, by group independence, can be written as �(ϕ; t) =∑k
i=1 �i(ϕi; t) with the i-th group’s contribution

�i(ϕi; t) = niξ
T
i ȳi −

ni

2 tr
[
Λi

{
yTi yi
ni

+ (1 − t)
(
Λ̂−1

0 − Λ̂−1
i

)}]
+ni

2 log |Λi| −
ni

2 ξTi Λ−1
i ξi.

Maximizing the tilted log-likelihood leads to the estimates μ̂i(t) = ȳi and
Λ̂i(t)−1 = (1 − t)Λ̂−1

0 + tΛ̂−1
i , i ∈ {1, . . . , k}. Hence, the saddlepoint approx-

imation (2.5) takes the form

h{s(t);ψ} = c exp
{

k∑
i=1

ni − p− 2
2 log |Λ̂−1

i (t)|
}
,

where c is a normalizing constant.
The value tsup in (2.7) is the largest t for which Λ̂i(t)−1 is positive definite

and is equal to {1 − min1≤i≤k ν
i
(1)}−1 where νi(1) is the smallest eigenvalue of

Λ̂0Λ̂−1
i (see Lemma 4.2 in Section 4.1).

Since ȳi and Λ̂−1
i in the multivariate normal distribution are independent, we

have that the saddlepoint approximation (2.5) to the density of s is exact, and
therefore the directional p-value follows exactly a uniform distribution, even in
high dimensional settings with p allowed to grow with ni. The exact condition
for the validity of this result is given in the following theorem.
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Theorem 3.1. Assume that p = pn such that ni ≥ p + 2 for all ni ≥ 3, i ∈
{1, . . . , k}, with k fixed. Then, under the null hypothesis Hψ (3.1), the directional
p-value (2.7) is exactly uniformly distributed.

The proof of Theorem 3.1 is given in Appendix A.1. Theorem 3.1 only requires
ni ≥ p + 2, i ∈ {1, . . . , k}, for ensuring that the maximum likelihood estimate
of the covariance matrix exists with probability one. This assumption is weaker
than the condition p/ni → κ ∈ (0, 1] in [18] for the validity of their central limit
theorem approximation with large p. Moreover, although the number of groups
k is considered here as fixed, simulation results show that the accuracy of the
directional test is not affected by the value of k (see Supplementary Material
S3).

3.2. Testing the equality of several multivariate normal distributions

Under the same framework introduced in Section 3.1, we are interested in test-
ing whether the multivariate normal distributions in k independent groups are
identical, meaning

Hψ : μ1 = · · · = μk,Λ1 = · · · = Λk. (3.2)

The empirical within-groups variance A/n and the empirical between-groups
variance B/n depend on the quantities A =

∑k
i=1 y

T
i yi − niȳiȳ

T
i and B =∑k

i=1 niȳiȳ
T
i − nȳȳT , such that A + B =

∑k
i=1 y

T
i yi − nȳȳT , where

ȳ =
∑k

i=1 niȳi/n. The unconstrained maximum likelihood estimates for all
i ∈ {1, . . . , k} are the same as in hypothesis (3.1), while the constrained max-
imum likelihood estimates are μ̂0 = ȳ, Λ̂−1

0 = (A + B)/n. In this case, the
log-likelihood ratio statistic is

W = n log |Λ̂−1
0 | −

k∑
i=1

ni log |Λ̂−1
i | ,

which has asymptotically a χ2
d null distribution with d = {p(p+1)/2+p}(k−1) =

p(p+3)(k−1)/2, provided that p = o(n1/2
i ) for all i ∈ {1, . . . , k}. The analogous

condition for the Bartlett correction is p = o(n2/3
i ) for all i ∈ {1, . . . , k} [14]. The

expressions for Skovgaard’s [29] modifications of the likelihood ratio statistic can
be found in Supplementary Material S1.2.

In order to obtain the directional p-value, we find the components of sψ

−
{
ni(ȳi − ȳ)T , ni

2 vech
(

Λ̂−1
0 − yTi yi

ni
+ ȳȳT

)T
}T

, i ∈ {1, . . . , k},

and the i-th group contribution to the tilted log-likelihood function �(ϕ; t) =∑k
i=1 �i(ϕi; t) with

�i(ϕi; t) = niξ
T
i {tȳi + (1 − t)ȳ} − ni

2 tr
[
Λi

{
tyTi yi
ni

+ (1 − t)
(
Λ̂−1

0 + ȳȳT
)}]
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+ni

2 log |Λi| −
ni

2 ξTi Λ−1
i ξi.

The resulting maximum likelihood estimates from �(ϕ; t) are μ̂i(t) = (1−t)ȳ+tȳi
and Λ̂i(t)−1 = (1−t)Λ̂−1

0 +tΛ̂−1
i +t(1−t)(ȳi−ȳ)(ȳi−ȳ)T . Hence, the saddlepoint

approximation (2.5) along the line s(t) is

h{s(t);ψ} = c exp
{

k∑
i=1

ni − p− 2
2 log |Λ̂−1

i (t)|
}
,

where c is a normalizing constant. The value tsup in (2.7) is the largest t for
which every Λ̂i(t)−1 is positive definite and has to be found iteratively. The
following theorem gives conditions for the exactness of the directional p-value.

Theorem 3.2. Assume that p = pn such that ni ≥ p + 2 for all ni ≥ 3, i ∈
{1, . . . , k}, with k fixed. Then, under the null hypothesis Hψ (3.2), the directional
p-value (2.7) is exactly uniformly distributed.

The proof of Theorem 3.2 is similar to the one of Theorem 3.1 and is given
in Appendix A.2.

4. Computational aspects

4.1. Determination of tsup

The upper bound tsup of the integrals in formula (2.7) is the largest value of t
such that the maximum likelihood estimate Λ̂−1(t) or Λ̂−1

i (t), i ∈ {1, . . . , k}, is
positive definite. Depending on the case, tsup can be found analytically or ap-
proximated numerically. For instance, we can derive Lemma 4.1 and Lemma 4.2
to compute tsup analytically for hypotheses (III)–(V) and (I), respectively. In
particular, for hypotheses (III)–(V), we have that tsup = {1 − ν(1)}−1, where
ν(1) is the smallest eigenvalue of Λ̂0Λ̂−1, while for hypothesis (I) tsup = {1 −
min1≤i≤k ν

i
(1)}−1, where νi(1) is the smallest eigenvalue of Λ̂0Λ̂−1

i . On the con-
trary, there is no available closed form for tsup when testing hypotheses (II) and
(VI). In such cases, we need to find tsup by searching iteratively values of t > 1
until matrices Λ̂−1(t) for hypothesis (VI) or Λ̂−1

i (t), i ∈ {1, . . . , k} for hypothesis
(II) are no longer positive definite.

Lemma 4.1. The estimator Λ̂−1(t) is positive definite if and only if all elements
1− t+ tνl, l ∈ {1, . . . , p}, are positive, where νl are the eigenvalues of the matrix
Λ̂0Λ̂−1. Specifically, Λ̂−1(t) is positive definite in t ∈ [0, {1−ν(1)}−1], where ν(1)

is the smallest eigenvalue of Λ̂0Λ̂−1.

The proof of Lemma 4.1 is given in Appendix A.3.

Lemma 4.2. The estimator Λ̂−1
i (t), i ∈ {1, . . . , k}, is positive definite if and

only if all elements 1 − t + tνil , l ∈ {1, . . . , p}, are positive, where νil are the
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Fig 1. Integrand function exp{ḡ(t;ψ)−ḡ(t̂;ψ)} in an example of the directional p-value to test
the hypothesis (3.1). The n = 100 observations are sampled from a Np(0p, Ip) distribution
with p = 70. The left panel refers to the interval [0, tsup] = [0, 1.046135], the right panel to
the interval [tmin, tmax] = [0.985117, 1.025937].

eigenvalues of the matrix Λ̂0Λ̂−1
i . Specifically, Λ̂−1

i (t), i ∈ {1, . . . , k}, are all
positive definite in t ∈

[
0, {1 − min1≤i≤k ν

i
(1)}−1

]
, where νi(1) is the smallest

eigenvalue of Λ̂0Λ̂−1
i .

The proof of Lemma 4.2 is given in Appendix A.4.

4.2. Numerical integration for the directional p-value

Let g(t;ψ) = td−1h{s(t);ψ} = exp[(d − 1) log t + log h{s(t);ψ}] = exp{ḡ(t;ψ)}
be the integrand function in formula (2.7). In order to account for situations in
which g(t;ψ) is numerically too small or too large, we consider rescaling ḡ(t;ψ)
in the interval [0, tsup] using ḡ(t̂;ψ) = supt∈[0,tsup] ḡ(t;ψ). The directional p-value
can then be computed as

p(ψ) =
∫ tsup
1 exp{ḡ(t;ψ) − ḡ(t̂;ψ)}dt∫ tsup
0 exp{ḡ(t;ψ) − ḡ(t̂;ψ)}dt

.

Moreover, when the dimension p is large, the integrand function often concen-
trates on a very small range, meaning that it is significantly different from zero
in a very small interval around t̂. Using an example of the hypothesis problem
(3.1) as an illustration, in the left hand panel of Figure 1 the integrand function
is plotted over the interval [0, tsup]. We can observe that only for very few t
values the function is appreciably different from zero. For a more accurate and
efficient numerical integration, we can apply the Gauss-Hermite quadrature [21],
and focus on a narrower integration interval [tmin, tmax]. The integrand function
curve in such an interval is displayed in the right hand panel of Figure 1. Hence,
the directional p-value can be well approximated by

p(ψ) .=
∫ tmax
1 exp{ḡ(t;ψ) − ḡ(t̂;ψ)}dt∫ tmax
tmin

exp{ḡ(t;ψ) − ḡ(t̂;ψ)}dt
. (4.1)
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Details on the implemention of the Gauss-Hermite quadrature (4.1) for the
hypotheses considered in Section 3 and Supplementary Material S2 are described
in Supplementary Material S1.3.

5. Simulation studies

5.1. Setup

The performance of the directional test for the hypotheses of Section 3 in the
high dimensional multivariate normal framework is here assessed via Monte
Carlo simulations based on 100 000 replications. The exact directional test is
compared with the χ2

d approximation for the log-likelihood ratio test, its Bartlett
correction, two Skovgaard’s modifications [29], and with the normal approxima-
tion for the test proposed by Jiang and Yang [18]. The six tests are evaluated
in terms of empirical distribution, empirical distribution of the correspond-
ing p-values, estimated size and power. Simulation results for the hypotheses
(III)–(VI) are reported in Supplementary Material S4.

Samples of size ni, i ∈ {1, . . . , k}, are generated from the p-variate standard
normal distribution Np(0p, Ip) under the null hypothesis. For each simulation
experiment, we show results for k = 3, ni = 100 for all i = 1, 2, 3, and p/ni ∈
{0.05, 0.1, 0.3, 0.5, 0.7, 0.9}. Additional results for different values of ni and p/ni

are reported in Supplementary Material S5–S6. The various simulation setups
are detailed below, partly taken from Jiang and Yang [18].

Hypothesis (I): testing the equality of covariance matrices in k normal distri-
butions. When evaluating power, four settings are considered for the alternative
hypothesis: (1) Λ−1

1 = Ip, Λ−1
2 = 1.21Ip and Λ−1

3 = 0.81Ip; (2) Λ−1
1 = Ip,

Λ−1
2 = Λ−1

3 = Λ−1
1 +δ(pni)−1/2Ip; (3) Λ−1

1 = Ip, Λ−1
2 = Λ−1

3 = (1−ρ)Ip +ρ1p1Tp
with ρ = δ(pni)−1/2; (4) Λ−1

1 = Ip, Λ−1
2 = Λ−1

3 = diag(η, 1Tp−1) where η ∈ R
+.

Hypothesis (II): testing the equality of k multivariate normal distributions.
When evaluating power, four settings are considered for the alternative hypoth-
esis: (1) μ1 = 0p, μ2 = μ3 = 0.1 ·1p and Λ−1

1 = 0.51p1Tp +0.5Ip, Λ−1
2 = 0.61p1Tp +

0.4Ip, Λ−1
3 = 0.51p1Tp +0.31Ip; (2) and (3) μ1 = 0p, μ2 = μ3 = δ(pni)−1/21p; (4)

μ1 = 0p, μ2 = μ3 = {10(pni)−1/2, 0Tp−1}T , and the setup of covariance matrices
of (2)–(4) as in Hypothesis (I).

In Supplementary Material S3 we report the empirical results for hypotheses
(I)–(II) with large group values of k ∈ {30, 300}, which show that the accuracy
of the directional p-value does not change.

5.2. Null distribution

The Monte Carlo simulations for the hypotheses (I) and (II) described in Sec-
tion 3 are here illustrated. The Type I error at level α = 0.05 based on the
approximate null distribution of the various statistics is evaluated here. The
empirical distribution of p-values for the six tests is examined by comparison
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Table 1

Empirical probability of Type I error for hypotheses (I) and (II) for the directional test
(DT), central limit theorem test (CLT), log-likelihood ratio test (LRT), Bartlett correction
(BC) and two Skovgaard’s modifications [29] (Sko1 and Sko2, respectively) at the nominal

level α = 0.05, n1 = n2 = n3 = 100
Hypothesis p/ni DT CLT LRT BC Sko1 Sko2

(I) 0.05 0.050 0.078 0.062 0.050 0.048 0.048
0.1 0.049 0.064 0.102 0.049 0.041 0.040
0.3 0.051 0.057 0.950 0.067 0.010 0.006
0.5 0.050 0.054 1.000 0.183 0.000 0.000
0.7 0.050 0.054 1.000 0.865 0.000 0.000
0.9 0.049 0.054 1.000 1.000 0.065 0.000

(II) 0.05 0.049 0.061 0.068 0.049 0.045 0.045
0.1 0.048 0.055 0.115 0.049 0.037 0.036
0.3 0.051 0.055 0.967 0.068 0.007 0.003
0.5 0.050 0.053 1.000 0.192 0.000 0.000
0.7 0.050 0.053 1.000 0.880 0.000 0.000
0.9 0.049 0.053 1.000 1.000 0.032 0.000

with the Uniform(0, 1) distribution in Supplementary Material S3. The limit-
ing null distribution of the statistics is also compared with their corresponding
chi-square or standard normal distribution in Supplementary Material S3.

Table 1 reports the empirical Type I error at the nominal level α = 0.05
under the null hypotheses (I) and (II), from top to bottom respectively. The
directional test exhibits an excellent performance in terms of empirical Type
I error, indeed the directional p-value is exact up to simulation error for all
different choices of p, as suggested by the theory in Section 3. Specifically, it
is significantly better than that of the central limit theorem test of Jiang and
Yang [18] which has a slightly liberal empirical Type I error. In addition, the
four statistics with chi-square approximate distributions are not very accurate,
and even remarkably unreliable with increasing p/ni. This behavior confirms
results in [14]: the chi-square approximation to the log-likelihood ratio statistic’s
distribution applies if and only if p = o(n1/2

i ) and that to its Bartlett correction
if and only if p = o(n2/3

i ), i ∈ {1, . . . , k}, which are both instances of low
dimensional asymptotic regimes. There is no analogous theoretical result for
Skovgaard’s statistics [29], yet the numerical evidence suggests an intermediate
condition between those of the log-likelihood ratio statistic and its Bartlett
corrected version. We note that, somehow surprisingly, the empirical Type I
error for one of the two Skovgaard’s modifications improves for the largest value
p/ni = 0.9.

5.3. Empirical corrected power

The power of the tests considered for the hypotheses problems in the previous
section are here investigated empirically for some alternative settings. In par-
ticular, four possible choices for μi and Λ−1

i under the alternative hypotheses
detailed in Section 5.1 are studied. The first alternative setting (1) is taken from
Jiang and Qi [17], who extended the use of the central limit theorem test devel-
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Fig 2. Empirical corrected powers of four tests. The solid, dashed, long-dashed, and dot-
dashed curves are the empirical power functions of the central limit theorem test, directional
test and two Skovgaard’s modifications [29], respectively. The top and bottom rows correspond
to hypotheses (I) and (II), respectively; the left, middle and right columns correspond to
alternative hypothesis settings (1), (2) and (3), respectively. The two right-most columns
refer to the scenario with p/ni = 0.3.

oped in Jiang and Yang [18] to cases where p is very close to n (see Section 6 for
further details). The second alternative setting (2) deals with situations where
the Frobenius norm between the null and alternative parameters converges to
zero as ni goes to infinity. The third alternative setting (3) is based on the com-
pound symmetry structure of the covariance matrix with correlation going to
zero as ni diverges, while only one group has the identity structure. The last al-
ternative setting (4) is motivated by Jensen [16] and considers a situation where
only one or two elements of the vector parameter differ between the null and
alternative hypotheses. Due to space constraints, we report here results referred
to the corrected power only. Corrected power is based on the corrected Type I
error, which is the 5% quantile of the empirical p-values obtained under the null
hypothesis, and is reported in Supplementary Material S3. This allows a fair
comparison among the tests, since power is intended with a given significance
level. However, it is important to remark that the directional p-value is the only
approach that does not need a correction for the Type I error, being exact un-
der the null hypothesis. The central limit theorem, log-likelihood ratio test and
Bartlett correction have the same corrected power as they use the same test
statistic W and result in different cutoff values for the corrected Type I error.
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The left-most column of Figure 2 summarizes simulation results for the hy-
potheses (I) and (II) and p/ni ∈ {0.05, 0.1, 0.3, 0.5, 0.7, 0.9}. The alternative
setting for each hypothesis is the same as in Jiang and Qi [17], where the use of
the central limit theorem test was recommended. The power of the directional
test across the different ratios p/ni is always greater than the nominal level 0.05;
it is comparable with the corrected power of the central limit theorem test, log-
likelihood ratio test and Bartlett correction when p is moderate, but it is lower
otherwise. However, it must be taken into account that the log-likelihood ra-
tio test and Bartlett correction do not control the Type I error when p is large,
therefore their power is meaningless in such scenarios. Finally, Skovgaard’s tests
have uniformly the lowest corrected power.

We also investigate the local power, i.e. how large δ in the alternative settings
of Section 5.1 needs to be so that the power can tend to 1. The middle and right
columns of Figure 2 display the empirical local corrected power of the tests
for various values of δ and ratio p/ni = 0.3. Under the alternative setting (2),
shown in the middle column, the power of the directional test is comparable
or slightly superior to the corrected power of the central limit theorem test,
and clearly higher than the corrected power of the Skovgaard’s modifications.
Under the alternative setting (3), shown in the right column, the directional test
is the most powerful while the central limit theorem test has the worst power
performance even after correction for Type I error.

Finally, Figures 3 and 4 analyse the empirical corrected power of the tests for
various ratios p/ni as η in Section 5.1 varies under the alternative setting (4)
[16] of hypotheses (I) and (II), respectively. The directional test enjoys the best
properties, proving to be particularly powerful with respect to its competitors
when p/ni ≥ 0.5. Even in this case, the corrected power of the central limit
theorem test is uniformly lowest.

6. Discussion

This work examines directional testing for hypotheses on a vector parameter
of interest in p-variate normal distributions when ni independent observations
are available for the i-th group (i = 1, . . . , k) in the high dimensional regime
with p/ni → κ ∈ (0, 1] [4]. The construction of the directional test is based on
the saddlepoint approximation to the density of the canonical sufficient statis-
tic, which is found to be exact provided that each ni ≥ p + 2. The numerical
results support the theoretical findings on the exact control of Type I error
of the directional approach under these mild conditions. The simulation out-
comes show that the directional test outperforms the omnibus tests which look
in all directions of the parameter space for alternatives both when p is large and
small relatively to ni. Our formal derivations of the exactness of the underlying
saddlepoint-type expansions provide also a theoretical ground to previous nu-
merical findings obtained in high dimensional simulation settings [9, Example
5.3].

The six hypotheses testing problems considered here and in the Supplemen-
tary Material mainly come from [18] and [17]. Jiang and Qi [17] showed that
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Fig 3. Empirical corrected power of four tests for hypothesis (I) with different values of η
and p/ni. The solid, dashed, long-dashed, and dot-dashed curves are the empirical power
functions of the central limit theorem test, directional test and two Skovgaard’s modifications
[29], respectively. The alternative setting (4) is given in Section 5.1. The six plots correspond
to p/ni ∈ {0.05, 0.1, 0.3, 0.5, 0.7, 0.9}, starting from top left and proceeding by row.

the central limit theorem test works well when p is very close to ni, assuming
that ni > p + a for some constant 1 ≤ a ≤ 4. In our Monte Carlo experi-
ments, the central limit theorem result seems inaccurate when the dimension p
is small, while the directional test is able to control exactly the Type I error for
every value of p, provided that ni ≥ p + 2. The two tests have been compared
empirically also in terms of corrected power for some alternative hypotheses.
Similarly to the log-likelihood ratio test, the central limit theorem approach is
an omnibus test, whereas the directional test measures the departure from the
null hypothesis along the direction determined by the observed data point. In
this respect, the latter is not constructed based on any kind of optimality [28]
and its marginal power may change according to the specific alternative setting
[16]. Nevertheless, our empirical results found not only that the power of the
directional test does not need any correction for Type I error, but also that it
is overall comparable with the corrected power of its main competitor.

The asymptotic theory for the directional test derived in this paper applies to
linear exponential family models with hypotheses regarding linear functions of
the canonical parameter, as in [9]. Similar results for tests regarding the mean
vector and/or covariance matrix that cannot be expressed as hypotheses on
linear function of the canonical parameter could be obtained under the more
general framework in [13]. Further research might focus on deriving the proper-
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Fig 4. Empirical corrected power of four tests for hypothesis (II) with different values of
η and p/ni. The solid, dashed, long-dashed, and dot-dashed curves are the empirical power
functions of the central limit theorem test, directional test and two Skovgaard’s modifications
[29], respectively. The alternative setting (4) is given in Section 5.1. The six plots correspond
to p/ni ∈ {0.05, 0.1, 0.3, 0.5, 0.7, 0.9}, starting from top left and proceeding by row.

ties of directional inference when p increases with n under the models considered
previously by [13] and [23] for fixed p only.

In general, the accuracy of the directional p-value stems from the accuracy
of the underlying saddlepoint approximation to the conditional density of the
canonical sufficient statistic. For instance, in the high dimensional regime the
directional test for the one-sample hypothesis on the normal mean vector Hψ :
μ = μ0 is expected to behave as those seen here, since it was shown equivalent to
the Hotelling’s T 2 statistic [23]. In the multiple-sample case, preliminary results
reveal that the high dimensional accuracy determined by the exactness of the
directional p-value for testing the equality of the mean vectors is preserved only
when assuming an identical covariance matrix for the k independent groups.

For multivariate continuous distributions there are other instances of exact-
ness of the saddlepoint approximation [26, Section 10.9] where we can expect
accuracy comparable with the high dimensional normal case. On the other hand,
saddlepoint methods cannot be exact with discrete probability functions. In
settings where the hypotheses are not linear in the canonical parameter or the
saddlepoint approximation is not exact, ongoing simulation results and previ-
ous works [13, 9, Section 4.2] suggest that a low dimensional asymptotic regime
where p/n → 0, typically with p = O(nα), 0 ≤ α < 1, might be required for
observing the same accuracy of the directional p-value found in this paper.
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Our interest in this work lies exclusively in the high dimensional asymptotic
regime because the maximum likelihood estimation is generally feasible in such
situation, and so is the computation of the directional p-value. That being said,
under particular sparsity assumptions [4, Section 4.4] it is possible that the
maximum likelihood estimator exists even if p > n, thus in principle also the
directional approach can be adopted in the ultra-high dimensional regime. As an
example, consider hypothesis (III) in the Supplementary Material S2, testing the
sphericity of the concentration matrix. The maximum likelihood estimate exists
as long as n is larger than the maximal clique size of the corresponding graph
[5]; hence, if the concentration matrix is assumed sparse enough directional
inference can still be applied [10].

Appendix

A.1. Proof of Theorem 3.1

Proof. Suppose yij ∼ Np(μi,Λ−1
i ), i ∈ {1, . . . , k}, j ∈ {1, . . . , ni}. For each i-th

group, the random variables yij are independent. Let ȳi = n−1
i 1Tni

yi, Λ̂−1
i =

n−1
i yTi yi− ȳiȳ

T
i . In this case, Λ̂−1

i ∼ Wp(ni−1, n−1
i Λ−1

i ), for i ∈ {1, . . . , k}. Due
to the groups independence, the joint distribution of Λ̂i, i ∈ {1, . . . , k}, is the
product of Wishart densities

∏k
i=1 f(Λ̂−1

i ; Λ−1
i ) with

f(Λ̂−1
i ; Λ−1

i ) =
(ni

2

) p(ni−1)
2 Γp

(
ni − 1

2

)−1

×|Λ−1
i |−

ni−1
2 etr

(
−ni

2 ΛΛ̂−1
i

)
|Λ̂−1

i |
ni−p−2

2 . (A.1)

The log-likelihood for the canonical parameter ϕ under the multivariate normal
distribution is

�(ϕ; s) =
k∑

i=1

ni

2 log |Λi| −
1
2tr(Λiy

T
i yi) + nȳTi ξi −

ni

2 ξTi Λ−1
i ξi.

In order to assess the exactness of the saddlepoint approximation, it is conve-
nient to express the log-likelihood function for ϕ as

�(ϕ; s) =
k∑

i=1
−ni

2 log |Λ−1
i | − ni

2 tr(ΛiΛ̂−1
i ) − ni

2 (ȳi − Λ−1
i ξi)TΛi(ȳi − Λ−1

i ξi).

(A.2)
The maximum likelihood estimate ϕ̂ has components {ξ̂Ti , vech(Λ̂i)T }T ={ȳTi Λ̂i,
vech(Λ̂i)T }T and the constrained maximum likelihood estimate ϕ̂ψ has com-
ponents {ȳTi Λ̂0, vech(Λ̂0)T }T , i ∈ {1, . . . , k}. Evaluating (A.2) at the uncon-
strained and constrained maximum likelihood estimates for ϕ, the correspond-
ing log-likelihood at ϕ̂ and ϕ̂ψ are �(ϕ̂; s) = 2−1 ∑k

i=1 −ni log |Λ̂−1
i | − nip and

�(ϕ̂ψ; s) = 2−1 ∑k
i=1 −ni log |Λ̂−1

0 | − nitr(Λ̂0Λ̂−1
i ), respectively. Then, under
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the null hypothesis Hψ, and using the fact that |Jϕϕ(ϕ̂)| is proportional to∏k
i=1 |Λ̂−1

i |p+2 (see Supplementary Material S1.1), the saddlepoint approxima-
tion (2.5) is

h(s;ψ) =
k∏

i=1
ci(ψ) |Λ̂−1

0 |−
ni−1

2 exp
{
−ni

2 tr(Λ̂0Λ̂−1
i )

}
|Λ̂−1

i |
ni−p−2

2 . (A.3)

Formula (A.3) is the exact joint distribution of Λ̂−1
1 , . . . , Λ̂−1

k , i.e. a product of
Wishart densities with parameters (ni−1, Λ̂−1

0 ) given in (A.1), if Λ̂−1
0 is consid-

ered as fixed. In particular, we have ci(ψ)=ci=(ni/2)p(ni−1)/2 Γp {(ni − 1)/2}−1.
It is indeed correct to fix Λ̂−1

0 because when considering the saddlepoint approx-
imation density along the line s(t), by construction the constrained maximum
likelihood estimates of Λ−1

i is fixed and equal to the observed value Λ̂−1
0 .

When we consider the density of s(t), we just need to replace Λ̂−1
i in (A.3)

with Λ̂−1
i (t), i.e. the value which maximizes � {ϕ; s(t)}. Then, given that Λ̂−1

i (t)=
(1 − t)Λ̂−1

0 + tΛ̂−1
i and the groups are independent, under Hψ we have

h{s(t);ψ} =
k∏

i=1
ci |Λ̂−1

0 |−
ni−1

2 exp
[
−ni

2 tr{Λ̂0Λ̂i(t)−1}
]
|Λ̂i(t)−1|

ni−p−2
2

∝ exp
{

k∑
i=1

ni − p− 2
2 log |Λ̂−1

i (t)|
}
,

where we have used the equality n−1tr(
∑k

i=1 niΛ̂0Λ̂−1
i ) = p with n =

∑k
i=1 ni.

Since the saddlepoint approximation h{s(t);ψ} is exact, apart from the normal-
izing constant, the integral in the denominator of the directional p-value (2.7)
is just the normalizing constant of the conditional distribution of ||s|| given the
direction s/||s||. Therefore, the directional p-value is the exact probability of
||s|| > ||s0|| given the direction s/||s|| under the null hypothesis, and is thus
exactly uniformly distributed.

A.2. Proof of Theorem 3.2

Proof. We know that ȳi ∼ Np(μi, n
−1
i Λ−1

i ) and Λ̂−1
i ∼ Wp(ni − 1, n−1

i Λ−1
i ),

i ∈ {1, . . . , k}. In addition, ȳi and Λ̂i are independent [25, Section 10.8], thus
the joint distribution of ȳi and Λ̂i takes the form

∏k
i=1 f(ȳi;μi,Λ−1

i )f(Λ̂−1
i ; Λ−1

i )
with

f(ȳi;μi,Λ−1
i ) = (2π)−

p
2 |Λ−1

i |− 1
2 exp

{
−ni

2 (ȳi − μi)TΛi(ȳi − μi)
}
,

f(Λ̂−1
i ; Λ−1

i ) = (ni/2)
p(ni−1)

2 Γp

(
ni − 1

2

)−1

×|Λ−1
i |−

ni−1
2 etr

(
−ni

2 ΛΛ̂−1
i

)
|Λ̂−1

i |
ni−p−2

2 .
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Similarly to the proof of Theorem 3.1, we can easily obtain the saddlepoint
approximation to the density of the sufficient statistic s as

h(s;ψ) =
k∏

i=1
ci1 |Λ̂−1

0 |− 1
2 exp

{
−ni

2 (ȳi − μ̂0)T Λ̂0(ȳi − μ̂0)
}

×ci2 |Λ̂−1
0 |−

ni−1
2 exp

{
−ni

2 tr(Λ̂0Λ̂−1
i )

}
|Λ̂−1

i |
ni−p−2

2 . (A.4)

Expression (A.4) equals the exact joint distribution of ȳ1, . . . , ȳk and Λ̂−1
1 , . . . , Λ̂−1

k

with ci1 = (2π)−p/2, ci2 =
(
ni

2
)p(ni−1)/2 Γp

(
ni−1

2
)−1 and with fixed μ̂0 and

Λ̂−1
0 . It is indeed correct to consider μ̂0 and Λ̂−1

0 as fixed since the constrained
maximum likelihood estimate is fixed and equal to the observed value when con-
sidering the saddlepoint approximation along the line s(t) under Hψ. In such
case we have μ̂i(t) = (1 − t)μ̂0 + tȳi and Λ̂i(t)−1 = (1 − t)Λ̂−1

0 + tΛ̂−1
i + t(1 −

t)(ȳ− ȳi)(ȳ− ȳi)T where μ̂0 = ȳ and Λ̂−1
0 = n−1(A+B) (see Section 3 for more

details). Then, the saddlepoint approximation for the distribution of s(t) under
Hψ follows from (A.4), and is equal to

h{s(t);ψ} =
k∏

i=1
c1i |Λ̂−1

0 |− 1
2 exp

[
−ni

2 {μ̂i(t) − μ̂0}T Λ̂0{μ̂i(t) − μ̂0}
]

×ci2 |Λ̂−1
0 |−

ni−1
2 exp

[
−ni

2 tr{Λ̂0Λ̂i(t)−1}
]
|Λ̂i(t)−1|

ni−p−2
2

∝ exp
{

k∑
i=1

ni − p− 2
2 log |Λ̂i(t)−1|

}
.

The remaining part of the proof is similar to that for hypothesis (I). It follows
then that the directional p-value is exactly uniformly distributed under the null
hypothesis Hψ.

A.3. Proof of Lemma 4.1

Proof. If t ∈ [0, 1] the result is straightforward, because a convex combination
of positive definite matrices is positive definite. Indeed, for all x ∈ R

p, x �=
0, xT Λ̂−1(t)x = (1 − t)xT Λ̂−1

0 x + txT Λ̂−1x > 0 since 1 − t ≥ 0 and t ≥ 0.
Let us focus on the case t > 1. Consider a square root B0 of Λ̂−1

0 such that
Λ̂−1

0 = B0B
T
0 = BT

0 B0, which always exists if Λ̂−1
0 is positive definite. Hence,

the estimator Λ̂−1(t) = (1 − t)Λ̂−1
0 + tΛ̂−1 can be rewritten as

Λ̂−1(t) = BT
0

{
(1 − t)Ip + t(BT

0 )−1Λ̂−1B−1
0

}
B0.

The matrix (BT
0 )−1Λ̂−1B−1

0 is symmetric since Λ̂−1 is symmetric. Moreover, ac-
cording to the eigen decomposition [22, Theorem 1.13], there exists an orthogo-
nal p×p matrix P whose columns are eigenvectors of (BT

0 )−1Λ̂−1B−1
0 and a di-

agonal matrix Q whose diagonal elements are the eigenvalues of (BT
0 )−1Λ̂−1B−1

0 ,
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such that (BT
0 )−1Λ̂−1B−1

0 = PQPT . Therefore, we have Λ̂−1(t)=BT
0 P {(1 − t)Ip

+tQ}PTB0. Lemma 4.1 can then be proved through the following three steps.
Step 1: checking that Λ̂−1(t) is positive definite is equivalent to checking that

(1 − t)Ip + tQ is positive definite. Indeed, for all x ∈ R
p, x �= 0, then

xT Λ̂−1(t)x = xTBT
0 P {(1 − t)Ip + tQ}PTB0x

= x̃T {(1 − t)Ip + tQ} x̃ > 0,

where x̃ = PTB0x, with x̃ �= 0 if x �= 0.
Step 2: checking that (1−t)Ip+tQ is positive definite is equivalent to checking

that all diagonal elements of the diagonal matrix (1 − t)Ip + tQ = diag(1 − t +
tνl) are positive, where νl, l ∈ {1, . . . , p}, are the eigenvalues of the matrix
(BT

0 )−1Λ̂−1B−1
0 . We now need to find out the largest t such that 1 − t + tνl >

0, l ∈ {1, . . . , p}:

• if 1 − ν(1) > 0, where ν(1) is the smallest eigenvalue of (BT
0 )−1Λ̂−1B−1

0 ,
then t < 1

1−νl
≤ 1

1−ν(1)
;

• if 1 − ν(1) ≤ 0, then t > 1
1−νl

as 1
1−νl

< 0, and this condition holds true
∀ t ∈ R

+.

Step 3: The last step consists of checking that the eigenvalues ν1, . . . , νp of
(BT

0 )−1Λ̂−1 B−1
0 are the same as those of Λ̂0Λ̂−1, which is equivalent to show

that the matrices (BT
0 )−1Λ̂−1B−1

0 and Λ̂0Λ̂−1 are similar. In addition, Λ̂−1
0 =

BT
0 B0, given the invertible matrix B0 such that

B−1
0 (BT

0 )−1Λ̂−1B−1
0 B0 = B−1

0 (BT
0 )−1Λ̂−1 = Λ̂0Λ̂−1.

According to matrix similarity, (BT
0 )−1Λ̂−1B−1

0 and Λ̂0Λ̂−1 are similar and
therefore have the same eigenvalues.

Finally, since Λ̂0Λ̂−1 is positive definite and tr(Λ̂0Λ̂−1) = p, the smallest
eigenvalue ν(1) must be lower than 1. Therefore, Λ̂−1(t) is positive definite in
t ∈ [0, {1 − ν(1)}−1].

A.4. Proof of Lemma 4.2

Proof. Based on the proof of Lemma 4.1, it is easy to show that Λ̂−1
i (t) for all

i ∈ {1, . . . , k}, is positive definite if and only if all elements 1 − t + tνil > 0,
where νil , l ∈ {1, . . . , p}, are the eigenvalues of the matrix Λ̂0Λ̂−1

i , i ∈ {1, . . . , k}.
Since Λ̂0Λ̂−1

i are positive definite and tr(Λ̂0Λ̂−1
i ) = p for all i ∈ {1, . . . , k},

there exists at least one of the νi(1) lower than 1, where νi(1) denotes the smallest
eigenvalue of Λ̂0Λ̂−1

i . In this respect, Λ̂−1
i (t), ∀i ∈ {1, . . . , k}, are positive definite

in t ∈
[
0, {1 − min1≤i≤k ν

i
(1)}−1

]
.
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