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Locating γ-Ray Sources on the Celestial Sphere
via Modal Clustering
Individuazione di sorgenti di raggi γ sulla sfera mediante
clustering non parametrico

Anna Montin, Alessandra R. Brazzale, Giovanna Menardi

Abstract Searching for as yet undetected γ-ray sources is a major target of the
Fermi LAT Collaboration. In this paper, we present an algorithm capable to identify
such type of sources by non-parametrically clustering the directions of arrival of the
high-energy photons detected by the telescope. Using statistical tools from hypoth-
esis testing and classification, we furthermore present an automatic way to skim off
sound candidate sources from the γ-ray emitting diffuse background and to quantify
their significance. The algorithm was calibrated on simulated data provided by the
Fermi LAT collaboration and will be illustrated on a real Fermi LAT case-study.

Abstract L’individuazione di sorgenti di raggi gamma è uno degli obiettivi dichiarati
della Collaborazione Fermi LAT. Presentiamo qui un algoritmo per l’individuazione
di queste sorgenti basato sul clustering non parametrico delle direzioni di arrivo dei
fotoni ad alta energia rilevate dal telescopio. Sfruttando risultati della teoria dei test
statistici e dell’apprendimento supervisionato, presentiamo, inoltre, come scremare
le sorgenti candidate dalla componente diffusa della radiazione di fondo e attribuire
loro una misura della significatività. L’algoritmo è stato calibrato su dati simulati
forniti dalla Collaborazione Fermi LAT e sarà illustrato su un caso di studio reale.

Key words: directional data, kernel density estimator, man-shift algorithm, tree-
based classification
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2 A. Montin, A. R. Brazzale, and G. Menardi

Fig . 1 Fermi-LAT γ-ray
photon count maps for a
5-year observation period.
Left: in polar coordinates.
Right: in Galactic coordinates.
Yellow: analysed region.
Green: training set for post-
processing classifier. Red:
Galactic plane.

1 Motivation and rationale

In γ-ray astronomy, the data typically consist of an event list which gives the di-
rection in the sky of each detected photon together with additional information. If
the distance to the emitting source is not relevant, the data points are placed on the
celestial sphere with Earth at its center and unit radius, as shown in the left panel
of Figure 1. Directions are often expressed in galactic coordinates, which place the
origin of the Cartesian system in the center of our galaxy — the Milky Way —
and align the x-axis with the galactic plane (right panel of Figure 1). To overcome
mismatches due to projecting data on the 2-dimensional sky map, we rather express
directions through polar coordinates, that is, co-latitude (θ ) and longitude (φ ) in
geographical terms, which can easily be back-transformed to Cartesian coordinates
x= (cosθ ,sinθ cosφ ,sinθ sinφ)⊤ on the unit sphere.

Discovering and locating high-energy emitting sources in the whole sky map is
a declared target of the Fermi Gamma-ray Space Telescope collaboration. An astro-
nomical source is an object in outer space which, in our case, emits γ-ray photons,
that is, quanta of light in the highest energy range. Traditionally, analyses are based
on so-called single-source models [4, § 7.4], which require the whole sky map to
be split into small regions. The presence of a possible new source is assessed on
a pixel-by-pixel basis using Poisson regression and likelihood ratio testing. Con-
versely, variable-source-number models address the problem from a more global
perspective, as they simultaneously model and locate all sources in a sky map [4,
§ 7.3]. A most recent example of application to the γ-ray count maps accumulated
by the LAT — the principal scientific instrument on board the Fermi spacecraft —
is [7].

In this paper, we present a flexible algorithm for the efficient identification of
γ-ray sources. In particular, we address the problem from the global perspective of
variable-source-number models while working on the sphere. From the modeling
point of view, the sources will be represented by highly concentrated clusters. [2]
provide an illustration of directional model-based clustering of Fermi LAT data us-
ing a finite mixture of von Mises-Fisher distributions. Our approach uses modal
clustering, which combines the advantages of both, model-based clustering and
non-parametric methods, to guarantee the required flexibility. The corresponding
methodological background is reviewed in Section 2. We will illustrate our proposal
through a case-study of Fermi LAT data in Section 3.
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Locating γ-Ray Sources on the Celestial Sphere via Modal Clustering 3

2 Modal clustering on the sphere

General framework. Allocating objects to an unknown number of groups accord-
ing to a set of observed attributes or features is a natural activity of any science. A
surge of techniques has been proposed over the years, which differ significantly in
their definition of what a “group” is. The non-parametric formulation, referred to as
modal clustering, associates clusters with the domain of attraction of the modes of
the underlying density, which are usually estimated non-parametrically [6]. Modal
clustering can be recast into the frame of a standard statistical problem by consid-
ering the observed data (x1, . . . ,xn) as a sample of n realisations of a d-dimensional
random vector X from a probability density function f : X ⊆Rd →R+. The modes
of f (·) represent the archetypes of the clusters, which are in turn described by the
surrounding regions.

Mode hunting. In our setting, directions in R3 are represented as unit vectors x, that
is, as points on the sphere Ω 2 = {x∈R3 : ||x||2 = x2

1 +x2
2 +x2

3 = 1} with unit radius
and centre at the origin. Density estimation is performed by a suitable extension of
a kernel density estimator to the directional setting [1]

f̂n(x) =
ch(K)

n

n

∑
i=1

K
(

1− x⊤xi

h2

)
, (1)

where K(·) is a kernel function, ch(K) the associated normalizing constant, and the
bandwidth parameter h > 0 controls the smoothness of the estimator.

To account for the rugged nature of the data, which exhibit highly heterogeneous
levels of concentration over the sphere, the estimator (1) is extended to account for a
variable bandwidth h= h(xi), selected according to scientific input. In particular, we
use the scale parameter of the point spread function, which describes the response
of the LAT to the point source. Grossly, this amounts to associating smaller values
of h with precise events characterized by higher energies and which are usually
disclosed around the direction of photon emission. The choice is consistent with the
requirement of reducing the amount of smoothing nearby the high-density regions,
as it is usually acknowledged by variable kernel density estimators.

A popular choice for the directional kernel is linked to the von Mises-Fisher
(vMF) distribution [5]

fvMF(x; µ ,κ) = c3(κ)eκx⊤µ ,

where c3 is a normalizing constant, µ ∈ Ω 2 is the mean direction, and κis a concen-
tration parameter around the mean. Here, κ is set to vary inversely with the band-
width, i.e. K(·) = fvMF(·;xi,1/h) . This distribution describes observations which
scatter symmetrically around their mean value and can be regarded as the general-
ization of the normal distribution to spherical data.

Sources are aimed to be identified by pursuing the explicit task of mode detec-
tion, and modal regions are formed by sets of points along the steepest ascent path
towards a mode. This is achieved by adapting the mean-shift algorithm [6, § 2.2]
to be used with the directional kernel estimator (1). Starting from a generic point
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4 A. Montin, A. R. Brazzale, and G. Menardi

x(0), the algorithm recursively shifts it to a local weighted mean, until convergence.
Denoted by wi(x(s)) the vector of weights of the components of xi at step s, at the
next step

x(s+1) =
n

∑
i=1

wi(x(s))xi = x(s) +M(x(s)),

where M(x(s)) = ∑n
i=1 wi(x(s))xi − x(s) denotes the mean shift. Up to a normalising

factor, the weights wi(x) are specified as ∇K
(
h−2(1− x⊤xi)

)
, where ∇K(·) is the

gradient of the kernel function.

Post-processing. To separate the signal of the supposed emitting source from the
diffuse γ-ray background, which spreads over the entire area observed by the tele-
scope, we propose a post-processing procedure that combines the findings of two
parallel quests.

On one hand, we supervise a suitable classifier, based on a training sample drawn
from the available LAT catalogue, for which information on the earlier detected
sources is available. The classifier integrates additional information on the photons
such as their energy, position, the number present in the same cluster, the density
estimates for the signal and the background model and various types of distances to
the detected mode. This allows us to skim off the photons emitted from high-energy
emitting sources from those which originate from the diffuse background.

In parallel, we evaluate the significance of each candidate mode. Here, we con-
sider an adaptation of [3] who verify whether the maximum eigenvalue of the Hes-
sian matrix of the kernel density, evaluated at the mode, is negative. In the directional
setting, due to the constraints induced by working on the surface of the sphere, one
eigenvalue is necessarily zero. An 1− α level confidence interval for the second
largest eigenvalue is hence constructed using bootstrap resampling. The mode is
considered as such if the interval includes only negative values. The same allows us
to infer the significance of the candidate source.

By super-imposing the findings from the two quests, we can identify candidate
sources which are both, statistically significant and qualified as such by the non-
parametric classifier. A by-product of our post-processing algorithm is the assign-
ment of the photons to their assumed emitting source.

3 A Fermi LAT case study

Mode hunting. The two yellow regions in Figure 1 show a portion of the Southern
sky of size (l,b)∈ [95◦,135◦]× [−40◦,−10◦] for which the LAT accumulated 3,849
photon counts over a five-year period of observation.1 Of these, about 26% were
emitted by the 44 sources present in the area, while the remaining 74% originated
from the diffuse γ-ray background. The left panel of Figure 2 plots the estimated
kernel density (1) using a von Mises-Fisher kernel. Here, the bandwidth parame-

1 https://fermi.gsfc.nasa.gov/ssc/data/access/
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Fig . 2 Left: Kernel density estimate using a von Mises-Fisher kernel of the γ-ray photon counts
accumulated by the LAT in a 5-year period. Right: Feature importance plot for the tree-based
photon classifier.

ter h was set according to scientific input, as described in Section 2. This choice
revealed to be the most performing one in terms of adjusted Rand index (ARI), av-
erage distance between the true source direction and the reconstructed one (d̄(s, ŝ))
and number of identified sources (ns), according to an extensive numerical inves-
tigation (results not shown here) we carried out. In all, the mean-shift algorithm
identified 876 modes.

Post-processing. To further refine the list of candidate sources we proceeded in two
steps as outlined in Section 2.

1. A tree-based classifier to discriminate between source and background photons
was trained on the 6,814 photon counts highlighted in green in the right panel of
Figure 1 using as predictor variables those listed in the right panel of Figure 2.
The most discriminating features are the number of photons assigned to a cluster,
the difference between the two photon densities for, respectively, the all sky and
background counts only, and the density observed for each photon. This reduces
the original 876 modes to 39 candidate sources, which are shown as blue circles
in the left panel of Figure 3. The table on the right reports the performance of our
classifier in terms of ARI and average distance d̄(s, ŝ). The true positive rate for
single photon classification is 98.5% rate, while the percentage of false positives
is 22.9%. Indeed, the five missed sources are the less photon emitting ones.

2. In parallel, we tested all the 555 clusters which contain two or more photons at a
significance level of 5% while applying Bonferroni’s correction. This skimmed
off 448 modes, for a total of 107 remaining candidate sources, shown in the left
panel of Figure 3 as red crosses. Here, the true positive rate for single photon
classification is 85.0% and the false positive rate is 11.2%.

By super-imposing these two findings, we obtain in all 27 sources which are both,
statistically significant and qualified as such by the non-parametric classifier. The
global true positive rate for single photon classification is 94.6% while the false
positive rate is 14.1%.
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6 A. Montin, A. R. Brazzale, and G. Menardi

Results
ARI 0.961

d̄(s, ŝ) 0.001
ns 39

True sources 44

Fig . 3 Left: Fermi-LAT γ-ray photon count map (in Galactic coordinates) for the analysed 5-year
observation period with superimposed the true and candidate sources. Right: Performance mea-
sures of the tree-based classifier.

To analyse the whole sky map, consensus clustering [8] may allow us to aggre-
gate results from multiple runs on portions of the sphere whenever computational
costs and limited memory won’t allow us to do it in one go.
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