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Abstract

Theoretical and experimental research on magnetic confinement fusion showed

that improved operational modes often rely on a large number of diagnostics that

accurately reconstruct the plasma shape [1]. At the same time, an increasing

number of models are required in the feedback loop to handle signals coming

from the diagnostics [2]. As the number of tools to create a model increase, so

do the variety of different architectures that a plasma system should be able

to run. Models can be written in various ways. However, due to the real-time

requirements, the plasma system is often built with different tools. A framework

is then needed for the real-time system, and models are to be mapped in such

a framework.

In this work new architectures will be built for a generic plasma real-time

framework so as to increase the number of available interfaces, and their ap-

plication to existing frameworks is shown [3]. New components will provide

the framework with the tools required to interface with graphical, python and

mathematical function models. Components are subsequently tested and added

to the framework.

Furthermore, a plasma equilibrium and shape model [4] will be updated in

order to improve performances and compatibility with the new framework.

A complete plasma framework is then built and test discharges are run in

several modes.



Abstract

Theoretisch en experimenteel onderzoek naar magnetische opsluiting fusie heeft

aangetoond dat verbeterde operationele modi vaak afhankelijk zijn van een groot

aantal diagnostische gegevens die nauwkeurig de vorm plasmavorm [1]. Tegeli-

jkertijd is er een toenemend aantal modellen nodig in de terugkoppellus om

signalen te verwerken die afkomstig zijn van de diagnostiek [2].

In dit werk zullen nieuwe architecturen worden gebouwd voor een gener-

iek plasma real-time raamwerk om het aantal beschikbare interfaces, en hun

toepassing op bestaande raamwerken wordt getoond [3].

Bovendien, een plasma model [4] zal worden bijgewerkt om de prestaties en

de compatibiliteit met het nieuwe raamwerk.

Een compleet plasma raamwerk wordt dan gebouwd en testontladingen wor-

den in verschillende modi uitgevoerd.
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Chapter 1

Introduction

1.1 Structure of this work

The goals of this work are:

1. building a wrapper component for a plasma system that runs graphical

models within the plasma system

2. building a wrapper component for a plasma system that interfaces with

python modules and runs said modules within the plasma system

3. building a wrapper component for a plasma system that implements math-

ematical functions and runs said functions in the plasma system

4. updating an equilibrium and shape model [4] for circular and single null

discharges

5. using the new components and the equilibrium and shape model to build

a plasma system

The components are generalized so that they can run models with various

number, type and dimension of input and output signals, constants, architec-

tures and tools. Furthermore, they can be easily adapted to work with most

plasma frameworks and have indeed already been used in such a way [3][5].

In chapter 1 an introduction on magnetic confinement fusion is given. After a

brief summary of energy sources and the purpose of fusion, basic fusion concepts

are given and the main parts of a fusion machine are described.
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The wrapper components are built in chapter 2, where why such interfaces

are needed is also shown. Each component design, configuration and perfor-

mances is described and examples of usage are given.

Chapter 3 focuses on the description of an equilibrium and shape model for

circular and single null discharges [4]. The model is updated to reflect future

improvements in the diagnostics [6].

Finally, chapter 4 describes how all components and the equilibrium and

shape model are put together to build a plasma system and test discharges are

run to confirm the results.

1.2 Energy production

Though contribution of renewable sources (such as photovoltaic and wind, among

many others) to energy sources is increasing, in the past decades a constant in-

crease in the energy demand has been observed.

In the long-term, the development of an energy source that meets the fol-

lowing requirements is considered worthwhile:

1. abundance of the fuel required to power it

2. no production of CO2

A good candidate is magnetic confinement fusion.

1.2.1 Fusion energy

Fusion features the merging of light elements, such as hydrogen (H) and deu-

terium (D). While this happens in stars due to gravity, making the same happen

in a power plant is not easy.

In an element of mass number A the number of neutrons is denoted by N

and the number of protons is denoted by Z, where A = N + Z. The mass of

the nucleus mA, however, is smaller than the sum of the masses of N and Z:

mA < NmN + ZmZ

The mass defect ∆m = NmN + ZmZ − mA is converted into the energy

∆E required to hold these particles together. The average amount of binding

energy per nucleon is then ∆E
A

. This quantity is not constant and varies for

each element (see fig. 1.1).
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Figure 1.1: ∆E per nucleon (∆E
A

) vs. mass number A.

The curve reaches a maximum around A = 56 (Fe). If elements with ∆E1

A1

are merged to form an element with ∆E2

A2
> ∆E1

A1
then energy is given off. This

process can be described by an equation in the form:

A1 +A2 + · · ·+An → B1 +B2 + · · ·+Bm + E

where A1, . . . , An are the starting elements, B1, . . . , Bm are the products

and E is the energy that is given off in the process (in MeV).

The amount of energy can be calculated as:

E

c2
= (mA1

+mA2
+ · · ·+mAn

)− (mB1
+mB2

+ · · ·+mBm
)

H has only one proton, so no ∆E can be obtained. The lightest element that

can be considered for fusion is then D.

D-T merging is one of the most fitting due to the process being easy to

initiate. The corresponding equation is:

D+T → He4 + n (1.1)

Considering the masses of the involved elements:
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mD = 3.342× 10−24 kg

mT = 5.007× 10−24 kg

mHe = 6.645× 10−24 kg

mn = 1.675× 10−24 kg

(1.2)

the resulting masses can be calculated:

mR = mD +mT = 8.351× 10−24 kg

mP = mHe +mn = 8.320× 10−24 kg
(1.3)

The mass defect is then ∆m = 0.031× 10−24 kg, givin off ∆E = ∆m · c2 =

2.75×10−12 J = 17.2MeV. This energy is given off in the form of kinetic energy

associated to the end products. By assuming that the kinetic energy of the

products is much greater than that of the starting elements, energy is inversely

proportional to the masses. Since mHe ≈ 4mn:

EHe = 3.6MeV

En = 14.1MeV
(1.4)

the latter being the energy that can be used

1.2.2 Triple product

Let D and T be two elements of density nD and nT respectively. The number

of interactions per unit volume per unit time is given by:

g = nDnT < σv > (1.5)

where < σv > is the product of cross section and velocity averaged on the

particle velocity distribution. By using the energy in eq. 1.4 the power per unit

volume can be calculated as:

Pth = g∆E (1.6)

The maximum rate is achieved for nD = nT = n
2 , where n is the total ion

density. Thus

Pth =
n2

4
< σv > ∆E (1.7)
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Figure 1.2: The curves describe the points of breakeven (Q = 1), the points of
ignition (Q → ∞) and an intermediate condition (Q = 10).

Charged particles remain inside the vessel thus contributing to plasma heat-

ing with Pα = n2

4 < σv > ∆EHe. Part of the heat Pout leaves the plasma due

to heat transfert towards the outside of the vessel. The additional power that

must be provided to the plasma is then:

Padd = Pout − Pα (1.8)

By considering only the power leaving the vessel due to transport (conduc-

tion and convection), calculated as Pc =
3nT
τE

, Padd is:

Padd =
3nkT

τE
−

n2

4
< σv > ∆EHe (1.9)

with τE the characteristic time of Pc. The plasma energy gain factor is then

Q =
P

Padd
=

Pn + Pα

Padd
(1.10)

Breakeven is achieved when Padd = P (Q = 1). If Pα is high Padd = 0, and

thus Q → ∞ (ignition) (see fig. 1.2).

Eq. 1.9 is a function of n, τE and T only. Thus, a triple product can be

defined as the product of these three quantities. For fusion to sustain itself and

to have net energy production it must be:
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nτeT ≥ 1.2× 1021 keVsm−3 (1.11)

or, in other words,

n ≈ 1× 1020 m−3

τE ≈ 1 s

T ≈ 20 keV

(1.12)

1.3 Fusion concepts

In magnetic confinement fusion the plasma (D and T) is expected to stay inside

a vessel.

1.3.1 Particle motion

No material vessel is suitable to sustain temperatures such as that in eq. 1.12,

since:

1. the vessel would be gradually worn away by the interaction with the

plasma

2. the vessel, due to the same interaction with the plasma, would give off

its coating into the plasma itself. This phenomenon is know as sputtering

and causes the plasma to cool down.

The plasma is then magnetically enclosed, so that there is no interaction (or

very few of it) with the vessel wall. The vessel itself is toroidally shaped so that

field lines closes while still remaining inside the torus. The toroidal reference

frame is shown in fig. 1.3.

Field coils are placed on the toroidal surface and a toroidal magnetic field

is produced inside the torus. Plasma particles move along the magnetic field

gyrating around its field lines due to the elecromagnetic force F = qv×B, thus

remaining inside the toroidal vessel (see fig. 1.4). The gyro radius is defined as:

rg =
mv⊥
qB

(1.13)

where m is the particle mass, v⊥ is the particle velocity component perpen-

dicular to the magnetic field B, and q is the particle charge.
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Figure 1.3: A toroidal reference frame (r, φ, θ). R is the major radius, a is the
minor radius

Bφ

Figure 1.4: Particle motion in a toroidal magnetic field. The particle moves
along a magnetic field gyrating around a field line with a radius proportional to
its mass and inversely proportional to the magnetic field.
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Figure 1.5: Outline of the toroidal magnetic field inside a toroidal coil.

The poloidal magnetic field Bφ inside a toroidal coil is described by eq. 1.14

ans shown in fig. 1.5.

Bφ =
µ0NI

2πR
(1.14)

Since each particle is gyrating around a constant field line, the magnetic field

is higher towards the centre of the torus and lower towards the outer side. Thus,

the particle gyro radius is continually variating as shown in fig. 1.6, causing ions

to drift towards the bottom of the vessel and electrons to drift towards the top

of the vessel (∇⊥B drift). This generates in turn a vertical electric field (see

fig. 1.7).

The addition of a perpendicular electric field adds a constant drift velocity

vD to the gyro motion, known as E×B drift :

vD =
E×B

B2
(1.15)

This drift is not proportional to the particle mass or charge, is perpendicular

to both E and B and makes particles shift towards the outer wall of the torus.

1.3.2 Plasma current

A solution is found in the induction of a current in the plasma. The current

generates a poloidal magnetic field Bθ which, in combination with the toroidal

field Bφ gives helicoidal field lines. The particles in their motion are thus going

through both high and low sides of the field, averaging the gradient effect. There
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Figure 1.6: ∇⊥B drift.
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Figure 1.7: Electric field due to ∇⊥B drift

is no build up of charge at the top and at the bottom of the plasma, and the

E×B effect is greatly reduced.

The plasma current is generated with the magnetizing windings (see sec-

tion 1.4.2.2).

Let ∆θk be the angle between the poloidal position of a particle during

transit k and k+1 of the same poloidal cross-section. The rotational transform

ι is defined as:

ι = lim
N→∞

1

N

N︂

k=1

∆θk (1.16)

The same concept is often referred as the q factor, defined as:

q =
2π

ι
(1.17)

1.3.3 Toroidal forces

In this section the 3 toroidal forces generated in a toroidal plasma are shown.

These 3 forces are due to the toroidal shape and are all directed outward on the
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horizontal plane of the torus. The toroidal forces are:

1. the tire tube force, due to the kinetic pressure

2. the hoop force, due to magnetic pressure

3. the 1
R

force, due to magnetic pressure and toroidal field

The toroidal forces must be compensated by an additional force generated

by a vertical magnetic field. The required magnetic field is then calculated.

1.3.3.1 Tire tube force

The same plasma pressure p is applied to both the inner and outer half of the

plasma column (Sin and Sout). However, due to the toroidal shape of the plasma,

Sin < Sout. The net force on each surface is then

Fin = pSin < Fout = pSout (1.18)

resulting in a net force Fs pointing outward. The value of Fp applied to the

whole plasma volume is

Fp =< p >
dV

dR0
=< p >

d

dR0

︁
(πa2)(2πR0)

︁
=< p > (2π2a2) (1.19)

By definition it is βθ = <p>
B2

θ
2µ0

, thus

Fp = (2π2a2)βθ

B2
θ

2µ0
(1.20)

When the plasma aspect ratio is R0

a
>> 1 then

B2
θ

2µ0
=

µ0I
2
P

8π2a2 , and the toroidal

force is then

Fp = βθ

µ0I
2
P

4
(1.21)

1.3.3.2 Hoop force

This force points outwards and is produced by the current flowing in a circu-

lar loop. In this case the plasma current is circulating in the toroidal plasma

column.

The magnetic flux Ψ produced by the plasma current around the plasma

column is poloidally the same, but the associated field lines are denser on the
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inner side of the torus, resulting in a greater magnetic field Bin on the inner

side with respect to the magnetic field on the outer side Bout. The magnetic

pressure BinSin, pointing outward, is then greater then the magnetic pressure

BoutSout pointing inward, resulting in a net force Fθ pointing outwards.

The outward force due to a current flowing in a circular loop is

Fθ =
1

2
I2P

dL

dR0
(1.22)

The inductance can be split into L = Li + Le. It can be shown that

Li =
1

2
µ0R0ℓi

Le = µ0R0(ln
8R0

a
− 2)

(1.23)

where ℓi is a parameter that can be calculated for various geometries. Fθ is

then

Fθ = F in
θ + F out

θ =
1

2
µ0I

2
P

︃

ln
8R0

a
− 1 +

ℓ

2

︃

(1.24)

1.3.3.3 1
R

force

This force is due to the toroidal field being proportional to 1
R

in toroidal geom-

etry. The toroidal field coils produce the magnetic field

Bout
φ (r) =

µ0Ic
2πR

(1.25)

By assuming that the plasma current flows on a thin layer on the plasma

surface the magnetic field produced by the plasma current inside the plasma

column partially cancels the field applied by the coils:

Bin
φ (r) =

µ0(Ic − IP )

2πr
< Bout

φ (r) (1.26)

The magnetic field difference on the plasma surface (B2
out,1 − B2

in,1)Sin >

(B2
out,2 −B2

in,2)Sout produces a net force Fφ that, assuming a large aspect ratio
R0

a
>> 1, can be evaluated as

Fφ = 2(πa)2

︄

B2
φ(a)

2µ0
−

< B2
φ >

2µ0

︄

(1.27)
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1.3.3.4 Vertical field

The overall outward toroidal force is then

FT = Fp + Fθ + Fφ =
1

2
µ0I

2
P

︃

ln
8R0

a
−

3

2
+

ℓ

2
+ βθ

︃

(1.28)

let Λ be Λ = ℓ
2 + βθ − 1:

FT =
1

2
µ0I

2
P

︃

ln
8R0

a
+ Λ−

1

2

︃

(1.29)

The compensating force FV is

FT + FV = 0 (1.30)

and the horizontal force produced by a vertical field BV can be evaluated

as:

FV = −IPBV 2πR0R (1.31)

From eq. 1.30 and eq. 1.31 the required vertical field can be calculated as

BV,eq =
µ0IP
4πR0

︃

ln
8RB

a
+ Λ−

1

2

︃

(1.32)

The required vertical field is generated with the field shaping coils (see sec-

tion 1.4.2.1).

1.3.4 Vertical forces

The cross section of a plasma with large aspect ratio tends to be circular. How-

ever, to maximize the plasma volume inside the vessel vertically elongated plas-

mas have to be used. Plasma elongation is generated by appling additional

forces to the upper and lower plasma surfaces with zero total force:

∆FU +∆FL = 0 (1.33)

Forces are applied to the plasma using a quadrupole field. The quadrupole

field produces a radial field BR, and with this configuration any slight shift

of the plasma centroid from the quadrupole field centre produces a difference

between ∆FU and ∆FL, and the plasma tends to move upwards or downwards.
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The vertical displacement is measured and the poiloidal field system (see

section 1.4.2.1) produces the horizontal field required to compensate (see sec-

tion 3.2.2.2).

1.3.5 Ellipticity and triangularity

Ellipticity is defined as the ratio between the major and minor axis of an ellipse.

Let r(θ) be the plasma radius, defined as the distance between the plasma

boundary and the vacuum vessel centre at the angle θ. The plasma radius

function can also be seen as the sum of its harmonics, and in such case the

amplitudes of the 2nd harmonics in cos θ and sin θ express the ellipticity of the

plasma shape.

Triangularity is defined as:

δ = (Rmax −R0)/a (1.34)

Triangularity is expressed as the amplitude of the 3rd harmonic in cos θ.

1.4 Magnetic system

In a plasma system measures of relevant plasma parameters are taken over

time. Some of those measures are directly used in feedback loops, while other

feedback signals are elaborated from the measures that are directly available

(see section 3.1.1).

The discharge is driven by comparing the feedback signals (both measured

and calculated) with preset feedforward references, and evaluating the input

for the actuators that is required to compensate the difference (the system re-

sponse).

The magnetic system of a fusion machine generates the toroidal, poloidal

and vertical components of the magnetic field.

1.4.1 Toroidal field coils

The toroidal field coils (TF) are structured as a series of coils that poloidally

wind up the vessel as shown in fig. 1.8, and generate the toroidal component of

the magnetic field Bφ. Ions and electrons gyrate around the field lines of Bφ.
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TF coils

Figure 1.8: Outline of toroidal field coils (draft).

1.4.2 Poloidal field system

The poloidal field system is a set of windings producing the poloidal component

of the magnetic field. They include:

• the field shaping coils

• the magnetizing winding

1.4.2.1 Field shaping coils

The field shaping coils, FS are one of the poloidal field windings and are struc-

tured as a series of coils that toroidally wind up the vessel as shown in fig. 1.9,

and generate the poloidal component Bθ of the magnetic field for plasma posi-

tioning and shaping. They are composed of:

1. radial equilibrium coils: these coils generate the vertical field BV (see

section 1.3.3)

2. vertical equilibrium coils: these coils generate the horizontal field BH (see

section 1.3.4)

3. shape coils: these coils generate the field that gives the plasma the required

shape (see sections 1.3.5 and 1.3.5).
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MWs

Figure 1.9: Outline of poloidal field coils (draft).

1.4.2.2 Magnetizing winding

The magnetizing winding (MW) induce a current IP in the plasma by generating

a flux variation ∆Φ. The current in turns generates the poloidal field Bθ required

by the ∇⊥B and E×B drifts.

To do so, the MW is structured as a series of coils placed in the center of the

toroidal vessel, in concentric position with respect to the z-axis and the plasma

column (fig. 1.10).

The field produced by the MW is not used for equilibrium, thus the field

lines should not go through the plasma. This can be achieved in two ways:

1. the coils wind up on a ferromagnetic core. Field lines flow inside the core

and do not go thorugh the plasma (fig. 1.10a)

2. the coils wind up in air. Additional coils (concentric to the z-axis) are

required so that the field lines do not close in the plasma (fig. 1.10b)

Toroidal and poloidal field coils are orthogonal and do not interact with

each other. The MW on the other hand is coupled with the other poloidal field

sources: the field shaping coils (FS) and the plasma (as shown in fig. 1.11) [7].
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Figure 1.10: Outline of the magnetizing windings (MWs). (a) MWs with ferro-
magnetic core, where flux flows inside the core (b) MWs with additional coils.
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Figure 1.11: Interaction between poloidal field sources.
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The plasma circuit is then characterized by the following:

VP = MMP

dIMW

dt
+MFP

dIFS

dt
+ LP

dIP
dt

+RP IP (1.35)

To have the required IP flowing in the plasma the magnetizing windings

must produce a flux varaition ∆Φ that can be calculated integrating eq. 1.35.
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Chapter 2

Interface components

2.1 The need for interfaces

Following the steadily growing number of fusion applications and algorithms,

the variety of tools used to implement them has also increased. For example,

using graphical programming tools is becoming more and more common, and

so is using visual modeling. On the other hand, high level languages such as

Python are of increasingly importance in plasma equilibrium and shape models.

Interoperability between systems can be achieved in various ways. For ex-

ample, a graphically programmed equilibrium model could be translated to C so

as to run it in a C-based framework. However, this kind of approach may intro-

duce subtle differences with respect to the source. To achieve interoperability

in the best way possible the framework should then be able to natively run as

many external models as possible, regardless of the programming language they

are written with.

To do so, the framework should

1. provide common communication interfaces between the framework and

the model that needs to be run

2. be able to link different models coming from different sources

Task no. 2 is a feature of the selected framework. Here task no. 1 will be

discussed and pertinent framework modules (components) will be developed.

The most common situations are the following:

1. a model is turned into C code or into a library

25



2. the model programming tools make available an interpreter that the frame-

work should use to directly run the source model (this is typical for high

level programming languages)

In the former case, model inputs and outputs should be available to the

framework as pointers, while in the latter an additional step is required.

By using a generic interface component per each source of external models

the process is also more reliable, since checks can be carried out for the converter

(or the interpreter) and for the framework interface instead of for each new model

that needs to be interfaced.

In this section three wrappers will be built, that is, three framework com-

ponents that can be instantiated by the framework and can in turn instantiate

and run a model created

1. in a graphical programming environment

2. with an interpreted language

3. with mathematical functions

To run such models the wrapper component should:

• load the model

• compare the input and output layout of the model with the one configured

for the framework, in order to make sure that the framework and the

loaded model can talk to each other

• transcribe the framework inputs and outputs to the model

• transcribe the model outputs to the framework

How this is done for each of the three cases above is shown in the following

sections. Note that

2.2 Talking with graphical models

A graphical model is the description of a system with its inputs and outputs

in terms of graphical elements connected by lines. Each element represents a

primitive operation within the system, while lines represent the flow of inputs

and outputs from one element to another. Graphical models offer a convenient
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Figure 2.1: Steps required to turn a graphical model into a library and use it
into the framework. The component built in this chapter is the wrapper. The
framework runs each component once per cycle.

way to represent fusion models because of its simplicity and readability. Use

of graphical modelling is thus steadily increasing and even a whole equilibrium

and shape model can be represented with it (see chapter 3). Hence the need of

a wrapper to include graphical models into the framework.

A graphical model can then be turned into a library1 as shown in fig. 2.1.

2.2.1 A framework component to run the library

Here a framework component (model wrapping component or component) is built

that is able to load and run a graphical model in the form of a library.

2.2.2 Component configuration

The component should be configurable to match the layout of the model inputs

and outputs. The component is thus given the following configuration options:

library_name the file name of the generated library

1A library is a programme that can be run by another programme.
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u(t) k = 10 y(t)
In1 Out1

Figure 2.2: An example of a simple multiplication model.

model_name the name of the model. This name is used internally to refer to

the model

inputs and outputs a list of the inputs and outputs from and to the framework.

Names should be the same as those used in the model

The component is also given some optional options:

constants a list of attribute-value pairs of the model internal parameters whose

value should be updated before running the model

constant_source the name of the object providing the values for model con-

stants, should they not be declared in the previous constants list

The component can be configured with

1. a list of attribute-value pairs, whose name must match those listed above

2. the inputs and outputs options showing the layouts of inputs and outputs

3. the constants option for model constant values

An example configuration for a model such as that in fig. 2.2 is given below

in an attribute-value pair that shall be read by the component:

1 {

2 library = "model.so";

3 model_name = "model";

4 inputs = {

5 in = {

6 type = "double";

7 elements = "1";

8 };

9 };

10 outputs = {

11 out = {

12 type = "double";
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13 elements = "1";

14 };

15 };

16 constants = {

17 k = "5";

18 };

19 };

Note that, with respect to the k = 10 gain constant of fig. 2.2, the k value

here is set to 5. This means that, during the model initialisation (see sec-

tion 2.2.4.1) the value of the parameter will be changed to 5. This lets the

same model to be used not just for cases when the required k is 10, but also all

other cases, provided that the wrapping component constants section specifies

a different value for the k constant.

2.2.3 Component classes

During initialisation, the component retrieves from the model the layout of

model inputs, outputs and constants. These parameters are put in three in-

stances of the class model_signals_and_constants, shown in example 2.1.

1 class model_signals_and_constants

2 {

3 char* name;

4 unsigned int type;

5 void *model_ptr;

6 void *module_ptr;

7 unsigned int n_elems;

8 unsigned long int size;

9 bool transpose;

10

11 bool transpose_and_transcribe(void *destination , void *

source);

12 }

13

14 class model_inputs

15 {

16 bool transcribe ();

17 }

18

19 class model_outputs
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20 {

21 bool transcribe ();

22 }

23

24 class model_constants

25 {

26 bool transcribe ();

27 }

28

29 bool model_inputs :: transcribe ()

30 {

31 bool retval = (model_ptr != NULL);

32 retval &= (module_ptr != NULL);

33

34 if (! transpose)

35 {

36 write(model_ptr , module_ptr , size);

37 }

38 else

39 {

40 transpose_and_transcribe(model_ptr , module_ptr);

41 }

42

43 return retval;

44 }

Listing 2.1: The model_signals_and_constants class, with type and

dimensionality of model inputs, outputs and constants.

This class contains 6 elements and 2 methods. The elements contain the

signal (or constant) type and dimensionality, as well as its total size (that is,

the size of its type times the number of its elements). Element model_ptr is set

to where the model reads inputs and constants from or writes outputs to, while

module_ptr is what the framework will use for its version of the same signal (or

constant).

The method transcribe transcribes, as the name suggests, the signal (or

constant) value from the component to the model (for inputs and constants) and

from the model to the model (for outputs). Since the method has a different us-

ages, each subclass has its own implementation of it. The method writes the sig-

nal as it is or uses transpose_and_trascribe, depending on the current require-
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ments for the signal (or constant) being transcribed. model_inputs::transcribe

is shown in example 2.1. The method transpose_and_trascribe is used by

the transcribe method when the signal (or constant) requires transposition.

However, this method is expected to significantly slow down the step function.

2.2.3.1 Structured inputs and outputs

In some applications, inputs and outputs are expected to be structured , that is,

a nested structure of signals with logical or physical relation. The model wrap-

ping component uses linearisation to deal with structured inputs and outputs:

instead of a structure, a one-dimensional array is created, each element of which

represents one of the structured signal elements. For example, a structure like

the following:

- structure_1

|- input_1

|- input_2

- structure_2

|- input_3

|- sub_structure

|- input_4

|- input_5

is described in the component configuration as follows:

1 {

2 inputs = {

3 structure_1 = {

4 input_1 = {

5 type = "double";

6 elements = "1";

7 };

8 input_2 = {

9 type = "float";

10 elements = "2";

11 };

12 };

13 structure_2 = {

14 input_3 = {

15 type = "int";
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16 elements = "1";

17 };

18 sub_structure = {

19 input_4 = {

20 type = "double";

21 elements = "1";

22 };

23 input_5 = {

24 type = "float";

25 elements = "8";

26 };

27 };

28 };

29 };

30 outputs = {

31 out = {

32 type = "double";

33 elements = "1";

34 };

35 };

36 constants = {

37 k = "5";

38 };

39 };

but gets linearised in the model_inputs array as:

model_inputs[0]: structure_1.input_1

model_inputs[1]: structure_1.input_2

model_inputs[2]: structure_2.input_3

model_inputs[3]: structure_2.sub_structure.input_4

model_inputs[4]: structure_2.sub_structure.input_5

The array can then be included in a loop to use all the structured signal

elements.

2.2.3.2 Enumerations

An enumeration is a list of numbers in which each number is associated to a

label. Since lists are a discrete object, only integer numbers can be associated

to labels. An example of enumeration is shown below:
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{

1: "On";

2: "Off";

}

The model can then use the flag On to refer to the value 1.

The model wrapping component maps enumeration inputs and outputs to

their corresponding integer value, and On must be referred to as 1.

2.2.4 Component functions

The model wrapping component has two main functions:

initialisation function , which is run only once and performs all the prepara-

tory actions such as model loading and instantiation

step function , which is run continually while the framework is running. This

function effectively runs the model library, provides it with inputs and

receives its outputs

Inputs for the model come from other framework components, and outputs

are sent to other framework components as well.

2.2.4.1 initialisation function

The component initialisation function performs the following steps:

1. read the component configuration options

2. load the model library using the parameters retrieved from the configura-

tion options

3. use the library handles to get model number of inputs, outputs and con-

stants

4. create input, output and constant arrays and use library handles to re-

trieve their size

5. make sure that inputs and outputs configured in the component options

correspond to the model inputs and outputs in type, size and dimension-

ality
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6. update model constants using the values declared in the component con-

figuration options

The model wrapping component is initialised by reading the configuration

options. An example of the configuration syntax is shown in section 2.2.2

Once the component options have been read from the configuration the

model library can be loaded. The library should have two main functions

(inst_func for initialisation and step_func for running) whose handles must

be retrieved to run the model. These handles are put into pointers so that they

can be recalled later.

1 void* (* inst_func)(void);

2 bool (step_func)(void);

3

4 inst_func = (void *(*)(void))(library ->get_function("

inst_func"));

5 step_func = (bool (*)(void))(library ->get_function("step_func

"));

The library can now be instantiated by calling the inst_func:

1 model_struct = (* inst_func)();

The layout of model_struct is constant and known to the model wrapping

component. The configuration of the model (that is, its number of inputs,

outputs and constants) is thus retrieved.

These values are checked against what was set in the component configura-

tion, with an error being issued if any incongruity is found. If none is found,

these values are used to allocate three related arrays of objects model_inputs,

model_outputs and model_constants in which the layout of inputs, outputs

and constants used in the model is put.

Constants are then retrieved using the structure provided by the model

(const_struct) and a recursive function get_constants:

1 const_struct = model_struct ->model_constants;

2 for (unsigned int i = 0; i < n_constants; i++)

3 {

4 get_constants(i, const_struct);

5 }

The function recalls itself when encountering a structured constant to de-

scend the tree.
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In a very similar fashion, the model_inputs and model_outputs arrays are

filled. Firstly, the relevant structure is retrieved from the model library, then

the get_signals recursive function is called in a loop going from the first to

the last signal. This is done for both inputs and outputs, and results are put in

the related array of structures.

1 input_struct = model_struct ->model_inputs;

2 output_struct = model_struct ->model_outputs;

3 for (unsigned int i = 0; i < n_inputs; i++)

4 {

5 get_signals(i, input_struct , model_inputs);

6 }

7 for (unsigned int i = 0; i < n_outputs; i++)

8 {

9 get_signals(i, output_struct , model_outputs);

10 }

Since inputs and outputs must be declared with their type and dimension-

ality in the component initial settings, the corresponging parameters that have

been retrieved with get_signals and get_constants must be looked over and

compared to what was declared in the component initial settings, thus making

sure that the transcribe method will work properly.

While the model is running (see section 2.2.4.2) its inputs are transcribed

from the framework to the model. Conversely, outputs are transcribed from

model to the framework.

In general, a single model can be reused in various ways provided that its

constants can be changed. While this can be achieved by modifying the model

and recompile the library anew, this step is not necessary and constant values

can be modified on the go.

Firstly, each model constant is matched with a constant in the component

configuration section constants. If a match exists, the value model_constants[i]->module_ptr

is updated. Then, using the parameter model_constants[i]->model_ptr and

model_constants[i]->size the value of the constant can be updated by the

wrapping component using the class method model_constants::transcribe:

1 bool model_inputs :: transcribe ()

2 {

3 bool retval = (model_addr != NULL);

4 retval &= (module_addr != NULL);

5
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6 if (! transpose)

7 {

8 write(model_addr , module_addr , size);

9 }

10 else

11 {

12 transpose_and_transcribe(model_addr , module_addr);

13 }

14

15 return retval;

16 }

2.2.4.2 step function

The step function performs the following steps:

1. update model signal values using the framework signal values

2. run the model step_func function

3. update the framework signal values using the model signal values

step uses the transcribe method illustrated in example 2.1.

1 bool step()

2 {

3 bool retval = (mf_struct != NULL);

4

5 for (unsigned int idx = 0; (idx < n_inputs) && retval; idx

++)

6 {

7 retval = model_inputs[idx]->transcribe ();

8 }

9

10 if (retval)

11 retval = (* step_function)();

12

13 for (unsigned int idx = 0; (idx < n_outputs) && retval;

idx ++)

14 {

15 retval = model_outputs[idx]->transcribe ();

16 }
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17

18 return retval;

19 }

Listing 2.2: component step function

2.2.5 Cycle time

In this section the time required to run a whole cycle of a model is measured by

running both the graphical programmed models and the libraries created from

them.

The duration of a whole cycle is measured by adding the current time to an

array τ . At the end of the desired number of cycles, the duration of each cycle

can be calculated as the difference between each pair of consecutive values in

the array:

∆tmdl = τ(t+ 1)− τ(t)

The framework, on the other hand, offers a time calculation function allowing

to measure the duration of each cycle and output it as just another signal of the

framework.

These measurements have been carried out for a simple model and for the

whole RFP equilibrium and shape model. Comparisons are shown in the fol-

lowing sections. Note that for larger models (as in section 2.2.5.2) the average

time is more similar among the examples shown.

2.2.5.1 A simple model

The model in fig. 2.2 has been turned into a library and used in the framework.

The model completes 1000 cycles, each cycle time is measured and an average

value is calculated.

A comparison between cycle times with the graphical model and with the

framework-run library is shown in fig. 2.3 and in table 2.1. The model takes, on

average, 199.3 µs to complete a whole cycle. The same model is approximately

40 times as fast when run by the framework, taking on average 4.330 µs per

cycle.
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Max Min Average
27.0 µs 4.0 µs 4.330 µs

Table 2.1: Cycle times
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Figure 2.3: Time required to run a cycle of the model in fig. 2.2 (∆tmdl) and
the same model as a library loaded in the framework (∆tfw), logarithmic scale.
Time is measured for 1000 consecutive cycles.

2.2.5.2 Equilibrium and shape model

The equilibrium and shape model described in chapter 3 has been turned into

a library and used in the framework.

The model completes a whole discharge, adding up 3000 steps.

A comparison between cycle times with the graphical model and with the

framework-run library is shown in fig. 2.4 and in table 2.2. The model takes, on

average, 397.27 µs to complete a whole cycle as a graphical model. The same

model is approximately 10 times as fast when run by the framework, taking on

average 42.160 µs per cycle.

Max Min Average
68.9 µs 37.0 µs 42.160 µs

Table 2.2: Cycle times

Results shown that 97% of the lines are covered and outputs from all the
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Figure 2.4: Time required to run a cycle of the equilibrium and shape model
(see chapter 3) (∆tmdl) and the same model as a library loaded in the framework
(∆tfw), logarithmic scale. Time is measured for 3000 consecutive cycles.

required functions is as expected.

2.3 Talking with modules

Python is often used as a modeling tool in physics. Being able to quickly include

Python functions into the framework without the need to translate it into C is

convenient since:

1. a programme can be inserted into the framework straightforwardly, pos-

sibly with the sole addition of some boilerplate lines

2. there is no need of translating the code into C, which is often a source of

errors and may result in the programme initially not working as expected

2.3.1 A framework component to run an interpreted pro-

gramme

Here a framework component (module wrapping component or component) is

built that will be able to load and run a (properly formatted) Python function.
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2.3.2 Writing the interpreted programme

In order to be run by the component, the interpreted programme must include:

1. a p_init function to be run once when the programme is first loaded

2. a p_step function to be run continually

The p_ suffix is used not to confuse these functions with the component

methods initialise. The programme should also include the number, type

and dimensionality of the p_step function inputs and outputs in a structure

that the framework component will read. All the constants, whose value should

be assignable from the framework, should be in a list as well. Format of said

lists is shown in example 2.3.

1 inputs = [

2 (’in1’, int , (1,1)),

3 (’in2’, float , (1,1))

4 ]

5

6 outputs = [

7 (’out’, float , (1,1))

8 ]

9

10 constants = [

11 (’a’, int , (1,1), [1]),

12 (’b’, float , (1,2), [1.1, 2.2])

13 (’c’, int , (2,2), [[1 ,2] ,[3 ,4]]),

14 ]

Listing 2.3: The interpreted programme should declare these three structures.

An additional module to be included (p_component module, see section 2.3.2.1)

provides functions to append elements to these lists and makes the constants

in the constants list available to the module functions as elements of a struc-

ture const. For example, constant a of example 2.3 can be referred to as

const.[’a’], like in the example below. Similarly, inputs and outputs are

referred as ins.[’in1’] and outs.[’out1’].

1 outs.[’out1’] = ins.[’in1’]*const[’a’][1]

The framework works with scalars, vectors and matrices, thus parameters

up to N ×M can be used.
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2.3.2.1 p_component module

The function to be wrapped should include a p_component module. This module

shall provide a set of functions the framework component will need in order to

figure out the layout of the p_step inputs, outputs and constants.

The module includes:

1. the inputs, outputs and constants list

2. a set of functions to read the lists and see if all required fields are present

and their values are of the required type (e.g., all value fields must be

numeric)

3. a set of functions to return the entries of the lists to the wapping module

4. a set of functions to create the lists programmatically

These functions are shown below. Note that:

1. exceptions are not included for brevity

2. no additional module is used for simplicity, although for example floating

point numbers and arrays would be easier to use with an appropriate

module

To add an element the p_component module provides the functions add_input,

add_output and add_constant:

1 add_input (["in1", int , (1,1)])

2 add_output (["out", float , (1,1)])

3 add_constant (["a", int , (1,2), [1 ,2]])

These functions take the following inputs:

1. name of the element (input, output or constant)

2. type of the element

3. dimensionality of the element (up to 2× 2)

4. only for constants: the constant default value (scalar or array)

The add functions are shown in example 2.4:
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1 def add_input(arg_in):

2

3 ok = 0

4

5 if arg_ok(arg_in) == 1:

6 inputs.append(tuple(arg_in))

7 ok = 1

8

9 return ok

10

11 def add_output(arg_in):

12

13 ok = 0

14

15 if arg_ok(arg_in) == 1:

16 outputs.append(tuple(arg_in))

17 ok = 1

18

19 return ok

Listing 2.4: Adding elements

These functions use the arg_ok and const_ok functions to make sure that

the format of the input elements correspond (in type, size and dimensionality)

to what the module expects. For example, the arg_ok function must make sure

that:

1. the input argument is a list (or compatible)

2. the input argument has exactly 3 elements

3. said elements are, in order, a str, a type and a list element

4. the list element is a 2× 2 list (for parameters up to matrices)

5. the list elements are of type int

The const_ok function make sure that the value of a constant is:

1. either numeric or a list

2. if it’s a list, it can contain either a number (scalar), more than one number

(vector) or two more lists (matrix)
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The module provides the following interfaces to the framework:

1. get functions for the number of inputs, outputs and constnats

2. get functions for the type and dimensionality of inputs, outputs and con-

stants

3. get functions for input, output and constant values

4. set function for constant values

The module then initialises itself by creating the structures that can be used

in the programme to retrieve inputs, outputs and constant values.

A programme that the component is then able to load and run has the

following outline.

Firstly, the p_module module must be loaded. Then, the add_inputs and

add_outptus functions of the p_module are to be used to add the required

inputs and outputs to the programme. These functions take a list as input,

which in turn has the signal name, type and dimensionality as elements:

1 p_module.add_input (["in", float , [1 ,1]])

2 p_module.add_output (["out", float , [2 ,2]])

Constants are added in a similar way but a default value of the constant is

also required.

1 p_module.add_constant (["a", float , [1,1], 10])

Then, an init function is required. This function may contain optional

preparatory calculations, but is required to call the p_module.p_init function

which makes available the ins, outs and const structures to the step function.

The step functions uses said structures to calculate outputs from inputs and

constants.

Suppose a programme is needed that takes two inputs and carries out the

following calculation:

y(z) = ku1(z) + u2(z)

The corresponding module will look like the following:

1 import p_module as p

2

3 p.add_input (["in1", float , [1 ,1]])
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4 p.add_input (["in2", float , [1 ,1]])

5

6 p.add_output (["out", float , [1 ,1]])

7

8 p.add_constant (("k", int , [1 ,1]), 10)

9

10 def init():

11 p.p_init ()

12

13

14 def step():

15 p.outs["out"]=p.const["k"]*p.ins["in1"]+p.ins["in2"]

Listing 2.5: A p_module implementation

Line by line, this is what the module does:

• line 1: load the p_module

• lines 3-4: add the required inputs, in this case 2 scalar float inputs

• line 6: add the required output

• line 8: add the gain constant with a default value of 10

• lines 10-11: initialisation function

• lines 14-16: step function

2.3.3 Component configuration

The component should be configurable to match the layout of the function

in terms of inputs, outputs and constants. The component is thus given the

following configuration options:

file_name the name of the file containing the function that should be used

function_name the name of the function that the present module is required

to run

inputs and outputs a list of inputs and outputs from and to the framework.

Names should be the same as those used in the function input parameters

and return values
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The module also has some optional options:

constants a attribute-value list of the model internal parameters whose value

should be updated before running the model

output_check can be 1 or 0. If 1, the type of the output value is checked (see

below)

The component can be configured with

1. a list of attribute-value pairs, whose name must match those listed above

2. the inputs and outputs options showing the layouts of inputs and outputs

3. the constants option for model constant values

An example configuration for a multiplication function (such as that of ex-

ample 2.5) is given in example 2.6.

1 {

2 file_name = "sum.py";

3 function_name = "sum";

4 inputs = {

5 in1 = {

6 type = "double";

7 elements = "1";

8 };

9 in2 = {

10 type = "double";

11 elements = "1";

12 };

13 };

14 outputs = {

15 out = {

16 type = "double";

17 elements = "1";

18 };

19 };

20 constants = {

21 k = "5";

22 };
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23 };

Listing 2.6: An example configuration of the module to include a multiplication

function in the framework.

Note that with respect to the k = 10 constant of example 2.5, the k value

here is set to 5. If properly configured the module during initialisation (see

section 2.3.5.1) is capable of changing the value of the parameter from 10 to 5.

This lets the same module to be used not just for cases when the required k

is 10, but also all other cases, provided that the wrapping module constants

section specifies a different value for the k constant.

2.3.4 Component classes

This module retrieves from the function type and dimensionality of model in-

puts, outputs and constants. These parameters are put in three instances of the

class function_signals_and_constants shown in example 2.7.

1 class module_signals_and_constants

2 {

3 char* name;

4 unsigned int type;

5 void *func_ptr;

6 void *module_ptr;

7 unsigned int n_elems;

8 unsigned long int size;

9 }

10

11 class module_outputs : public module_signals_and_constants

12 {

13 bool transcribe ();

14 }

15

16 class module_constants : public module_signals_and_constants

17 {

18 bool transcribe ();

19 }

20

21 void module_inputs :: transcribe ()

22 {

23 bool retval = (func_ptr != NULL);
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24 retval &= (module_ptr != NULL);

25

26 if (retval)

27 {

28 write(func_ptr , module_ptr , size);

29 }

30

31 return retval;

32 }

Listing 2.7: The function_signals_and_constants class, with type and

dimensionality of model inputs, outputs and constants.

This class contains 6 elements and 2 methods. The elements contain the

signal (or constant) name, type and dimensionality, as well as its total size

(that is, the size of its type times the number of elements). Element model_ptr

is set to where the model reads inputs and constants from or writes outputs

to, while module_ptr is what the framework will use for its version of the same

signal (or constant). The method transcribe transcribes, as the name suggests,

the signal (or constant) value from the module to the function (for inputs and

constants) and from the function to the model (for outputs). Since the method

has different usages, each subclass has its own implementation of it. The method

is basically a loop over all signal elements and is called after the function is run

to update the signal values in the framework with the values of the function

outputs.

2.3.5 Component functions

The module wrapping component has two main methods:

init method which is run only once and performs all the preparatory actions

such as function loading

step method which is run continually while the framework is running. This

method effectively runs the function providing it with inputs and receiving

its outputs

Inputs for the function come from other framework components, and outputs

are sent to other framework components as well.
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2.3.5.1 initialisation function

The component initialisation function performs the following steps:

1. read the component configuration options (as described in section 2.3.3)

2. load the interpreted function

3. use the module interfaces (section 2.3.2.1) to get function number of in-

puts, outputs and constants

4. create input, output and constant arrays and use module interfaces to

retrieve their size

5. make sure that inputs and outputs configured in the component options

correspond to the module inputs and outputs in type, size and dimension-

ality

6. update module constants using the values declared in the component con-

figuration options

7. call the module p_init function

The module is initialised by reading the configuration options.

Once the module options have been read from the configuration the inter-

preter is loaded and using it both the p_module and the programme are loaded

as well.

While loading, the programme module runs all the add_input, add_output

and add_constant functions, thus building the list of inputs, outputs and con-

stants.

Then, a handle to the module p_init function is retrieved and used to call

the function.

The interfaces of the module can now be used to retrieve the module config-

uration, so the module number of inputs, outputs and constants are retrieved.

These values are used to allocate three arrays of objects model_inputs,

model_outputs and model_constants.

Size is calculated as the product of type size and number of elements. These

values are compared with those set in the component configuration options.

While the function is running (see section 2.3.5.2) its inputs are transcribed

from the framework to the module. Conversely, outputs are transcribed from

the module to the framework.
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In general, a single module can be reused in various ways provided that the

values of its constants can be changed. While this can be achieved by modifying

the module itself, the module wrapping component has an interface to do this.

Firstly, each module constant is matched with a constant in the component

configuration section constants. If a match exists, the value model_constants[i]->component_ptr

is updated. Then, using the parameter model_constants[i]->model_ptr and

model_constants[i]->size the value of the constant can be updated by the

wrapping component using the class method model_constants::transcribe.

1 class module_signals_and_constants

2 {

3 char* name;

4 unsigned int type;

5 void *func_ptr;

6 void *module_ptr;

7 unsigned int n_elems;

8 unsigned long int size;

9 }

10

11 class module_outputs : public module_signals_and_constants

12 {

13 bool transcribe ();

14 }

15

16 class module_constants : public module_signals_and_constants

17 {

18 bool transcribe ();

19 }

20

21 void module_inputs :: transcribe ()

22 {

23 bool retval = (func_ptr != NULL);

24 retval &= (module_ptr != NULL);

25

26 if (retval)

27 {

28 write(func_ptr , module_ptr , size);

29 }

30

31 return retval;
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32 }

Listing 2.8: Function wrapping module classes firstline

2.3.5.2 step function

This function updates inputs from the framework, run the module p_step func-

tion and updates the outputs to the framework performing the following steps:

1. update module inputs using the framework signal values

2. run the module p_step function

3. update the framework signal values using the model outputs

1 bool step()

2 {

3 bool retval = (step_function != NULL);

4

5 for (unsigned int idx = 0; (idx < n_inputs) && retval; idx

++)

6 {

7 retval = model_inpus[idx]->transcribe ();

8 }

9

10 if (retval)

11 retval = p_call(step_function);

12

13 for (unsigned int idx = 0; (idx < n_outputs) && retval;

idx ++)

14 {

15 retval = model_outpus[idx]->transcribe ();

16 }

17

18 return retval;

19 }

Listing 2.9: Step function
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2.3.6 Cycle time

In this section the time required to run a whole cycle of a module is measured by

running both the module itself and the module run by the wrapping component.

The duration of a cycle of the model itself is measured by adding, for each

cycle, the current epoch time to an array τ . At the end of the desired number

of cycles, the duration of each cycle can be calculated as the difference between

each pair of consecutive values in the array:

∆tmdl = τ(t+ 1)− τ(t)

The framework, on the other hand, offers a time calculation function allowing

to measure the duration of each cycle and output it as just another signal of the

framework.

These measurements have been carried out for a simple sum and multiplica-

tion module. Comparisons are shown in the following sections.

2.3.6.1 Sum and multiplication

The example module in example 2.5 can be used in an external programme or

in the framework.

The module completes 1000 cycles, each cycle time is measured and an

average value is calculated.

A comparison between cycle times with the module and with the framework-

run module is shown in fig. 2.5. The function takes, on average, 114.9 µs to

complete a whole cycle as a module. The same function is approximately 8

times as fast when run by the framework, taking on average 14.792 µs per cycle.

2.4 Talking with mathematics

Models are most of the times formulated in terms of mathematical functions

or systems of functions. Before they can be used in a framework, such models

often need to be turned into programmin language, hence the need of a wrapper

component to include mathematical functions into the framework.
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Figure 2.5: Time required to run a cycle of a sum and multiplication function
as a module (∆tmdl) and as a interpreted module in the framework (∆tfw),
logarithmic scale. Time is measured for 1000 consecutive cycles.

2.4.1 A framework component to run mathematical func-

tions

In this section a framework component (math function component or compo-

nent) is built that will be able to load and run a math functions or systems of

math functions.

A framework library or an additional library can be used to calculate the

result of mathematical function in postfix notation. The math function compo-

nent is then required to:

1. read a math function in infix notation

2. translate the infix notation into postfix notation

3. match the variables on the right-hand side of each function to the compo-

nent inputs, and those on the left-hand side to the component outputs

4. read the component inputs and use the framework library to calculate the

value of the outputs
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2.4.2 Component configuration

The math function component should be configurable with just one parame-

ter, the functions parameter. The functions parameter is a string of single

mathematical functions separated by a semicolon.

The mathematematical function for multiplying an input by a constant k is

k = 5

y = k · x
(2.1)

The component can be configured to run a function such as that of eq. 2.1:

1 {

2 functions = "k = 5; y = k*x;"

3 inputs = {

4 x = {

5 type = "double";

6 elements = "1";

7 };

8 };

9 outputs = {

10 y = {

11 type = "double";

12 elements = "1";

13 };

14 };

15 };

The value of the constants is given into the functions string as one of the

functions (k = 5 in this case).

The component will match each left-hand side variable of the functions with

the wrapper outputs and each right-hand side variable of the functions with the

wrapper inputs.

2.4.3 Component functions

The math function component has two main functions:

initialisation function which is run only once and performs all the prepara-

tory actions such as functions string loading
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step function which is run continually while the framework is running. This

function effectively runs the math functions, provides it with inputs and

receives its outputs

Inputs for the model come from other framework components, and outputs

are sent to other framework components as well.

2.4.3.1 initialisation function

The component initialisation function performs the following steps:

1. read the configuration options

2. turn the infix expression to postfix expression

3. initialise the framework library that will calculate the result of the input

functions

Once the module options have been read from the configuration the function

is turned into postfix notation by a postfix library that has been written

specifically for this component. The postfix function is then used to instantiate

the postfix_calc object provided by the postfix calculation library by passing

the postfix functions to it.

1 postfix_func = new postfix ();

2

3 ret = (postfix_func != NULL);

4 if (ret)

5 {

6 postfix_func ->set_function(functions);

7 postfix_func ->to_infix ();

8

9 output_calc = new postfix_calc(postfix_func ->get_infix ());

10 }

11

12 ret = output_calc ->read_variables ();

After calling output_calc->read_variables() the postfix_calc object

methods shall be used to set the type and location of each variable in functions.

The location is the same the framework uses, so that there is no need to tran-

scribe the values of the component inputs to the postfix_calc object input

values.
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1 for (unsigned int i = 0; i < n_inputs && ret; i++)

2 {

3 ret = output_calc ->set_input_variable_type(inputs[i]->name

, inputs[i]->type);

4 ret = output_calc ->set_input_variable_addr(inputs[i]->name

, inputs[i]->addr);

5 }

6 for (unsigned int i = 0; i < n_outputs && ret; i++)

7 {

8 ret = output_calc ->set_output_variable_type(outputs[i]->

name , inputs[i]->type);

9 ret = output_calc ->set_output_variable_addr(outputs[i]->

name , inputs[i]->addr);

10 }

11

12 ret = output_calc ->init();

If any of the inputs set in the component configuration are not among the

functions string variables the component stops. If all variables are matched

with the corresponding component signal the postfix_calc object is initialised.

After that, the postfix_calc->step() method can be used to calculate the

functions results, which are directly available at the component output signal

locations.

2.4.3.2 step function

The math function component step function is only calling the postfix_calc->calculate()

method:

1 ret = output_calc ->calculate ();

2.4.4 Cycle time

In this section the time required to run a whole cycle of a math function com-

ponent is measured. The framework offers a time calculation function allowing

to measure the duration of each cycle and output it as just another signal of the

framework. The duration of 1000 cycles is measured and the average duration is

calculated for each function in tab. 2.3. Fig. 2.6 to fig. 2.10 shows the duration

of each cycle while running the corresponding function.
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Figure 2.6: Multiplication step time in math function component while running
function 1 of tab. 2.3 (∆t1) compared to the framework cycle time without the
math function component (∆t0), logarithmic scale. Time is measured for 1000
consecutive cycles.
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Figure 2.7: Multiplication step time in math function component while running
function 2 of tab. 2.3 (∆t1) compared to the framework cycle time without the
math function component (∆t0), logarithmic scale. Time is measured for 1000
consecutive cycles.
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Figure 2.8: Multiplication step time in math function component while running
function 3 of tab. 2.3 (∆t1) compared to the framework cycle time without the
math function component (∆t0), logarithmic scale. Time is measured for 1000
consecutive cycles.
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Figure 2.9: Multiplication step time in math function component while running
function 4 of tab. 2.3 (∆t1) compared to the framework cycle time without the
math function component (∆t0), logarithmic scale. Time is measured for 1000
consecutive cycles.
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Figure 2.10: Multiplication step time in math function component while running
function 5 of tab. 2.3 (∆t1) compared to the framework cycle time without the
math function component (∆t0), logarithmic scale. Time is measured for 1000
consecutive cycles.
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Functions Average cycle time Max cycle time
y = 5x1 4.793× 10−6 s 2.3× 10−5 s

y =
x2
1

cos x1
5.070× 10−6 s 2.4× 10−5 s

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = 2.0

b = 5

y =

(x1 + a)+

(b+ x1 −
a
b
x1)(

x1

a
−

x1

b
)+

(x1 + a)2

5.079× 10−6 s 2.8× 10−5 s

y = 1
x2
1
+x2

2

4.449× 10−6 s 2.7× 10−5 s
⎧

⎪⎨

⎪⎩

a = 2.0

b = 5

y = 1
1−cos ax1

+ cos
x2
2

b

4.791× 10−6 s 2.9× 10−5 s

Table 2.3: Math function cycle times. The average cycle time with no function
evaluation is ∆t0 = 4.120× 10−6 s.

On average, the additional time added to the framework cycle due to the

math function component is 0.717× 10−6 µs.

Results shown that 93% of the lines are covered and outputs from all the

required functions is as expected.
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Chapter 3

Review of equilibrium and

shape system

In this chapter the current equilibrium and shape system [8] [4] is reviewed and

updated to adjust to new requirements for future machines and frameworks (see

section 2.2).

The equilibrium and shape model is responsible for three main tasks:

1. regulating plasma current during the flat-top phase of the discharge

2. maintaining the plasma in the desired position

3. maintaining the plasma in the desired shape

This is accomplished by producing reference values for the field shaping winding

and for the magnetizing winding (for the latter, only during the flat-top phase).

As previously stated, field shaping windings produce the magnetic field required

to maintain the plasma in the desired position with the desired shape, while

magnetizing winding regulates the plasma current by varying the poloidal flux

enclosing the plasma and consequently the applied loop voltage.

As such, the model will be represented here as graphical elements linked by

the inputs and outputs they exchange, and will be referenced as the model in

the rest of the chapter. It should be considered however that the model uses C

code for actual implementation (see section 3.3).
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IFS,ref VFS,ref
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Figure 3.1: General outline of shape and equilibrium model. Inputs and outpus
of the model are shown in sections 3.1.1 and 3.1.2. The 3 main elements of
the model (plasma current, plasma position and plasma shape) are shown in
section 3.2.

3.1 General outline of the model

A general outline of the model is shown in fig. 3.1:

The model has 3 main elements

1. the plasma current element, which generates the voltage reference for the

magnetizing winding required to follow a preset plasma current value

2. the plasma position element, which generates the voltage reference for the

field shaping winding to keep the plasma in the required horizontal and

vertical position in the vessel

3. the plasma shape element, which generates the references required to shape

the plasma. These references can be either for the field shaping coils or

the saddle coils (see section 3.2.2.3)

These elements together produce the outputs of the system: the voltage

reference for the magnetizing winding VMW and the voltage reference for the

field shaping coils VFS.

The model has a time step of 2× 10−4 s, going from −0.6 s to 1 s. Discharge

begins at 0 s.

3.1.1 Model inputs

Model inputs and outputs are listed in tab. 3.2.
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Inputs can be divided into:

measured inputs coming directly from diagnostics

calculated inputs that is plasma parameters that are not directly available

as a diagnostic output but can be modeled and calculated from measured

inputs and known variables

reference waveforms that is, signals that are preset and will normally repre-

sent a reference to be followed during the discharge

Reference inputs includes the following:

MW power supply voltage VMW, the preset reference for the MW power

supply that is to be followed in an ideal case

horizontal shift reference ∆Href the reference value for the horizonal shift

plasma current Iref
P the reference value for the plasma current

Each calculated input is computed from measured quantities as follows:

3.1.1.1 Horizontal and vertical shifts ∆H , ∆V

Horizontal and vertical shifts (∆H and ∆V ) are calculated from a set of arrays

of magnetic pickup coils measuring the poloidal magnetic field. Each pickup coil

of an array is placed on the outer side of the shell at 8 poloidal angles θ1,...,8.

Flux measures are used to reconstruct the plasma shape and derive the plasma

shape function r(θ) by reconstructing the flux distribution and finding the last

closed flux surface [4].

r(θ) is then used to calculate the shift of the plasma centroid (xp, zp) as

shown below:

∆V =
1

π

︂

r(θ) sin θdθ

∆H =
1

π

︂

r(θ) cos θdθ

(3.1)

∆H and ∆V are calculated as the distances of the plasma centroid from the

centre of the vacuum vessel.
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Description Dim. Unit

Measured inputs

1 Toroidal loop voltages Vφ 1 V
2 Toroidal loop voltage differences Vθ 1 V
3 Poloidal fluxes Φφ 1 Wb
4 Poloidal flux differences 1 Wb
5 Toroidal current derivatives 1 A/s
6 Poloidal loop voltages 1 V
8 Toroidal currents Iφ 1 A
9 Toroidal fluxes 1 Wb
11 Poloidal fields 1 T
12 Toroidal currents 1 A
13 Magnetizing currents 1 A
14 Field shaping currents 1 A
Calculated inputs

15 Average toroidal loop voltage V̄ φ 0 V
16 Average poloidal loop voltage V̄ θ 0 V
17 Average toroidal flux Φ̄φ 0 Wb
18 Average toroidal flux at the wall 0 Wb
19 Average toroidal field 0 T
20 Average vertical field B̄V 0 T

21 Average toroidal current deriva-
tive

dIT
dt 0 A/s

22 Average toroidal current 0 A
23 Average toroidal field at the wall B̄Tw 0 T
24 Horizontal shift ∆H 0 m
25 Vertical shift ∆V 0 m
26 Horizontal shift (shell) ∆Hs 0 m
27 Vertical shift (shell) ∆Vs 0 m
28 Plasma current IP 0 A
29 Vessel current Ivessel 0 A
30 Poloidal fields 1 T
31 Poloidal fluxes 1 Wb
32 Poloidal fluxes at the shell 1 Wb
33 Poloidal fluxes at the coils 1 Wb
35 Second-order harmonic in cosine

of the plasma radius
A2 0 m

36 Third-order harmonic in cosine
of the plasma radius

A3 0 m

37 FS coils radial forces 1 N
38 FS coils vertical forces 1 N
39 FS coils flag 0 A
40 Plasma radius R 1 m
41 Average plasma radius R̄ 0 m
42 Lambda coefficient Λ 0
43 Radial position of current cen-

troid
xp 0 m

44 Vertical position of current cen-
troid

zp 0 m

Table 3.2: Inputs and outputs of the equilibrium and shape model

62



x

z

θ1

(a) (b)

Figure 3.2: Calculation of shell horizontal shift. ∆r = rflux − rshell

3.1.1.2 Average toroidal flux at the wall B̄t,w

The average toroidal flux at the wall is calculated as follows:

B̄φ,w =
µ0

2πR0

︃

NφSφCIφ,coils −
Vφ

Rφ,vessel

︃

where:

Nφ number of turns per toroidal coil sector

SC multiplying factor depending on the configuration of the toroidal sectors in

each discharge [7]

Iφ,coils total current on toroidal coils

Vφ poloidal loop voltage

Rφ,vessel poloidal vessel resistance

3.1.1.3 Plasma current IP

Plasma current is considered as the toroidal current Īφ measured by the cor-

responding poloidal coils minus the current flowing in the vessel, which is also

measured by the coil. Given the value of toroidal and poloidal inductance of

the vessel, the only significant contribution is resistive. Thus:

IP = Īφ − Ivessel
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Ivessel is in turn:

Ivessel =
Vφ

Rφ,vessel

where:

Vφ toroidal loop voltage

Rφ,vessel toroidal vessel resistance

3.1.1.4 FS coil forces flag

This flag is set to 0 if the forces acting on each FS coil exceed the amount that

is considered acceptable for the FS coils themselves.

Both vertical and radial forces on each of the 8 FS coils are calculated and

checked against a preset limit. Radial (resp. vertical) forces are calculated

starting from a 8 × 9 matrix fr (resp. fV ), which is the cross product between

the radial (resp. vertical) magnetic field and the i-th current versor. Therefore,

the matrix contains the force produced on the i-th FS coil by the j-th magnetic

field source per unit current (for each coil and for each source) and is calculated

beforehand. Both the 8 FS coils and the toroidal current (the sum of plasma

current and vessel current) are considered as a magnetic field sources, hence the

9th column of the matrix.

The force on a current-carrying conductor in a magnetic field is given by:

F = Iwireℓ×
µ0Isource

2πd
(3.2)

In our case each magnetic source j produces a force on the i-th FS coil, thus:

fI,ij = IFS,iℓFS,i ×
µ0IFS,j

2πdi,j

with di,j distance between the coils. Considering the involved currents (on

the source and on the coil) as unitary, eq. 3.2 becomes:

fi,j = ℓFS,i ×
µ0isource

2πRFS,i
(3.3)

The coefficients of fr and fV are respectively the radial and vertical compo-

nents of eq. 3.3. The absolute values of radial and vertical forces on the i-th coil

are then:
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Fr,i = (

8︂

j=1

fr,ij · IFS,j + fr,i9 · Iφ) · IFS,i

FV,i = (

8︂

j=1

fV,ij · IFS,j + fV,i9 · Iφ) · IFS,i

where:

IFS,i is the current on the i-th FS coil

Iφ is the total toroidal current (IP + Ivessel)

3.1.1.5 Average vertical field B̄V

This signal is the average vertical magnetic field evaluated on the equatorial

plane of the machine.

To calculate the average vertical field the poloidal magnetic flux measure-

ments are taken into account and the magnetic field is derived by using eq. 3.4

Φ = B · S = BS cos θ (3.4)

8 continuous flux loops are available. Firstly poloidal flux differences between

loops 1 and 5 (∆Φ15 at θ1,5 = 22.5°, 202.5°), and between loops 4 and 8 (∆Φ48

at θ4,8 = 157.5°, 337.5°), are calculated. The flux differences are then divided

by the surface of the annuli that the loops themselves project on the equatorial

plane as calculated in eq. 3.5.

S15 = 4πRvessel,MRvessel,m cos
22.5π

180

S48 = 4πRvessel,MRvessel,m cos
π − 22.5π

180

(3.5)

The average vertical field is then calculated as:

B̄V =
∆Φ15/S15 +∆Φ48/S48

2
(3.6)

3.1.1.6 q factor

The q factor is calculated as:

q =
2πr2tilesBφ,w

µ0RIP
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where:

rtiles is the tile surface radius

Bφ,w is the toroidal field at the wall (see section 3.1.1.2)

R is the vessel major radius

IP is the plasma current (see section 3.1.1.3)

3.1.1.7 Toroidal current derivative dIT
dt

This input is the total current flowing toroidally, that is, the sum of plasma

current IP and vessel current Ivessel. The signal is calculated as the average

among the 4 poloidal voltages directly measured by 4 poloidal coils.

3.1.1.8 Toroidal loop voltage Vφ

The signal is calculated as the average among the 8 toroidal loop voltages,

directly measured by the corresponding 8 toroidal coils.

3.1.1.9 Average toroidal flux Φφ

The signal is calculated as the average among the 10 poloidal loop voltages,

directly measured by the corresponding 10 poloidal coils.

3.1.1.10 Gaps g

Gaps are used in the vertical equilibrium system as a secondary source of vertical

shift measure when the plasma shape is reconstructed with the gaps themselves

and not from geometrical parameters (ellipticity and triangularity).

Gaps are measured in correspondence of the flux loop pick-up coils, at the

following angles:

θFL = [22.5◦67.5◦112.5◦157.5◦202.5◦247.5◦292.5◦337.5◦]

3.1.1.11 Harmonics of the plasma radius function r(θ)

The 2nd and 3rd harmonics of the plasma radius function r(θ) are used in the

ellipticity and triangularity adjustment systems (sections 3.2.3.1 and 3.2.3.2).

The plasma radius function r(θ) is calculated from the flux pickup coils as

shown in section 3.1.1.1.
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3.1.2 Model outputs

The model outputs two sets of voltage references for the power supplies to follow:

MW reference a voltage reference for the magentizing winding power supply

produced by the plasma current management element (see section 3.2.1)

FSW reference a vector of 8 voltage references for the field shaping windings

power supply produced by the plasma position and shape management

element (see sections 3.2.2 and 3.2.3)

3.2 Equilibrium and shape elements

In this section each element of the plasma equilibrium and shape model is shown.

The equilibrium and shape model is composed of 3 main elements:

1. the plasma current element, which generates the voltage references re-

quired to drive the plasma current

2. the plasma position element, which generates the voltage references re-

quired to keep the plasma centroid in the desired position

3. the plasma shape element, which generates the voltage references required

to adjust the plasma shape (ellipticity and triangularity)

3.2.1 Plasma current element

This element (see fig. 3.1) produces the voltage references for the magnetizing

windings during the flat-top phase [8]. The element comprises three main sub-

elements (feedthrough, single null (SGN) configuration and RFP configuration)

and two auxiliary elements (resistive voltage drop compensation and plasma

state calculation). The elements are linked as shown in figure 3.3.

The element receives as inputs the following quantities.

References:

MW power supply feedforward reference VMW , the preset reference for

the MW power supply that is to be followed in an ideal case. The plasma

current element applies small corrections to this baseline quantity.

plasma current reference Iref
P , the preset reference for the plasma current to

be followed
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SGN config.

Feedthrough

RFP config.
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MW voltage drop

CCType

Config. selector

Output

Figure 3.3: Outline of the plasma current management element. In this config-
uration the model is using the RFP current drive.

Current measures:

plasma current IP , the actual plasma current value calculated as shown in

section 3.1.1.3.

MW currents IMW, a vector of the 4 currents flowing through each of the

MW sectors.

FS coil currents IFS, a vector of the 8 currents flowing through each of the

FS coil sectors.

Voltage measures:

toroidal loop voltage Vφ, as shown in section 3.1.1.8

toroidal current derivative dIT
dt , as shown in section 3.1.1.7

The CCType element has an input parameter that allows to choose among the

three different types of current drives based upon the type of desired discharge.

3.2.1.1 Feedthrough

The feedthrough element does not modify the input MW reference. Selecting

this element effectively turns off any feedback action applied to the plasma
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current and only the feedforward value of VMW,ref is used.

3.2.1.2 Single null configuration current management

This element actively performs a feedback action on plasma current during the

flat-top phase. The element takes as inputs the plasma current feedforward

reference IP,ref and the MW voltage feedforward reference VMW,ref, and uses

the present value of the plasma current to apply small corrections to the MW

voltage feedforward value in order to make IP follow IP,ref. A time signal t and

the amplitude of a mode Bp,mn are used to switch among the state machine

states.

This element is a state machine with 4 possible states:

1. feedforward

2. fast ramp-up

3. operation

4. ramp-down

The controller starts in feedforward mode, where it behaves as described in

section 3.2.1.1.

When the time signal becomes greater than a preset threshold the element

switches to the operation state and starts following the current reference IP,ref.

This is done with a purely proportional action by applying a gain Kp,CC to the

current error as shown in eq. 3.7.

VMW,ref = Kp,CC(IP,ref − IP ) (3.7)

The state is switched to fast ramp-up when both time and the amplitude of

the selected mode Bp,mn are greater than some preset thresholds. In this state

the VMW,ref output is purely feedforward and set equal to the preset voltage.

The current reaches the preset value with a ramp due to the mainly inductive

nature of the plasma load. This state lasts until IP reaches the plasma current

marginal value that would start an m = 2, n = 1 unstable mode. At this point,

the element switches back to the operation state.

Lastly, the element switches to ramp-down state if t > Tend. Additionally,

the element checks that IP stays within limits set upon its absolute value and

its derivative. A plasma current value outside the operational limits, or a too
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steep variation of its value, would also result in the element switching to ramp-

down state. In this state current is progressively brought to IP = 0 with a

ramp whose duration ∆Trampdown is preset as a discharge parameter, as shown

in eq. 3.8 where Tstart is the instant in which the rampdown action is started.

VMWref,t = VMWref,t-1 −
VMWref,t-1(t− Tstart)

∆Trampdown
(3.8)

3.2.1.3 RFP configuration current management

This element actively performs a feedback action on plasma current during the

flat-top phase. As in section 3.2.1.2, the element takes as inputs the plasma

current feedforward reference IP,ref and the MW voltage feedforward reference

VMW,ref, and uses the present value of the plasma current to apply small correc-

tions to the MW voltage feedforward value in order to make IP follow IP,ref. A

time signal t is used to switch among the state machine states. Plasma ohmic

power PΩ and the plasma resistance RP are used to apply small corrections to

the output reference value.

This element includes an implementation of a lead-lag compensator as de-

scribed in eq. 3.9:

G(s) = k
(1 + sτz)

(1 + sτp)
(3.9)

The compensator is represented as state-space equations:

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(3.10)

To evaluate the coefficients of eq. 3.10 one must consider that a lead-lag

compensator in discrete time can be represented as:

F (z) = k
(T/2 + τz)z + (T/2− τz)

(T/2 + τp)z + (T/2− τp)
= k

b(1)z + b(0)

a(1)z + a(0)
= kd+

k · c(0)

a(1)z + a(0)

where d = b(1)
a(1) and c(0) = b(0)−d ·a(0). The state-space equations are then

discretised as:
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X(z) =
k · c(0) · U(z)

a(1)z + a(0)

Y (z) = X(z) + kdU(z)

(3.11)

The system is discrete, thus it can be assumed that x(k+ 1) = −
a(0)
a(1)x(k) +

k·c0
a(1)u(k), and by comparison with eq. 3.11 it can be inferred that

A = −
a(0)

a(1)

B =
k · c(0)

a(1)

C = 1

D = kd

(3.12)

This element is a state machine with 3 possible states:

1. feedforward

2. operation

3. ramp-down

The controller starts in feedforward mode, where it behaves as described in

section 3.2.1.1.

The element switches to operation state and starts following the current

reference IP,ref if:

• t becomes greater than a preset threshold

• IP becomes greater than a preset threshold

• dIP
dt becomes less than a preset threshold. Differently from the single null

configuration (see section 3.2.1.2) there is no fast ramp-up state, so a

slowly increasing current must be dealt with by the operation state.

While in this state the element evaluates the error ϵI = IP,Ref − IP . The

lead-lag compensator uses ϵI to calculate the required feedback action as shown

in eq. 3.13:

VMW,fb = Cx(t− 1) +DϵI

x(t) = Ax(t− 1) +BϵI
(3.13)
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The element also calculates a purely feedforward action to compensate plasma

resistive and inductive voltage drop:

VMW,ff = RP IP,Ref +
(LP + Ld)∆IP,Ref

∆t
(3.14)

where ∆IP,Ref is the difference between the current value of the current

reference and the value at the previous step, LP is the plasma inductance and

Ld is the stray inductance. The complete reference is then calculated as the

sum of the feedback and feedforward action:

VMW,Ref = VMW,ff + VMW,fb

The element remains in operation state unless one of the following conditions

becomes true:

• t > Tend (end of discharge)

• PΩ > PΩ,max (overheating)

• IP < 3
5IP,Ref (too distant from preset value)

In such cases the element switches to ramp-down state.

3.2.1.4 MW resistive voltage drop compensation

This element includes the compensation of the resistive voltage drop on the MW

power supply connection cables in the MW voltage reference VMW,Ref.

During the flat-top phase MW coils and FS coils are connected in parallel

with each other to balance the mutual inductance matrix1, and in series with

the transfer resistors TR. Each sector of the MWs is connected with two sectors

of the FS coils to the same cable.

Ideally one would want to calculate the voltage drop on each sector. However,

an average value is used since the MW power supply reference is unique in

order to avoid circulation currents between the nodes connecting each sector.

Assuming that each cable has the same resistance the average voltage drop on

the connection cables can be calculated as follows:

∆V cable =
(
︁

i IM +
︁

i IFS)R̄cable

4

The voltage drop on the magnetizing windings only can be calculated as:

1Balancing is required to avoid circulation currents in the coil connections.
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∆V Mag =

︁

i IM · R̄Mag

4

The voltage drop on the transfer resistance RTR is calculated with a voltage

divider:

∆V TR = VMW,Ref
Rcable

RTR +Rcable

The total voltage drop is then:

∆V MWs = ∆V cable +∆V Mag +∆V TR

This value is added to VMW,Ref.

3.2.1.5 Plasma state calculator

This element uses the toroidal loop voltage, the plasma current and the toroidal

current derivative to evaluate the plasma dissipated power PΩ and plasma re-

sistance RP .

PΩ is used to set an operation threshold in order to avoid excessive power

dissipation in the plasma and is calculated as:

PΩ = (Vloop − LP

dIT
dt

)IP

where LP is the plasma internal inductance. LP can be calculated as the

integral of the plasma magnetic energy over the whole plasma and is expected to

vary during the discharge. For simplicity reasons it is here calculated beforehand

and considered constant.

RP is on the other hand calculated during the discharge as:

RP =
Vloop − LP

dIT
dt

IP

Note that only the RPF current management element uses these values as

inputs.

3.2.2 Plasma position element

The purpose of this element is to keep the plasma centroid in the desired position

with respect to the shell. This element is divided in two main sub-elements and

one auxiliary sub-element:
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Figure 3.4: Plasma position element. The feedforward element is shown in
fig. 3.5, while the feedback element is shown in fig. 3.8.

1. horizontal shift element

2. vertical shift element

3. bias vertical magnetic field element (auxiliary)

The elements are connected as shown in fig. 3.4

3.2.2.1 Horizontal shift

This element evaluates the vertical magnetic field BV required to keep the

plasma in the desired horizontal position and generates the corresponding volt-

age references for the FS coils.

Horizontal shift feedforward action The outline of this element is shown

in fig. 3.5. This element takes as inputs:
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Figure 3.5: Plasma position feedforward element. The IP compensator element
is shown in fig. 3.6. Calculation of bc is shown in eq. 3.21.

plasma current IP , the actual plasma current value calculated as shown in

section 3.1.1.3

toroidal current derivative dIT
dt , as shown in section 3.1.1.7

feedforward vertical field reference BV,ff, a preset waveform

The element outputs a contribution to the FS current references that will be

added to the contributions produced by the plasma shape element (section 3.2.3)

and the feedback part of the position element (section 3.2.2.1).

The element is responsible for applying the equilibrium equation 3.15:

BV,eq =
µ0IP
4πR0

︃

ln
8RP

a
+ Λ−

1

2

︃

(3.15)

thus evaluating the amplitude of vertical field required to compensate the

horizontal forces induced by the plasma current (see section 1.3.3).

The value of IP is preprocessed in a lead compensator to compensate the

delay introduced by the field shaping system (power supplies, coils and cables),

which is responsible for creating the vertical field required by this element. This

delay has been extimated to be τ1 = 7.6ms

In order to anticipate the response of the power supplies the following trans-

fer function should be applied to the plasma current:

G(s)IP (s) =
1 + sτ1
1 + sτ2

IP (s) (3.16)

where τ2 = 4.5ms is another time constant associated to the lead compen-

sator pole in order to shift the pole away from the zero, its value having been

optimized experimentally.
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Figure 3.6: Plasma position lead compensator element.

Nevertheless, since the toroidal current derivative is available to the same

element, eq. 3.16 can be separated into the two following equations:

GIP (s) =
1

1 + sτ2

G dIT
dt

(s) =
τ1

1 + sτ2

(3.17)

By applying the trapezoidal rule s = 2
T

z−1
z+1 , eqs. 3.17 can be discretized:

GIP (z) =
z + 1

(1 + 2
T
τ2)z + (1− 2

T
τ2)

G dIT
dt

(z) =
τ1(z + 1)

(1 + 2
T
)z + (1− 2

T
τ2)

(3.18)

The toroidal current derivative signal includes the contribution from the

vessel current that should be subtracted before applying eq. 3.15. The vessel

current quota Ivessel = Vloop/Rvessel is associated to the transfer function:

G dIvessel
dt

(s) =
sτ1

1 + sτ2

1

Rvessel
(3.19)

which, once discretized, becomes:

G dIvessel
dt

(z) =
2
T
τ1(z − 1)

(1 + 2
T
τ2)z + (1− 2

T
τ2)

1

Rvessel
(3.20)

The combination of the above transfer functions in the lead compensator

element is shown in fig. 3.6, and the resulting effect is shown in fig. 3.7.

The input of eq. 3.15 is considered to be IPlead
only, since all other parameters

of the equation are constant (depending on the machine geometry) or can be

assumed as constant without losing much precision. In this case R0, RP and

a are considered constants and in RFP discharges it can be assumed that Λ =

−0.2.
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Figure 3.7: Effect of lead compensator on IP . The derivative effect allows to
compensate the delay introduced by the power supplies.

These considerations reduces eq. 3.15 to:

BV,eq

⏞ ⏟⏟ ⏞

Output

= IP,lead

⏞ ⏟⏟ ⏞

Input

·
µ0

4πR0

︃

ln
8RP

a
+ Λ−

1

2

︃

⏞ ⏟⏟ ⏞
constants

= IP,lead · bc (3.21)

The constant part bc represents the required value of vertical field per unit

plasma current, measured in
︁
T
A

︁
.

The resulting magnetic vertical field BV,eq is then distributed along the FS

coils using a vector product with experimentally determined coefficients:

IFS,eq = BV,eqiFS,dist

Horizontal shift feedback action The outline of this element is shown in

fig. 3.8. This element takes as inputs:

measured horizontal shift ∆H, the plasma horizontal shift with respect to

the chamber centre 3.1.1.1

shell horizontal shift ∆Hs, the horizontal shift of the plasma centroid calcu-

lated as if the shell is a flux surface

horizontal shift reference ∆Hr, a preset waveform of the desired vertical

shift during the discharge

77



∆H

∆Hs

∆Hr

∆H switch

P
I

b
lo

ck

iFS,dist I
(fb)
FS

+

+

ϵ ∆
H

B
(f

b
)

V
,e

q

Figure 3.8: Plasma position feedback element. ∆H: horizontal shift of the
plasma centroid. ∆Hs: horizontal shift of the plasma centroid calculated as if
the shell is a flux surface. ∆Hr: horizontal shift reference to be followed.

The element outputs a contribution to the FS current references that will be

added to the contributions produced by the plasma shape element (section 3.2.3)

and the feedforward part of the position element (section 3.2.2.1).

Firstly, a two-way switch (∆H switch) selects the desired horizontal shift

among the two available to the element. The horizontal shift reference is sub-

tracted to the selected horizontal shift in order to obtain the error on the hori-

zontal shift ϵ∆H .

This error is used as input for a PI sub-element which calculates the response

in terms of a contribution to the vertical field converting the horizontal displace-

ment into a request of vertical field B
(fb)
V,eq. The PI element (proportional-integral,

no derivative part is used) coefficients are:

Kp = 4

Ki = 60

The integral part is implemented by means of a discrete-time integrator
T (z+1)
2(z−1) and is activated only when t > 0.05 s. This is due to the fact that in

the early phase of the discharge the plasma is formed near the inner edge of the

vessel and as such has a horizontal position error reversed with respect to the

error during the discharge, when the plasma tends to expand towards the outer

part of the vessel. Thus, the integral part in the early phase would increase the

horizontal shift error that should then be compensated.

Eventually the required vertical field is distributed along the FS coils using

a vector product with the calculated coefficients:

IFS,eq = BV,eqiFS,dist
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Figure 3.9: Vertical shift stabilization. FF: feedforward action on the vertical
shift. FB: feedback action on vertical shift error.

3.2.2.2 Vertical shift

This element implements the active stabilization of the plasma vertical posi-

tion and is thus activated during shaped-boundary plasma discharges since only

elongated shapes need vertical stabilization, or when a vertically shifted circular

plasma is required.

In order to perform vertical stabilization a horizontal component of the mag-

netic field is required (see section 1.3.4). The element thus outputs a reference

for two rows of saddle coils that are mounted on the equatorial plane of the

machine, one row on the outer plane and one on the inner plane. All coils of

each row are virtually connected in series, and the two rows are then virtually

connected in anti-series. With this configuration the direction of the produced

horizontal field is concordant and only one current reference is sufficient to drive

the whole coil array.

The element inputs are:

vertical shift ∆V , the vertical shift of the plasma centroid with respect to the

desired position (see section 3.1.1.1)

vertical shift reference ∆Vref, the vertical shift of the plasma centroid as

shown in section 3.1.1.1

gap references ∆gr, the vector of the requested 8 radial gaps between the

plasma and the first wall as described in section 3.1.1.10

The element outputs a current reference for the power supplies of the saddle

coils ISC.

When using a circular configuration the vertical shift reference is given di-

rectly. When using an single null configuration the reference is given consistently
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with the 8 measures of the gaps between the plasma and the wall. Starting from

these values an appropriate vertical shift reference is calculated. This allows

the vertical shift to be calculated based on the desired plasma shape instead of

passing it to the model as an unrelated input. Nevertheless, since the discharge

begins as circular and only later evolves towards the single null configuration,

the reference must be shifted accordingly from the direct vertical shift refer-

ence used during the early phase of the discharge and the gap-based vertical

shift used during the second half of the discharge. A continuous switch is

implemented that cross-fades from one reference to the other.

The gap-based vertical shift reference is calculated as the scalar product

∆Vg = ∆gr ·Ksin

where Ksin(i) = − 1
4 sin θFL(i) (see section 3.1.1.10 for the values of θFL).

The error ϵ∆V is calculated as the difference between the selected reference

and the actual vertical shift. A PI element (feedback element FB in fig. 3.9)

elaborates the adequate response to the input error. The proportional and

integral coefficients are:

Kp = 10

Ki = 60

Again, the integration start is delayed in order to make the response more

prompt during the early phase of the discharge.

In parallel to the PI element, a lead compensator (feedforward element FF in

fig. 3.9) is applied to the selected vertical shift reference in order to compensate

the delays introduced by the saddle coil system (power supplies, cables and

coils). An experimentally determined constant coefficient is used to convert the

vertical shift reference into the corresponding horizontal field and then into the

current reference for the saddle coils.

The feedback and feedforward actions are added together. The signal is

saturated at ±50A so as not to exceed the quota of the saddle coil current

dedicated to vertical stabilization.

3.2.2.3 Bias vertical magnetic field feedback action

This PI element is an additional feedback component that manages the creation

of a vertical bias field before the discharge to avoid delays due to the time
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Figure 3.10: Effect of bias field produced by the PI element on the vertical
magnetic field reference BV,ref. Pulse begins at t = 0 s

constant of the magnetic field penetration in the shell, or to compensate other

magnetic fields from e.g. the magnetizing winding. Its coefficients are:

Kp = 2.25

Ki = 45

The effect on the magnetic field reference are shown in fig. 3.10

3.2.3 Plasma shape element

This element shapes the plasma by generating a 2nd order cosine distribution

of references for the FS coils. Depending on the required type of discharge the

inputs of this element can be

1. geometrical parameters (ellipticity and triangularity, see section 3.1.1.11)

2. gap measures used to reconstruct the plasma shape (see section 3.1.1.10)

3.2.3.1 Vertical ellipticity

This element implements the active adjustment of the plasma grade of vertical

ellipticity. The element outline is shown in fig. 3.11. As stated in section 1.3.5,
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Figure 3.12: Triangularity element. FF: feedforward action on A3 (amplitude of
3rd harmonic of r(θ)). FB: feedback action on A3 (amplitude of 3rd harmonic of
r(θ)).

vertical ellipticity can be expressed as the amplitude of the 2nd armonic in cos θ

of the plasma radius r(θ). As such, the element inputs are:

amplitude of the 2nd cosine harmonic of the plasma radius A2, the feed-

back signal used to calculate the response

reference of 2nd cosine harmonic of the plasma radius A2,ref

Calculation of said harmonics is carried out outside the element as shown in

section 3.1.1.11. The element outputs a contribution to the FS current references

that will be added to the contributions produced by the plasma shape element

(section 3.2.3) and the plasma position element (section 3.2.2).

Similarly to the vertical shift element, this element consist of a lead com-

pensator element applied to the entire r(θ) 2nd harmonic reference and a PI

feedback element applied to the 2nd harmonic error ϵ∆A2
evaluated as the dif-

ference between the 2nd harmonic reference and the calculated 2nd harmonic.

Both these responses are then added together.

The vertical field required to adjust the plasma ellipticity is produced by the

FS coils through a cos2θ distribution, thus the response is distributed to the FS

coils using the coefficient iFS,dist.
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3.2.3.2 Triangularity

This element implements the active adjustment of the plasma grade of trian-

gularity. The element outline is shown in fig. 3.12. As stated in section 1.3.5,

triangularity can be expressed as the amplitude of the 3rd armonic in cos θ of

the plasma radius r(θ). As such, the element inputs are:

amplitude of the 3rd cosine harmonic of the plasma radius A3, the feed-

back signal used to calculate the response

reference of 3rd cosine harmonic of the plasma radius A3,ref

Calculation of said harmonics is carried out outside the element as shown in

section 3.1.1.11. The element outputs a contribution to the FS current references

that will be added to the contributions produced by the plasma shape element

(section 3.2.3) and the plasma position element (section 3.2.2).

Similarly to the vertical shift element, this element consist of a lead com-

pensator element applied to the entire r(θ) 3rd harmonic reference and a PI

feedback element applied to the 3rd harmonic error ϵ∆A3
evaluated as the dif-

ference between the 3rd harmonic reference and the calculated 3rd harmonic.

Both these responses are then added together.

The vertical field required to adjust the plasma triangularity is produced by

the FS coils through a cos3θ distribution, thus the response is distributed to

the FS coils using the coefficient iFS,dist.

3.2.4 Additional elements

The following elements introduce additional contributions such as activations,

voltage drop compensations etc.

3.2.4.1 FS voltage drop compensation

This element converts the overall FS coil current reference produced by the

elements in sections 3.2.1, 3.2.2 and 3.2.3 into voltage references for the FS coil

power supplies. The element is also responsible for the following compensarions:

1. compensation of resistive voltage drop on the FS coils produced by the

currents flowing in the coils

2. compensation of the inductive coupling among the FS coils, produced by

current variations in the coils themselves
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The element inputs are:

FS coil currents IFS, measured on the coils

FS coil current references IFS,ref, produced by the upstream elements

The element outputs the voltage references VFS,ref for the FS coil power

supplies.

An outline of the element is shown in fig. 3.13.

Firstly the element evaluates the required current variation ∆IFS with re-

spect to the preset feedforward reference. A resistance matrix R is applied to

the measured currents, thus introducing an additional voltage reference that

compensates the resistive voltage drop on the total poloidal system.

To compensate the current errors due to inductive coupling between the

coils the inductance matrix LΛ is applied to the current variation vector ∆IFS.

Diagonalizing the state matrix A of the system the current variation rates can

be obtained. By defining the diagonal matrix Λ whose elements are equal to

the current error variation rates, the inductive coupling can be compensated by

multiplying the current errors by the factor:

KL = −LΛ

where L is the system inductance matrix.

3.2.4.2 Ramp-down element

A ramp-down element activates a preprogrammed soft ramp-down of the coil

currents in case any of the coil current limits is passed.

3.3 Model library

The equilibrium and shape model is shown using a graphical element diagram-

ming. To be used during real discharges however, the model needs to be com-
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piled into C code.

The result shall be a library that can be linked. The library shall offer some

handles that can be used to load and run the model from any other application.

These handles include:

initialise this symbol will allow to load the model and all the variables that

will be used during the model run

step this function will make the model advance of one step, using its inputs to

calculate and update the outputs

To talk to each other, the model and the programme that runs it share

a structure initialized by the model itself containing all the relevant instruc-

tions, such as number and dimensions of inputs and outputs and number and

dimensions of parameters. The structure layout must be known by the auxiliary

programme by including an appropriate header.

3.4 Updates to the model

The model has been reorganized and extensively commentated to facilitate usage

and upkeep.

3.4.1 Circular and single-null configurations

The old equilibrium and shape model was actually split into two main models.

The former was used to obtain circular configurations, while the latter for single-

and double-null configurations.

The main differences between the two models are:

1. in the horizontal shift feedback element (3.1.1.1): the single null version of

the model has the option to calculate the horizontal shift reference from

the gap references, just as the model does for the vertical shift

2. circular to single null transition: the single null model includes elements

to handle the transition from a circular-shaped plasma to an single null-

shaped plasma, due to the fact that every single null discharge ultimately

starts as circular. In particular, elements that do this in the single null

model are the horizontal shift feedforward element and the vertical shift

element
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3. coil connections: coils connections to power supplies are different between

circular and single null discharges, and FS5 is usually not used. FS voltage

drop compensation includes these modifications

This layout required the libraries to be swapped manually each time the

configuration was changed. Furthermore, any modification and upgrade of the

model had to be applied to both models.

3.4.1.1 Merging of circular and single null configurations

Conditional statements were therefore introduced in the model and used to

upgrade the existing elements that operated differently in the circular and single

null version of the model. A conditional element contains multiple versions of

an element and is capable of switching on the most suitable one based on how

the current discharge is defined (as a circular or as an single null one).

3.4.2 Structured inputs and outputs

The model has also been modified in order to generalize its interface with the

auxiliary programme.

The inputs and outputs of the model are now structured. The auxiliary

programme has been updated in a recursive fashion so as to be able to fully

explore the structured components of the model signals. This resulted in a

neater model which is also easier to interface with other components of the

framework, since a single structured array now contains all the relevant inputs

and outputs. On the other hand, no flexibility is lost since on the framework

side each component of the structured inputs and outputs can be extracted and

used singularly.

3.4.3 Model summary

During the review each element of the model has been revised and a thorough

explanation has been added to all relevant elements. Furthermore, all element

descriptions have been collected into an extensive model summary that shows

every aspect of the model working principles.
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Chapter 4

Final design of the

equilibrium framework

In this chapter a complete plasma system is set up and its flexibility is tested

by running test discharges in various magnetic configurations.

The plasma system uses

1. the new components of chapter 2

2. the equilibrium and shape model (chapter 3), run with the model wrapping

component of section 2.2

3. a simple signal pre elaboration run with the mathematical function com-

ponent (section 2.4)

Input signals are taken from previous discharges.

4.1 Plasma system outline

The outline of the plasma system is shown in fig. 4.1.

4.1.1 Components

The system encloses

1. a plasma equilibrium and shape model, run with the model wrapping

component of section 2.2
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Figure 4.1: The figure shows a plasma real-time system using the components
built in the previous chapters. Pre is the math function component carrying
out the pre elaboration of signals. Wrapper is the model wrapping component
running the plasma equilibrium and shape model.

2. a pre elaboration component, calculating some of the inputs required by

the equilibrium and shape model

4.1.2 Inputs

The inputs for the model are taken from previous discharges. Some of the inputs

require pre elaboration that was previously carried out by specific framework

components. In this simple plasma system the math function component is used

to carry out such calculations.

4.1.2.1 Pre elaboration of signals

The following signals are not available as measured quantities and must be

calculated:

1. plasma current IP

2. q factor

Based on the input calculation shown in section 3.1.1 the math function

component is configured as follows to calculate the required input signals:

1 {

2 functions = "

3 // I_P
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4 R_vessel = 0.00115;

5 I_vessel = V_tor_loop/R_vessel;

6 I_P = I_phi - I_vessel;

7 // q

8 r_tiles = 0.46;

9 R = 1.99;

10 q = (6.28* r_tiles ^2* B_phi)/(0.000001256*R*I_P);

11 "

12 inputs = {

13 I_phi = {

14 type = "double";

15 elements = "1";

16 };

17 V_tor_loop = {

18 type = "double";

19 elements = "1";

20 };

21 B_phi = {

22 type = "double";

23 elements = "1";

24 };

25 };

26 outputs = {

27 I_P = {

28 type = "double";

29 elements = "1";

30 };

31 };

32 q = {

33 type = "double";

34 elements = "1";

35 };

36 };

37 };

4.2 Outputs

In this section the output of the plasma system built in this work are compared

with the outputs of a previous system. The PCS is run in the configuration
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shown above.

The following outputs are considered:

1. magnetizing winding voltage reference VMW for plasma current during the

flat-top

2. field shaping coil voltage references VFS. These coils generate the poloidal

magnetic field required to drive the plasma horizontal shift, ellipticity and

triangularity

3. equatorial saddle coil current reference ISC for plasma vertical equilibrium

4.2.1 RFP circular discharge

Figures 4.2 to 4.4 show a RFP circular run with plasma current IP up to 1MA.

The voltage reference for the FS coils in an RFP run are shown in fig. 4.3.

4.2.2 Single null discharges

In this section single null configuration runs are shown.

4.2.2.1 Single null discharge

Figures 4.5 to 4.7 show an single null configuration run.

The voltage reference for the FS coils in a single-null run are shown in fig. 4.6.

4.2.2.2 Discharge ends at t = 0.62 s

Figures 4.8 to 4.10 show a single null run that ends at 0.62 s for having too much

current on one of the field shaping coils.

4.2.2.3 βθ variation

Figures 4.11 to 4.13 show a signle null run with βθ (density) variation at t = 0.6 s

which is compensated by the plasma system.

4.2.2.4 MW voltage variation

Figures 4.14 to 4.16 show a single null run with MW voltage variation at t = 0 s.
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Figure 4.2: MW voltage references before and after t = 0 s ([V]) and toroidal
field coil reference Vφ ([V]) in an RFP discharge. The reference has been gen-
erated by the vertical shift element (see section 3.2.2.2). Blue: reference value.
Red: the model run into the model wrapping component.
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Figure 4.3: FS coil voltage reference [V] in an RFP discharge. Blue: reference
value. Red: the model run into the model wrapping component.
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Figure 4.4: SC coil current reference [A] in an RFP discharge. The reference
has been generated by the vertical shift element (see section 3.2.2.2). Blue:
reference value. Red: the model run into the model wrapping component.
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Figure 4.6: FS coil voltage reference [V] in a single null discharge. Blue: refer-
ence value. Red: the model run into the model wrapping component.
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Figure 4.7: SC coil current reference [A] in a single null discharge. The reference
has been generated by the vertical shift element (see section 3.2.2.2). Blue:
reference value. Red: the model run into the model wrapping component.
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Figure 4.8: MW voltage references before and after t = 0 s ([V]) and toroidal
field coil reference Vφ ([V]) in a single null discharge that ends at t = 0.62 s. The
reference has been generated by the vertical shift element (see section 3.2.2.2).
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Figure 4.9: FS coil voltage reference [V] in a single null discharge that ends at
t = 0.62 s. Blue: reference value. Red: the model run into the model wrapping
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Figure 4.10: SC coil current reference [A] in a single null discharge that ends
at t = 0.62 s. The reference has been generated by the vertical shift element
(see section 3.2.2.2). Blue: reference value. Red: the model run into the model
wrapping component.
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Figure 4.11: MW voltage references before and after t = 0 s ([V]) and toroidal
field coil reference Vφ ([V]) in a single null discharge with βθ variation at
t = 0.6 s. The reference has been generated by the vertical shift element (see
section 3.2.2.2). Blue: reference value. Red: the model run into the model
wrapping component.
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Figure 4.12: FS coil voltage reference [V] in a single null discharge with βθ

variation at t = 0.6 s. Blue: reference value. Red: the model run into the model
wrapping component.
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Figure 4.13: SC coil current reference [A] in a single null discharge with βθ

variation at t = 0.6 s. The reference has been generated by the vertical shift
element (see section 3.2.2.2). Blue: reference value. Red: the model run into
the model wrapping component.
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Figure 4.14: MW voltage references before and after t = 0 s ([V]) and toroidal
field coil reference Vφ ([V]) in a single null discharge with MW voltage variation
at t = 0 s. The reference has been generated by the vertical shift element (see
section 3.2.2.2). Blue: reference value. Red: the model run into the model
wrapping component.
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Figure 4.15: FS coil voltage reference [V] in a single null discharge with MW
voltage variation at t = 0 s. Blue: reference value. Red: the model run into the
model wrapping component.
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Figure 4.16: SC coil current reference [A] in a single null discharge with MW
voltage variation at t = 0 s. The reference has been generated by the vertical
shift element (see section 3.2.2.2). Blue: reference value. Red: the model run
into the model wrapping component.
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Chapter 5

Conclusions

As magnetic confinement fusion machines grow in number and dimensions, so

does the related real-time system whose task is to elaborate outputs for the

actuators based on inputs from diagnostics [2][1]. Outputs are calculated from

inputs using a wide variety of models created in a great number of ways: tools of-

fered to modellers include programming with compiled languages, programming

with interpreted languages, graphical programming and mathematical models.

A fusion framework requires all models to be created with the same archi-

tecture the framework was built upon, or models with different architectures

to be reworked so as to be run in the framework, which may introduce subtle

differences with respect to the source model.

In this work, a flexible plasma system has been built. To do so, a fusion

framework [2] [3] has been provided with the components required to interface

with the most widely used modelling tools. Components interface with the

framework signals and can be included seamlessly in the framework feedback

loop.

A plasma equilibrium and shape model [4] has been reviewed and updated

to adjust to new requirements for future machines and the graphical model

wrapper has been used to include the equilibrium and shape model in the plasma

framework.

A complete plasma system has been set up using the new components, which

includes the equilibrium and shape model, a simple plasma current model run

from a mathematical function. The plasma system flexibility is confirmed by

running test discharges in various magnetic configurations, showing that such a

plasma system is ready to be used in future fusion applications [5] [9].
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