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Psychiatric studies of suicide provide fundamental insights on the evo-6

lution of severe psychopathologies, and contribute to the development of7

early treatment interventions. Our focus is on modelling different traits of8

psychosis and their interconnections, focusing on a case study on suicide at-9

tempt survivors. Such aspects are recorded via multivariate categorical data,10

involving a large numbers of items for multiple subjects. Current methods for11

multivariate categorical data – such as penalized log-linear models and latent12

structure analysis – are either limited to low-dimensional settings or include13

parameters with difficult interpretation. Motivated by this application, this ar-14

ticle proposes a new class of approaches, which we refer to as Mixture of Log15

Linear models (MILLS). Combining latent class analysis and log-linear mod-16

els, MILLS defines a novel Bayesian approach to model complex multivariate17

categorical data with flexibility and interpretability, providing interesting in-18

sights on the relationship between psychotic diseases and psychological as-19

pects in suicide attempt survivors.20

1. Introduction. We are motivated by a psychiatric study of suicide attempts, focused21

on investigating the psychological profiles of survivors of a suicidal act (e.g. Scocco et al.,22

2020; Nock et al., 2008; De Leo et al., 2004). Studies on suicide attempts are crucial for23

the development of novel interventions, based on early identification of key psychological24

symptoms, such as depression or hallucination (e.g. Hawton and Fagg, 1988; Kelleher et al.,25

2011). Detailed characterisation of the psychological profiles in suicide attempts provide26

important insights on the dynamics of suicidal acts, and the relationships between psychotic27

symptoms and other psychological traits, such as empathy (De Beurs et al., 2019). We are28

interested in analysing traits of suicide attempt patients, including psychoses and empathic29

profiles, while also characterizing interactions across these classes of traits.30

In the psychological literature, the investigation of the relationship between psychoses31

and empathy has received considerable attention, remaining a challenging research objective32

which is routinely explored (e.g. McCormick et al., 2012; Ladisich and Feil, 1988). In gen-33

eral, specific empathic profiles are also associated with depression (Cusi et al., 2011; Schre-34

iter, Pijnenborg and Aan Het Rot, 2013), obsessive compulsive disorders (Fontenelle et al.,35

2009), anxiety (Perrone-McGovern et al., 2014) and hostility (Guttman and Laporte, 2002).36

For example, a frequent symptom of depression is the inability to perceive our own feelings,37

which is also realistically associated with the inability to comprehend other individuals’ emo-38

tions (e.g. Cusi et al., 2011). Similar examples involve different empathic conditions, such39

as personal distress and severe hostility, which are likely to be associated with acute anxiety40

(Guttman and Laporte, 2002).41

Although there are many studies focusing on the interconnections among these psycho-42

logical aspects, their mutual influence in patients attempting suicide is not completely un-43

derstood. Indeed, preliminary evidence suggests that individuals who attempted suicide can44

exhibit unexpected association patterns across psychotic symptoms and specific empathic45

profiles, and such interactions could be relevant for characterising underlying psychological46
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mechanisms (Scocco et al., 2020; Wang et al., 2020; Zhang et al., 2019). For instance, de-1

pressed individuals with a high level of empathic concern may suffer inconsistent thoughts2

and feelings, exacerbating their clinical condition and potentially increasing the risk of re-3

attempting suicide.4

Subjects analysed in the study correspond to a sample of 56 inpatients hospitalized af-5

ter an attempted suicide at the psychiatric ward of Padova Hospital (Italy) between January6

2017 and December 2018 (Scocco et al., 2020). Suicide attempts can be intentional or not,7

depending on whether the individual consciously realizes that his actions are intended to kill8

him. This distinction can be blurred for many episodes; for example, with poisoning or drug9

overdoses (Britton et al., 2012). In this study, we rely on clinicians’ evaluations about in-10

tentionality. Individuals were labelled as “attempted suicide” if they harmed their body and11

consciously realized that such an act could kill them (e.g. Goodfellow, Kõlves and De Leo,12

2019). During hospitalisation, clinicians submit self-reported questionnaires to each patient13

to supervise their psychological evolution over time. Such tools are developed to investigate14

different aspects of individuals’ psychology, with the main focus being on the evaluation of15

the psychotic profiles and the empathic status (Scocco and De Leo, 2002). Specifically, these16

facets are evaluated through the Symptom Check List (SCL-90; Derogatis, Lipman and Covi,17

1973) and the Interpersonal Reactivity Index (IRI; Davis, 1980) questionnaires.18

The SCL-90 is commonly used to describe psychiatric symptoms, using 90 items scored19

on a five-point Likert scale; additionally, scores can be grouped into nine subscales (somati-20

zation, obsessive-compulsive, interpersonal sensitivity, depression, anxiety, hostility, phobic21

anxiety, paranoid ideation, psychoticism) corresponding to well-defined psychiatric profiles22

(Derogatis, Lipman and Covi, 1973). As suggested by our clinician collaborators, it is of23

particular interest to focus on 4 subscales of the questionnaire: obsessive-compulsive (OC),24

depression (DEP), anxiety (ANX) and hostility (HOS), encompassing a total of 39 items mea-25

suring the psychotic aspects which are more relevant in suicide attempts evaluation. We have26

further removed from analysis 4 items with a large fraction of missing observations, resulting27

in a total of 35 items for SCL-90. Although we could have used imputation methods, the high28

proportion of missingness and our small sample size led us to instead remove these items.29

See Table 6 in Appendix A for a detailed illustration of the items under investigation.30

The IRI is a 28-item instrument scored on a five-point Likert scale that measures the emo-31

tional and cognitive components of a person’s empathy, with four subscales. The IRI measures32

the cognitive capacity to see things from the point of view of others (Perspective Taking, PT),33

the tendency to experience reactions of sympathy, concern and compassion for other people34

undergoing negative experiences (Empathic Concern, EC), the tendency to experience dis-35

tress and discomfort in witnessing other people’s negative experiences (Personal Distress,36

PD) and the capacity to strongly identify oneself with fictitious characters in movies, books,37

and plays (Fantasy, FS). We will focus only on the 22 items that were uniquely associated38

with a specific empathic subscale, and without missing observations. For a detailed illustra-39

tion, see Table 7 in Appendix A.40

Following the notation convention of Lauritzen (1996), we will indicate with V � t1, . . . , ku41

the set of k � 57 categorical items collected from the two psychological questionnaires com-42

bined. We also denote with pYj , j P V q the variables taking values in the finite set Ij , with43

dimension |Ij | � dj corresponding to the number of categories of the j-th item. In the psy-44

chological study under investigation, dj � 5 and Ij � t0, . . . ,4u, for each j � 1, . . . ,57.45

Data collected from patients consist of an n� k matrix with elements yij P t0, . . . ,4u, where46

i� 1, . . . ,56, j � 1, . . . ,57. Table 1 illustrates the univariate frequencies for the items under47

investigation, sorted according to the subscale they refer to.48

Preliminary findings suggest that most subjects generally report high scores of hostility49

(HOS). Such a subscale focuses on measuring different dimensions of hostility, including50
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TABLE 1
Univariate descriptive statistics. SCL-90 questionnaire (left) and IRI-28 (right). Second column refer to the

specific subscale the items refer to. Subjects answer with their level of agreement with numbers ranging from 0
(“Not at all”) to 4 (“Extremely”).

ITEM SUB 0 1 2 3 4

SCL-2 ANX 12 15 17 8 4
SCL-17 ANX 4 4 9 11 28
SCL-23 ANX 3 4 10 10 29
SCL-33 ANX 6 9 7 12 22
SCL-39 ANX 5 6 7 11 27
SCL-72 ANX 4 7 9 6 30
SCL-78 ANX 6 6 7 8 29
SCL-80 ANX 5 5 8 7 31
SCL-86 ANX 5 6 17 13 15
SCL-5 DEP 16 5 6 5 24
SCL-14 DEP 10 15 12 10 9
SCL-15 DEP 12 3 10 14 17
SCL-20 DEP 4 11 6 14 21
SCL-22 DEP 9 5 6 9 27
SCL-26 DEP 6 8 13 14 15
SCL-29 DEP 18 12 7 10 9
SCL-30 DEP 16 14 14 9 3
SCL-31 DEP 9 13 9 12 13
SCL-32 DEP 13 14 5 11 13
SCL-71 DEP 8 12 8 12 16
SCL-79 DEP 10 13 5 15 13
SCL-11 HOS 6 8 8 22 12
SCL-63 HOS 2 2 6 6 40
SCL-67 HOS 2 4 7 2 41
SCL-74 HOS 3 2 9 9 33
SCL-3 OC 14 13 11 8 10
SCL-9 OC 7 6 8 22 13
SCL-10 OC 2 8 13 18 15
SCL-28 OC 9 6 11 20 10
SCL-38 OC 7 8 9 19 13
SCL-45 OC 3 9 7 14 23
SCL-46 OC 9 5 8 19 15
SCL-51 OC 6 5 8 13 24
SCL-55 OC 7 10 11 16 12
SCL-65 OC 1 2 6 11 36

ITEM SUB 0 1 2 3 4

IRI-2 EC 4 7 9 17 19
IRI-4 EC 19 10 13 8 6
IRI-9 EC 3 6 7 14 26
IRI-14 EC 21 15 8 6 6
IRI-18 EC 27 7 7 7 8
IRI-1 FS 10 10 22 9 5
IRI-5 FS 8 12 12 14 10
IRI-7 FS 10 11 18 12 5
IRI-12 FS 19 13 9 7 8
IRI-16 FS 15 8 14 9 10
IRI-23 FS 8 12 15 4 17
IRI-26 FS 12 11 8 14 11
IRI-10 PD 4 9 14 12 17
IRI-13 PD 13 12 14 9 8
IRI-17 PD 11 10 12 11 12
IRI-19 PD 11 12 7 10 16
IRI-3 PT 9 19 12 14 2
IRI-11 PT 5 8 17 12 14
IRI-15 PT 10 9 13 14 10
IRI-21 PT 5 9 14 16 12
IRI-25 PT 12 13 15 10 6
IRI-28 PT 4 11 12 15 14

thoughts, feelings, and actions that are characteristic of the negative affect state of anger1

(Derogatis, Lipman and Covi, 1973). High scores demonstrate that resentment, irritability and2

rage are common in the patients under investigation. Similarly, subjects respond with high3

scores to items belonging to the Anxiety (ANX) and Obsessive-Compulsive (OC) subclasses.4

These items are devoted to measuring nervousness, tension and impulses that are experienced5

as irresistible (Derogatis, Lipman and Covi, 1973). The prevalence of high scores in these6

questions indicate that patients who attempted suicide demonstrate feelings of apprehension7

and panic, and that they often feel the need to obsessively check what they do.8

Interestingly, we observe heterogeneous responses to items measuring depressive profiles9

(DEP). For example, subjects respond to the item SCL-15 (“Thoughts of ending your life”)10

both with low and high scores. Similarly, responses to most questions referring to empathic11

traits are heterogeneous, and indicate that the sample is characterized by different profiles12

in terms of empathic feelings. As an exception, it is of interest to focus on the Empathic-13

Concern subscale (EC), which is characterised by more polarized answers; see for example,14
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item IRI-18 (“When I see someone being treated unfairly, I sometimes don’t feel very much1

pity for them”) and IRI-14 (“Other people’s misfortunes do not usually disturb me a great2

deal”), where most patients respond with low scores (disagreement) indicating feelings of3

sympathy and concern for unfortunate others.4

These preliminary descriptions indicate that patients under investigation have non-trivial5

psychopathological traits, characterised by different psychotic symptoms and interesting em-6

pathic profiles. To provide deeper insights into the psychopathology of attempted suicide, it7

is important to characterize the association structure across the items, in order to evaluate8

which profiles are mostly associated with specific symptoms. Therefore, the focus of further9

analysis will be on making inference on the dependence structure across the different pairs10

of categorical variables pYj , Yj1q, j � 2, . . . , k, j1 � 1, . . . , j, providing a measure of the in-11

tensity of the pairwise dependence and an assessment of uncertainty in estimation. Several12

studies have described the design and the empirical dependence structure across the SCL-9013

and IRI items, focusing on random samples (e.g., Prunas et al., 2012; Gilet et al., 2013) or14

subjects with moderate psychotic symptoms (Prinz et al., 2013). However, related informa-15

tion is not available for suicide attempt survivors, who might show unexpected association16

patterns that differ from other psychotic profiles (Scocco et al., 2020).17

Associations and interactions across categorical variables are generally investigated18

through multi-way contingency tables, where individuals are cross classified according to19

their values for the different items. These tools are routinely used to investigate the associ-20

ation across the items and to test for the presence of specific dependence structures; see for21

example Agresti (2003) for an introduction. Under the adopted notation, the contingency ta-22

ble is denoted as IV �
�

jPV Ij , while its generic elements i� pi1, . . . , ipq P IV are referred23

to as the cells. Given a sample of size n, the number of observations falling in the generic24

cell i is denoted as ypiq, with
°
iPIV

ypiq � n. The joint table has a number of elements25

equal to |IV | �
±k

j�1 dj � 557 in our motivating application, which is exponential in the26

number of categorical variables and tremendously large. Indeed, computation of the joint27

cell counts is unfeasible even for moderate values of k, and is basically limited to settings28

with at most 15 binary variables (e.g. Johndrow et al., 2018). In addition, most cells will29

contain zero observation, leading to issues during estimation; for example, non existence of30

maximum-likelihoods estimates (e.g. Fienberg and Rinaldo, 2007). The huge dimensionality31

and severe sparsity motivate novel methods to adequately characterise the interactions among32

categorical variables in multivariate categorical data, with sparse log-linear models and latent33

structure modelling being popular options.34

1.1. Relevant literature. The development of methods to analyse categorical data began35

well back in the 19th century, and remains a very active area of research (e.g. Fienberg and36

Rinaldo, 2007). Log-linear models are particularly popular. Logarithms of cell probabilities37

are represented as linear terms of parameters related to each cell index, and with coefficients38

that can be interpreted as interactions among the categorical variables (Agresti, 2003). The39

relationship between multinomial and Poisson log-likelihoods allows one to obtain maximum40

likelihood (ML) estimates for log-linear models leveraging standard generalized linear model41

(GLM) algorithms (e.g. Fisher-Scoring), with the vectorized table of cell counts used as a re-42

sponse variable. As outlined in Section 1, when the number of variables increases the number43

of cells of the contingency table grows exponentially. Therefore, many cells will be empty44

and there will be infinite ML estimates (Fienberg and Rinaldo, 2007). To overcome this issue45

and obtain unique estimates, it is often assumed that many coefficients are zero, and estima-46

tion is performed via penalised likelihood (Nardi et al., 2012; Tibshirani, Wainwright and47

Hastie, 2015; Ravikumar et al., 2010). However, these methods require computation of the48

joint cell counts, which is unfeasible in our setting.49
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Bayesian approaches for inference in log-linear models often restrict consideration to spe-1

cific nested model subclasses; for example, hierarchical, graphical or decomposable log-2

linear models (Lauritzen, 1996). Conjugate priors on the model coefficients are available3

(Massam et al., 2009), but exact Bayesian inference is still complicated since the resulting4

posterior distribution is not particularly useful, lacking closed form expressions for impor-5

tant functionals – such as credible intervals – and sampling algorithms to perform inference6

via Monte Carlo integration. As an alternative, the posterior distribution can be analytically7

approximated with a Gaussian distribution if the number of cells is not excessive (Johndrow8

et al., 2018). When the focus is on selecting log-linear models with high posterior evidence,9

stochastic search algorithms evaluating the exact or approximate marginal likelihood are10

available (Dobra and Massam, 2010; Dobra and Mohammadi, 2018).11

A different perspective on analyzing multivariate categorical data relies on latent struc-12

tures (Lazarsfeld, 1950). This family of models is specified in terms of one or more latent13

features, with observed variables modelled as conditionally independent given the latent fea-14

tures. Marginalising over the latent structures, complex dependence patterns across the cat-15

egorical variables are induced (e.g. Andersen, 1982). Representative examples include la-16

tent class analysis (Lazarsfeld, 1950) and the normal ogive model (Lawley, 1943), where a17

univariate latent variable with discrete or continuous support, respectively, captures the de-18

pendence structure among the observed categorical variables; see also Fruhwirth-Schnatter,19

Celeux and Robert (2019, Chapters 9 and 11) and references therein. More flexible multivari-20

ate latent structures have also been introduced; for example, grade of membership models21

(Erosheva, 2005) and the more general class of mixed membership models (Airoldi et al.,22

2014). Specific latent variable models can also be interpreted as tensor decompositions of23

the contingency tables (Dunson and Xing, 2009; Bhattacharya and Dunson, 2012); see also24

Kolda and Bader (2009) for a discussion.25

To conduct meaningful and interpretable inferences, it is important for marginal or condi-26

tional distributions and measures of association to have a low-dimensional structure. For27

example, it is often of substantial interest to characterise bivariate distributions and test28

for marginal or conditional independence (Agresti, 2003). Leveraging data-augmentation29

schemes, estimation of latent variable models is feasible in high-dimensional applications30

(e.g. Dunson and Xing, 2009); however, these approaches might require many components31

to adequately characterize complex data, and can lack simple interpretability of the model32

parameters and the induced dependence structure. On the other hand, log-linear model di-33

rectly parameterize the interactions among the categorical variables (Agresti, 2003) or the34

lower-dimensional marginal distributions (Bergsma et al., 2002), but estimation is generally35

unfeasible when the number of variables is moderate to high, due to the huge computational36

bottlenecks and the massively large model space. Sparse log-linear models and latent class37

structures are deeply related in the way in which sparsity is induced in the resulting contin-38

gency table (Johndrow, Bhattacharya and Dunson, 2017), but a formal methodology mixing39

the benefits of the two model families is still lacking.40

Motivated by the application to studies of suicide attempt, in this article we introduce a41

novel class of Bayesian models for categorical data, which we refer to as MILLS. We pro-42

pose to model the multivariate categorical data as a composite mixture of log-linear models43

with first order interactions, characterising the bivariate distributions with simple and ro-44

bust models while accounting for dependencies beyond first order via mixing different local45

models. Such a specification models categorical data with a simple, yet flexible, specifica-46

tion which can take into account complex dependencies with a relatively small number of47

components. The idea of mixing simple low-dimensional models to reduce the number of48

parameters needed to characterize complex data has a long history. One example is mixing49

first order Markov models to account for higher order structure (Raftery, 1985). See also50

Fruhwirth-Schnatter, Celeux and Robert (2019) for related ideas.51
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2. Log linear models. Following Lauritzen (1996), we fix an arbitrary reference cell
i� of the contingency table, which can be assumed as i� � p0, . . . ,0q without loss of gen-
erality. For each cell i P IV of the table, we denote as ppiq � prpY1 � i1, . . . , Yk � ikq
the probability of falling in cell i. According to the notation of Section 1, we denote as
p� pppiq{ppi�q, i P Ivq the vectorised ratio between cell probabilities and the reference cell
i�; see also Johndrow et al. (2018). A log-linear model is a generalised linear model for the
resulting multinomial likelihood, which represents the logarithms of cell probabilities addi-
tively as a function of a set of log-linear parameters ϑ. Following Propostion 2.1 of Letac
et al. (2012), it is possible to relate cell probabilities and log-linear coefficients as follows:

(1) logp�Xϑ,

where X is a full rank |IV | � |IV | matrix if the transformation is invertible; for example,1

when X is the identity matrix, the so-called identity parametrisation is obtained. Identifia-2

bility is imposed through careful specification of the matrix X, which determines the model3

parametrisation and, consequently, constraints on the parameters, and fixing the first ele-4

ment of ϑ to zero (Agresti, 2003); see also Letac et al. (2012, Proposition 2.1) for related5

arguments. Equation (1) can be extended to embrace a larger class of invertible and non-6

invertible log-linear parametrisations; for example, marginal parametrisations (e.g. Bergsma7

et al., 2002; Roverato, Lupparelli and La Rocca, 2013; Lupparelli, Marchetti and Bergsma,8

2009).9

In general, it is desirable to specify a sparse set of m coefficients with m ! |Iv|, corre-10

sponding to some notion of interactions among the categorical variables; for example, repre-11

senting conditional or marginal independence (Agresti, 2003). When a sparse parameterisa-12

tion is employed, it is common to remove in Equation (1) the columns of X associated with13

excluded coefficients, thereby obtaining a more parsimonious design matrix with dimension14

|IV | �m. In this article we focus on the corner parameterisation, which is particularly pop-15

ular in the literature for categorical data (Agresti, 2003; Massam et al., 2009; Letac et al.,16

2012), and is generally the default choice in statistical software. The columns of X under the17

corner parameterisation can be formally expressed in terms of Möbius inversion (e.g. Letac18

et al., 2012, Preposition 2.1); see also Massam et al. (2009, Lemma 2.2). For simplicity in19

exposition, we prefer to use matrix notation.20

Let y� pypiq, i P Ivq denote the vectorised cell counts. The likelihood function associated21

with the multinomial sampling and log-linear parameters can be expressed, in matrix form,22

as follows:23

(2)
¹
iPIV

ppiqypiq � exp tyᵀXϑ� nκpϑqu � exp tỹᵀϑ� nκpϑqu ,

with κpϑq � log r1ᵀ exppXϑqs. Such a parametrisation yields a very compact data reduc-24

tion, since the canonical statistics yᵀX� ỹᵀ correspond to the marginal cell counts relative25

to the highest interaction term included in the model (Massam et al., 2009; Agresti, 2003).26

In particular, we will consider hierarchical log-linear models which include all the main ef-27

fects and all the first-order interactions; under such a specification, the canonical statistics ỹ28

correspond to the marginal bivariate and univariate tables (e.g., Agresti, 2003).29

3. Composite likelihood. The log-partition function in Equation (2) involves a sum of30

|IV | terms, the total number of cells. Due to the immense number of cells, the likelihood can-31

not be evaluated unless the number of variables k is very small. Approximations of intractable32

likelihoods have been proposed in the literature, with Monte Carlo maximum likelihood (Sni-33

jders, 2002; Geyer and Thompson, 1992) being one option. Composite likelihoods provide a34
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computationally tractable alternative to the joint likelihood, relying on a product of marginal1

or conditional distributions; see Varin, Reid and Firth (2011) for an overview. Extending the2

work of Meng et al. (2013), Massam and Wang (2018) focused on composite maximum like-3

lihood estimation for log-linear models, with a careful choice of the conditional and marginal4

distributions based on the conditional dependence graph. However, the dependence graph is5

typically unknown and its estimation can be very demanding and affected by large uncer-6

tainty (Dobra and Massam, 2010).7

We propose to replace the joint likelihood with a simple and robust alternative. Denote as
P2 the set of subsets of V with cardinality 2. For each E2 PP2, let yE2

denote the vectorised
E2-marginal bivariate table of counts. We define, for each yE2

, a saturated log-linear model
with corner parametrisation:

(3) ppyE2
; ϑE2

q � exp
 
yᵀE2

X2ϑE2
� nκ2pϑE2

q
(
� exp

!
ỹᵀ

E2
ϑE2

� nκ2pϑE2
q
)
,

where κ2pϑE2
q � log r1ᵀ exppX2ϑE2

qs, dimϑE2
� dim ỹ

E2
� |IE2

| �
±

jPE2
dj and8

ϑE2
PR|IE2 |. In our motivating application, this choice implies ϑE2

P R25, with the first9

element of ϑE2
equal to 0 for identifiability. There is an important difference between yE2

10

and ỹ
E2

. The former refers to the E2-marginal bivariate table, while the latter refers to the11

sufficient statistics of the log-linear model with corner parametrisation, which are elements12

of the bivariate and univariate E2-marginal table; see, for example, Agresti (2003).13

We define a surrogate likelihood function combining the distributions defined in (3) as14 ¹
E2PP2

ppy
E2

;ϑE2
qwE2

� exp

# ¸
E2PP2

w
E2

logppy
E2

;ϑE2
q

+
� exp

# ¸
E2PP2

w
E2

�
ỹᵀ

E2
ϑE2

� nκ2pϑE2
q
�+

.(4)

Equation (4) is constructed with the same motivation of composing simplified likelihoods15

from marginal densities in composite likelihood estimation; see, for example, Cox and Reid16

(2004); Varin, Reid and Firth (2011). Differently from Massam and Wang (2018), we include17

contributions for all the bivariate distributions in Equation (4), since the underlying graphical18

structure is not known a priori, and it is not possible to decide which marginal densities should19

be included accordingly. Instead, we include all bivariate terms and assign to each component20

a non-negative weight w
E2
P R�, controlling the contribution of the E2 component to the21

joint likelihood function.22

Although it is common to choose unity weights w
E2
� 1 for each E2 PP2 (e.g. Cox and23

Reid, 2004), careful choice of composite weights can improve efficiency (Varin, Reid and24

Firth, 2011). Popular choices focus on selecting weights according to some optimality crite-25

ria; for example, to correct the magnitude (Pauli, Racugno and Ventura, 2011) or curvature26

(Ribatet, Cooley and Davison, 2012) of the likelihood-ratio test or, more generally, to im-27

prove statistical efficiency of the resulting estimating equation (e.g. Lindsay, Yi and Sun,28

2011; Fraser and Reid, 2019; Pace, Salvan and Sartori, 2019). Beside asymptotic arguments,29

such procedures are also practically well justified since Equation (4) might include redun-30

dant terms, accounting for the same contribution (e.g. marginal univariate) multiple times.31

This has motivated the development of more efficient likelihood composition, with the fo-32

cus on producing sparse estimating equations with few informative components by setting33

some weights to zero via constrained optimisation (Ferrari, Qian and Hunter, 2016; Huang34

and Ferrari, 2017). In this article, we build on a similar strategy and aggregate the different35

components under a Bayesian approach, imposing a sparsity-inducing prior on the weights36

which favours deletion of redundant terms.37
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Equation (4) can also be motivated from an inferential point of view. When interest focuses1

on inferences for low-dimensional marginal distributions, such as univariates and bivariates,2

estimates based on the pseudo likelihood in Equation (4) and the original likelihood in (2) are3

equivalent, since the joint model is a closed exponential family which includes only first order4

interactions in the sufficient statistics (Mardia et al., 2009, Theorem 2). With respect to this5

consideration, it is also worth highlighting that the sufficient statistics ỹ
E2

of the simplified6

model in Equation (3) are actually a subset of the sufficient statistics of the joint model for ỹ7

in (2) and that
�

E2PP2
ỹ

E2
� ỹ.8

Although in a variety of applications the focus of statistical inference is on low-
dimensional margins and related measures of association, Equation (4) may be oversimplified
and hence lead to a poor characterisation of multivariate categorical data. For example, there
may be significant dependence in the data beyond first order. To improve flexibility, we pro-
pose to use Equation (4) to characterize variability within subpopulations using a mixture
modeling approach. To formalize this, denote with iE2

the elements of IE2
, cells of the

E2-marginal bivariate table. The contribution for a single observation yi � pyi1, . . . , yikq in
Equation (4) can be expressed as

p̃pyi;ϑ,wq � exp

# ¸
E2PP2

w
E2

�
1
�
yi, iE2

�
X2ϑE2

� κ2pϑE2
q
�+

,(5)

with ϑ � tϑ
E2
u
E2PP2

, w � tw
E2
u
E2PP2

and 1pyi, iE2
q corresponding to a vector of length9

|IE2
| with a 1 in the position for the cell in which the E2 component of yi falls and all10

other elements 0. We introduce a latent group indicator zi P t1, . . . ,Hu with prrzi � hs � νh,11

indexing the subpopulation for the ith subject. We use Equation (4) as a local model for12

characterizing the dependence structure of subjects in the same latent group. By allowing the13

weights w
E2

to vary across subpopulations, we allow the complexity of the local model to14

vary substantially and adapt to the subpopulation-specific structure.15

Considering only observations belonging to group h and denoting with nh �
°n

i�1 1rzi � hs
the number of units in group h, we interpret Equation (4) as a model for the contingency table
conditional on group membership, as

(6) p̃pyh;ϑh,wh | zq � exp

# ¸
E2PP2

wh
E2

�
ỹhᵀ

E2
ϑh

E2
� nhκ2pϑ

h
E2
q
�+

,

where the composite likelihood weights wh � twh
E2
uE2PP2

and the log-linear parameters
ϑh � tϑh

E2
uE2PP2

are allowed to vary across mixture components h � 1, . . . ,H to charac-
terise different dependence patterns in different subpopulations. Marginalising over the latent
feature z and considering the contribution for all the data points, we obtain a joint model with
likelihood function equal to

(7) p̃py;ϑ,w,νq �
n¹

i�1

Ḩ

h�1

νh p̃pyi;ϑ
h,whq,

with ϑ� tϑhuHh�1, w � twhuHh�1 and ν � tνhu
H
h�1.16

The adaptive log-linear structure imposed within each component of Equation (6) allows17

one to characterize complex dependence patterns with few components. Increasing the num-18

ber of components H , any structure can be effectively characterised under MILLS. The fol-19

lowing Lemma formalizes the ability of MILLS to represent any p P S
|IV |

, with S
|IV |

denoting20

the p|IV | � 1q-dimensional simplex. See Appendix B for a proof.21

LEMMA 3.1. Any p P S
|IV |

admits representation (7) for some H , with νh P p0,1q such22

that
°H

h�1 νh � 1.23
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Equation (7) provides a compact model for efficiently making inference on low-
dimensional marginals. For example, a natural estimate for the E2 bivariate distribution is
given by

ˆprpiE2
q �

Ḩ

h�1

νh exp tX2ϑE2
� κ2pϑE2

qu ,

which corresponds to a weighted average of local estimates, with weights given by the mix-1

ture weights.2

4. Bayesian inference. We proceed with a Bayesian approach to inference, and specify
prior distributions for the parameters ν , ϑh

E2
and w. We rely on Dirichlet and Gaussian

distributions, letting
(8)

pν |Hq � DIR

�
1

H
, . . . ,

1

H



, pϑh

E2
| σ2q

iid
�N|IE2

|pµE2
, σ2

E2
Iq, E2 PP2, h� 1, . . . ,H.

Estimation for the number of active components is performed by choosing a conservative3

upper bound H0 for H , and specifying a sparse Dirichlet distribution on the mixture weights4

to automatically favour deletion of redundant components (Rousseau and Mengersen, 2011).5

In practical application, we found that values H0 P r5,10s often provide sufficiently large6

bounds for the number of mixture components. However, we recommend checking posterior7

estimates for the number of non-empty groups Ĥ , specifying a larger value H0 if Ĥ is close8

to the upper bound H0, in order to guarantee that such value is sufficiently large to capture9

the correct number of components. The Gaussian priors on the log-linear parameters allow10

simple inclusion of prior information, for example reflecting knowledge on the expected di-11

rection and strength of the association between pairs of variables. Moreover, computations12

are particularly easy adapting the Pòlya-Gamma data-augmentation strategy for the multino-13

mial likelihood and Gaussian prior (Polson, Scott and Windle, 2013). Under an exponential14

family representation, other conjugate priors are available for the natural parameters (e.g.15

Massam et al., 2009; Bradley, Holan and Wikle, 2019). However, Gaussian priors have sim-16

pler interpretation and facilitate computation.17

As motivated in Section 3, the prior distribution for the composite weights wh
E2
P R�

should induce sparse configurations, deleting redundant components. To address this with
computational tractability, we rely on a continuous spike and slab prior. Such a strategy fo-
cuses on introducing latent binary indicators δh

E2
P t0,1u encoding exclusion or inclusion of

the E2 component in (4), with prrδh
E2
� 1s � γh0 . Conditionally on δh

E2
, each wh

E2
is drawn

independently either from a distribution concentrated around zero, P0, or from a diffuse dis-
tribution over the real positive line, which we denote as P1. For computational convenience,
we rely on the following hierarchical specification for wh

E2
.

pδh
E2
| γh0 q

iid
� BERNOULLIpγh0 q

pwh
E2
| δh

E2
q

iid
� GAMMAp1� ah0δ

h
E2
, ah1q, E2 PP2, h� 1, . . . ,H

(9)

Although it is possible to replace the spike with a Dirac mass at 0, we follow Ishwaran18

et al. (2005), and introduce a continuous shrinkage prior, which is shown to generally im-19

prove computation and mixing; see also Legramanti, Durante and Dunson (2020) for related20

arguments.21

Marginalising out δh
E2

from (9), we obtain a discrete mixture between a Gamma distribu-22

tion with shape 1 and rate ah1 (Exponential), and a Gamma distribution with shape p1� a0q23
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FIG 1. Graphical illustration of the prior distribution of Equation 9 for different hyper-parameter values. In each
panel, γh

0 � 0.2.

and rate ah1 . The parameter γ0 controls the prior proportion of active terms, and is assigned a1

symmetric BETAp0.5,0.5q prior (Ishwaran et al., 2005). Specifying large values for ah1 , sub-2

stantial mass around 0 is induced, while ah0 controls the mean and variance for the Gamma3

distribution associated with the slab. See Figure 1 for a graphical illustration of the prior4

density over illustrative combinations of hyper-parameters. In the absence of explicit prior5

information on the composite likelihood weights, we recommend to elicit the prior distri-6

bution to include values around 1 with high probability in the slab component. Such choice7

guarantees that, when a component is included, default units weights are selected with high8

probability a priori, centering the model around a standard specification.9

4.1. Posterior computation. There is a rich literature on the use of alternative likelihoods
for Bayesian inference; for example, approximate likelihood (Efron, 1993), partial likeli-
hood (Raftery, Madigan and Volinsky, 1995), empirical likelihood (Lazar, 2003) and ad-
justed profile likelihood (Chang and Mukerjee, 2006), among many others. See also Greco,
Racugno and Ventura (2008) for related arguments. Although the use of composite likeli-
hoods in Bayesian inference is more recent (e.g. Ribatet, Cooley and Davison, 2012; Pauli,
Racugno and Ventura, 2011), it has received substantial attention (Miller, 2019). Related to
these approaches, we conduct inference using the composite posterior distribution

(10) π̃pϑ,ν | yq9πpϑqπpνqπpwqp̃py;ϑ,w,νq.

Since the composite likelihood function ppy;ϑ,w,νq is not a proper distribution function,10

it is important to guarantee that the pseudo-posterior (10) is proper (Ribatet, Cooley and11

Davison, 2012). The following Lemma shows that our composite posterior does have this12

property. See Appendix B for a proof.13

LEMMA 4.1. π̃pϑ,ν | yq is a proper probability distribution.14

To make inference from (10), we rely on an MCMC algorithm whose main steps are de-15

scribed in Appendix C. We leverage the Pòlya-Gamma data augmentation strategy of Polson,16

Scott and Windle (2013) to obtain conditionally conjugacy between the Gaussian prior and17

the multinomial likelihood, while the mixture weights ν and composite weights w are up-18

dated sampling from Dirichlet and Gamma full conditional distributions, respectively. Simi-19

larly, the mixture indicator zi is sampled from its full conditional categorical distribution, for20

each i � 1, . . . , n. The main bottleneck is storage of the conditional bivariate terms, which21

have size OpHk2d2q. Although the introduction of the spike and slab strategy drastically22

improves estimation — since many components are effectively assigned to zero weight at23
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each iteration and Equation (4) involves only few informative components — the storage1

of redundant terms is required during estimation and can be burdensome. However, the pro-2

posed algorithm easily scales up in our motivating application, relying on a mixed R and C++3

implementation on a standard laptop; see Section 6. Scaling to much larger cases can poten-4

tially be accomplished by replacing the continuous spike with a mass at zero or thresholding5

redundant components as an approximation.6

5. Simulation Study. In order to evaluate the model performance, we considered a sim-7

ulation study over four different settings. In each scenario, we focus on an artificial sample of8

size n� 400, with k � 15 categorical variables and d1 � . . . d15 � 4 categories. In the first9

scenario, multivariate categorical data are generated from a latent class model with H � 510

components and probabilities generated from a uniform prior on the simplex. The second11

scenario samples categorical variables j P J � p1,2,3,4,5q from a dense log-linear model12

with first order interactions and coefficients randomly sampled from a Gaussian distribution13

with standard deviation 0.1, while the remaining categorical variables j R J are generated14

from independent Dirichlet-Multinomial distributions with hyper-parameter p3,3,3,3q. In15

the third scenario, we focus on the same groups of variables, imposing more structure on16

the variables in the group J , which are sampled from the joint probability mass function17

assigning probability 0.1 to the cells iJ P tp1, . . . ,1q, . . . , p4, . . . ,4qu and probability 0.6 to18

the remaining cells in equal proportion; see also Russo, Durante and Scarpa (2018). The re-19

maining variables j R J are generated from independent Dirichlet-Multinomial distributions20

with hyper-parameter p3,3,3,3q. The fourth and last scenario further complicates the second21

one by introducing an additional group of variables J 1 � p5,6,7,8,9,10q, generated from a22

dense hierarchical log-linear model with first and second order interactions, and coefficients23

randomly sampled from a Gaussian distribution with standard deviation 0.1.24

The focus of these settings is on inducing challenging data generating processes, charac-25

terised by heterogeneous dependence across subsets of categorical variables. Posterior infer-26

ence for MILLS relies on 1000 iterations collected after a burn-in period of 1000, setting a27

conservative upper bound H � 5 and specifying µh
E2
� 0, σ2

E2
� 3 and ah0 � 10, ah1 � 10,28

with h � 1, . . . ,H and E2 P P2. Trace plots and MCMC diagnostics indicate good mixing29

in all the settings considered. As competitor approaches, we considered two flexible latent30

variable models, whose estimation is feasible in the settings under investigation. The first is31

a Bayesian specification of a latent class model with H � 10 classes, sparse Dirichlet priors32

over the mixture weights and unit Dirichlet priors on the class-specific probabilities. Such33

an approach corresponds to a finite mixture of product multinomial distributions; see, for34

example, Fruhwirth-Schnatter, Celeux and Robert (2019, Chapter 9) for an introduction. The35

second competitor is a simplex factor model (Bhattacharya and Dunson, 2012) with H � 1036

latent factors. This approach can be interpreted as a mixed membership model (e.g. Airoldi37

et al., 2014) for multivariate categorical data. Specifically, the observed categorical variables38

are modeled as conditionally independent given a vector of subject-specific latent attributes39

lying on the simplex. Such latent features can be interpreted as the subject-specific partial40

membership to H extreme profiles, with each individual partially belonging to each extreme41

profile, to a different degree; see also Manrique-Vallier (2014) for a similar specification with42

longitudinal survey data. Again, we rely on a Bayesian specification relying on independent43

Dirichlet priors over the model parameters. As outlined in Section 1.1, both approaches in-44

duce a parsimonious low-rank decomposition of the probability mass function, and the con-45

nection between such decompositions and a log-linear model specification has been explored46

in Johndrow, Bhattacharya and Dunson (2017).47

The focus of the simulations is on evaluating the ability of the approaches in estimating48

low-dimensional functionals of the data. We focus on the set P2 of bivariate distributions,49
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FIG 2. Simulation studies. Wasserstein distance, normalised Pearson’s residuals and absolute Kullback-Leibler
divergence between estimates and observed quantities. First row refers to posterior means; second and third to
posterior 0.025 and 0.975 quantiles, respectively. Black boxplots refer to MILLS. Gray and light-gray to latent
class model and simplex factor model, respectively.

whose precise estimation is crucial for computing measures of bivariate associations and1

making inference on the dependence structure. Figure 2 illustrates the variability across P22

under the four simulations settings and for the three approaches considered. The first row3

of Figure 2 shows estimated posterior mean for the three methods, compared with their em-4

pirical counterparts in terms of Kullback-Leibler divergence, Wasserstein distance and nor-5

malised Pearson’s residuals.6

The first column of Figure 2 illustrates results for the first scenario, and suggests that when7

data are generated from a latent class model, the three approaches are comparable in terms of8

goodness of fit, with MILLS resulting in predictions which are more accurate on average, but9

also more variable. The good performance of the latent class model was expected, since such10

an approach is correctly specified in the first scenario. As outlined in Section 3, MILLS can11

induce a latent class specification as a special case, and therefore its performance is on aver-12

age similar with the competitors, but also characterized by a higher variability which might13

be due to the estimation of the richer dependence structure imposed within each mixture14

component. In the second and third scenario, results indicate the superiority of MILLS with15

respect to the latent class model and the simplex factor model. Such a result highlights the16

ability of the proposed approach to adapt to settings with heterogeneous dependence patterns17

across subsets of variables; the third column of Figure 2, in addition, confirms how MILLS18

achieves better performance than the competitors also when such dependence patterns go19

beyond first order interactions. Lastly, the fourth scenario illustrates the ability of MILLS to20

adapt better than the competitors to highly complex settings, dependence patterns beyond first21

order interactions and involving multiple sub-groups of variables. The superiority of MILLS22

in such settings might be due to the parsimonious composite likelihood specification of Equa-23

tion (4), with adaptive estimation of the degree of dependence required by each component.24
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TABLE 2
Additional simulation study. Root mean squared error (RMSE) of the posterior mean estimator and coverage of

90% credible intervals across three simulation scenarios. Values are averaged across 100 replications.

RMSE COVERAGE, 90%

Cramer-V H ϑ Cramer-V H ϑ

2 classes 0.043 0.021 0.000 0.871 0.860 0.910
5 classes 0.038 1.002 0.001 0.890 0.880 0.903

10 classes 0.069 2.013 0.012 0.903 0.890 0.880

Variability in the simulations is assessed considering the posterior 0.025 and 0.975 quantiles1

of the estimated bivariate distributions, graphically reported for each method in the second2

and third row of Figure 2 respectively. The main empirical findings are consistent with the3

discussion outlined above, indicating an overall better performance of MILLS under complex4

data generating processes.5

5.1. Additional simulations studies. As suggested by an anonymous Referee, we con-6

ducted an additional simulation study to evaluate the performance of MILLS in estimating7

functionals of primary interest in our application. These quantities correspond to the depen-8

dence structure among the items, to the number of subpopulations and their specific structure,9

and they can be estimated using the posterior distribution for the Cramer-V, the number Ĥ10

of non-empty groups, and the group-specific parameters ϑh, respectively. We estimate these11

functionals via Monte Carlo integration, post-processing the MCMC sample to obtain point12

and interval estimates via posterior means and quantile-based credible intervals, respectively.13

The simulation focuses on three additional settings characterized by the same sample size14

pn � 56q and number of categorical variables pk � 57q as in our motivating application,15

sampling categorical variable with d� 5 from a latent class model with H � 2, H � 5 and16

H � 10 groups, respectively, and probabilities generated from a uniform prior on the simplex.17

Each setting is replicated 100 times using different random seeds, and in each replication18

posterior inference for MILLS relies the same settings as in Section 5, increasing the upper19

bounds on the mixture components to H0 � 10.20

In Table 2, we evaluate the Root Mean Squared Error (RMSE) of the posterior mean and21

assess coverage of 90% quantile-based credible intervals. The first part of Table 2 reports22

the RMSE between the posterior mean and the functionals of interest, and results indicate23

that MILLS accurately estimates these quantities in simulations. Estimation for the number of24

components might be biased due to the more intricate structure introduced by MILLS, which25

requires fewer component than a latent class model to characterize the data. The second part26

of Table 2 focuses on the coverage of 90% credible intervals, and results indicate that inter-27

vals have a coverage close to the nominal level for all functionals of interest. As outlined in28

Section 3 and in Ribatet, Cooley and Davison (2012) and Pauli, Racugno and Ventura (2011),29

it is important to carefully weight each likelihood component to reduce the under coverage30

of credible intervals constructed from unadjusted composite-likelihood specifications. Since31

MILLS adjusts each component with a positive weight wh
E2

, we do not observe signs of sig-32

nificant under coverage. Coverage can be potentially improved introducing a further level of33

adjustment to explicitly control for the curvature of the asymptotic distribution of the poste-34

rior; see Ribatet, Cooley and Davison (2012) for further arguments.35

6. MILLS for psychopathological associations. We applied MILLS on the data de-36

scribed in Section 1. Posterior inference for MILLS uses the same specification as in the37

simulations, relying on 3000 iterations collected after a burn-in of 1000. Posterior computa-38

tion requires approximately 7 minutes per 100 iterations and 4GB of RAM on a laptop with an39
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FIG 3. Association structure of the items. Color of the labels varies with subscales, while edge widths vary with
the value of the posterior mean of the pairwise Cramer-V.

INTEL(R) CORE(TM) I7-7700HQ @ 2.8 GHZ processor running Linux. We conducted sensi-1

tivity analysis for different hyper-parameter specifications, replicating posterior computation2

with values H0 P t10,15u, ah0 P t10,100,1000u, ah1 P t10,100,1000u and σ2
E2
P t3,10u. The3

overall empirical findings were robust across changes in hyper parameters.4

Posterior inference focuses on bivariate associations measured via the Cramer-V, which5

can be easily computed via Monte Carlo integration leveraging the MCMC output. Figure 36

illustrates the dependence structure as a graph, with nodes corresponding to the categorical7

variables and edges to their associations, with thicker edges corresponding to stronger asso-8

ciations and higher Cramer-V. The left panel of Figure 3 refers to MILLS, and the right panel9

to a latent class model with H � 10 components and the same specification as in the simula-10

tions. In order to improve graphical visualisation, we have removed from the graph the items11

whose largest associations is below 0.1.12

Our empirical findings highlight the presence of strong associations across several sub-13

scales, in particular within items associated with similar profiles. For example, the bulk of14

central nodes in Figure 3 denote items associated with depressive (SCL-DEP) and obsessive15

compulsive profiles (SCL-OC), suggesting significant interconnections within these two sub-16

scales. Similarly, items corresponding to the Empathic Concern (EC) subscale have different17

associations among them, and with other empathic subscales. To some extent, this result con-18

firms the validity of the tools to measure psychopathological symptoms, which characterize19

consistent psychological profiles and highlights that such traits are strongly associated in20

suicide attempt survivors. In addition, some items corresponding to different profiles mea-21

sured within the same questionnaire are characterized by strong interactions. For example,22

the empirical findings indicate an association between an anxious subject SCL-ANX-2 (“Ner-23

vousness or shakiness inside”) and SCL-DEP-15 (“Thoughts of ending your life”) in sui-24

cide attempt survivors. Similarly, we observe an association between IRI-EC-9 (“When I see25

someone being taken advantage of, I feel kind of protective towards them.”) and IRI-PD-1026

(“I sometimes feel helpless when I am in the middle of a very emotional situation.”), which27

indicate how patients under investigation feel empathic to others, in particular in stressful28

situations.29
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FIG 4. Posterior quantiles of the pairwise Cramer-V under MILLS

Other interesting associations involve items in different subscales. For example, there is an1

association between an item from the IRI questionnaire IRI-FS-1 (“I daydream and fantasize,2

with some regularity, about things that might happen to me”) with the item SCL-ANX-333

(“Feeling fearful”), and also the SCL-DEP-30 item (“Feeling blue”). This dependence struc-4

ture is coherent with a paranoid profile, with fantasies about things that might happen and5

with such thoughts inducing substantial fear and sadness. Another interesting association in-6

volves the items SCL-OC-51 (“Your mind going blank”) and IRI-PD-19 (“I am usually not7

effective in dealing with emergencies.”), which are consistent with a profile with low-capacity8

to handle complex situations with calm. Panels of Figure 4 assess uncertainty in MILLS esti-9

mation considering the 0.025 and 0.975 posterior quantiles of the Cramer-V, and suggesting10

that the estimated structure is maintained considering such posterior summaries. These in-11

terconnections are further explored in Table 3, which reports the posterior means and 95%12

credible intervals for the Cramer-V referring to different bivariate associations of interest.13

Current empirical findings confirm the presence of strong associations within the depressive14

symptoms subscale (SCL-DEP) and between SCL-DEP and obsessive-compulsive subscale15

(SCL-OP). Worth mentioning are also the associations between the perspective-taking (IRI-16

PT) and other empathic components, as well as the already mentioned association between17

obsessive compulsive symptoms and personal distress. These results provide an overview of18

the dependence structure characterizing the psychopathology of suicide attempt survivors,19

highlighting the interdependence among psychological symptoms and empathic profiles.20

Results from a latent class model on the overall association structure – reported in the21

right panel of Figure 3 – are roughly consistent with inference based on MILLS, suggesting22

dense associations among items related to the same pychopathologies. However, this ap-23

proach required a larger number of mixture components to adequately characterise the data24

under investigation; see Table 4, where the posterior medians of the mixture weights under25

both approaches are reported, suggesting evidence of 2 non-empty components for MILLS26

and 5 for the latent class model. As discussed in Section 1.1, this result might be due to the27

richer structure imposed by MILLS within each subpopulation, which is expected to reduce28

the number of components required to characterize higher order dependencies.29
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FIG 5. Posterior means of the pairwise Cramer-V under MILLS for the two estimated subpopulations

This property leads to relevant practical implications for the analysis of our motivating1

application. For example, when interest is on characterizing profiles specific to each subpop-2

ulation, inference for latent class models would focus on evaluating the parameters within3

each non-empty component, describing the univariate response patterns of the individuals4

belonging to that specific latent group (e.g., McHugh, 1956). Inference on other relevant5

quantities, such as the association structure within each component, is not possible under6

a standard latent class model, due to the independence assumption of the items condition-7

ally on the group membership. Instead, under the proposed MILLS, we can easily conduct8

inference on such association structures, effectively characterising the interactions between9

psychopathological symptoms and empathic traits in each subpopulation.10

Figure 5 compares the posterior means of the Cramer-V across items, within each of the11

two non-empty subpopulations – according to results summarized in Table 4. Associations12

reported in the left panel of Figure 5 refer to the first latent group, and highlight several13

connected psychopathological symptoms, in particular within depression and anxiety traits.14

TABLE 3
Bivariate Cramer-V. Posterior means and 95% credibile intervals.

Cramer-V 95% CI

SCL-DEP-29 SCL-DEP-30 0.471 r0.375,0.570s
SCL-DEP-29 SCL-OC-55 0.428 r0.335,0.519s
SCL-DEP-30 SCL-DEP-32 0.424 r0.318,0.527s
SCL-DEP-30 SCL-DEP-31 0.422 r0.324,0.522s

SCL-OC-38 SCL-OC-46 0.410 r0.304,0.516s
SCL-ANX-2 SCL-OC-3 0.402 r0.306,0.498s
SCL-OC-55 SCL-ANX-72 0.398 r0.294,0.508s
SCL-ANX-2 SCL-DEP-15 0.391 r0.298,0.494s

SCL-DEP-30 SCL-ANX-33 0.389 r0.297,0.486s
SCL-OC-51 IRI-PD-19 0.381 r0.278,0.476s

SCL-OC-9 SCL-DEP-14 0.378 r0.281,0.472s
IRI-EC-9 IRI-PD-10 0.367 r0.271,0.465s

IRI-PT-11 IRI-PT-21 0.362 r0.270,0.465s
IRI-EC-2 IRI-EC-9 0.358 r0.262,0.450s
IRI-FS-1 SCL-ANX-33 0.357 r0.275,0.453s
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TABLE 4
Posterior medians (and standard deviations) for the mixture weight parameters. Values are sorted in decreasing

order. Results for the latent class approach are reported until the first empty group.

ν̂1 ν̂2 ν̂3 ν̂4 ν̂5 ν̂6

Latent Class 0.530 (0.065) 0.208 (0.055) 0.157 (0.048) 0.053 (0.031) 0.030 (0.023) 0.000 (0.004)
MILLS 0.671 (0.089) 0.318 (0.088) 0.000 (0.008) 0.000 (0.008) 0.000 (0.007) �

Items measuring empathic profiles, instead, show a more sparse structure in the first sub-1

population, indicating strong associations only across few items. The second subpopulation2

(right panel of Figure 5), is instead characterized by more interconnected associations, both3

in terms of empathic profiles and psychopathological symptoms. Although many items are4

similarly associated across the subpopulations, it is interesting to observe that some asso-5

ciation patterns deviate across groups. For example, SCL-DEP-14 (“Feeling low in energy6

or slowed down”) is associated with obsessive compulsive symptoms in the first subpopula-7

tion (SCL-OC-9, “Trouble remembering things”), while in the second group it is linked with8

empathic profiles (e.g., IRI-PD-10, “I sometimes feel helpless when I am in the middle of a9

very emotional situation”). Similarly, different anxiety symptoms (SCL-ANX-86, “Feeling10

pushed to get things done” and SCL-ANX-23, “Suddenly scared for no reason”) are associ-11

ated with some psychopathological items in the first subpopulation (SCL-OC-10, “Worried12

about sloppiness or carelessness”) and with empathic items in the second (IRI-FS-12, “Be-13

coming extremely involved in a good book or movie is somewhat rare for me”) .14

These aspects are further detailed in Table 5, which reports the posterior means and credi-15

ble intervals for the Cramer-V for a subset of bivariate distributions, separately across the two16

subpopulations. Subjects in the first group are characterized by several associations across17

different SCL-90 items, in particular with respect to depressive and obsessive compulsive18

symptoms, reporting posterior means for the bivariate Cramer-V above 0.4. The structure19

across empathic items indicates instead interesting interconnections across the fantasy scale20

and between fantasy and obsessive-compulsive symptoms. The second group characterizes21

latent profiles more driven by empathic aspects, in particular referring to the IRI-PT subscale,22

and items measuring depressive, obsessive-compulsive and anxiety symptoms.23

These information, combined with the results in Table 4, provide a richer interpretation24

of the psychology underling suicide attempt survivors. Subjects in the first profile show in-25

dications of high mental distress, characterized by important associations across severe psy-26

chopathological symptoms. The estimated proportion of the population in this class is 0.6727

(first column of Table 4), so that the majority of the suicide attempt survivors belong to28

this group. The second profile is associated with roughly a third of the population (0.32,29

second column of Table 4) and differs from the first one reporting more dense associations30

across empathic aspects. Therefore, patients in this subpopulation are characterized by a psy-31

chopathology more driven by the emotional and cognitive components of empathy.32

Such results indicate that the patients under investigation are characterized by different la-33

tent profiles that vary in terms of the association structure between psychopathological symp-34

toms and empathic traits. Also, investigation of the subpopulation specific structure indicates35

that the proposed approach has concrete advantages over a latent class specification, since36

it allows investigation of the association structure characterising different subpopulations,37

providing additional insights on the psychology of suicide attempt survivors. These findings38

suggest that empathy and psychotic symptoms are deeply related in the characterisation of39

the psychosis of suicide attempt survivors, and deserve further attention.40

6.1. Model checking. In order to check if MILLS provides a reasonable representation41

of the observed psychological data, we follow the approach illustrated in Section 5 and rely42
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TABLE 5
Bivariate Cramer-V. Posterior means and 95% credibile intervals for the two estimated subpopulations

CRAMER-V 95% CI

FIRST SCL-DEP-29 SCL-DEP-30 0.491 r0.377,0.603s
GROUP SCL-OC-38 SCL-OC-46 0.463 r0.343,0.570s

SCL-OC-28 SCL-OC-38 0.447 r0.340,0.555s
SCL-DEP-30 SCL-DEP-31 0.428 r0.335,0.549s

SCL-OC-55 SCL-ANX-72 0.403 r0.320,0.520s
IRI-EC-9 IRI-PD-10 0.379 r0.280,0.506s

IRI-FS-16 SCL-FS-7 0.363 r0.284,0.487s
IRI-FS-12 SCL-OC-9 0.363 r0.284,0.487s
SCL-OC-9 SCL-DEP-14 0.352 r0.264,0.418s
SCL-OC-9 SCL-DEP-31 0.337 r0.201,0.425s

SECOND IRI-PT-11 IRI-PT-28 0.486 r0.345,0.611s
GROUP IRI-FS-12 IRI-FS-26 0.482 r0.339,0.625s

IRI-EC-18 IRI-PT-25 0.472 r0.332,0.606s
IRI-PT-25 IRI-PT-28 0.466 r0.346,0.572s

SCL-ANX-2 SCL-OC-3 0.455 r0.320,0.545s
SCL-DEP-29 SCL-OC-55 0.446 r0.326,0.509s
SCL-DEP-26 SCL-DEP-32 0.419 r0.284,0.512s

SCL-OC-38 SCL-OC-51 0.381 r0.302,0.498s
IRI-PD-10 IRI-FS-12 0.370 r0.271,0.415s

IRI-EC-9 IRI-FS-12 0.353 r0.262,0.421s
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FIG 6. Absolute Kullback-Leibler, normalised Pearson’s residuals and Wasserstein distance between estimated
and observed bivariate distributions. Black and grey boxplots refer to MILLS and a latent class model, respec-
tively.

on posterior checks to validate our model (e.g. Gelman et al., 2013). Specifically, MILLS as-1

sumes that conditionally on the group membership, the specification in Equation 6 provides2

a flexible characterization of the psychopathological patterns characterizing the subpopula-3

tion. We are therefore interested to measure if such group-specific structures are adequately4

accounted for, comparing the posterior predictive distribution for a functional of interest with5

its empirical value. We will focus on the posterior predictives for the bivariate distributions,6

conditionally on the subpopulation membership, for MILLS and the latent class model.7

According to Table 4, posterior inference provides evidence for two subpopulations for8

MILLS and five for the latent class models. Figure 6 illustrates the Kullback-Leibler diver-9

gence, normalized Pearson’s residuals and Wasserstein distance between the observed and es-10

timated population-specific bivariate distributions, focusing on the subpopulations estimated11
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by MILLS and the latent class model. Current empirical findings suggest that MILLS provides1

a good fit for both the subpopulation specific structures, providing estimates for the bivariate2

distributions that are close to their empirical counterparts, and with more accurate results for3

the second subpopulation. In addition to estimating a larger number of subpopulations, the4

latent class model is also characterized by an overall worse fit within each group, likely due5

to the conditional independence assumption across items which is not met in practice.6

7. Discussion. Motivated by a case study on suicide attempt survivors, this article has7

proposed a new approach for the analysis of categorical data relying on a mixture of log linear8

models, with a computationally convenient composite likelihood-type specification facilitat-9

ing implementation. Although multivariate categorical data are very commonly collected in10

many different areas, we still lack methods for doing inferences on associations among vari-11

ables in a flexible manner that can accommodate more than a small number of variables.12

Current log-linear models do not scale up to large contingency tables and latent structure13

methods sacrifice some of the key advantages of log-linear models in terms of providing a14

direct and interpretable model on the association structure. Hence, latent structure models15

are in some sense too black box and unstructured, potentially leading to a non-parsimonious16

characterization of the data, and necessitating a moderately large number of latent compo-17

nents.18

The goal of the proposed framework is to borrow the best of both worlds between latent19

structure and log linear models. The proposed methods have shown practical advantages in20

our motivating application, highlighting the presence of clinically interesting associations21

between psychopathological symptoms and empathy in suicide attempt survivors. There are22

many interesting next steps in terms of including further computational simplifications to fa-23

cilitate scaling up, and to include more complex data structure which are routinely collected24

in psychological studies; for example, having missing data or mixed measurement scales.25

Also, it is of substantial interest to develop a formal testing procedure based on MILLS to as-26

sess whether psychiatric patients that did not attempt suicide differ in terms of psychopatholo-27

gies from patients under investigation.28

APPENDIX A: ITEMS DETAILS

Table 6 and 7 report, respectively, the description of the items included in the analysis.29

Subject respond to the questions with their level of agreement, with 0 indicating “Not at all“30

and 4 indicating “Extemely”. Items were selected according to the subscale they belong to –31

reported in the second column of Table 6 and 7 – as suggested by our clinician collaborators.32

33

APPENDIX B: PROOFS

PROOF OF LEMMA 3.1. The proof for the full generality of MILLS relies on illustrating
how such a specification induces a finite mixture of independent multinomial distributions
as a special case. Without loss of generality, consider equal number of categories dj � d for
j � 1, . . . , k and equal weights w̄h

E2
� 1{pk � 1q for E2 P P2 and h� 1, . . . ,H . Introduce a

set of constrained log-linear coefficients ϑ̄h
E2

as ϑ̄h
E2
� Lb ϑh

E2
, where L denotes a vector

of length d2 with the first 1 � kpd� 1q elements equal to 1 and the remaining 0, and with
b denoting element-wise product. Therefore, each ϑ̄h

E2
induces a log-linear independence

model, which includes only main effects. Under the above constraints,

(11)
Ḩ

h�1

νh exp

# ¸
E2PP2

w̄h
E2

�
X2ϑ̄

h
E2
� κ2pϑ̄

h
E2
q
�+

,
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TABLE 6
SCL-90 subscales.

ID SUBSCALE

2. Nervousness or shakiness inside (ANX)
3. Unwanted thoughts, words, or ideas that won’t leave your mind (OC)
5. Loss of sexual interest or pleasure (DEP)
9. Trouble remembering things (OC)
10. Worried about sloppiness or carelessness (OC)
11. Feeling easily annoyed or irritated (HOS)
14. Feeling low in energy or slowed down (DEP)
15. Thoughts of ending your life (DEP)
17. Trembling (ANX)
20. Crying easily (DEP)
22. Feeling of being trapped or caught (DEP)
23. Suddenly scared for no reason (ANX)
26. Blaming yourself for things (DEP)
28. Feeling blocked in getting things done (OC)
29. Feeling lonely (DEP)
30. Feeling blue (DEP)
31. Worrying too much about things (DEP)
32. Feeling no interest in things (DEP)
33. Feeling fearful (ANX)
38. Having to do things very slowly to insure correctness (OC)
39. Heart pounding or racing (ANX)
45. Having to check and double-check what you do (OC)
46. Difficulty making decisions (OC)
51. Your mind going blank (OC)
55. Trouble concentrating (OC)
63. Having urges to beat, injure, or harm someone (HOS)
65. Having to repeat the same actions such as – (OC)

touching, counting, washing �
67. Having urges to break or smash things (HOS)
71. Feeling everything is an effort (DEP)
72. Spells of terror or panic (ANX)
74. Getting into frequent arguments (HOS)
78. Feeling so restless you couldn’t sit still (ANX)
79. Feelings of worthlessness (DEP)
80. Feeling that familiar things are strange or unreal (ANX)
86. Feeling pushed to get things done (ANX)

corresponds to a discrete mixture of product multinomial distribution, for which Theorem 1
of Dunson and Xing (2009) follows directly, after noticing that

(12) ψ
pjq
h �M

¹
E2PP2:jPE2

�
exp

�
X2ϑ̄

h
E2
� κ2pϑ̄

h
E2
q
	�w̄h

E2 ,

where M denotes a d� d2 marginalisation matrix, comprising zeros and ones in appropriate1

positions (e.g. Lupparelli, Marchetti and Bergsma, 2009).2

PROOF OF 4.1. In order to show that (10) is a proper probability distribution, it is neces-
sary to show that the normalising constant is finite, which correspond to showing that» »

πpϑqπpνqπpwqp̃py;ϑ,w,νqdϑdνdw �(13)

» »
πpϑqπpνqπpwq

n¹
i�1

Ḩ

h�1

νh p̃pyi | ϑ
h,whqdϑdνdw  8(14)
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TABLE 7
IRI-28 questionnaire. Subjects answer with their level of agreement with numbers ranging from 0 (“Does not

describe me”) to 4 (“Describes me very well”).

ID SUB

1. I daydream and fantasize, with some regularity, about things that might happen to me. (FS)
2. I often have tender, concerned feelings for people less fortunate than me. (EC)
3. I sometimes find it difficult to see things from the "other guy’s" point of view. (PT)
4. Sometimes I don’t feel very sorry for other people when they are having problems. (EC)
5. I really get involved with the feelings of the characters in a novel. (FS)
7. I am usually objective when I watch a movie or play, and I don’t often get completely caught up in it. (FS)
8. I try to look at everybody’s side of a disagreement before I make a decision. (PT)
9. When I see someone being taken advantage of, I feel kind of protective towards them. (EC)
10. I sometimes feel helpless when I am in the middle of a very emotional situation. (PD)
11. I sometimes try to understand my friends better by imagining how things look from their perspective. (PT)
12. Becoming extremely involved in a good book or movie is somewhat rare for me. (FS)
13. When I see someone get hurt, I tend to remain calm. (PD)
14. Other people’s misfortunes do not usually disturb me a great deal. (EC)
15. If I’m sure I’m right about something, I don’t waste much time listening to other people’s arguments. (PT)
16. After seeing a play or movie, I have felt as though I were one of the characters. (FS)
17. Being in a tense emotional situation scares me. (PD)
18. When I see someone being treated unfairly, I sometimes don’t feel very much pity for them. (EC)
19. I am usually pretty effective in dealing with emergencies. (PD)
21. I believe that there are two sides to every question and try to look at them both. (PT)
23. When I watch a good movie, I can very easily put myself in the place of a leading character. (FS)
25. When I’m upset at someone, I usually try to "put myself in his shoes" for a while. (PT)
26. When I am reading an interesting story or novel, I imagine how I would feel if the events in the story (FS)

were happening to me.
28. Before criticizing somebody, I try to imagine how I would feel if I were in their place. (PT)

Since the priors specified in (8) are proper, it is sufficient to show that

(15) sup
ϑ,ν

n¹
i�1

Ḩ

h�1

νh p̃pyi | ϑ
h,whq  8

which is always bounded being a product of probabilities.1
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