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Abstract: Bioelectrical impedance analysis (BIA) and anthropometry are considered alternatives to
well-established reference techniques for assessing body composition. In team sports, the percentage
of fat mass (FM%) is one of the most informative parameters, and a wide range of predictive equations
allow for its estimation through both BIA and anthropometry. Although it is not clear which of these
two techniques is more accurate for estimating FM%, the choice of the predictive equation could be a
determining factor. The present study aimed to examine the validity of BIA and anthropometry in
estimating FM% with different predictive equations, using dual X-ray absorptiometry (DXA) as a
reference, in a group of futsal players. A total of 67 high-level male futsal players (age 23.7 ± 5.4 years)
underwent BIA, anthropometric measurements, and DXA scanning. Four generalized, four athletic,
and two sport-specific predictive equations were used for estimating FM% from raw bioelectric and
anthropometric parameters. DXA-derived FM% was used as a reference. BIA-based generalized
equations overestimated FM% (ranging from 1.13 to 2.69%, p < 0.05), whereas anthropometry-based
generalized equations underestimated FM% in the futsal players (ranging from −1.72 to −2.04%,
p < 0.05). Compared to DXA, no mean bias (p > 0.05) was observed using the athletic and sport-
specific equations. Sport-specific equations allowed for more accurate and precise FM% estimations
than did athletic predictive equations, with no trend (ranging from r = −0.217 to 0.235, p > 0.05).
Regardless of the instrument, the choice of the equation determines the validity in FM% prediction. In
conclusion, BIA and anthropometry can be used interchangeably, allowing for valid FM% estimations,
provided that athletic and sport-specific equations are applied.

Keywords: BIA; body composition; futsal; body fat; predictive equations; skinfolds

1. Introduction

Assessing body composition is a widespread practice in the context of sports, and its
quantification enables the monitoring of nutritional and health status among athletes [1,2].
Body composition characteristics also influence sports performance, since muscle mass
contributes to force expression, whereas fat mass (FM) negatively affects aerobic power and
movement patterns [3,4]. The percentage of FM is one of the most considered parameters
in sports practice, and it can be measured through a wide range of techniques [5,6]. In this
regard, the availability of user-friendly methods is crucial in the context of resource-limited
settings such as team sports, where there is a need for low-cost, time efficient, and accurate
assessment procedures [7].
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Among the field tools developed to assess body composition, bioelectrical impedance
analysis (BIA) and surface anthropometry represent two easy and feasible techniques that
are frequently used in the context of sports, compared to more accurate but less available
methods [2,8]. Particularly, the foot-to-hand BIA at 50 kHz and manual anthropometry per-
formed using high-quality instruments have been proposed as valid tools when compared
to less accessible reference techniques, such as underwater weighing, air plethysmography,
and dual-energy x-ray absorptiometry (DXA) [8,9]. Despite recent advancements regard-
ing accuracy using BIA and anthropometric procedures, a long-standing question [10,11]
remains: which technique is more accurate between BIA and anthropometry to evaluate fat
mass? Indeed, although this question has been open for decades, conflicting findings can
be found in recent literature [12–14].

BIA and anthropometry allow for the estimation of parameters such as FM and fat-free
mass (FFM) through predictive equations based on the relationship between the bioelec-
trical proprieties and the subcutaneous adipose tissue with body mass components [1,8].
Currently, a wide range of predictive equations are available in the literature, and each of
these has been developed for specific populations, such as general and athletic subjects,
as well as cohorts of athletes involved in different sports [8,9]. Therefore, the use of these
formulas does not seem interchangeable, and their use should be carefully considered
when evaluating body composition [15–17]. In previous sports-science related studies
that compared BIA and anthropometry, not enough diligence was given to the choice of
predictive equations [12–14], possibly resulting in conflicting findings over time.

Thus, the aim of this study was to clarify the comparative accuracy of BIA and
anthropometry for assessing FM in the context of a specific sport, such as the evaluation of
male futsal players. To accomplish this, different groups of predictive equations have been
compared to DXA as a criterion method. This study hypothesized that the validity of the
evaluation would depend on the assessment procedures, such predictive equations, rather
than the instrument itself (e.g., BIA or anthropometry).

2. Materials and Methods
2.1. Participants and Study Design

A total of 67 futsal players competing in the Major Portuguese Futsal League “LIGA
PLACARD,”(age 23.7 ± 5.4 years), were included in this cross-sectional study. All partici-
pants were ≥18 years old and did not take any medication or supplementation known to
interfere with body composition assessment.

Generalized, athletic, and sport-specific BIA- and anthropometry predictive equations
were selected according the following criteria:

Inclusion criteria:

- Published in an original article indexed on Scopus, PubMed, or WoS including healthy
subjects, using high-quality instruments and standardized procedures [9,18,19].

- Anthropometric measurements obtained according to the International Society for the
Advancement of Kinanthropometry (ISAK) protocol and included in the last ISAK
manual [20].

- BIA performed using foot-to-hand technology at a 50 kHz frequency.
- Generalized predictive equations developed and validated on subjects from normal

healthy populations.
- Athletic predictive equations developed and validated in samples including athletes

from different sports.
- Sport-specific predictive equations developed and validated in futsal players.

Exclusion criteria:

- Dissertation or conference papers.
- Predictive equations developed for adolescents and elderly subjects.

When more than two predictive equations were identified for each group (generalized,
athletic, and sport-specific) and method (BIA and anthropometry), only two of them were



Nutrients 2023, 15, 278 3 of 12

randomly selected using the random.org website. A total of four generalized [21–24], four
athletic [25–28], and two sport-specific predictive equations [29,30] were selected and are
reported in Table 1.

Table 1. Characteristics of the selected BIA- and anthropometry-based predictive equations for fat
mass estimation.

Authors Equation Sample Methodology Note

BIA-Based Predictive Equations
Generalized equations

Lukaski and
Bolonchuk [21]

(1) FFM (kg) = 0.734 × (S2/R)
+ 0.116 × Wt + 0.096 × Xc +

0.876 × gender – 4.03
(2) FM% = (Wt − FFM)/Wt

× 100

114 men and women

Foot-to-hand BIA at
50 kHz vs.

underwater
weighing

gender coded as
0 = female, and 1 = male

Sun et al. [22]

(1) FFM (kg) = −10.68 + 0.65 ×
(S2/R) + 0.26 × Wt + 0.02 × R

(2) FM% = (Wt − FFM)/Wt
× 100

1474 men and women

Foot-to-hand BIA at
50 kHz vs.

underwater
weighing

Athletic equations

Matias et al. [25]

(1) FFM (kg) = −2.261 + 0.327
× (S2/R) + 0.525 × Wt +

5.462 × gender
(2) FM% = (Wt − FFM)/Wt

× 100

142 male and female athletes of
different sports (basketball, handball,

combat sports, pentathlon, rugby,
soccer, swimming, track and field

athletic sports, triathlon, volleyball,
tennis, and sailing)

Foot-to-hand BIA at
50 kHz vs. 4C

modeling

gender coded as
0 = female, and 1 = male

Stewart et al. [26]

(1) FM (g) = 429.4 × Wt −
283.6 × (S2/R) − 73.1 ×

Xc − 134.1
(2) FM% = (FMg/1000)/Wt

× 100

82 male athletes of different sports
(cycling, racket sports, rowing, rugby,

running, strength sports, and
triathlon)

Foot-to-hand BIA at
50 kHz vs. DXA

Sport-specific equations

Matias et al. [29]
(1) FFM (kg) = −8.865 + 0.437

× Wt + 0.186 × Xc +
0.415 × (S2/R)

66 male elite futsal players Foot-to-hand BIA at
50 kHz vs. DXA

Anthropometry-based predictive equations
Generalized equations

Durnin and
Womersley [23]

(1) BD (g/cm3) = 1.16 − 0.06 ×
((LOG(4SKF))

(2) FM% = 495/BD − 450
(Siri’s formula)

481 men and women

Manual
anthropometry vs.

underwater
weighing

4SKF = sum of biceps,
triceps, subscapular, and

iliac skinfolds

Lean et al. [24]

(1) BD (g/cm3) = 1.1862 −
(0.0684 × LOG(4SKF) −

(0.000601 × age)
(2) FM% = 495/BD − 450

(Siri’s formula)

147 men and women

Manual
anthropometry vs.

underwater
weighing

4SKF = sum of biceps,
triceps, subscapular, and

iliac skinfolds

Athletic equation

Evans et al. [27]
FM% = 8.997 + 0.24658 ×

(3SKF) − 6.343 × (gender) −
1.998 × (race)

132 male and female athletes of
different sports (football, basketball,
volleyball, gymnastics, swimming,

and track, and field)

Manual
anthropometry vs.

4C modeling

3SKF = sum of abdomen,
mid-thigh, and triceps

skinfolds; gender coded as
0 = female, 1 = male and
race coded as 0 = white,

1 = black

Withers et al. [28]

(1) BD (g/cm3) = 1.0988 −
(0.0004 × 7SKF)

(2) FM% = 495/BD − 450
(Siri’s formula)

207 male athletes of different sports
(badminton, basketball, cycling, field

hockey, field lacrosse, gymnastics,
speed roller skating, squash,
swimming, and volleyball)

Manual
anthropometry vs.

underwater
weighing

7SKF = sum of biceps,
triceps, subscapular,

supraspinal, abdominal,
mid-thigh, and calf

skinfolds
Sport-specific equation

Giro et al. [30]
FM% = −0.620 + 0.159 × 4SKF
+ 0.120 × waist circumference

(cm)
78 male elite futsal players

Manual
anthropometry vs.

DXA

4SKF = sum of triceps,
abdomen, iliac crest, and

mid-thigh skinfolds

Abbreviations: FFM, fat-free mass; FM, fat mass; BD, body density; LOG10, logarithm to base 10; BIA, bioelectrical
impedance analysis; 4C, four-compartmental model; DXA, dual-energy X-ray absorptiometry; S, Stature (cm);
R, resistance (ohm); Xc, reactance (ohm); Wt, body mass (kg).
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Data collection was conducted during the off-season. Informed written consent was
obtained from all participants and ethical approval was provided by the Faculty of Human
Kinetics Institutional Review Board (approval number 37/2021), attesting to the fulfilment
of all human research standards set out by the Declaration of Helsinki.

2.2. Bioelectrical Impedance Analysis (BIA)

Whole-body BIA was performed using a single frequency of a 50 kHz device (BIA 101
BIVA®PRO, Akern Systems, Firenze, Italy), according to the guidelines for athletes [1]. The
participants were instructed to remove all objects containing metal and to stay in a supine
position during the measurements, isolated from the ground and electrical conductors, with
legs abducted at 45◦, shoulders abducted at 30◦ relative to the body midline, and hands
pronated. After cleaning the skin with isotropyl alcohol, two intrinsic impedance adhesive
electrodes (Biatrodes Akern Srl, Firenze, Italy) were applied on the surface of the right hand
and two on the right foot. The accuracy of the BIA instrument was validated before each test
session following the manufacturer’s instructions; the test– retest coefficient of variation in
10 participants for resistance (R) and reactance (Xc) was 0.4% and 0.2%, respectively.

2.3. Surface Anthropometry

Participants had their body mass and height measured to the nearest 0.1 kg and 0.1 cm,
respectively, using a scale and a wall stadiometer (Seca, Hamburg, Germany). Skinfold
thicknesses and girths were collected according to the selected predictive equations, with
an accuracy of 0.1 mm and 0.1 cm, respectively, using a Harpenden skinfold calliper (Baty
International, Burgess Hill, England) and an anthropometric measuring tape (CESCORF,
Porto Alegre, Brazil). The technical error of measurement scores (TEM) was required to be
within a 5% agreement for skinfolds and within 1% for girths [19]. Either the mean of the
two measurements, or the median of the three measurements, was considered for analysis.
All anthropometric measurements were performed by a level I-accredited anthropometrist,
according to the standards of the ISAK [20]. Participants wore minimal clothing and
no shoes during the assessment, which was conducted in a private environment. The
anthropometrist’s test-retest coefficient of variation for the measurement of the same
skinfolds and girths over 29 participants ranged between 0.10–2.24%.

2.4. Dual Energy X-ray Absorptiometry (DXA)

Participants underwent a whole-body DXA scan (Horizon Wi, Hologic, Waltham, MA,
USA), according to procedures recommended by the manufacturer. The same technician
positioned the patient, performed the scan, and executed the analyses in a ventilated room,
with controlled temperature and humidity. The test-retest coefficient of variation for FM%
in 29 participants was 1.7%.

2.5. Statistical Analysis

Data were analyzed with SPSS Statistics v.25.0.1.0, 2021 (IBM, Chicago, IL, USA) and
MedCalc Statistical Software v.11.1.1.0, 2009 (Mariakerke, Belgium). All variables were
assessed for normality with the Kolmogorov–Smirnov test. A paired sample t test was per-
formed to compare the mean values obtained from DXA, BIA, and anthropometry. A linear
regression analysis was performed, considering FM obtained from DXA method as the de-
pendent variable and the estimated parameters as independent variables. Agreement was
determined using the Bland–Altman method [31], Lin’s concordance correlation coefficient
(CCC), including precision (ρ) and accuracy (Cb) indexes [32], and by McBride’s strength
concordance [33] (almost perfect = >0.99; substantial = >0.95 to 0.99; moderate = 0.90–0.95;
and poor = <0.90). Statistical significance was set at p < 0.05.
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3. Results

All generalized predictive equations showed a significant difference (p < 0.05) in mean
FM% estimation as compared with DXA, as shown in Figure 1 and Table 2. The FM%
estimated from athletic and sport-specific predictive equations showed no mean bias with
respect to the DXA-derived FM% (Figure 1 and Table 2).
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Figure 1. Mean and individual values for the percentage of fat mass (FM%) obtained from Dual X-ray
Absorptiometry (DXA) and the selected equations; the upper and lower limits represent the standard
deviation of the data. BIA = bioelectrical impedance analysis; Eq. 1 = Lukaski and Bolonchuk [21];
Eq. 2 = Sun et al. [22]; Eq. 3 = Durnin and Womersley [23]; Eq. 4 = Lean et al. [24]; Eq. 5 = Matias
et al. [25]; Eq. 6 = Stewart et al. [26]; Eq. 7 = Evans et al. [27]; Eq. 8 = Witers et al. [28]; Eq. 9 = Matias
et al. [29]; Eq. 10 = Giro et al. [30]. The dotted line identifies the mean value obtained with DXA;
* = significant difference from DXA.
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Table 2. Validation of the selected BIA- and anthropometry-based predictive equations in the
futsal players.

Regression
Analysis CCC analysis Agreement Analysis

Mean ± SD r2 SEE (kg) CCC ρ Cb Bias 95% LoA Trend

FM%DXA 15.6 ± 3.6 - - - - - - - -

BIA-based predictive equations
Generalized equations

Lukaski and
Bolonchuk [21] 18.3 ± 5.3 * 0.53 2.46 0.641 0.880 0.728 2.69 −4.5; 9.9 r = 0.406; p < 0.001

Sun et al. [22] 16.8 ± 3.9 * 0.57 2.33 0.719 0.757 0.951 1.13 −4.0; 6.3 r = 0.034; p = 0.790
Regression

Analysis CCC analysis Agreement Analysis

Mean ± SD r2 SEE (kg) CCC ρ Cb Bias 95% LoA Trend
Athletic equations

Matias et al. [25] 15.2 ± 5.1 0.69 1.99 0.774 0.829 0.933 −0.48 −6.2; 5.2 r = 0.451; p < 0.001
Stewart et al. [26] 14.8 ± 4.5 0.53 2.44 0.682 0.729 0.936 −0.80 −7.3; 5.6 r = 0.287; p = 0.020

Sport-specific equations
Matias et al. [29] 15.2 ± 3.2 0.64 2.12 0.799 0.804 0.994 −0.30 −4.5; 3.9 r = −0.217; p = 0.083

Anthropometry-based predictive equations
Generalized equations

Durnin and
Womersley [23] 13.6 ± 3.5 * 0.62 2.19 0.670 0.786 0.853 −2.04 −7.3; 5.6 r = −0.138; p = 0.271

Lean et al. [24] 13.9 ± 4.1 * 0.64 2.12 0.716 0.800 0.895 −1.72 −6.6; 3.1 r = 0.357; p = 0.003
Athletic equations

Evans et al. [27] 14.9 ± 5.1 0.70 1.93 0.774 0.838 0.925 −0.67 −6.3; 5.0 r = 0.646; p < 0.001
Withers et al. [28] 15.1 ± 3.9 0.62 2.16 0.778 0.792 0.932 −0.55 −5.3; 4.2 r = 0.279; p = 0.023

Sport-specific equations
Giro et al. [30] 15.9 ± 3.2 0.81 1.58 0.890 0.900 0.988 0.33 −2.7; 3.4 r = 0.235; p = 0.057

Note: r2, coefficient of determination; SEE, standard error of estimation; CCC, concordance correlation coefficient;
ρ, precision; Cb, accuracy; LoA, limits of agreement; r, coefficient of correlation; BIA, bioelectrical impedance
analysis; DXA, dual-energy x-ray absorptiometry. * = Significant differences from DXA (p < 0.05).

The selected athletic and sport-specific equations showed a coefficient of determina-
tion (r2) ranging from 0.53 to 0.69 and from 0.62 to 0.81 for BIA- and anthropometry-based
predictive equations, respectively, as shown in Table 2, Figures 2 and 3. Concerning the con-
cordance analysis, the best performance was observed for the sport-specific predictive equa-
tion (Table 2, Figures 2 and 3). In the agreement analysis, BIA- and anthropometry-based
sport-specific predictive equations both reported no trend, whereas all the athletic predic-
tive equations showed a positive and significant (p < 0.05) trend (Table 2, Figures 2 and 3).
Particularly, the sport-specific BIA- and anthropometry-based models showed a standard
error of estimation (SEE) ranging from 1.58 to 2.12% (Table 2, Figures 2 and 3). The CCC
analysis (Table 2, Figures 2 and 3) denoted a substantial strength of agreement and for the
individual analysis concerning the Bland and Altman approach, no trend (p-value ranging
from 0.057 to 0.083) was observed between the mean and the difference of the methods for
FM% estimation (Table 2, Figures 2 and 3).
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4. Discussion

This study aimed to clarify whether BIA or anthropometry would lead to a better FM%
estimation in a specific sport discipline. For this purpose, FM% estimated from generalized,
athletic, and sport-specific predictive equations were compared with DXA-derived FM% in
a group of male futsal players. Regardless of the instruments, the use of generalized equa-
tions led to poor FM% assessment in the futsal players, whereas sport-specific equations
were more accurate than those developed using groups of athletes engaged in different dis-
ciplines. The present results show that when sport-specific predictive equations are applied,
BIA and anthropometry can be used interchangeably, allowing for valid FM% estimations.

All generalized predictive equations showed a lack of agreement between the es-
timated FM% and DXA. However, BIA- and anthropometry-based equations showed
heterogeneity in the direction of prediction: BIA-based predictive equations overestimated
FM%, while anthropometry-based predictive equations underestimated FM%. These find-
ings are in line with previous evidence [15] in which the use of generalized BIA-based
formulas led to an underestimation of the FFM components and therefore, to an overestima-
tion of the FM. The opposite result occurred when anthropometric formulas were used, and
this could be explained by underlying theoretical bases. Anthropometry, and in particular,
skinfold measurements, are based on the assessments of the subcutaneous adipose tissue
thickness, which is directly related to the FM% [34]. Conversely, the relationship between
bioelectric properties and body composition is based on the electrical conductivity of the
tissues, typically of some FFM components [35]. Therefore, the aforementioned differences
could explain discrepancies in FM prediction. Previous research did not always agree
in identifying BIA as a valid tool for estimating FM% in a sports context, justifying that
bioelectric properties are more informative for FFM-related variables, such as fluids or lean
soft tissues [35]. Furthermore, previous evidence did not report similar findings, showing
underestimation [36–41] or overestimation of FM% [42–45] with respect to the reference
methods. This lack of agreement can be attributed to the different BIA technologies in-
volved in these investigations, as well as to the poor choice of the predictive equations
used [9]. A lack of consensus also exists in the current literature regarding the use of
anthropometry-based generalized equations on groups of athletes. Some studies report
that groups of generalized equations can be valid when applied in athletes [16,46], while
others tend to display an underestimation of FM% [47,48]. In general, predictive regression
models are accurate when applied to subjects with similar characteristics to those of the
subjects involved in the studies used to develop those equations [49]. In this regard, athletic
subjects should be considered to belong to a distinct population, as they present higher
intracellular-to-extracellular water ratio, higher muscle mass, and generally lower levels of
fat than the general population [50–52]. Considering the present results and the availability
of specific equations for athletes in the literature, the use of generalized formulas to predict
FM% in athletes should be discouraged.

In this study, both BIA and anthropometric assessment were valid when predictive
equations for athletes were applied. The four selected athletic equations were developed
for groups of athletes involved in different disciplines, including team, endurance, and
velocity/power sports [43–46]. The present comparison showed a predicted FM% similar
to that derived with DXA in the futsal players. However, when using the two sport-specific
equations, it was possible to achieve greater accuracy and a substantial concordance
level with both BIA and anthropometry. Although these findings suggest the importance
of choosing the most appropriate predictive equation in estimating FM%, to date, few
anthropometric-based [16]—and only one BIA-based sport-specific equation—are available
in the literature [29]. These results represent a call for action to develop and validate new
prediction equations in diverse groups of athletes practicing specific disciplines, or groups
of athletes with similar body composition characteristics based on the sport modality (e.g.,
team sports, endurance, or velocity/power).

Despite the encouraging results of this study, some limitations merit consideration.
First, due to the wide range of generalized and athletic predictive equations, we had to
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randomly choose a maximum of two for each group. However, we strictly selected all
the predictive equations based on the highest methodological standards. Secondly, when
comparing the anthropometry-based with the DXA-derived prediction equations, for three
of the selected equations, we had to apply a further equation [53] to convert body density
to FM%. Lastly, the present findings cannot be generalized to other sports disciplines, and
they cannot be extended to BIA measurements obtained from different technologies or
sampling frequencies.

This study presents novel perspectives for the comparison between BIA, anthropome-
try, and a reference method for the prediction of FM with different modalities of predictive
equations. This prompts future research focusing on specificity in procedures when val-
idating double indirect tools for assessing body composition. As such, referring only to
generalized equations may result in inaccurate estimations. This is not surprising, given
that recent studies used a limited group of equations when comparing BIA and anthro-
pometry [12,14]. Furthermore, there is now a wide range of available commercial BIA
devices, used in research articles, that do not provide information on the equation used for
measuring FM% in athletes [9]. Therefore, caution should be applied when interpreting
data extracted from generalized equations or technologies. In addition, further studies
that include athletes, exercisers, and non-athletes should be considered, and the sensitivity
of anthropometric or bioimpedance measures should be studied as pre-screening indices,
establishing specific parameters that aid in the choice of the prediction equation.

5. Conclusions

The use of sport-specific predictive equations resulted in valid FM% estimation, re-
gardless of the BIA or anthropometry use. Although the FM% predicted with the athletic
equations did not differ from DXA-derived predictions, lower accuracy was found when
compared to sport-specific equations in this cohort of futsal players. Generalized BIA-
based predictive equations overestimated FM%, whereas anthropometry-based predictive
equations underestimated FM%. In conclusion, BIA and anthropometry can be used inter-
changeably, allowing for valid FM% estimations, provided that sport-specific equations
are applied.
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