
UNIVERSITÀ DEGLI STUDI DI PADOVA

Department of Physics and Astronomy Galileo Galilei

PH.D. COURSE IN ASTRONOMY

SERIES XXXVI

THE IMPACT OF

PULSATION-DRIVEN MASS

LOSS AND ROTATION ON THE

EVOLUTION OF PRIMORDIAL

VERY MASSIVE STARS

Ph.D. School Coordinator: Prof. Giovanni Carraro

Supervisor: Prof.ssa Paola Marigo

Co-supervisor: Dr. Guglielmo Costa

Co-supervisor: Dr. Léo Girardi

Co-supervisor: Prof. Alessandro Bressan

External reviewer: Prof. Norbert Langer

External reviewer: Dr. Marco Limongi

Ph.D. student: Guglielmo Volpato





iii

Abstract

My Thesis focuses on the evolution and őnal fates of primordial very massive stars.
I begin with an introduction to the stellar structure equations and the methods used
in the PAdova and tRieste Stellar Evolution Code (PARSEC). Then, I concentrate on
pulsations in massive and very massive stars, and the resulting pulsation-driven mass
loss. To achieve this, I implement the recipe for pulsation-driven mass loss developed by
Nakauchi et al. (2020) in the PARSEC code. Using these models, I study the evolution and
őnal fates of primordial very massive stars with initial masses from 100M⊙ to 1000M⊙

for two values of the initial metallicity Z = 0 and Z = 0.0002. These models form black
holes within a very broad mass range: from ∼ 40M⊙ to ∼ 1000M⊙. On top of this, the
100M⊙ zero-metallicity models could form black holes consistent with the primary black
hole of the GW190521 merger event.

Then, I investigate the effect of rotation on the evolution of very massive stars,
particularly how it affects their őnal fates. To this end, I present the main implementation
of stellar rotation in the PARSEC code and study the possible jet-driven events powered by
an accretion disk within the collapsar scenario by Woosley (1993). This scenario demands
a central black hole formed from the collapse of the star, enough angular momentum to
sustain a disk, and the lack of an extended envelope for the jet propagation through the
stellar progenitor. I recompute the models with initial masses 100−150−200M⊙ with 4
different initial rotational velocities (20%, 30%, 40%, and 50% of the critical value). The
models that undergo pulsational-pair instability supernovñ produce successful gamma-
ray bursts, while those that collapse directly to a black hole are progenitors of jet-driven
supernova events. Due to these jet-driven supernovñ, several models are expected to
produce black holes within the pair-instability black-hole mass gap. Furthermore, the
predicted successful gamma-ray burst events could be observable with the Swift-BAT
X-ray detector up to redshift ∼ 20, while the corresponding afterglows are within the
capabilities of the JWST.

To facilitate the computation of stellar isochrones from all these tracks, I developed a
Python script that őnds the so-called critical points along stellar evolution tracks. These
critical points are then crucial for the computation of stellar isochrones. The critical
points code, along with the algorithm for calculating stellar isochrones, is thoroughly
described in the appendixes at the end of this Thesis.
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§Chapter 1
Introduction

Нельзя понять все сразу,

нельзя сразу начать с совершенства!

Чтобы достичь совершенства,

нужно начать с невежества во многом.

И если мы понимаем вещи слишком

быстро, возможно, мы не поймем их полностью.

Ф.М. Достоевский1

1.1 Star classiőcation

Historically, the evolution of stars is classiőed according to their initial mass. There are
three main classes of stars: low-mass stars, intermediate-mass stars, and massive stars.

Low-mass stars are characterized by the formation of a degenerate helium core post-
main sequence (MS), resulting in an extended red giant branch phase. The ignition of
helium is marked by an unstable event known as a helium ŕash. This phenomenon occurs
within a mass range of approximately 0.8M⊙ to around 2M⊙

2 (the upper limit is often
denoted as MHeF).

Intermediate-mass stars follow a distinct evolutionary path where their helium core,
unlike low-mass stars, remains non-degenerate. Helium ignition in these stars occurs in
a stable manner. Following the central helium-burning phase, they develop a carbon-
oxygen core that eventually becomes degenerate. Intermediate-mass stars fall within

1Идиот, part IV chapter VII
2all mass limits here depend on metallicity
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the mass range of approximately MHeF to Mup, around 8M⊙. Towards the end of their
evolution, both low-mass and intermediate-mass stars shed their envelopes through a
robust stellar wind, and their remnants manifest as carbon-oxygen (CO) white dwarfs.

Massive stars, possessing masses greater than approximately 8M⊙ (Mup ≈ 8M⊙),
undergo carbon ignition within a non-degenerate core. Except for a limited mass range,
approximately 8 to 11 M⊙, which undergo the transition into the super-Asymptotic Giant
Branch (super-AGB) phase, these stars also initiate fusion reactions for heavier elements
within the core. This process continues until a core of iron (Fe) is formed, potentially
leading to a collapse and resulting in a supernova explosion.

The primary focus of the present investigation lies in very massive stars (VMS) with
initial masses exceeding 100M⊙. When these stars manage to avoid signiőcant mass loss,
their life cycles culminate in pair-instability explosions. Similar to other massive stars,
these very massive stars undergo successive stages of hydrostatic burning for hydrogen,
helium, carbon, and neon. Following the depletion of carbon in the core and a brief
phase of neon burning, these stars experience a thermonuclear explosion triggered by the
dynamical instability induced by the generation of electron-positron pairs in their oxygen
cores.

Due to their very high initial masses, VMS are thought to be preponderant in the
early Universe, when the initial mass function could have been shifted towards higher
initial masses compared to nowadays.

1.2 Primordial Very Massive Stars

For the őrst generations of stars (Population III), the efficiency of cooling processes
that regulate star formation is considerably diminished due to the absence or severe
deőcit of metals. In the early universe, magnetic őelds and turbulence might also be
less signiőcant (Abel et al. 2002). As a consequence, for primordial stars in their unique
conditions, the minimum mass for fragmentation (the local Jeans mass) may have been
as high as ≃ 1000M⊙ (e.g., Larson 1998; Hosokawa et al. 2011; Hirano et al. 2014; Stacy
et al. 2016). From numerical simulations of star formation I expect that such stars form
at redshift z ≃ 20 and have initial mass functions that either peak at ≃ 100M⊙ (Bromm
et al. 1999; Abel et al. 2002), or present a bimodal distribution with a second peak at
a few M⊙ (Nakamura and Umemura 2001). Other studies, in contrast, claim that the
characteristic mass of Population III initial mass function could be signiőcantly lower
than the canonical 100M⊙ (Clark et al. 2011). For instance, in Figure 1.1 we can see
the Hertzsprung-Russell diagram (HRD) evolution of intermediate, massive, and very
massive Population III stars. These models are characterized by a pristine composition
of hydrogen and helium, as these were the two most common elements formed during
Big Bang nucleosynthesis.

Extremely metal-poor or zero-metallicity VMS, with initial mass in the range 100 ≲

Mi/M⊙ ≲ 1000, have a broad astrophysical impact. Understanding how these population
III stars evolve and die has implications for several key questions, including the observable
characteristics of integrated stellar populations in low-metallicity galaxies; the nature
of energetic transients, such as pair-instability supernovñ, super-luminous supernovñ,
kilonovñ and gamma-ray bursts (Kozyreva et al. 2017); the source of extreme ionizing
UV-radiation őelds at high redshift (Dijkstra and Wyithe 2007); the agents of the earliest
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Figure 1.1: Hertzsprung-Russell diagram of Population III stars. All tracks are shown in
solid gray lines, except those with initial mass Mi = 2, 5, 10, 14, 24, 40, 100, 200, and
600M⊙ in black. The black dashed line shows the zero-age MS, while the red dashed
one indicates the end of the MS phase. Orange stars (circles) mark the ignition (end) of
the central helium-burning phase. The blue circles show the őnal position of the models.
Dashed lines of constant radii in units of R⊙ are in grey. Figure from Costa et al. (2023b).

and fastest chemical enrichment of their host galaxies (Kozyreva et al. 2014; Goswami
et al. 2021, 2022); the rates of gravitational-wave emission from merging black holes (BHs
Abbott et al. 2016; Spera et al. 2019); the formation of primordial stellar BHs that could
provide the seeds for the assembly of supermassive black holes of mass ≃ 106−109M⊙ at
redshift z > 6 via runaway stellar collisions in dense clusters (Belkus et al. 2007; Sakurai
et al. 2017; Onoue et al. 2019; Nakauchi et al. 2020).

VMS (100 ≲ Mi/M⊙ ≲ 300) may undergo electron-positron pair creation instabilities
(PI) before and during core oxygen burning, with a őnal outcome determined primarily by
the mass of the helium core, MHe, eventually leading to a successful or failed core-collapse
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supernova (fCCSN) or thermonuclear explosion (Heger and Woosley 2002; Kozyreva et al.
2017; Woosley 2017; Leung et al. 2019).

Stars with őnal helium core masses in the approximate range 34− 45 ≲ MHe/M⊙ ≲

64 are predicted to join the domain of pulsational pair-instability supernovñ (PPISN).
During these unstable stages, several strong pulses may eject a signiőcant fraction of
the star’s residual envelope and possibly a small fraction of the core mass, before dying
with a successful or failed core-collapse supernova (CCSN, Woosley et al. 2002; Chen
et al. 2014; Yoshida et al. 2016; Woosley 2017; Farmer et al. 2019; Woosley and Heger
2021; Farag et al. 2022). Stars with larger helium core masses, 64 ≲ MHe/M⊙ ≲ 135 are
predicted to die as pair-instability supernovñ (PISN). Near the ignition of core oxygen
burning such stars experience a single strong pulse followed by a thermonuclear explosion
that unbinds the whole star, leaving no remnant (Fowler and Hoyle 1964; Barkat et al.
1967; Rakavy and Shaviv 1967; Fraley 1968; Heger and Woosley 2002; Heger et al. 2003;
Takahashi et al. 2018; Takahashi 2018; Woosley and Heger 2021; Farag et al. 2022). In
the past, PISNñ have been traditionally associated with the őrst, extremely metal-poor
stellar populations (Ober et al. 1983; Bond et al. 1984; Glatzel et al. 1985; Heger and
Woosley 2002), though recent stellar models suggest that PISNñ could happen for stars
with initial metallicity up to Z ≃ Z⊙/3 (Langer et al. 2007; Yusof et al. 2013; Kozyreva
et al. 2014). The Tarantula Spectroscopic Survey (Crowther 2019; Schneider et al. 2018),
which indicates that the current initial mass function is well populated up to 200M⊙ in
the Large Magellanic Cloud, lends support to the existence of VMS at these metallicities.

Stars massive enough to form a helium core with MHe ≳ 135M⊙ are predicted to
undergo direct collapse to a BH (DBH). During the őnal stages, photodisintegration
processes absorb the energy of the propagating shock, preventing the envelope from
becoming unbound through mass ejection (Bond et al. 1984; Farmer et al. 2020). In
these circumstances, only wind ejecta are produced (Fryer and Kalogera 2001; Heger
and Woosley 2002; Nomoto et al. 2013). In this framework, I expect stars with Mi ≳

200−300M⊙ to avoid the thermonuclear explosion at very low metallicity (e.g., Goswami
et al. 2021).

The details of this evolutionary picture, particularly the ranges of initial masses of
stars that follow the same channel and achieve a similar őnal outcome, are affected by
factors such as metallicity and the efficiency of stellar winds, among others (e.g., Vink
et al. 2021). Indeed, mass loss is a critical process in the evolution of massive and VMS,
though some aspects are still not completely understood. Mass loss contributes signiő-
cantly to the chemical enrichment of the interstellar medium, can affect star formation by
injecting momentum and kinetic energy into molecular clouds, and may have a decisive
impact on the outcome of core collapse.

The winds of massive and very massive stars can be triggered and maintained by a
variety of physical processes (Renzo et al. 2017). In hot and luminous stars, the radiation
őeld transfers momentum to the out-ŕowing plasma via scattering in resonant spectral
lines (e.g., Vink et al. 2001; Puls et al. 2008). Continuous absorption and scattering
from dust grains act in the extended circumstellar envelopes of luminous red supergiants
(RSGs), in which the interplay between pulsation and near-surface turbulent convection
can also be important for mass loss (e.g., Bennett 2010; Höfner and Olofsson 2018; Kee
et al. 2021). Luminous Blue Variables also involve pulsational mass loss, alongside erup-
tive phenomena (Baraffe et al. 2001; Puls et al. 2008; Smith and Arnett 2014; Nakauchi
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et al. 2020), whereas mass loss is associated with Roche-lobe overŕow and common-
envelope evolutionary phases in interacting binary systems (e.g., Woosley et al. 1995;
Wellstein and Langer 1999; Smith and Tombleson 2015; Shara et al. 2017).

The theory of line-driven winds applied to hot and luminous stars predicts a pos-
itive correlation between the mass-loss rate and the metal content (e.g., Vink et al.
2011), which implies that stellar winds in extremely metal-poor conditions should be
quite weak (see, for instance, the Z = 0 models of Marigo et al. 2003). It is known
that primordial main-sequence stars are pulsationally unstable above a critical mass of
≃ 100M⊙ due to the destabilizing effect of nuclear reactions in their cores (Baraffe et al.
2001, ϵ-mechanism). The instability could reoccur during the core helium burning (cHeB)
phase, excited by the κ-mechanism operating in the hydrogen ionization zone. Non-linear
calculations show that such an instability causes mass loss rather than catastrophic dis-
ruption. Nakauchi et al. (2020) recently performed a new stability analysis of primordial
VMS during the MS and cHeB stages, and provided analytic prescriptions for calculating
the associated mass-loss rates.

Adopting the Nakauchi et al. (2020) results in combination with a well-tested scheme
to account for radiation-driven winds, in this study I use the PARSEC code to follow
the evolution of VMS at zero and extremely low metallicity, until the onset of dynam-
ical instability caused by the creation of electron-positron pairs. I investigate the main
evolutionary properties of these stars and predict their őnal outcome, which could be a
massive BH or total incineration via a thermonuclear explosion.

1.3 Thesis outline

I organized this Thesis as follows.
In Chapter 2, I introduce the stellar structure equations, along with the methods

adopted in the PAdova and tRieste Stellar Evolution Code (PARSEC). Chapter 3 focuses
on massive star pulsations and the consequent pulsation-driven mass loss. Then, I present
the implementation in the PARSEC code of the results by Nakauchi et al. (2020), which
delves into the pulsations of VMS during both the MS and the red supergiant phases.

In Chapter 4, I use the PARSEC code to study the evolution of VMS. These stellar
evolution models take into account not only radiation-driven winds and the Eddington
factor effects but also mass loss due to stellar pulsations. In Chapter 5, I summarize the
main aspects of stellar rotation and its implementation into the PARSEC code following
Costa (2019); Costa et al. (2019a,b).

In Chapter 6, I present rotating stellar evolution models computed with the PARSEC
code. Then, I mainly focus on the inŕuence of stellar rotation on the őnal fates of VMS.
In particular, the possible jet-driven events powered by an accretion disk formed around
BHs originated from the collapse of these very massive progenitors. Finally, in Chapter
7, I conclude with the main results of this work and possible future perspectives.
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§Chapter 2
Stellar Structure

In this Chapter, I present our stellar evolution code PARSEC (Bressan et al. 2012). In
Section 2.1, I introduce the stellar structure equations. In Section 2.2, I explain how
the equation of state and the opacity of the stellar matter are treated in PARSEC. In
Section 2.3 there is an overview of the "standard" mass loss recipes adopted in our code.
I describe the mixing-length theory and the corresponding overshooting, along with the
schemes for chemical mixing and following the nuclear reactions during the evolution of
stars in Section 2.4. Finally, in Section 2.5, I present the boundary conditions coupled
with the structure equations.

2.1 Stellar structure equations

The őrst equation of stellar structure expresses the conservation of mass within a spher-
ical shell of the star, given the assumption of spherical symmetry. The Lagrangian
formulation is as follows:

∂r

∂m
=

1

4πr2ρ
, (2.1)

where the mass m is the spatial independent variable, r is the radius and ρ is the density
of the shell.

Considering the conservation of momentum inside a star yields the second differential
equation of stellar structure. We assume hydrostatic equilibrium, which means no net
radial acceleration, and therefore the second equation reads:

∂P

∂m
= − Gm

4πr4
, (2.2)

with P the pressure.
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The three major sources and sinks of energy within a stellar shell are the production
of energy due to nuclear reactions, the removal of energy due to neutrino emission, and
the heat ŕow expressed by the local luminosity l. This latter is related to the radial
energy ŕux F according to l = 4πr2F, where we assume spherical symmetry. Combining
this with the őrst law of thermodynamics (∂u = ∂q + P

ρ2
∂ρ) yields the third equation of

stellar structure:
∂l

∂m
= ϵnuc − ϵν + ϵgr, (2.3)

where the őrst term on the right-hand side is the nuclear energy generation rate, the
second one is the neutrino energy rate, and the third is the gravitational energy rate.
The latter is deőned as ϵgr = −∂u

∂t +
P
ρ2

∂ρ
∂t = −T∂s

∂t , with s the speciőc entropy of the gas.
Assuming thermal equilibrium (the energy generation in the star’s center balances the
radiative loss from the surface) implies that the star is in a stationary state and therefore
ϵgr = 0.

The fourth equation of stellar structure concerns the transport of energy. It is given
in terms of the temperature gradient required to transport energy in the two possible
scenarios: radiative and convective. This equation reads:

∂T

∂m
= − Gm

4πr4
T

P
∇, (2.4)

where ∇ can be either the radiative temperature gradient or the adiabatic temperature
gradient plus the superadiabaticity ∆∇. The former is deőned as:

∇rad =
3κ

16πacG

lP

mT 4
, (2.5)

with κ the Rosseland mean opacity (see Section 2.2), while the latter is:

∇ad =
P

TρcP

( ∂lnρ

∂lnT

)

P,µ
. (2.6)

The radiative gradient is adopted when ∇rad ≤ ∇ad, while the adiabatic one when
∇rad > ∇ad. Then, the stability of the stellar layer against convection can be given by
either the Ledoux criterion:

∇rad ≤ ∇ad −
χµ

χT
∇µ, (2.7)

where χµ =
(∂logP
∂logµ

)

ρ,T
and χT =

( ∂logP
∂logT

)

ρ,µ
; or the Schwarzschild criterion:

∇rad ≤ ∇ad. (2.8)

The nuclear reactions that provide energy to the star, also change its chemical compo-
sition throughout the different phases of stellar evolution. The change in mass fraction
over time due to nuclear reactions reads:

dXi

dt
=

Aimu

ρ

∑

k

rki −
∑

j

(1 + δij)rij , i = 1 . . . N, (2.9)

where Xi is the mass fraction of the species i and in each shell holds
∑

iXi = 1. Ai is the
atomic mass, mu is the atomic mass unit, rki is the rate of nuclear reactions that create
the species i, while rij is the rate of those that destroy it. N is the number of species
considered in the adopted nuclear network.
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2.2 Equation of State and Opacity

The equation of state (EOS) relates thermodynamic quantities such as temperature T,
density ρ, and pressure P with the chemical composition of stellar matter Xi; while
stellar opacity, κ, is a function of ρ, T and Xi, which determines how much the radiation
intensity is blocked by matter along its path from the core to the stellar surface.

These two ingredients are necessarily coupled (along with boundary conditions, Sec-
tion 2.5) with the structure equations in Section 2.1, in order to close the system of
partial differential equations and derive the stellar structure.

In PARSEC, the EOS is computed with the FREEEOS code by Irwin (2012)1. There
are two different options: computing the EOS on-the-fly or using precomputed tables
of the thermodynamic quantities. This latter is the standard option in PARSEC since
the precomputed tables are sufficiently accurate for our purpose. Moreover, Bressan
et al. (2012) compared the results obtained with the two options mentioned above, and
demonstrated the negligible differences between the two. Elements from hydrogen to
nickel are taken into account, along with several metallicity values for different heavy
elements distributions. There are different EOS tables depending on the considered
evolutionary phase. For hydrogen burning, the code adopts 10 "H-rich" tables, while for
advanced burning phases, there are 31 "H-free" tables.

In principle, (radiative) opacity depends on the wavelength of the incoming radiation
(along with the temperature and density of the stellar matter). For each process that
contributes to stellar opacity, we can deőne a monochromatic opacity, κν . The main
processes to take into account are

• electron scattering: also known as Thomson scattering (in the non-relativistic
limit). It is important at very high T, between ∼ 106K and ∼ 108.7K. In this
process, radiation hits a free electron, which in turn re-emits radiation. The opac-
ity does not depend on the frequency and is expressed as κTh = 0.2(1 + X) cm2/g
(assuming complete ionization);

• free-free absorption: it occurs when a free electron closely grazes an ion so that
it can temporarily absorb radiation. The (classical Kramer) absorption coefficient
is κν ∼ Z2ρT−1/2ν−3, with Z the ion charge. It is most important for ionized
high-density matter, at 104K ≲ T ≲ 106K;

• bound-free transition: also known as photoionization, it occurs when a photon has
an energy higher than the ionization energy of a bound electron. The opacity in
this case is given by κν = aνnion/ρ, where nion is the relative number of atoms
in different ionization states and aν is the absorption coefficient of each ion. This
process also includes the important absorption of the negative ion H−, relevant for
103.5K ≲ T ≲ 104K;

• bound-bound transition: in this process, the incoming radiation has enough energy
only to promote a bound electron to a higher energy level inside the atom. The ab-
sorption coefficient reads κν(j) =

∑

j

∑

nn′ κν,nn′(j), where nn’ indicates all possible
transitions for each element j;

1available at http://freeeos.sourceforge.net
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• molecular band transition: at T ≲ 104, formation of molecules starts to occur.
These latter impact the overall opacity of the stellar matter. In PARSEC, the
opacity of molecular band transitions is taken into account adopting the results of
the ÆSOPUS code (Marigo and Aringer 2009; Marigo et al. 2022).

Once all these physical processes are taken into account, usually a speciőc mean
opacity is derived and then used in the structure equations. This mean is the Rosseland
mean opacity, deőned as

1

κ
=

∫∞

0
1
κν

∂Bν

∂T dν
∫∞

0
∂Bν

∂T dν
, (2.10)

with Bν the Planck function for radiation intensity. The Rosseland mean opacity is
a harmonic average with the temperature derivative of Bν as weighting. In this way,
frequencies where the radiation ŕux is higher weight more in the Rosseland mean opacity.

The treatment of opacity in PARSEC is based on pre-computed tables of Rosseland
mean opacities, κ(ρ,T,Xi). Two different codes are used to compute these tables

• the Opacity Project At Livermore (OPAL) code (Iglesias and Rogers 1996), for
104.2K ≤ T ≤ 108.7K;

• the ÆSOPUS code (Marigo and Aringer 2009; Marigo et al. 2022), for 103.2K ≤ T ≤
104.1K;

• a linear interpolation between the two codes is adopted in the region 104K ≤ T ≤
104.1K.

These opacity tables are loaded in PARSEC before the actual start of any stellar evo-
lutionary calculation, and they are interpolated in temperature, density, and H-content.
Different metallicity tables are used to bracket the possible variations in metal content
during the evolution of the stellar model. Conductive opacities are also included accord-
ing to Itoh et al. (2008).

2.3 Mass Loss

Here I brieŕy review the standard mass-loss prescription adopted in PARSEC to treat
mass loss from single massive stars both in the hot and cool regions of the H-R diagram.
Details can be found in Chen et al. (2015), and some recent revision is described in Costa
et al. (2021). For simplicity, I refer to it as "radiation-driven winds" (rdw) recipe, though
I acknowledge that in RSG, in addition to radiation on dust grains, other mechanisms
may be at work, such as turbulence for example.

In short, I rely on four main formulations. For hot stars with Teff > 10000 K I adopt
the formalism of Vink et al. (2000, 2001). I take into account the enhancement of the
mass-loss rate when the Eddington factor, Γe, approaches unity (Gräfener and Hamann
2008; Vink et al. 2011). This parameter is commonly deőned as

Γe =
Lκes

4πGM
, (2.11)
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where M and L denote the current mass and luminosity, κes is the opacity due to electron
scattering, and G is the gravitational constant. I use the same metallicity scaling relation
as in Chen et al. (2015), which reads

Ṁ ∝ (Z/Zinitial,⊙)
α, (2.12)

where Zinitial,⊙ = 0.01774 is the initial solar metallicity (solar calibration in Bressan et al.
2012) and α is given by

α = 2.45− 2.4 · Γe, 0 ≤ α ≤ 0.85 . (2.13)

For models having X < 0.3 at the surface and log(Teff) > 4, representative of Wolf-Rayet
stars, I adopt the mass-loss prescription by Sander et al. (2019) with the metallicity
dependence proposed by Costa et al. (2021), which is based on WN and WC star models
at varying Fe, C, and O abundances computed by Vink (2015). Finally, for stars in the
red supergiant phase (Teff < 10000 K) I take the maximum between the mass-loss rates
predicted by Vink et al. (2011, which accounts for the dependence on Γe) and de Jager
et al. (1988).

2.4 Mixing, Overshooting, and Nuclear Reactions

In PARSEC is adopted the mixing-length theory (MLT Böhm-Vitense 1958), to describe
convection. The average distance over which the convective eddies move is the mixing
length, lmlt = αmltHP, with HP the pressure scale height and αmlt the MLT parameter.
This latter is set to αmlt = 1.74 throughout this Thesis, which is the value from the solar
calibration performed in Bressan et al. (2012).

The code adopts the Schwarzschild criterion (Section 2.1) for the deőnition of con-
vective regions (Schwarzschild 1958), but the convective eddies are able to overcome the
border of these regions, requiring the adoption of an overshooting prescription (Bressan
et al. 1981). For core overshooting, the ballistic implementation is followed (Maeder
1975; Bressan et al. 1981). The overshooting parameter (λov = 0.4) times the pressure
scale height is the mean free path of convective eddies across the border. For compar-
ison with other prescriptions, the distance a bubble can travel into the stable region is
∼ 0.5λovHP. On the other hand, for envelope overshooting, the prescription in Alongi
et al. (1991); Bressan et al. (2012); Nguyen et al. (2022) is followed, with an average
overshooting distance below the convective envelope of ΛenvHP = 0.7HP.

In the current version of PARSEC, a diffusive scheme is adopted, where mixing and
nuclear reactions are solved together. The mass fraction (Xi) variation of the element i
due to both mixing and nuclear reactions is given by

∂Yi
∂t

=
1

ρr

∂

∂r
(r2ρD

∂Yi
∂r

)±
∑

j

Yjλk(j)±
∑

j≥k

YjYk[jk], (2.14)

with Yi = Xi/Ai, D the diffusion coefficient calculated within the MLT D = 1/3vlmlt.
The second and third terms on the right-hand side show the single-body decay and the
two-body reactions, respectively.

The nuclear reaction network consists of 33 isotopes, from hydrogen to zinc, and 72
reactions. The JINA REACLIB data (Cyburt et al. 2010a) is adopted for reaction rates
and Q values.
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2.5 Boundary Conditions

Figure 2.1: Three different regions in PARSEC model: internal structure, envelope, and
atmosphere. Figure from Costa (2019).

Here, I describe the boundary conditions coupled to the structure and chemical com-
position equations that give the structure and evolution of the stellar model. There are
two kinds of boundary conditions: at the stellar center and at the stellar surface.

Regarding the former, the code has to compute pressure and density at the center
given that the radius and mass at that coordinate are zero. To this end, an approximation
of the stellar structure equations (Section 2.1) for m → 0 is adopted. This reads as

r =
( 3m

4πρc

)
1
3
, (2.15)

P − Pc = −G

2

(4π

3

)
1
3
ρ

4
3
c m

2
3 , (2.16)

Lc = ϵcm, (2.17)

T 4 − T 4
c = − kϵc

2ac

( 3

4π

)
1
3
ρ

4
3
c m

2
3 (radiative) (2.18)

lnT − lnTc = −
(π

6

)
1
3 G

Pc
ρ

4
3
c m

2
3∇ad (convective), (2.19)

with ϵc the energy rate at the center.
The outer region of the model is divided into two parts: the envelope and the at-

mosphere; whereas the internal structure extends from the center to the so-called őtting
point (See Figure 2.1).

The atmosphere extends from the photosphere, where the optical depth is τ = 2/3,
to inőnity. In this region, mass, radius, and luminosity are constant. Combining the
deőnition of the optical depth and the hydrostatic equilibrium equation, the code obtains
the following equation

dτ

dlogP
=

κP

g
ln10. (2.20)

On top of this, the modiőed Eddington approximation for the radiative transport is
adopted as a temperature-optical depth relation

T 4(τ) =
3

4
T 4
eff(τ + q(τ)), (2.21)
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where q(τ) the Hopf function. Equations 2.20 and 2.21 are integrated from inőnity to
the photosphere, yielding temperature and pressure a the stellar radius.

On the other hand, the envelope of the model stretches from the őtting point to the
photosphere. The former is set at a very small fraction of the total mass of the star,
i.e. ≤ 0.001. In this region, the luminosity of the model is kept constant, thus the three
remaining physical quantities are derived as follows

∂lnm

∂lnP
= −4πr4P

Gm2
, (2.22)

∂lnr

∂lnP
= − Pr

Gρm
, (2.23)

∂lnT

∂lnP
= min[∇rad,∇ad]. (2.24)
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§Chapter 3
Stellar pulsations and

pulsation-driven mass

loss

In this Chapter, I present stellar pulsations for massive and very massive stars, along
with the subsequent pulsation-driven mass loss. In Section 3.1, I brieŕy introduce the
study of stellar pulsations in this particular mass range, starting with some historical
notes. In Section 3.2, I focus on the pulsation-driven mass loss for very massive stars
with the implementation in the PARSEC code of the pulsation-driven mass loss recipe
from Nakauchi et al. (2020).

3.1 Stellar Pulsations

Astronomers have been attracted by variable stars since the XVI century. The őrst
periodic variable star to arouse attention was o Ceti, i.e. Mira; while δ Cephei, the
foretype of Cepheid variables, was discovered in 1784 by Goodricke.

The őrst attempts to explain stellar variability from physical principles date back
to the turn of the XIX century (Ritter 1879; Emden 1907). However, for many years,
astronomers attributed the variability to binarity (Brunt 1913). On the other hand,
the following year, Plummer (1914) proposed a not-better speciőed, radial pulsation
mechanism as a possibility for explaining variable stars; while Shapley (1914) deeply
criticized the binary explanation, but without mentioning the period-luminosity relation
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recently formulated by Leavitt and Pickering (1912).

It was Eddington who realized that pulsating stars are thermodynamical engines.
He also discussed the dissipation of pulsational energy, the phase lag problem (later
tackled also by Rosseland 1950), and the modulation of heat to be a suitable explanation
for pulsating stars (Eddington 1918, 1919, 1926, 1941). However, in his 1941 work,
Eddington was still convinced that stellar pulsations were powered by the energy of
nuclear reactions. He tried to solve the problem of the dissipation in the outer layers of
the envelope, by suggesting that partial hydrogen ionization would diminish this effect
and therefore nuclear reaction energy could overcome the envelope dissipation.

Before 1950, the nuclear driving mechanism was overestimated. The reason for this
was that the central displacement amplitude was believed to be too large, compared to
that at the surface. In turn, the central mass concentration of these giant stars (Cepheids)
was not recognized. Epstein (1950), through recent stellar structure integrations, showed
that the central density was between őve to seven orders of magnitude higher than the
average one. In this way, he perceived that the displacement in the central region due to
pulsations was a factor ∼ 106 lower than that at the surface. Within his work, he proved
that the periods of pulsations were related to the envelope and that the central regions
played a rather marginal role.

In the following years, Cox (1955, 1958) and Cox and Whitney (1958) narrowed down
to the outer 15% of the stellar radius, the possible location of the driving mechanism of
Cepheids. They found that the partial ionization of an element could be a source for the
energy ŕux perturbations as the engine for pulsations in that kind of stars. Then, they
recognized as the only possible driving source the He+ partial ionization zone. However,
in their studies, the work of Zhevakin was never mentioned. Adopting discrete models
and non-adiabatic calculations, Zhevakin (1954) concluded that the He+ ionization region
plays a crucial role in driving pulsations in Cepheid stars.

Therefore, the driving mechanism for Cepheid-like stars is what is now called the
κ−γ mechanism (Catelan and Smith 2015). A star needs an energy reservoir to maintain
pulsations. This energy is provided by reactions occurring during nuclear burning phases.
The issue is then to őnd a suitable mechanism that converts this energy into mechanical
work, which sets the stellar pulsations in motion. Crucially, this mechanism must provide
heat to the stellar gas at high temperatures and subtract it at low temperatures, like
a thermodynamic engine. We have to consider those layers inside a star, where there
is a partial ionization of H or He. In those layers, the opacity (κ, thus the name of
the mechanism) of the stellar matter increases during compression and decreases during
expansion. Hence, these are driving layers for the instability of the stellar pulsations,
which can thus grow and be maintained during a compression-expansion cycle. On
top of this, partial ionization prevents part of the absorbed energy from increasing the
local temperature of the gas, therefore enhancing the ability of those stellar layers to
accumulate energy, which later will be used in the pulsating motion (see Catelan and
Smith 2015, for a comprehensive and mathematical description of the κ−γ mechanism).

On the other hand, the nuclear mechanism conceived by Eddington (1941) operates
in different stars than Cepheids. Cowling (1935) assessed that the instability of the
central burning regions to convection did not affect the stability of the star to pulsations.
In his work, the role of radiation pressure was not recognized, but six years later Ledoux
(1941) accounted for radiation pressure in both the stellar structure and the analysis of
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pulsations. Ledoux derived an upper limit for the stellar mass, above which the star
becomes pulsationally unstable (see also Schwarzschild 1958; Schwarzschild and Härm
1959). In his work, this limit corresponds to 100M⊙. This is due to the destabilizing effect
of nuclear reactions in the central regions. These layers absorb energy during compression
and release it during expansion, fulőlling the condition for instability (see Catelan and
Smith 2015, for further details). This mechanism is now called ϵ−mechanism. It is
efficient only for very massive stars, because of the very high temperatures needed to
overcome the damping of the envelope (Catelan and Smith 2015). For instance, more
classical stellar pulsators like RR Lyrae stars can not provide large enough temperatures
to maintain pulsations within this driving mechanism.

The upper limit mentioned above concerns stars of Population I composition
(Schwarzschild and Härm 1959). In the following years, nonlinear calculations demon-
strated that this pulsational instability could produce mass loss rather than the break-
down of the star (Appenzeller 1970; Talbot 1971a,b; Papaloizou 1973a,b). However, all
these studies considered solar-like and slightly metal-poor stars (Schwarzschild and Härm
1959; Stothers and Simon 1968; Aizenman et al. 1975; Stothers 1992; Glatzel and Kiri-
akidis 1993; Kiriakidis et al. 1993), or Wolf-Rayet stars (Maeder 1985; Cox and Cahn
1988).

Since the temperature and structural differences between metal-rich and metal-poor
stars, it was fundamental to tackle the pulsational stability problem also for stars devoid
of metals. Different authors (Baraffe et al. 2001; Sonoi and Umeda 2012; Shiode et al.
2012; Inayoshi et al. 2013) performed linear stability analyses for zero-metallicity stars
with initial masses between 100M⊙ and 3000M⊙ during the MS phase. They found
that the mass loss rates were not high enough to affect the evolution of these stars
(∼ 10−6 < Ṁ/M⊙ yr−1 < 10−4). Moreover, Baraffe et al. (2001) and Shiode et al.
(2012) broadened their analysis to higher metallicities (10−4 < Z/Z⊙ < 10−1) for stars
of ∼ 100M⊙, discovering a positive correlation between mass loss and metallicity. On
the other hand, Heger et al. (1997) and Moriya and Langer (2015) extended the previous
analysis to red supergiants at solar and zero metallicity. They found an increment in the
instability at increasing mass.

Finally, in a recent work, Nakauchi et al. (2020) studied the pulsational instabil-
ity in very massive stars during both the MS and post-MS phases, deriving analytical
expressions for the computation of pulsation-driven mass loss for very massive stars.

3.2 Pulsation-driven mass loss for VMS in PARSEC

I implemented this new pulsation-driven mass loss in the PARSEC code using the results
of Nakauchi et al. (2020). I denote the corresponding rate as Ṁpdw, where pdw stands
for "pulsation-driven winds". The authors performed a pulsational analysis of very mas-
sive stars with initial mass 300 ≤ M/M⊙ ≤ 3000 and metallicity between Z = 0 and
Z = 0.002. They found their models to be unstable to radial pulsations during the early
phases of the MS (ϵ-mechanism), as well as, when they move to the cooler part of the
Hertzsprung-Russell (H-R) diagram, during cHeB (κ-mechanism). Assuming that all
pulsational energy is transferred to the mass outŕow, they derived an analytic prescrip-
tion for pulsation-driven mass loss. Their recipe is a function of the initial metallicity of
the star, its current mass, and its effective temperature. To compute the mass-loss rate
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Figure 3.1: Pulsation-driven mass loss rates as a function of the effective temperature.
Panel a: models with initial metallicity Z⊙ = 0.0002 and different initial masses. Panel
b: models with initial mass 1000M⊙ and different initial metallicities. The dotted lines
show the mass-loss rate őt from Equations 3.1 and 3.2. Figures adapted from Nakauchi
et al. (2020).

they propose two different formulations, depending on whether the star is in the MS or
RSG phase during cHeB. The two equations read as follows (Equations (17) and (18) in
Nakauchi et al. 2020):

log
( Ṁpdw

M⊙ yr−1

)

= α1 log
( M

103M⊙

)

− α2 − β1 [log(Teff)− β2]
γ , MS (3.1)

log
( Ṁpdw

M⊙ yr−1

)

= −2.88 + log
( M

103M⊙

)

− 15.6 [log(Teff)− 3.7] , RSG (3.2)

where α1, α2, β1, β2 and γ are coefficients that depend on the initial metallicity. Equa-
tion (3.1) is valid for Teff > Teff,min, a threshold also deőned by the initial metallicity.
Equation (3.2) applies for log(Teff) ≤ 3.85 (3.7) when Z ≲ 0.0002 (0.002). All details can
be found in Table 1 of Nakauchi et al. (2020).

In Figure 3.1, we can see the mass loss trend as a function of the effective temperature
for Nakauchi’s models with different initial masses and metallicities. We can also see the
trend of the őt formulae from Equations (3.1) and (3.2). During the MS phase, mass
loss increases as we move at higher stellar masses and metallicities. Instead, in the RSG
phase it converges towards high values.

While Equation (3.2) refers, strictly speaking, only to the cHeB phase, it is reasonable
to assume that it can also be used to describe later phases. In fact, it is well established
that cool stars tend to become increasingly unstable to pulsation as their temperature
decreases (Catelan and Smith 2015). Therefore, for simplicity, I adopt Equation (3.2)
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for all post-MS stages during which the Teff drops below the aforementioned threshold.
Because of the short duration of such phases, this assumption is expected to have a
negligible impact on my results.

The results of Nakauchi et al. (2020) imply that, during the MS, the mass-loss rate in-
creases with metallicity at a given mass. I account for this by interpolating Equation (3.1)
in log(Z).

The stability analysis of Nakauchi et al. (2020) is strictly valid for 300 ≤ Mi/M⊙≤
3000, whereas I applied their mass-loss prescriptions down to Mi = 100M⊙. To validate
my extrapolation I examined the results of a few studies on pulsational mass loss in the
100 ≲ Mi/M⊙ ≲ 500 range.

To describe the transfer of energy from pulsation to mass loss, Nakauchi et al. (2020)
used the same approach of Baraffe et al. (2001), who investigated the stability of metal-
free zero-age main-sequence (ZAMS) models with 120 ≤ M/M⊙ ≤ 500. I őnd that the
mass-loss rates predicted by the former author are well compatible with the results pre-
sented in Table 3 of the latter authors for M ≥ 300M⊙. At smaller masses, Equation (17)
of Nakauchi et al. (2020) tends to overestimate the mass-loss rate when compared with
Baraffe et al. (2001), but predictions from both studies are of the same order of magni-
tude. This is not expected to change the fate of the lower-mass tracks in my sets, but
my Mi = 100M⊙ model may result in a slightly larger őnal mass.

For the post-MS regime, I compared it with the work by Moriya and Langer (2015),
who explored the 150 ≤ Mi/M⊙ ≤ 250 mass interval. Their work is also inspired by the
method of Baraffe et al. (2001), but focuses on pulsation-induced mass-loss after the
MS. They provide analytic expressions for the mass-loss rates as a function of effective
temperature and of the efficiency ε with which pulsational energy is converted into kinetic
energy of the out-ŕowing matter. I considered the results for their largest conversion
efficiency (ε = 0.8), as Nakauchi et al. (2020) effectively assume ε = 1, and compared
the two studies in the regime explored by Moriya and Langer (2015), that is for Teff

approximately between 4600 and 5000 K. Over that interval of temperature Nakauchi
et al. (2020) őnd pulsational instability as well, and mass-loss rates predicted by both
works are comparable. In particular, the mass-loss rates of Nakauchi et al. (2020) are
a factor 3-5 larger than the predictions of Moriya and Langer (2015) at Teff ≃ 5000 K,
but they are smaller by nearly the same factor at Teff ≃ 4600 K, suggesting that the
cumulative mass-loss is of the same order of magnitude.

Yadav et al. (2018) conőrm the instability found by Moriya and Langer (2015), but
identify an additional regime of pulsational mass loss at higher temperatures (log(Teff)
≃ 4.2 − 4.4), that they attribute to strange mode instability. The latter leads to mass-
loss rates of order 10−7 − 10−4M⊙yr

−1, increasing with mass, that are not predicted
by Equation (18) of Nakauchi et al. (2020). It is therefore possible that my smaller-
mass evolutionary tracks neglect the occurrence of mass loss during early cHeB stages,
while little can be said concerning the higher masses as the study of Yadav et al. (2018) is
limited to M ≤ 250M⊙. However, it is reasonable to expect that strange mode instability
would not cause a cumulative mass loss so large to impact my results, as it would affect
relatively rapid evolutionary stages.
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§Chapter 4
Very Massive Star

Evolution

This chapter is based on:
G. Volpato, P. Marigo, G. Costa, A. Bressan, M. Trabucchi, and L. Girardi;

"A Study of Primordial Very Massive Star Evolution" ;
ApJ, 944(1):40 ; Feb. 2023; doi: 10.3847/1538-4357/acac91.

In this Chapter, I present new evolutionary models of primordial very massive stars,
with initial masses ranging from 100M⊙ to 1000M⊙. These models extend from the MS
until the onset of dynamical instability caused by the creation of electron-positron pairs
during core C, Ne, or O burning, depending on the star’s mass and metallicity. Mass loss
accounts for radiation-driven winds as well as pulsation-driven mass loss on the MS and
during the red supergiant phase. After examining the evolutionary properties, I focus on
the őnal outcome of the models and associated compact remnants.

This Chapter is organized as follows. In Section 4.1 I brieŕy describe the PARSEC

code and its major ingredients. In Section 4.2 I present the stellar evolution models
computed with mass-loss recipes that account for both radiation-driven and pulsation-
driven mass loss. I provide an overview of evolutionary properties, with emphasis on core
evolution, dredge-up episodes, internal structure, surface elemental abundances, chemical
ejecta, őnal evolution outcomes, and associated compact remnants. Finally, Section 4.3
closes the paper with some concluding remarks and future perspectives.
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4.1 Stellar evolutionary calculations

Stellar evolutionary models are computed with the PARSEC (PAdova and tRieste Stellar
Evolution Code) code version 2.0, as described in Bressan et al. (2012); Costa et al.
(2019b, 2021) and references therein. The main input physics and other ingredients used
in the evolutionary calculations are summarized below.

The FREEEOS code developed by A.W. Irwin1 is used to calculate the equation of
state. Using the procedure described in Timmes and Arnett (1999), I include the effect of
pair creation in the equation of state. Radiative opacities are taken from the OPAL project
(Iglesias and Rogers 1996) for high temperatures, and the ÆSOPUS code (Marigo and
Aringer 2009) is used for low temperatures. Conductive opacities are included according
to Itoh et al. (2008). Nuclear reaction rates – p-p chains, CNO tri-cycle, Ne-Na and
Mg-Al chains, and the most important α-capture reactions, including (α, n) processes
– together with the corresponding Q-values are taken from the JINA reaclib database
(Cyburt et al. 2010b). I use the őtting formulae by Haft et al. (1994) for plasma neutrinos,
and I follow Munakata et al. (1985) and Itoh and Kohyama (1983) to account for energy
losses by electron neutrinos. To describe mixing, I use the mixing length theory (Böhm-
Vitense 1958) with a őxed mixing-length parameter, αmlt = 1.74, calibrated on present-
day Sun’s properties (Bressan et al. 2012). To test stability against convection I use the
Schwarzschild criterion. I apply core overshooting2 described by the parameter λov = 0.4.
For convective envelopes, I use an undershooting distance of Λenv = 0.7HP below the
deepest unstable layer.

I consider two choices of the initial chemical composition deőned by (Z = 0, Y =
0.24850) and (Z = 0.0002,Y = 0.24885) – where Z and Y denote the initial abundances
of metals and helium in mass fraction, respectively –, and seven values of the initial
mass, Mi = 100, 150, 200, 300, 500, 750, 1000M⊙. The Y values are obtained using a
primordial helium abundance of Yp = 0.2485 (Komatsu et al. 2011), and a helium-to-
metals enrichment ratio ∆Y/∆Z = 1.78 based on the current PARSEC solar calibration
(Bressan et al. 2012). For Z = 0.0002 the initial metal abundance distribution scales with
the solar composition of Caffau et al. (2011).

For each combination (Mi,Z) I apply three recipes to describe the mass loss rate, Ṁ,
by stellar winds, namely:

• Ṁ = Ṁrdw: radiation-driven winds as implemented in PARSEC (Section 2.3);

• Ṁ = Ṁpdw: pulsation-driven winds according to the formulation of (Nakauchi et al.
2020, Section 3.2);

• Ṁ = Ṁmax: the highest rate between the above two cases,
Ṁmax = max(Ṁrdw, Ṁpdw).

In total, I produced 6 sets of stellar models, each deőned by the initial metallicity, Z,
and mass loss prescription, Ṁ. Since models with Ṁpdw were intended mainly to explore
the sensitivity of pulsation-driven mass loss to stellar mass and effective temperature, in
the analysis that follows, I will focus on the 4 sets computed with Ṁrdw and Ṁmax.

1http://freeeos.sourceforge.net
2
λov is the mean free path of the convective element across the border of the unstable core, in units

of pressure scale height, HP.
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Figure 4.1: Mass-loss rate as a function of time, from the ZAMS phase, for tracks com-
puted with only radiation-driven winds (Ṁrdw, black) and only pulsation-driven winds
(Ṁpdw, orange). Close to each track the value of the initial mass (in M⊙) is indicated.
Note that the vertical axis range is not the same in the two panels.

4.1.1 Combined winds

Figure 4.1 compares the mass-loss rates associated with radiation-driven winds (Ṁrdw;
black lines) and pulsation-driven winds (Ṁpdw; orange lines). The pulsation-driven
mass loss dominates during the őrst phases of core hydrogen burning (cHB), while the
radiation-driven mass loss is higher during cHeB for those tracks computed with initial
metallicity Z = 0.0002. Given that the two types of mass loss generally dominate at dif-
ferent stages of evolution, I computed a set of evolutionary tracks based on the maximum
mass-loss rate between Ṁrdw and Ṁpdw, i.e. Ṁmax.

In both panels of Figure 4.1, Ṁpdw (orange lines) presents a gap at log(t/yr) ∼ 6.
This is because the models are evolving to lower effective temperatures during the MS
phase and at log(t/yr) ∼ 6 they have Teff < Teff,min. As a result, Equation (3.1) cannot
be used further, and the models temporarily stop losing mass via the pulsation-driven
mechanism. When the stellar tracks cool enough and their effective temperature attains
log(Teff) ≤ 3.85, pulsation-driven winds resume (see Equation 3.2). The models com-
puted with Z = 0 exhibit an irregular behavior compared to those with Z = 0.0002. The
cause should be linked to the scatter in the effective temperature trend, which most likely
reŕects some numerical noise in the convergence of the atmosphere

Comparing Figure 4.1 with Figure 3.1, I note that the mass-loss rate for tracks com-
puted with Z = 0.0002 is very similar during the MS phase, while in the RSG phase

log
(

Ṁpdw

)

of my stellar models is ∼ 1 dex lower. This could be explained by the differ-

ence in effective temperature between stellar tracks in the two studies (see Section 4.2.1).
In fact, when compared to my PARSEC tracks, the Nakauchi et al. (2020) models stretch
to lower effective temperatures in the RSG phases, resulting in higher mass-loss rates
(Equation 3.2).



24 Chapter 4. Very Massive Star Evolution

Figure 4.2: Mass-averaged őrst adiabatic exponent, ⟨Γ1⟩, as a function of central temper-
ature, and metallicity (Panel a: Z = 0, Panel b: Z = 0.0002). Results are shown for two
mass loss cases, as indicated. The magenta, green, and cyan circles mark the beginning
of core C, Ne, and O burnings, respectively. The thick black horizontal line denotes the
threshold value of ⟨Γ1⟩ = 4/3. The green area shows where the star can be considered
dynamically unstable due to pair creation, below ⟨Γ1⟩ = 4/3 + 0.01.

4.1.2 End of Evolutionary Calculations due to Pair-Creation Instabil-
ity

During the most advanced stages of massive star evolution, the electron-positron cre-
ation process absorbs some of the plasma’s thermal energy, lowering thermal pressure.
As a consequence, non-ideal effects enter the equation of state, preventing temperature
changes from causing pressure changes. The star’s layers where this process occurs be-
come dynamically unstable. For this purpose, I use the criterion őrst introduced by
Stothers (1999), who demonstrated that the mass-weighted average of the őrst adiabatic
exponent, Γ1 = (∂ log P/∂ log ρ)ad, integrated over the entire star, is a useful parameter
for determining a star’s dynamical stability. Speciőcally, at each time step, I evaluate

⟨Γ1⟩ =
∫M
0

Γ1P
ρ dm

∫M
0

P
ρ dm

, (4.1)

where M is the current star’s mass, P is the pressure, ρ is the gas mass density, and
dm is the mass element. The star is stable if ⟨Γ1⟩ > 4

3 ; otherwise, dynamical instability
occurs. Because the PARSEC code, by construction, assumes hydrostatic equilibrium,
the dynamical collapse cannot be followed. Similarly to Costa et al. (2021), I interrupt
the evolution as ⟨Γ1⟩ falls below 4/3 + 0.01, as őrst suggested by Marchant et al. (2019)
and Farmer et al. (2019). All stellar models start from the ZAMS phase, progress to
the end of the cHeB phase, and then ignite carbon in the core. Figure 4.2 shows the
mass-averaged őrst adiabatic exponent, ⟨Γ1⟩, as a function of central temperature. In
panels a and b most models become dynamically unstable close to the end of core carbon
burning (cCB), while those with Mi = 150M⊙ and Mi = 100M⊙ do so after the ignition
of neon or oxygen burning in the core, respectively. This happens when pair creation
makes ⟨Γ1⟩ enter the critical regime and reach or bypass the 4/3 threshold.
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Figure 4.3: H-R diagrams of the four sets of tracks computed in this work. Different
evolutionary phases are color-coded, as written in the legend. Panels a,b and c,d refer
to Z = 0 and Z = 0.0002, respectively. Panels a,c: Tracks computed with the standard
PARSEC mass-loss prescription for radiation-driven winds. Panels b,d: Tracks computed
taking into account also the pulsation-driven winds. Close to each track the value of
initial mass (in M⊙) is indicated. The cyan band superimposed on the tracks indicates
where stars should be unstable against radial pulsation following Nakauchi et al. (2020).

4.2 Results

4.2.1 General Properties of the Stellar Evolutionary Tracks

Table 4.1 presents several quantities of the models that are key for discussing their
evolution and őnal outcome.

Figure 4.3 shows all evolutionary tracks in the HRD, computed with Ṁrdw and Ṁmax.
The initial metallicity inŕuences the position of the tracks. Models with Z = 0 start
their evolution at higher temperatures and luminosities than those with Z = 0.0002.
The absence of metals reduces opacity and mean molecular weight, while the structures
become more compact. In massive stars at Z = 0, before the MS, due to the lack of
CNO nuclei, gravitational contraction cannot be stopped until the central temperature
and density are high enough for the synthesis of primary carbon via the triple-α process
when the star is still in the MS (e.g., Marigo et al. 2001).
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Table 4.1: Relevant Properties of Models Computed with Ṁrdw and Ṁmax

Mi τMS τcHeB fHpuls fHe puls Blue Loop DUP MHe MCO Mf Xcore Lν/Lrad Fate remnant MBH

[M⊙] [Myr] [Myr] [M⊙] [M⊙] [M⊙] onset PI [log10] [M⊙]

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Z = 0 Ṁrdw

100 2.54 0.25 0.07 0.51 ✓ ✓ 41.8 38.4 99.9 0.511 O 2.7 fCCSN(a) BH 89.9

PPISN(b) BH 34.2
150 2.33 0.23 0.30 0.36 ✓ ✓ 74.4 67.7 149.9 0.011 Ne 3.1 PISN ✕ -
200 2.16 0.22 0.27 0.35 ✓ ✓ 110.4 103.8 199.9 0.001 C 3.2 PISN ✕ -
300 1.92 0.21 0.53 0.41 ✓ ✓ 162.5 158.6 299.9 0.013 C 3.2 DBH BH 299.9
500 1.76 0.20 0.51 0.61 ✕ ✓ 279.2 270.2 499.9 0.029 C 3.3 DBH BH 499.9
750 1.64 0.19 0.49 0.64 ✕ ✓ 424.1 410.6 749.8 0.034 C 3.5 DBH BH 749.8
1000 1.59 0.19 0.54 0.00 ✓ ✓ 565.5 547.0 999.7 0.028 C 3.6 DBH BH 999.7

Z = 0 Ṁmax

100 2.59 0.26 0.17 0.51 ✕ ✓ 37.1 34.3 95.0 0.412 O 2.8 fCCSN(a) BH 85.5

PPISN(b) BH 30.9
150 2.33 0.23 0.32 0.36 ✓ ✓ 77.5 72.6 147.7 0.019 Ne 3.1 PISN ✕ -
200 2.15 0.22 0.30 0.35 ✓ ✓ 102.9 95.1 197.6 0.001 C 3.2 PISN ✕ -
300 1.92 0.22 0.52 0.41 ✓ ✓ 159.9 157.4 290.6 0.011 C 3.3 DBH BH 290.6
500 1.76 0.20 0.52 0.51 ✓ ✓ 270.6 269.0 480.9 0.028 C 3.4 DBH BH 480.9
750 1.66 0.20 0.55 0.99 ✕ ✓ 407.6 380.0 714.5 0.035 C 3.6 DBH BH 714.5
1000 1.60 0.19 0.56 0.89 ✓ ✓ 548.3 527.1 950.9 0.031 C 3.6 DBH BH 950.9

Z = 0.0002 Ṁrdw

100 2.83 0.25 0.29 0.57 ✕ ✓ 53.8 47.6 94.3 0.865 O 3.1 PPISN BH 40.9
150 2.45 0.24 0.45 0.32 ✓ ✓ 79.5 71.8 146.4 0.080 Ne 3.2 PISN ✕ -
200 2.25 0.23 0.50 0.33 ✓ ✓ 110.3 100.7 193.9 0.003 C 3.2 PISN ✕ -
300 2.05 0.22 0.56 0.77 ✓ ✓ 165.8 150.4 274.2 0.027 C 3.4 DBH BH 274.2
500 1.88 0.20 0.61 0.44 ✓ ✓ 289.1 265.8 448.9 0.041 C 3.4 DBH BH 448.9
750 1.77 0.21 0.62 0.99 ✕ ✓ 330.1 330.0 662.6 0.020 C 2.8 DBH BH 662.6
1000 1.71 0.19 0.60 0.54 ✓ ✓ 575.6 534.6 831.7 0.029 C 3.6 DBH BH 831.7

Z = 0.0002 Ṁmax

100 2.84 0.26 0.28 0.95 ✕ ✓ 53.1 46.9 92.7 0.859 O 3.1 PPISN BH 40.4
150 2.47 0.24 0.44 0.38 ✓ ✓ 77.0 69.3 139.7 0.055 Ne 3.2 PISN ✕ -
200 2.29 0.23 0.49 0.36 ✓ ✓ 105.7 96.2 180.2 0.002 C 3.2 PISN ✕ -
300 2.09 0.22 0.59 0.53 ✓ ✓ 157.1 142.2 249.3 0.023 C 3.3 DBH BH 249.3
500 1.92 0.22 0.74 0.98 ✕ ✓ 220.6 207.8 355.8 0.035 C 3.2 DBH BH 355.8
750 1.83 0.21 0.83 0.39 ✕ ✓ 342.8 318.5 472.9 0.036 C 3.4 DBH BH 472.8
1000 1.77 0.20 0.85 0.11 ✕ ✓ 428.6 404.9 610.1 0.032 C 3.4 DBH BH 610.1

NOTE—The table entries are as follows: (1) star’s initial mass; (2) MS lifetime; (3) cHeB lifetime; (4) and (5) fractions of MS and cHeB lifetimes in
which the star is unstable to radial pulsation; (6) and (7) occurrence of blue loop and dredge-up episode; (8) final He core mass; (9) final C-O core
mass; (10) final mass of the star at the onset of dynamical instability; (11) central fuel abundance of ongoing nuclear burning at the onset of dynamical
instability; (12) neutrino luminosity to radiative luminosity ratio when Tc = 109 K; (13) and (14) final fate and associated outcome (BH or complete
disruption), and (15) BH mass.
(a) failed CCSN. Following Farmer et al. (2019) I set the lower limit of MHe for PPISN at 45M⊙.
(b) Following Woosley (2017) I set the lower limit of MHe for PPISN at 34M⊙.
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Looking at the diagrams of Figure 4.3, during their MS, most massive tracks at
Z = 0.0002, computed with Ṁmax are less luminous than those computed with Ṁrdw.
This is most evident in the bottom panels of Figure 4.3. At the start of the MS phase
the most massive Z = 0.0002 models with pulsation-driven mass loss (panel d) evolve
almost vertically downward due to mass-loss rates as high as 10−4.4−10−3.4M⊙ ·yr−1 (see
Figure 4.1). Conversely, models with radiation-driven winds (panel c ) suffer from very
small mass-loss rates, resulting in no luminosity decrease on the MS. At Z = 0.0002 the
luminosity difference on the MS, ∆ log(L) = log(L)Ṁrdw

− log(L)Ṁmax
, is not dramatic.

It increases with Mi and does not exceed 0.1 dex.

This behavior is well explained by the positive correlation between mass and luminos-
ity on the MS, with L ∝ Mη where η > 0. Compared to the standard value η ≃ 3.5− 4.0
for MS stars in the range 1 ≲ Mi/M⊙ ≲ 10, the mass-luminosity relation ŕattens out at
higher masses, due to the increasing contribution of radiation pressure in the central core.
Following the similarity theory of stellar structure adopted by Nadyozhin and Razinkova
(2005) to study the properties of very massive stars on the MS, I őnd that η ≈ 1.0 for
stars in the range 100 ≲ Mi/M⊙ ≲ 1000. According to my models, the relation is a bit
steeper with 1.2 ≲ η ≲ 1.6.

After the MS the luminosity difference, ∆ log(L), between models computed with
Ṁrdw and Ṁmax persists for tracks with Z = 0.0002, not exceeding ≃ 0.15 dex. Despite
being much less pronounced, an analog luminosity difference (few 0.01 dex) affects models
with Z = 0 as well. In general, ∆ log(L) between each pair of tracks increases with
increasing initial mass for both Z = 0 and Z = 0.0002. This reŕects the dependence of
the pulsation-driven mass-loss rate on the current stellar mass in Equations (3.1) and
(3.2).

The decrease in luminosity is also present in the stellar models of Nakauchi et al.
(2020), especially in the HRD in their Figure 6c, which shows a set of tracks computed
with Z = 0.0002. The location of the ZAMS is similar in the two studies, while during
the RSG phases Nakauchi et al. (2020)’s tracks achieve lower effective temperatures than
my PARSEC models.

As stars exhaust hydrogen in their cores, they evolve towards lower effective tem-
peratures, moving to the right in the HRD. Then, during the helium burning phase, 18
tracks out of 28 experience a blue loop, 2 stars evolve towards higher effective tempera-
tures becoming blue supergiants, while the remaining 8 tracks stay at log(Teff) ∼ 3.8 as
red supergiants until the end of their evolution. After central He exhaustion, the stellar
core contracts until it reaches the temperature required to ignite carbon. Regardless
of whether the stars become dynamically unstable, the evolution after cHeB is greatly
accelerated by neutrino emission (see Lν/Lrad in Table 4.1), so that the position of the
tracks in the HRD does not change signiőcantly at later stages.

When a very massive star evolves towards decreasing Teff and approaches its Hayashi
line becoming a red supergiant, a dredge-up episode is likely to occur. While the convec-
tive envelope inŕates and cools, the opacity, which is regulated by a Kramers-like law,
increases so that the radiative temperature gradient exceeds the adiabatic one in the
progressively deeper layers of the envelope. As a result, the bottom of the convective
envelope stretches inward, passing over the H-He discontinuity and penetrating the He
core. As a consequence, helium and nitrogen, newly synthesized by the CNO cycle, are
dredged up to the surface, leading to a net increase in the effective metallicity. The
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Figure 4.4: Panel a: Evolutionary tracks in the central temperature vs central density
diagram, from the ZAMS to the onset of dynamical pair-creation instability. Panel b:
Zoom in the unstable region. The red curve, taken from Kozyreva et al. 2014, approxi-
mates the locus of points where Γ1 = 4/3. The cyan (magenta) dots correspond to the
points in the PARSEC Z = 0.0002 (Z = 0) models where ⟨Γ1⟩ = 4/3. The point-dashed
line, with slope 1/3, shows the evolution during a homologous contraction.

dredge-up may also occur during cHeB; in this case, the envelope may extend deeper
into the developing C-O core, enriching the surface with He, C, and O. Section 4.2.3
examines the impact of dredge-up on surface abundances and chemical ejecta.

4.2.2 Physical Overview

Here I will discuss some relevant properties of the models, with a particular focus on the
physical structure.

Evolution of the Stellar Centre Figure 4.4 shows the central density vs central
temperature diagram of all models computed with Ṁmax. The general behavior of the
tracks can be explained by considering the simple scaling relation

Tc ∝ Mk ρ1/3c , (4.2)

which describes the evolution of the center during a homologous contraction. The strict
validity of the relation requires the fulőllment of various conditions (e.g., constant poly-
tropic index, constant ideal-gas pressure fraction, negligible thermal neutrino losses),
which are usually not met by massive stars in advanced evolutionary stages. Nonethe-
less, the same relation may be useful to capture some fundamental dependence of the
star’s center evolution, as a őrst approximation.

The exponent k depends on the equation of state. If the classical ideal gas contribution
dominates the total pressure, k = 2/3; if instead the radiation pressure dominates the
total pressure, k = 1/3 (Eddington 1926). For a polytropic star, the ratio of the gas
pressure to the total pressure, β = Pgas/Ptot depends on the mass of the star

β1/3(1 + β) ∝ M2/3 . (4.3)
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Figure 4.5: Kippenhahn diagrams of selected models. The horizontal axis represents the
logarithm of time (in yr) until the onset of pair-creation dynamical instability. The blue
regions in each diagram represent the star’s convective core, the pink area corresponds to
the convective envelope, semi-convective zones at the boundary of the helium convective
core, and convective shells. The yellow, cyan, and purple hatch regions represent the
hydrogen, helium, and carbon-burning core/shells, respectively. The black continuous
line shows the total mass of the star, the orange one corresponds to the helium core,
and the green one indicates the carbon-oxygen core. The red arrow marks the time
when the star enters the unstable region with ⟨Γ1⟩ = 4/3 + 0.01. Panels a,c,e: Models
computed with the standard PARSEC mass-loss prescription for radiation-driven winds.
Panels b,d,f: Models that include also pulsation-driven winds.
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Following Zel’dovich et al. (1981) and Eddington (1926) the stellar mass at which β ≃ 1/2
roughly corresponds to M ≃ 50M⊙. The role of radiation pressure increases with mass, so
I can reasonably take k = 1/3 for my very massive stars. Looking at Figure 4.4, the tracks
run almost parallel to the homologous contraction sequence (with slope 1/3), except for
the last advanced stage, where some bending towards lower Tc occurs, primarily driven
by neutrino cooling. The factor M1/3 in Equation (4.2) well explains why less massive
stars reach lower Tc for given ρc.

As previously discussed in Section 4.1.2, most models undergo dynamical instabil-
ity as a result of pair creation during carbon burning, except the Mi = 100, 150M⊙

models, which experience this condition later, after the onset of oxygen and neon burn-
ing, respectively. This is evident in the ρc − Tc diagram, as almost all of the tracks
enter the Γ1 < 4/3 region (red curve, taken from Kozyreva et al. 2014). The models
with Mi = 100M⊙ do not appear to cross the critical boundary, whereas the integration
of Equation (4.1) yields the opposite result (cyan and magenta circles). The apparent
discrepancy is misleading. In fact, the red curve in Figure 4.4 deőnes the locus where
Γ1 = 4/3 in the center, whereas my Mi = 100M⊙ models experience off-center pair
creation and do enter the unstable region, as illustrated in Figure 4.2.

Figure 4.5 shows the Kippenhahn diagrams of a few selected models computed with
Ṁrdw (left panels) and Ṁmax (right panels). One distinguishing feature of very massive
stars is that, even in the absence of rotation or other mixing processes, they evolve
nearly homogeneously during the MS phase because they develop very large convective
cores, initially covering up to ≈ 80 percent of the total mass. As hydrogen is burned,
convective cores gradually recede due to the signiőcant contribution of the radiation
pressure Prad (P/T4 ∝ P/Prad ∝ (1 − β)−1), and decreasing electron scattering opacity
(κes ≃ 0.2 (1 + X) cm2 g−1). Both factors concur to lower the radiative temperature
gradient. The MS lifetime ranges from ≃ 2.8 Myr to 1.6 Myr passing from Mi = 100M⊙

to Mi = 1000M⊙.

The fraction of the MS lifetime where pulsation instability occurs is signiőcant, as
shown in Table 4.1, and it increases with stellar mass and metallicity. For example, the
(Mi = 1000M⊙, Z = 0.0002, Ṁmax) model experiences radial pulsation and associated
mass loss for ≈ 85 percent of its MS phase. As a result, the reduction in stellar mass
(Ṁmax case) is much greater than in the case of weak radiative winds (Ṁrdw case). For
the former model, the stellar mass at the end of the MS phase is M = 611M⊙, while the
latter has M = 885M⊙. During the subsequent cHeB phase, all tracks develop convective
cores. The cHeB lifetimes are roughly 0.1 the MS duration, as expected.

In Section 4.2 I mentioned the possibility of a star experiencing dredge-up episodes
as it approaches its Hayashi line. This is most common during the cHeB phase (see the
H-R tracks of Figure 4.3) when the envelope extends deeper into the He or C-O core.
This occurs, for example, in the Mi = 100M⊙ models at Z = 0 (panels a,b). Using
Ṁrdw, the star experiences a őrst dredge-up (DUP) that enters the He core, followed by
a second DUP that extends into the forming C-O core. As we will see in Section 4.2.3, the
őrst mixing episode causes a dramatic increase in N at the surface, whereas the second
episode enriches the envelope primarily with C and O. The same phenomenon occurs
in the Mi = 100M⊙ with Ṁmax, but in this case the envelope deepens more gradually.
Similar considerations apply when comparing the (Mi = 750, 1000M⊙; Z = 0.0002)
models, computed with Ṁrdw and Ṁmax.
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Figure 4.6: Evolution of surface chemical abundances of four selected models, from the
ZAMS to the onset of dynamical instability. In each panel, the abundances of őve ele-
ments, namely hydrogen, helium, carbon, nitrogen, and oxygen, are depicted in different
colors. The effective metallicity, Zeff , is shown in black. The results are presented for
two different mass-loss prescriptions. The horizontal axis is the logarithm of time (in yr)
until the onset of dynamical instability.

All structures displayed in Figure 4.5 become dynamically unstable due to the pair
creation in different stages of evolution (see Section 4.1.2 and Table 4.1).

4.2.3 Surface Chemical Abundances

Here I discuss the evolution of the surface abundances which can be modiőed by dredge-
up episodes, as well as the composition of the chemical ejecta which is also affected by
stellar wind efficiency.

Figure 4.6 shows the surface abundance evolution of a few relevant nuclides in some
selected models. Each panel compares the results for a model with the same initial mass,
obtained with two mass loss prescriptions, namely Ṁrdw (dotted lines) and Ṁmax (solid
lines).

In Section 4.2.1 I have already discussed the main characteristics of these mixing
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events, especially concerning the Kippenhahn diagrams (Figure 4.5), to which the reader
should refer for better comprehension. All models depicted in Figure 4.6 experience a
DUP episode but with varying degrees of envelope penetration. Very deep DUPs occur
in the (Mi = 100M⊙, Z = 0) and (Mi = 750M⊙, Z = 0.0002, Ṁrdw) models, as discussed
below.

In general, the models with DUP display a surface depletion of H and an increase in
4He, 14N, 12C, and 16O. When the envelope crosses the H-He discontinuity and enters
the He core, which contains the products of complete H-burning through the CNO cycle,
4He and 14N are enriched at the surface. This situation is best illustrated (panel a) by
the (Mi = 100M⊙, Z = 0, Ṁrdw) model, where there is a sudden and signiőcant increase
in 14N, just as the bottom of the convective envelope stretches into the He core. At the
same time, even though the CNO cycle depletes 12C and 16O in the He core in favor of
14N, their surface abundances increase because the material extracted from the He core
is diluted in the envelope, which initially contains no metals (Z = 0).

As the envelope deepens, its base may even reach and enter the forming carbon-
oxygen core, e.g. (Mi = 750M⊙, Z = 0.0002, Ṁrdw) model in Figure 4.5 panel c, where
4He is burned into 12C and 16O, while 14N is gradually converted into 22Ne via the chain
14N(α, γ)18F(β+ ν)18O(α, γ)22Ne. The chemical enrichment in the (Mi = 100M⊙, Z =
0, Ṁmax) model is more gradual than the analog for Ṁrdw, and it misses the abrupt initial
jump in 14N abundance. Overall, differences in surface abundance evolution between
models with the same initial mass but different mass-loss rates reŕect differences in
chemical proőles, opacity, and convective border details. DUP results in a net increase
in surface effective metallicity (Zeff = 1 − X − Y; dotted/solid black lines). The case of
the (Mi = 100M⊙, Z = 0, Ṁrdw) model is particularly noteworthy, with Zeff increasing
as high as 0.38, owing the large 14N abundance. For both mass-loss prescriptions, the
occurrence of the DUP signiőcantly reduces the He core mass, which passes from MHe ≃
48M⊙ at the end of MS to MHe ≃ 37M⊙ with Ṁmax, and MHe ≃ 42M⊙ with Ṁrdw. Such
reduction is especially important for the őnal outcome of these models (see Section 4.2.4).

Figure 4.7 presents the chemical ejecta of He, C, N, O, Ne, and Mg, for a few models.
Each panel contains the results of two mass-loss prescriptions, as indicated in the legend.
Tables of wind ejecta can be found at this link3. Chemical ejecta computed with Ṁrdw are,
as expected, lower than those computed with Ṁmax, since this latter takes the maximum
of (Ṁrdw, Ṁpdw), by construction. I veriőed that the main difference in the ejected mass
of all the considered elements is caused by mass loss for each pair of tracks in Figure 4.7.
The only exception is nitrogen, whose ejecta is higher in the (Mi = 100M⊙, Z = 0) model
with Ṁrdw due to a deeper dredge-up episode. Furthermore, while wind ejecta masses
are greater for Z = 0.0002 than for Z = 0, we can see that, regardless of metallicity, large
amounts of helium, up to several tens or few hundreds of solar masses, are expelled from
the most massive models.

4.2.4 Final fate

Figure 4.8 (left panel) shows the helium core mass, MHe, at the onset of pair-creation
dynamical instability for all tracks. Overall, there is a positive correlation between Mi

and MHe. A deep DUP causes a sudden change in slope at Mi = 750M⊙ in the (Z =

3https://zenodo.org/record/7528650
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Figure 4.7: Ejecta mass of models with three selected initial masses, namely Mi/M⊙ =
100, 750, 1000. Each panel shows the ejecta mass of helium, carbon, nitrogen, oxygen,
neon, and magnesium for two mass-loss recipes, Ṁrdw and Ṁmax. Panels a,c,e: Models
computed with Z = 0. Panels b,d,f: Models computed with Z = 0.0002.
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Figure 4.8: Panel a: Helium core mass, MHe, as a function of the initial mass for all
models of four different sets as stated in the legend. Helium core mass is evaluated at the
onset of dynamical instability. Horizontal lines delimit the regimes in which pulsation-
pair instability, pair-instability explosion, and direct collapse to black holes are expected
(Woosley 2017; Farmer et al. 2019, 2020). Panel b: Zoom in the 100 ≤ Mi/M⊙ ≤ 200
range. The red strip indicates the uncertainty range of the lower limit for pulsation-pair
instability. Lower and upper boundaries are 34M⊙ (Woosley 2017), and 45M⊙ (Farmer
et al. 2019), respectively. The black line is the average.

0.0002, Ṁrdw) sequence. When I consider tracks of the same metallicity, I can see that
models computed with Ṁmax end up with smaller MHe. The effect is more pronounced
at Z = 0.0002, because the mass reduction on the MS through Ṁmax is much stronger
than with Ṁrdw.

I can see that, regardless of metallicity or mass-loss prescription, stars with Mi ≥
300M⊙ should avoid the pair-instability supernova channel and collapse directly to a
black hole. In fact, their He cores have masses that exceed the limit of 130 ≲ MHe/M⊙ ≲

133 − 139 (Woosley and Heger 2021; Farmer et al. 2020; Woosley 2017; Woosley et al.
2007). Instead, stars with Mi = 150, 200M⊙ have He cores that are just massive enough
to cause the pair-instability explosion, leading to total disruption. Finally, stars with
Mi = 100M⊙ should experience pulsational-pair instability (PPI) or end as failed CCSN,
resulting in the formation of a black hole as a compact remnant.

To a őrst approximation, the őnal mass, Mf , at the end of the hydrostatic evolution
provides a rough estimate of the remnant BH mass for stars that undergo DBH. While
the BH mass for a PISN is simply zero, for PPISN I use the formula proposed by (Spera
and Mapelli 2017, with the corrections of Mapelli et al. 2020), which őts the results of
Woosley (2017)’s hydrodynamic calculations. I also account for the mass loss due to the
neutrino emission, which I set equal to 0.1Mbar, where Mbar is the baryonic mass of the
proto-compact object (Fryer et al. 2012; Rahman et al. 2022, and references therein).
The PPISN conőguration applies to the (Mi = 100M⊙, Z = 0.0002) models, whereas for
the (Mi = 100M⊙, Z = 0) models the fate is somewhat uncertain. The star with Ṁmax

has a helium core mass of ≃ 37M⊙. I can assess its outcome by comparing MHe to the
lower limit for the development of PPI. According to Woosley (2017) the threshold is
around 34M⊙, while Farmer et al. (2019) indicate it is about 45M⊙.
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On the one hand, if I follow Woosley (2017) the (Mi = 100M⊙, Z = 0, Ṁmax) star
should be able to enter the PPISN regime, producing a BH of mass ≃ 30.9M⊙. On the
other hand, if I follow Farmer et al. (2019) the same star should avoid the PPISN path
and complete the entire sequence of nuclear burnings up to the formation of an iron core,
which eventually collapses, resulting in a failed CCSN, assuming efficient fall-back (Fryer
et al. 2012, delayed model). The estimated BH mass would be ≃ 85.5M⊙, under the
hypothesis that ≃ 0.1Mf is lost due to neutrino emission.

I observe that the analysis of Farmer et al. (2019) relies on pure He-models, while my
calculations follow the evolution of complete models. In this respect the stability analysis
based on ⟨Γ1⟩ is primarily controlled by the core mass and its chemical composition, with
a small inŕuence from the residual envelope (e.g., Costa et al. 2021, Tables A1 and A2).
As a result, taking the lower threshold limit of Farmer et al. (2019) is still a reasonable
assumption for my exploratory study. In general, differences in the mass limits of the
pair-creation instability window reŕect differences in the input physics among various
sets of models.

Based on the dense grid of PARSEC models computed by Costa et al. (2021), the
lower limit for entering the PPISN regime is MHe ≃ 36− 39M⊙, if I take the threshold
for the onset of PI at ⟨Γ1⟩ = 4/3 + 0.01. This value is roughly halfway between the
boundaries indicated by Woosley (2017) and Farmer et al. (2019). If I take the threshold
for the onset of PI strictly at ⟨Γ1⟩ = 4/3 the lower boundary for PPISN in the Costa
et al. (2021) models shifts at MHe ≃ 48M⊙.

my structure calculations of the (Mi = 100M⊙, Z = 0, Ṁmax) track suggest that
during the onset of O-burning, the mass-averaged ⟨Γ1⟩ is approaching the critical value
of 4/3 due to pair creation. If this threshold was exceeded at some later stage (⟨Γ1⟩ <
4/3), then the star would enter the PPISN regime. Similar considerations apply to the
(Mi = 100M⊙, Z = 0, Ṁrdw) model.

Table 4.1 and Figure 4.9 compare the results obtained with different mass-loss pre-
scriptions. my calculations show that low-metallicity very massive stars can produce
BH with masses exceeding ∼ 100M⊙. The most massive BH are produced by very
massive stars with Z = 0, as mass loss is modest. The őnal mass of my models with
300 ≤ Mi/M⊙ ≤ 1000 is higher with respect to those of Nakauchi et al. (2020, Figure 8).
At Z = 0 the difference is at most ∼ 7%, while for models computed with Z = 0.0002
the difference is at most ∼ 24%. This reŕects the difference in mass-loss rates between
the two sets of models, which is mostly caused by the different evolution of the effective
temperature (see Sections 4.1.1 and 4.2.1).

4.3 Concluding Remarks

In this study, I investigate the evolution of zero-metallicity (Z = 0) and extremely
metal-poor (Z = 0.0002) very massive stars, with initial masses ranging from 100M⊙

to 1000M⊙. These calculations extend the PARSEC evolutionary models in the very
high mass regime. One novel element is the inclusion of pulsation-driven winds, follow-
ing the őndings of a recent study (Nakauchi et al. 2020), in which a stability analysis
against radial pulsation is performed. In addition to pulsation-driven mass loss, I con-
sider also the occurrence of radiation-driven winds in both the hot and cool regions of
the HRD. I őnd that the two mechanisms prevail at different stages. In particular, the
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Figure 4.9: Black hole mass as a function of the initial mass for all tracks presented
in this work. The inset plot zooms in the 100 ≤ Mi/M⊙ ≤ 200 range. The two cyan
starred and orange diamond symbols correspond to the (Mi = 100M⊙, Z = 0, Ṁmax)
and (Mi = 100M⊙, Z = 0, Ṁrdw) models, respectively. They indicate the predicted BH
masses, depending on whether the star results in a failed CCSN or PPISN. See also
Table 4.1.

amount of mass ejected by the most massive models through radial pulsations during
the MS can be substantial, in contrast to the modest outŕows expected via momentum
absorption from radiation.

All models are followed until the onset of dynamical instability caused by the creation
of electron-positron pairs, which occurs near the end of cCB or shortly after the start
of neon or oxygen burning, depending on the initial mass. I extract the criterion to
assess the őnal outcome of the models and the type of compact remnant, based on full
computations (Kozyreva et al. 2014; Woosley 2017; Farmer et al. 2019).

I őnd that stars with Mi ≥ 300M⊙ should end their lives without exploding, instead
directly collapsing to BHs. My models with Mi = 150M⊙ and Mi = 200M⊙ should
produce PISN, leaving no remnant and thus contributing to the primordial black-hole
mass gap.

Depending on metallicity and mass loss, models with Mi = 100M⊙ may have a
different fate. At Z = 0.0002 they should enter the PPISN window, ejecting some mass
before collapsing to BH. At Z = 0 the outcome is somewhat uncertain. The Mi = 100M⊙

model could die as either a failed CCSN or a PPISN, depending on the predicted width
of the PPISN strip (see the discussion in Section 4.2.4).

In the event of a failed CCSN, the remnant BH mass of ≃ 85.5M⊙ is very close to the
estimated primary BH mass of 85+21

−14M⊙ for the binary black hole merger GW190521
(Abbott et al. 2020). I may speculate that primordial very massive stars with Mi ≃
100M⊙ could help us alleviate the black-hole mass gap conundrum (for an overview
see Costa et al. 2021). The failed CCSN associated with my (Mi = 100M⊙, Z = 0)
models provide another possible pathway for the formation of BHs with masses between
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40 − 65M⊙ and 120M⊙ (see also Farmer et al. 2020; Sakstein et al. 2020; Croon et al.
2020; Farrell et al. 2021; Costa et al. 2021; Vink et al. 2021; Tanikawa et al. 2021; Farag
et al. 2022, for similar conclusions).

Another key process of very massive star evolution is rotation (Yusof et al. 2013;
Goswami et al. 2022; Higgins et al. 2022), which will be investigated in a follow-up work.
If enough angular momentum was retained in their cores, these very massive stars could
produce gamma-ray bursts, known as super-collapsars (Woosley 1993; Yoon et al. 2012).

On the observational side, the James Webb Space Telescope (JWST) will open a new
window on Population III stars. Since isolated primordial stars are likely not accessible
to JWST, small Population III galaxies and their integrated colors may provide the best
opportunities for directly probing the properties of metal-free stars (Zackrisson et al.
2011). Furthermore, thanks to their enhanced sensitivity, future ground-based (Einstein
Telescope, Cosmic Explorer) and space-based (LISA, DECIGO) detectors are expected
to collect GW events from binary BH mergers in the range of ≈ 102 − 104M⊙ up to a
redshift ≈ 20 (Saini et al. 2022; Fragione et al. 2022), a regime so far unexplored. In
this perspective, theoretical studies on the evolution of primordial very massive stars are
critical for contextualizing the upcoming data within an astrophysical picture.
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§Chapter 5
Stellar Rotation

This Chapter focuses on stellar rotation, its implementation in the PARSEC code, and on
rotating primordial very massive stars. I brieŕy introduce stellar rotation in Section 5.1.
Then, in Section 5.2, I present the key assumptions along with the main aspects of
the implementation of stellar rotation in the PARSEC code, following Maeder (2009) and
Costa (2019); Costa et al. (2019a,b, which are the works at the base of the implementation
of stellar rotation in PARSEC). Finally, in Section 5.3, I introduce rotating primordial
very massive stars, which are the subject of the following Chapter.

5.1 Introduction on stellar rotation

The fact that stars rotate is known for more than a hundred years, while the acknowl-
edgment of the Sun’s rotation dates back to the XVII century.

Stellar rotation comes from the rotation of molecular clouds and angular momentum
conservation. This intrinsic property of the stars plays a decisive role in their evolution,
differentiating them from those that do not rotate. Stellar rotation inŕuences the surface
physical properties of stars, such as luminosity and effective temperature; moreover, it
affects their shape, which departs from the classical spherical symmetry. On top of these,
also the internal structure, the chemical composition throughout the star, and the őnal
fate change as a function of rotation.

The root of this deep differentiation between rotating and non-rotating stars resides in
various effects (von Zeipel 1924a,b; Kippenhahn and Thomas 1970; Endal and Soőa 1976;
Zahn 1992; Meynet and Maeder 1997). Namely, the reduction of effective gravity due to
centrifugal effects off of the rotational axis; the equipotential surfaces are not spheres,
because gravity and centrifugal forces are not parallel; the radiative ŕux changes on
equipotential surfaces since the dependence of the former on effective gravity; and all the
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mixing processes induced by rotation.

5.2 Implementation in the PARSEC code

This Section is based on Costa (2019), and the curious reader should refer to that work
for further details on the implementation of stellar rotation in PARSEC.

5.2.1 Fundamental assumptions

Rotation is intrinsically a 3D phenomenon; however, there are some methods to im-
plement stellar rotation treatment in 1D stellar evolution codes. There are four main
assumptions proposed by Kippenhahn and Thomas (1970): stellar shells are equipotential
surfaces, but no longer follow spherical symmetry; the angular velocity Ω has a cylindri-
cal symmetry in each shell; Ω is constant with the colatitude θ (shellular rotation); and
the shape of the equipotential shells is computed with the Roche approximation.

Following the four assumptions above, you are forced to adopt a solid body rotation
throughout the star. Zahn (1992) proposed to adopt isobars (surfaces with constant
pressure) as stellar shells, instead of equipotential surfaces. This followed the fact that
the tangential turbulence in a shell is much stronger than the radial one, thus Ω is
homogenized within a shell, but not between two different shells (Zahn 1992). Finally,
were Meynet and Maeder (1997) to complete the scheme for stellar differential rotation.
They did not follow the assumption of cylindrical symmetry given in Kippenhahn and
Thomas (1970); therefore, each shell is an isobar with a speciőc Ω constant with θ.

This scheme keeps the stellar structure equations from Section 2.1, adding two form
factors fP and fT to account for the effects of rotation. The physical quantities in the new
set of stellar structure equations are averages along with isobars, except for the pressure
and the angular velocity, which are already constant within a shell.

5.2.2 New equations of stellar structure

The new four structure equations read (for a complete derivation see Chapter 3 in Costa
2019)

∂rP
∂mP

=
1

4πr2Pρ̄
, (5.1)

∂P

∂mP
= −GmP

4πr4P
fP, (5.2)

∂LP

∂mP
= ϵnuc − ϵν + ϵgr, (5.3)

∂lnT̄

∂mP
=

GmP

4πr4P

1

P
fPmin

[fT
fP

∇rad,∇ad

]

; (5.4)

where

∇rad =
3

16πacG

κLPP

mP
, (5.5)

∇ad =
Pδ

T̄ ρ̄cP
, (5.6)
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fP =
4πr4P
GmSP

1

⟨g−1
eff ⟩

, (5.7)

fT =
(4πr2P

SP

)2 1

⟨g−1
eff ⟩⟨geff⟩

, (5.8)

with δ =
(

∂lnρ
∂lnT

)

P,µ
a thermodynamical derivative. Brackets indicate the average over the

isobar surface, while bars refer to the average over the volume between two consecutive
isobars. The index P indicates the pressure of the considered isobar.

5.2.3 New boundary conditions

As the equations of stellar structure, also the boundary conditions are modiőed according
to the effects of rotation with the form factors fP and fT.

The new equations for the envelope (c.f. with Section 2.5) are

∂lnrP
∂lnP

= − PrP
ρ̄GmP

1

fP
, (5.9)

∂lnmP

∂lnP
= − 4πr4PP

Gm2
PfP

, (5.10)

∂lnT̄

∂lnP
= min

[fT
fP

∇rad,∇ad

]

. (5.11)

Instead, the boundary conditions for the atmosphere are

dτ

dlogP
=

SP⟨g−1
eff ⟩

4πr2P
κP ln10, (5.12)

T 4(τ) =
3

4
T 4
eff

( SP

4πr2P
fPτ + q(τ)

g

⟨geff⟩
)

, (5.13)

with the average gravity g = GmP

r2
P

.

Regarding the central boundary conditions, they remain as in Section 2.5, since at

the center the radius and the angular momentum are zero, while
(

dΩ
dr

)

c
= 0.

5.2.4 Angular momentum transport and chemical mixing

Rotation affects the geometry of the stars but also causes instabilities that redistribute
angular momentum and chemical elements throughout their entire structure. This extra
mixing is produced by two main instabilities: the meridional circulation (Eddington-
Sweet circulation) and the shear instability.

In the former, the thermal differences within a rotating star (von Zeipel 1924b) set in
a motion of material from the poles to the equator (or the other way around, Eddington
1929, see also Figure 5.1). On the other hand, the different rotations of two adjacent
stellar shells cause shear instability, which in turn mixes the different chemical elements
between the stellar layers. This redistribution of angular momentum and chemical el-
ements affects the evolution of rotating stars, for example by bringing new fuel to the
burning regions and mixing the nuclear products to the stellar surface.



42 Chapter 5. Stellar Rotation

Figure 5.1: Meridional-circulation induced motions in a 20M⊙ differentially rotating
model at the beginning of the MS, vini = 300 km · s−1. The whirl in the upper-right
part near the surface (core) is counterclockwise (clockwise). The convective core is the
innermost sphere at the center. Figure from Meynet and Maeder (2002).

In PARSEC, the angular momentum transport is implemented with a pure diffusive
scheme and follows the diffusive equation

ρr2
dr2Ω

dt
=

∂

∂r

(

ρr4D
∂Ω

∂r

)

, (5.14)

with D the total diffusion coefficient (see also Figure 5.2), which reads

D = DMmlt +Ds.i. +Dm.c., (5.15)

where Dmlt is the diffusion coefficient in the stellar convective regions. As stated in Sec-
tion 2.4, in PARSEC is adopted the mixing-length theory (Böhm-Vitense 1958); therefore
Dmlt = 1

3vlmlt, where v is the average velocity of the eddies in the convective regions.
Then, Ds.i. is the diffusion coefficient due to the shear instability (formulation by Talon
and Zahn 1997, see Costa (2019) for further details); while Dm.c. is the diffusion coeffi-
cient due to the meridional circulation (following the approximation by Zahn 1992, see
Costa (2019) for further details).

Regarding the extra mixing due to stellar rotation, the total diffusion coefficient is as
follows

Dtot = Dmlt + fc · (Ds.i +Dm.c), (5.16)

where fc is a parameter expressing the efficiency of the rotational extra mixing. A second
parameter fµ is adopted in PARSEC to control the chemical mixing inhibition due to the
molecular weight gradient, which follows the expression

∇eff
µ = fµ · ∇µ. (5.17)
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Figure 5.2: Three diffusion coefficients along with the total one within a 200M⊙, Z = 0
model at the moment of X = 0.5. The black continuous line is the total diffusion
coefficient D; the red, blue, and green lines are Ds.i., Dm.c., and Dmlt, respectively.

Both of these parameters have to be calibrated. This is still an open problem and different
values for these parameters are adopted in literature (e.g., Table 2 in Costa 2019). Within
PARSEC, Costa (2019) calibrated these parameters based on the surface N enrichment
ratio in massive stars found by Brott et al. (2011). In this Thesis, I adopt the calibrated
values fc = 0.17 and fµ = 0.45, although some degeneracy is present (see Costa 2019, for
further details).

5.2.5 Mass loss with rotation

Rotation and mass loss interplay is particularly important given the focus of the present
work. Due to the lower effective gravity, mass loss is enhanced in rotating stars and it
plays also a crucial role in removing angular momentum during the different evolutionary
phases.

In PARSEC is adopted the prescription by Heger et al. (2000), which accounts for
mass loss enchantment as follows

Ṁ(ωS) = Ṁ(ωS = 0)
( 1

1− vS/vS,crit

)ξ
, ξ = 0.43, (5.18)
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with ωS the surface rotation rate and Ṁ(ωS = 0) the mass loss rate for the not-rotating
case. The surface tangential velocity is vS, while the surface breakup velocity is

v2S,crit =
GM

rphot
(1− Γe), (5.19)

where M is the total mass of the star, rphot the photospheric radius, and Γe the Eddington
factor. Following Georgy et al. (2013), also mechanical mass loss is implemented in the
code. This occurs when the star reaches the critical rotation and therefore the external
layers of the star are lost due to the equatorial gravity being balanced by centrifugal
forces. Mechanical mass loss is treated by computing the angular momentum excess in
super-critical shells, which is the difference between their angular momentum and the
critical one. Then, from this excess, the code calculates the mass to remove so that the
star does not rotate at the critical velocity. At each timestep, the maximum between the
mechanical and the rotationally enhanced wind mass loss is applied.

5.3 Rotating Primordial Very Massive Stars

The őrst stars (Population III) that lit up in our Universe might have been far more mas-
sive than those forming nowadays, with an initial mass function peaking at ≃ 100M⊙

(Bromm et al. 1999; Abel et al. 2002). The reason is the absence of metals, which are
the most efficient coolants within molecular clouds during star formation. In Chapter 4,
I investigated the effect of pulsation-driven mass loss (see the prescription in Nakauchi
et al. 2020) on the evolution and őnal fate of primordial VMSs. I found that pulsation-
driven and radiation-driven mass loss dominates during different evolutionary phases.
In Chapter 4 , the most massive stars can eject several solar masses of material already
during the MS due to radial pulsations. This is in contrast with the modest mass loss
expected from radiation-driven winds at these metallicities. I őnd that almost all mod-
els experience pair-creation instability during the last phases of the evolution after the
ignition of carbon, neon, or oxygen depending on the mass of the star. Models with
Mi = 100M⊙ and Z = 0 are somewhat uncertain and may avoid pair instability. Our
stars with 300 ≤ Mi/M⊙ ≤ 1000 should directly collapse to a BH (Bond et al. 1984;
Farmer et al. 2020), while models with Mi = 150, 200M⊙ should produce PISNñ , leav-
ing no remnant (Fowler and Hoyle 1964; Barkat et al. 1967; Rakavy and Shaviv 1967;
Fraley 1968; Heger and Woosley 2002; Heger et al. 2003; Takahashi et al. 2018; Taka-
hashi 2018; Woosley and Heger 2021; Farag et al. 2022; Costa et al. 2023b). Models with
Mi = 100M⊙ and Z = 0.0002 should enter into the PPISN regime (Woosley et al. 2002;
Chen et al. 2014; Yoshida et al. 2016; Woosley 2017; Farmer et al. 2019; Woosley and
Heger 2021; Farag et al. 2022). Instead, those with the same mass and Z = 0 could end
their evolution either with a fCCSN or a PPISN. In the former case, these models could
provide a new formation pathway for BHs, potentially helping to alleviate the black-hole
mass gap puzzle (see also Farmer et al. 2020; Sakstein et al. 2020; Croon et al. 2020;
Farrell et al. 2021; Costa et al. 2021; Vink et al. 2021; Tanikawa et al. 2021; Farag et al.
2022, for different formation scenarios).

In Chapter 4 , I did not consider stellar rotation, which is one of the most inŕuential
phenomena in the evolution of massive and very massive stars (Heger et al. 2000; Meynet
and Maeder 2000; Brott et al. 2011; Ekström et al. 2012; Paxton et al. 2013; Yusof et al.
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2013; Limongi and Chieffi 2018; Goswami et al. 2021, 2022; Higgins et al. 2022; Martinet
et al. 2023). Rotation changes the gravity of the star and thus modiőes the stellar
geometry from the usual spherical symmetry also affecting the surface temperature (e.g.
Costa et al. 2019a,b, and references therein). The fact that the star is rotating implies
different kinds of turbulent mixing, e.g. meridional circulation and shear instability.
These processes increase the mixing of chemical elements within the star, affecting the
lifetimes of the main nuclear burning phases as well as the chemical composition at the
star’s surface (Maeder 2009, and references therein). Turbulence caused by rotation
transports angular momentum from the stellar core to the envelope (Heger et al. 2000),
where it is removed by stellar winds. Mass loss is also enhanced by rotation due to lower
effective gravity, which is caused by centrifugal forces (Heger et al. 2000; Georgy et al.
2011; Costa et al. 2019a, and references therein).

While the effect of rotation on mass loss in VMSs has been the subject of several
studies (e.g. Meynet and Maeder 2000; Ekström et al. 2012; Yoon et al. 2012, 2015;
Murphy et al. 2021; Martinet et al. 2023), its impact in combination with pulsation-
induced mass loss has never been examined. In light of the results of Chapter 4, this
topic clearly deserves to be investigated. I do so using the PARSEC code (Bressan et al.
2012; Costa et al. 2019a,b; Nguyen et al. 2022) to follow the evolution of a set of VMSs
until the occurrence of pair instability, in line with our previous work.

Rotation can also heavily affect the őnal fate of massive and very massive stars and it
is a necessary condition to produce successful GRB events (Woosley 1993; Woosley and
Heger 2006, 2012; Yoon et al. 2006, 2012, 2015). The collapsar model (Woosley 1993) is
the most widely accepted theory for the formation of long GRBs, in which an accretion
disk forms during the collapse of a massive star, powering the jets that produce the GRB
event. The accretion disk can form only if the infalling material has enough angular
momentum to avoid direct accretion onto the BH (Woosley 1993). The propagation of
the jet through the progenitor is a major issue for massive stars with extended envelopes,
preventing the production of a successful gamma-ray burst (GRB) event. The reason is
that the crossing timescale for the jet to reach the surface of the star can be longer than
the accretion timescale by more than 3 orders of magnitude. In this case, the jet is not
powerful enough to break out from the star and produce a successful GRB (Yoon et al.
2006, 2012; Woosley and Heger 2012; Yoon et al. 2015). This is why when considering
Pop III stars, Yoon et al. (2012) proposed the chemically-homogeneous evolution as the
main channel for the star to retain enough angular momentum within its core and at the
same time to avoid the redward evolution in the HR diagram. In this way, the star does
not retain a very extended envelope and this facilitates the jet propagation. In this work,
I investigate models of VMS that should experience PI but with lower masses compared
to Yoon et al. (2015) to have less extended envelopes. I őnd another possible pathway
for the evolution of successful GRB progenitors. The absence of the stellar envelope due
to pulsational-pair instability mass loss eases the jet propagation through the star. This
decreases enormously the crossing timescale for the jet to reach the stellar surface, thus
producing successful GRB events.
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Rotating Very Massive

Star Evolution

This chapter is based on:
G. Volpato, P. Marigo, G. Costa, A. Bressan, M. Trabucchi, L. Girardi, and

Francesco Addari;
"A Study of Primordial Very Massive Star Evolution II:

Stellar Rotation and Gamma-Ray Burst Progenitors" ;
ApJ, 961(1):89 ; Jan. 2024; doi: 10.3847/1538-4357/ad1185.

In this Chapter, I present new evolutionary models of rotating primordial very massive
stars, with initial mass from 100M⊙ to 200M⊙, for two values of the initial metallicity
Z = 0 and Z = 0.0002. For the őrst time in this mass range, I consider stellar rotation
and pulsation-driven mass loss, along with radiative winds. The models evolve from the
ZAMS, until the onset of pair instability. I discuss the main properties of the models
during their evolution and then focus on the őnal fate and the possible progenitors of
jet-driven events.

This Chapter is organized as follows. In Section 6.1 I brieŕy describe the PARSEC code
and its major ingredients. In Section 6.2 I present the rotating stellar evolution models
computed with mass-loss recipes that account for both radiation-driven and pulsation-
driven mass loss. I provide an overview of evolutionary properties, with emphasis on core
evolution, dredge-up episodes, internal structure, surface elemental abundances, chemical
ejecta, őnal evolution outcomes, and associated compact remnants. In the last part of
Section 6.2, I focus on the possible Gamma-Ray Burst and jet-driven supernova (SN)
progenitors. Finally, Section 6.3 closes the paper with some concluding remarks and
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future perspectives.

6.1 Stellar evolution calculations

I compute stellar evolution calculations with the PARSEC code (Bressan et al. 2012) in its
version 2.0 (Costa et al. 2019a,b, 2021; Nguyen et al. 2022, and reference therein). The
input physics and the code parameters are as described in Chapter 2, whereas the details
of the implementation of rotation in the PARSEC code can be found in Costa et al.
(2019a,b). I use scaled-solar abundances (Caffau et al. 2011), where the initial solar
metallicity follows the calibration in Bressan et al. (2012), Zinitial,⊙ = 0.01774. Here, I
brieŕy summarize the main aspects of the PARSEC code that concern the evolution of
massive stars, and, in particular, the mass loss prescriptions adopted in this work. For
the standard mass loss prescription (Ṁrdw, for further details see Section 2.3), I adopt
the formulation by Vink et al. (2000, 2001) and the mass loss rates predicted by de
Jager et al. (1988) for stars with effective temperature higher and lower than 10000K,
respectively. The metallicity dependence is Ṁ ∝ (Z/Zinitial,⊙)

0.85, where I use the initial
metallicity as a proxy for the iron content1(which remains constant along the evolution).
I also consider the enhancement of mass loss due to the proximity of the Eddington
factor to one (Gräfener and Hamann 2008; Vink et al. 2011). In this case, I use the same
scheme as in Chen et al. (2015), with the following details Ṁ ∝ (Z/Zinitial,⊙)

α, where
α = 2.45 − 2.4Γe, with Γe the Eddington factor and α between 0 and 0.85. In each
evolutionary stage, I take the maximum mass loss rate between Vink et al. (2000, 2001)
or de Jager et al. (1988) and Vink et al. (2011), which accounts for the Eddington factor
dependence. For Wolf-Rayet stars with X < 0.3 and log(Teff) > 4, I use the mass loss
recipe from Sander et al. (2019) with the metallicity dependence proposed by Costa et al.
(2021).

For pulsation-driven mass loss (Ṁpdw, see Section 3.2), I use the analytical expressions
provided by Nakauchi et al. (2020)

log
( Ṁpdw

M⊙ yr−1

)

= α1 log
(

M
103 M⊙

)

− α2 − β1 [log(Teff)− β2]
γ (6.1)

log
( Ṁpdw

M⊙ yr−1

)

= −2.88 + log
(

M
103 M⊙

)

− 15.6 [log(Teff)− 3.7] , (6.2)

where α1, α2, β1, β2, and γ are coefficients that depend on the initial metallicity of the
model (see Nakauchi et al. 2020, for more details). Finally, the last mass loss prescription
is Ṁmax (see Section 4.1), which takes the maximum between Ṁrdw and Ṁpdw at each
timestep during the evolution of the models.

Concerning the interplay between mass loss and stellar rotation (see also Sec-
tion 5.2.5), I use the prescription by Heger et al. (2000), which reads

Ṁ(ω) = Ṁ(ω = 0)
( 1

1− v/vcrit

)ξ
, with ξ = 0.43, (6.3)

1when using Vink et al. (2000, 2001) prescription, the initial stellar iron content has to be rescaled
to the initial solar value according to our calibration
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where Ṁ(ω = 0) is the mass loss rate in the non-rotating case. Then, v is the surface
tangential stellar velocity, while vcrit is the break-up velocity deőned as

v2crit =
Gm

r
(1− Γe). (6.4)

I take into account also the mechanical mass loss when the star reaches the critical ro-
tation (Georgy et al. 2013). It is worth noticing that there are different prescriptions
for the treatment of stellar rotation (e.g. Maeder and Meynet 2000), and this subject
is still under investigation. Major uncertainties in stellar rotation are tied to different
aspects. For instance, stellar rotation is inextricably linked to magnetic őeld generation
(e.g. Braithwaite and Spruit 2017; Brun and Browning 2017). The interaction between
rotation and magnetic őelds is not completely understood, despite it inŕuences stellar
activity, which affects processes such as star spots, ŕares, and the stellar wind. Further-
more, rotation inŕuences mass and angular momentum loss from stars, thus affecting
their evolution. Predicting the rate and pattern of mass loss due to rotation-induced
instabilities is still a source of uncertainties in evolutionary models.

I adopt the mixing-length theory by Böhm-Vitense (1958), with a mixing-length
parameter αmlt = 1.74. I use the Schwarzschild criterion to deőne the border of the
convective regions, while for core overshooting I adopt the ballistic approximation (Bres-
san et al. 1981). In this latter, the core overshooting parameter (λov = 0.4) times the
pressure scale height corresponds to the mean free path of the eddies across the border
of the convective region. I also account for overshooting at the base of the convective
envelope below the formal Schwarzschild border (Alongi et al. 1991; Bressan et al. 2012;
Nguyen et al. 2022). Recent calibration of the red giant branch bump luminosity in
a large sample of Globular Clusters with metallicity −2 < [M/H] < 0 using updated
α-enhanced PARSEC models (Fu et al. 2018) suggests using an envelope overshooting
parameter Λenv between 0.5 and 0.7, with the latter value being more appropriate in
more metal-poor systems. Similar, if not greater, values are required to reproduce blue
loops in star clusters and low metallicity dwarf irregular galaxies (Alongi et al. 1991;
Bressan et al. 2012; Tang et al. 2014). In the present calculations, I use Λenv = 0.7.

To inhibit density inversion in the inefficient convective regions of the stellar envelope,
I follow the temperature gradient limitation described in Chen et al. (2015). By imposing
∇T ≤ ∇Tmax =

1−χµ∇µ

χT
, convection becomes more efficient preventing the numerical

instabilities caused by density inversion.
As in Chapter 4, I consider two different initial chemical compositions (Z = 0, Y =

0.2485) and (Z = 0.0002, Y = 0.24885), with Z and Y the initial abundances in mass
fraction of metals and helium, respectively. I compute stellar evolution models with
initial mass Mi = 100, 150, 200M⊙ and initial rotation rate ω = 0.0, 0.2, 0.3, 0.4, 0.5;
where ω = Ωi/Ωcrit with Ωi the initial angular velocity and Ωcrit the critical angular
velocity. For each combination of (Mi, Z, ω) I compute two stellar models adopting
two different mass loss recipes, namely Ṁrdw and Ṁmax. I found models to encounter
progressively higher numerical difficulties in the computation towards the highest values
of mass, rotation velocity, and metallicity in the explored range. In particular, two
models out of 60 could not be brought to convergence (the models with Mi = 150M⊙ and
Mi = 200M⊙, having Z = 0.0002, ωi = 0.5 and computed with the Ṁrdw prescription)
so I exclude them from the following discussion.
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I note that the calculations of Nakauchi et al. (2020) are based on non-rotating models,
while in the present study, the interplay between rotation and stellar pulsation should
be taken into account. However, I found the time scale of pulsation to be always much
shorter than the rotation period in all my models, indicating that the interaction between
the two processes can be safely neglected (see Appendix 6.C for further details).

I follow the evolution of my models from the ZAMS until the onset of pair-creation
instability (see Section 4.1.2). This occurs after the ignition of carbon, neon, and oxygen
in the stellar core depending on the initial mass, metallicity, rotation, and mass-loss
prescription adopted for the models (see Tables 6.1 and 6.2).

6.2 Results

6.2.1 General Properties of the Stellar Evolutionary Tracks

Figure 6.1: H-R diagrams of the twenty sets of tracks computed in this work. Different
initial rotation rates are color-coded as labeled. Panels a,b and c,d refer to Z = 0 and
Z = 0.0002, respectively. Panels a,c: tracks calculated with the standard PARSEC mass-
loss prescription for radiation-driven winds. Panels b,d: tracks computed considering also
the pulsation-driven mass loss. Cyan starred symbols indicate where the stellar models
become Wolf-Rayet manqué stars (X < 0.3). I plot the value of initial mass (in M⊙) for
all tracks.
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Table 6.1: Most Relevant Properties of Models Computed with Z = 0.0002, Ṁrdw and Ṁmax

Mi τMS τcHeB fHpuls fHe puls Blue Loop DUP MHe MCO Mf Xcore Lν/Lrad Fate remnant MBH

[M⊙] [Myr] [Myr] [M⊙] [M⊙] [M⊙] Onset PI [log10] [M⊙]

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Ṁrdw ω = 0.0

100 2.83 0.25 0.29 0.57 ✕ ✓ 53.8 47.6 94.3 0.865 O 3.1 PPISN BH 40.9
150 2.45 0.24 0.45 0.32 ✓ ✓ 79.5 71.8 146.4 0.080 Ne 3.2 PISN ✕ -
200 2.25 0.23 0.50 0.33 ✓ ✓ 110.3 100.7 193.9 0.003 C 3.2 PISN ✕ -

ω = 0.2

100 2.87 0.26 0.28 0.96 ✕ ✕ 52.0 46.0 93.4 0.853 O 3.1 PPISN BH 39.8
150 2.48 0.25 0.45 0.97 ✕ ✓ 45.1 38.8 143.0 0.131 O 2.4 PPISN BH 40.09

DBH(e) BH 128.7
200 2.28 0.24 0.49 0.76 ✓ ✓ 51.9 46.0 191.5 0.090 O 2.4 PPISN BH 48.5

DBH(e) BH 172.4

ω = 0.3

100 2.92 0.27 0.27 0.97 ✕ ✕ 51.7 45.3 93.1 0.848 O 3.1 PPISN BH 39.5
150 2.51 0.25 0.46 0.97 ✕ ✕ 80.9 71.8 142.8 0.061 Ne 3.2 PISN ✕ -
200 2.30 0.23 0.51 0.98 ✕ ✕ 108.9 98.1 191.1 0.001 C 3.2 PISN ✕ -

ω = 0.4

100 2.98 0.27 0.26 0.95 ✕ ✓ 51.5 44.5 92.9 0.877 O 3.1 PPISN BH 39.4
150 2.56 0.24 0.50 0.98 ✕ ✓ 77.6 69.6 142.3 0.020 Ne 3.1 PISN ✕ -
200 2.33 0.23 0.53 0.90 ✕ ✓ 95.2 95.0 189.4 0.022 Ne 2.7 PISN ✕ -

DBH(e) BH 170.5

ω = 0.5

100 3.09 0.27 0.22 0.53 ✕ ✓ 53.2 45.8 95.0 0.879 O 3.1 PPISN BH 40.7

PISN(e) ✕ -

Ṁmax ω = 0.0

100 2.84 0.26 0.28 0.95 ✕ ✓ 53.1 46.9 92.7 0.859 O 3.1 PPISN BH 40.4
150 2.47 0.24 0.44 0.38 ✓ ✓ 77.0 69.3 139.7 0.055 Ne 3.2 PISN ✕ -
200 2.29 0.23 0.49 0.36 ✓ ✓ 105.7 96.2 180.2 0.002 C 3.2 PISN ✕ -

ω = 0.2

100 2.88 0.27 0.28 0.97 ✕ ✕ 52.0 46.0 92.2 0.857 O 3.1 PPISN BH 39.6
150 2.50 0.24 0.46 0.98 ✕ ✕ 81.0 74.1 136.7 0.086 Ne 3.3 PISN ✕ -
200 2.31 0.23 0.52 0.49 ✓ ✓ 91.2 91.2 176.6 0.021 Ne 2.8 PISN ✕ -

DBH(e) BH 158.9

ω = 0.3

100 2.91 0.27 0.25 0.97 ✕ ✕ 49.6 43.6 92.1 0.768 O 3.1 PPISN BH 38.2
150 2.53 0.24 0.50 0.99 ✕ ✓ 71.4 67.6 135.7 0.883 O 2.8 PISN ✕ -

DBH(e) BH 122.1
200 2.34 0.23 0.58 0.98 ✕ ✓ 101.1 99.1 174.3 0.117 Ne 2.9 PISN ✕ -

DBH(e) BH 156.9

ω = 0.4

100 2.99 0.27 0.28 0.97 ✕ ✕ 51.1 44.4 91.8 0.880 O 3.1 PPISN BH 39.1
150 2.58 0.25 0.55 0.98 ✕ ✓ 77.1 69.0 134.6 0.009 Ne 3.1 PISN ✕ -

DBH(e)** BH 121.1
200 2.37 0.24 0.65 0.98 ✕ ✓ 93.8 89.5 171.3 0.101 Ne 2.9 PISN ✕ -

DBH(e) BH 154.2

ω = 0.5

100 3.06 0.27 0.06 0.94 ✕ ✕ 54.0 46.5 91.7 0.878 O 3.1 PPISN BH 40.8
150 2.62 0.25 0.63 0.96 ✕ ✓ 81.7 71.5 132.2 0.029 Ne 3.2 PISN ✕ -
200 2.41 0.24 0.75 0.95 ✕ ✕ 114.6 101.7 163.1 0.001 C 3.3 PISN ✕ -

Note—The table entries are as follows: (1) star’s initial mass; (2) MS lifetime; (3) cHeB lifetime; (4) and (5) fractions of MS and cHeB lifetimes in
which the star is unstable to radial pulsation; (6) and (7) occurrence of blue loop and dredge-up episode; (8) final He core mass; (9) final C-O core
mass; (10) final mass of the star at the onset of dynamical instability; (11) central fuel abundance of ongoing nuclear burning at the onset of dynamical
instability; (12) neutrino luminosity to radiative luminosity ratio when Tc = 109 K; (13) and (14) final fate and associated outcome (BH or complete
disruption), and (15) BH mass.
** assuming an error of 1% on upper limit for PISN in fit formula by Mapelli et al. (2020);
(e) considering MHe = Mf , so MBH = 0.9 · Mf
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Table 6.2: Most Relevant Properties of Models Computed with Z = 0, Ṁrdw and Ṁmax

Mi τMS τcHeB fHpuls fHe puls Blue Loop DUP MHe MCO Mf Xcore Lν/Lrad Fate remnant MBH

[M⊙] [Myr] [Myr] [M⊙] [M⊙] [M⊙] Onset PI [log10] [M⊙]

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Ṁrdw ω = 0.0

100 2.54 0.25 0.07 0.51 ✓ ✓ 41.8 38.4 99.9 0.511 O 2.7 fCCSN(a) BH 89.9

PPISN(b) BH 34.2
150 2.33 0.23 0.30 0.36 ✓ ✓ 74.4 67.7 149.9 0.011 Ne 3.1 PISN ✕ -
200 2.16 0.22 0.27 0.35 ✓ ✓ 110.4 103.8 199.9 0.001 C 3.2 PISN ✕ -

ω = 0.2

100 2.65 0.25 0.46 0.11 ✕ ✓ 50.6 45.4 99.9 0.858 O 3.2 PPISN BH 39.5
150 2.30 0.23 0.51 0.11 ✕ ✕ 78.7 70.6 149.9 0.049 Ne 3.2 PISN ✕ -
200 2.12 0.28 0.53 0.46 ✕ ✓ 100.9 97.8 199.9 0.120 Ne 2.9 PISN ✕ -

ω = 0.3

100 2.68 0.25 0.45 0.0 ✕ ✕ 50.7 44.6 99.9 0.739 O 3.1 PPISN BH 39.6
150 2.31 0.24 0.51 0.07 ✕ ✕ 79.3 70.7 149.9 0.042 Ne 3.2 PISN ✕ -
200 2.13 0.28 0.52 0.40 ✕ ✕ 108.3 98.1 199.9 0.002 C 3.3 PISN ✕ -

ω = 0.4

100 2.70 0.26 0.44 0.18 ✕ ✓ 50.3 43.7 99.9 0.775 O 3.1 PPISN BH 39.4
150 2.34 0.24 0.50 0.36 ✕ ✓ 68.6 67.1 149.9 0.883 O 2.7 PISN ✕ -
200 2.15 0.23 0.51 0.37 ✕ ✓ 89.6 89.6 199.9 0.042 Ne 2.7 PISN ✕ -

DBH(e) BH 180.0

ω = 0.5

100 2.75 0.26 0.43 0.26 ✕ ✓ 49.7 43.4 99.9 0.708 O 3.1 PPISN BH 39.0

150 2.36 0.25 0.48 0.84 ✕ ✓ 64.3 61.6 149.9 0.882 O 2.7 PPISN(d) BH 35.8

PISN(c) ✕ -

DBH(e) BH 135.0
200 2.17 0.24 0.50 0.45 ✕ ✓ 85.0 83.8 199.9 0.047 Ne 2.7 PISN ✕ -

DBH(e) BH 180.0

Ṁmax ω = 0.0

100 2.59 0.26 0.17 0.51 ✕ ✓ 37.1 34.3 95.0 0.412 O 2.8 fCCSN(a) BH 85.5

PPISN(b) BH 30.9
150 2.33 0.23 0.32 0.36 ✓ ✓ 77.5 72.6 147.7 0.019 Ne 3.1 PISN ✕ -
200 2.15 0.22 0.30 0.35 ✓ ✓ 102.9 95.1 197.6 0.001 C 3.2 PISN ✕ -

ω = 0.2

100 2.66 0.25 0.46 0.004 ✕ ✕ 50.2 44.9 99.2 0.699 O 3.1 PPISN BH 39.2
150 2.31 0.24 0.51 0.18 ✕ ✕ 78.6 71.4 147.3 0.062 Ne 3.2 PISN ✕ -
200 2.13 0.24 0.52 0.70 ✕ ✓ 48.7 48.7 192.0 0.834 O 2.5 PPISN BH 46.7

DBH(e) BH 172.8

ω = 0.3

100 2.68 0.26 0.45 0.00 ✕ ✕ 50.7 44.7 99.2 0.701 O 3.1 PPISN BH 39.5
150 2.33 0.24 0.51 0.11 ✕ ✕ 78.6 70.0 147.6 0.024 Ne 3.2 PISN ✕ -

200 2.14 0.24 0.53 0.51 ✕ ✓ 40.6 40.1 193.2 0.443 O 2.3 fCCSN(a) BH 173.9

PPISN(b) BH 41.8

DBH(e) BH 173.9

ω = 0.4

100 2.71 0.26 0.45 0.08 ✕ ✕ 50.7 44.2 99.0 0.818 O 3.1 PPISN BH 39.5
150 2.35 0.24 0.51 0.22 ✕ ✕ 78.8 69.6 146.9 0.035 Ne 3.1 PISN ✕ -

200 2.16 0.24 0.53 0.81 ✕ ✓ 41.7 41.5 192.2 0.285 O 2.3 fCCSN(a) BH 173.0

PPISN(b) BH 42.4

DBH(e) BH 173.0

ω = 0.5

100 2.76 0.26 0.43 0.41 ✕ ✓ 49.0 42.5 97.1 0.723 O 3.1 PPISN BH 38.3
150 2.38 0.24 0.50 0.37 ✕ ✓ 73.1 68.7 146.0 0.884 O 2.9 PISN ✕ -
200 2.18 0.23 0.52 0.34 ✕ ✓ 52.3 51.4 194.1 0.295 O 2.3 PPISN BH 48.9

DBH(e) BH 174.7

Note—Table entries as in Table 6.1.
(a) failed CCSN. Following Farmer et al. (2019) I set the lower limit of MHe for PPISN at 45M⊙;
(b) following Woosley (2017) I set the lower limit of MHe for PPISN at 34M⊙;
(c) following Woosley (2017) I set the lower limit of MHe for PISN at 64M⊙;
(d) I set the lower limit of MHe for PISN at 65.24M⊙, which is the MHe of the T140D model in Woosley (2017)
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In Table 6.1 and 6.2 I summarize the main properties that highlight the evolution
and őnal outcome of the models.

Figure 6.1 presents the evolution of all models in the HRD, where we can see that
there is a positive correlation between the models’ luminosity and their initial rotation
velocity, ω. This is most evident for models computed with Z = 0.0002, while in the case
of Z = 0, the evolutionary tracks run almost superimposed except for the non-rotating
ones. This behavior can be explained by the helium enrichment at the surface during
MS, which forces both luminosity and effective temperature to increase. In turn, this
helium enrichment is caused by two factors. First, the enhancement of the convective
core between rotating and non-rotating models increases with metallicity (Groh et al.
2019). Second, at Z = 0.0002, the region above the convective core experiences greater
rotational mixing as the rotation rate increases, compared to the Z = 0 models at the
same rotation rates.

Another effect of rotation is to reduce or even quench the blue loops during the cHeB
phase. We can see that in all panels of Figure 6.1, there is at least one non-rotating star
that evolves toward higher effective temperatures. With the addition of rotation, this
is not the case anymore. Models with Z = 0 and ω > 0 evolve after the MS toward
the red part of the HRD; while for Z = 0.0002 there are two models with ω = 0.2 that
perform a blue loop, but in the case of ω > 0.2 no model evolves back to higher effective
temperatures.

After the MS phase, due to rotational mixing and the occurrence of DUP episodes,
16 stellar models reach a surface hydrogen abundance X < 0.3 (starred symbols in
Figure 6.1). When massive stars evolve into red supergiants, the convective envelope
inŕates and cools, while at low densities opacity is dominated by electron scattering.
These lead to increasing atmospheric opacity and favor the development of convection
in progressively deeper layers of the star, causing a DUP episode. It is worth noticing
that the efficiency of the DUP depends on the envelope undershooting parameter as
shown in Costa et al. (2021). According to our deőnition (see Section 2.3), these 16 stars
exhibit a surface chemical composition similar to Wolf-Rayet (WR) stars. Still, they are
not hot and spend most of their evolution with a low effective temperature in the red
part of the HRD. For this reason, I refer to this kind of stars as WR-manqué (WRm)
stars (note that the mass loss recipe adopted for these stars is that by de Jager et al.
1988). This drastic change in the surface chemical composition occurs too late to have
a great impact on the models’ effective temperature evolution. If the hydrogen surface
abundance were to decrease below ∼ 20% during MS (due to high rotation mixing),
then the models would have followed the so-called chemically homogeneous evolution.
In this case, they would have evolved towards higher effective temperatures, completely
avoiding the red-supergiant phase (Yoon et al. 2012; Woosley and Heger 2006). I do not
őnd any occurrence of chemically homogeneous evolution in my models. Among these
16 tracks, 6 stellar models reach a total amount of hydrogen between 0.26% and 0.1% of
their total mass. Section 6.2.3 examines the impact of dredge-up and rotation on surface
abundances and chemical ejecta, especially for these extreme WRm stellar models.

6.2.2 Internal Structure

Figure 6.2 shows the Kippenhahn diagrams of four different stellar models. They have
the same initial mass Mi = 200M⊙, but different metallicities, rotational velocities, and
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Figure 6.2: Kippenhahn diagrams of four selected models. The horizontal axis shows
the age of the models as logarithm of time (in yr) until the end of computations. The
blue regions correspond to the star’s convective core, the pink area represents the con-
vective envelope, semi-convective zones at the boundary of the helium convective core,
and convective shells. The yellow, cyan, and purple hatch regions show the hydrogen,
helium, and carbon-burning core/shells, respectively. The black continuous line indicates
the total mass of the star, the orange one represents the helium core, and the green one
corresponds to the carbon-oxygen core. The red arrow marks the time when the star
enters the unstable region with ⟨Γ1⟩ = 4/3+0.01; while the red vertical line shows when
the star becomes a WRm with X < 0.3. Panels a,c: models computed with the stan-
dard PARSEC mass-loss prescription for radiation-driven winds. Panels b,d: models that
account also for pulsation-driven winds.

mass loss prescriptions. At the beginning of the MS, all these stars have a convective core
equal to almost 90% of their total mass. This is because these models have a very large
initial mass, and also rotation increases the extent of their convective cores. For example,
comparing the models in panels a and c, we can notice that the star in this latter panel
has a slightly bigger convective core, due to its higher initial rotational velocity. Then,
the model in panel a is evolving almost at constant mass. The reason is that for this
model, I adopted the mass-loss recipe Ṁrdw with Z = 0. On the other hand, for models
in panels b, c, and d the total mass of the star decreases during the evolution. This is
most evident for the stars in panels b and d, during the őrst part of the MS, when the
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pulsation-driven mass loss is operating.
After the depletion of hydrogen in the stellar core and the start of the cHeB phase,

these four models experience DUP episodes. In Figure 6.2 there are different degrees
of envelope penetration, which imply different internal mixing. DUP episodes affect the
structure of these models by reducing the mass of the helium core, which can be crucial for
the őnal fate of the stars (see Section 6.2.4). They also impact the chemical composition
of these four models. Depending on the efficiency of the DUP, these stars can remain
classical red supergiants or they can become WRm stars. Despite the DUP, the model in
panel a retains enough hydrogen at the surface such that it does not become a WRm star,
while the opposite occurs for models in panels b, c, and d (see also Section 6.2.3). The
red vertical line shows when X < 0.3 at the surface, and we see that this does not occur
for the model in panel a. Moreover, the (Mi = 200M⊙, Z = 0, Ṁmax, ω = 0.2) model in
panel b becomes an extreme WRm star, with only 0.11% of hydrogen out of its total
őnal mass. Therefore, this star could be considered a pure helium star with a very small
carbon-oxygen core (green line in Figure 6.2b), due to the very deep penetration of the
stellar envelope.

The surface abundance evolution and wind ejecta masses of all extreme WRm models,
along with other selected tracks, are discussed in the next section.

6.2.3 Surface Chemical Abundances and Mass of the Ejecta

In this section, I consider the surface abundances and the wind ejecta mass of some se-
lected models. Both of these are affected by rotation-induced mixing, dredge-up episodes,
and mass-loss history.

Figure 6.3 presents the surface abundance evolution of H, He, C, N, O, and Zeff =
1−X−Y. Each panel shows the results for the same model computed with two different
mass-loss prescriptions, Ṁrdw (dotted line) and Ṁmax (solid line). In Figure 6.3 there are
all six extreme WRm models.

During MS, we see the effect of rotation-induced mixing, especially in the four Z = 0
models (panels a, b, c, and d). That is, for example, the gradual increase in nitrogen sur-
face abundance, along with a slower enhancement in carbon and oxygen. Approximately
∼ 105 yr before the end of computations, all six models start to experience DUP episodes.
During cHeB, the hydrogen surface abundance lowers below 0.3 (vertical red line in each
panel), while the effective metallicity increases very steeply. At the end of computations,
all extreme WRm models in Figure 6.3 have Zeff > 0.6, reaching ∼ 0.77 in panel d for
the highest initial rotational velocity. The interesting thing to notice is that at Z = 0,
the mass-loss prescription accounting also for pulsation-driven mass loss favors the metal
enrichment during the evolution, while at Z = 0.0002 the extreme WRm models are com-
puted with Ṁrdw. In panels c, d, and f, both models can be considered WRm stars (two
red vertical lines), but only one in each plot is almost completely hydrogen-depleted. In
these three cases, the extreme WRm models are those that meet the condition X < 0.3
earlier on during their evolution. At the end of calculations, these six extreme WRm
stars have a surface composition mainly of helium, nitrogen, and oxygen.

Figure 6.4 shows the wind ejecta mass for He, C, N, O, Ne, and Mg, while tables
of wind ejecta for all rotating models can be found on Zenodo2. In the six panels of

2https://doi.org/10.5281/zenodo.10225140
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Figure 6.3: Surface chemical abundances’ evolution of six selected pairs of models, from
the ZAMS to ten years before the end of computations. In each panel, the abundances of
hydrogen, helium, carbon, nitrogen, and oxygen, are color-coded as shown in the legend.
The black line represents the effective metallicity, Zeff = 1−X−Y. The red vertical line
marks when X < 0.3. The results are presented for two different mass-loss prescriptions.
The horizontal axis is as in Figure 6.2.
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Figure 6.4: Wind ejecta mass of models with initial mass Mi/M⊙ = 150, 200. In
each panel, there are the ejecta masses of helium, carbon, nitrogen, oxygen, neon, and
magnesium for two mass-loss recipes, Ṁrdw and Ṁmax. Panels a,b: models calculated
with Z = 0. Panels c, d, e, f: models calculated with Z = 0.0002.

Figure 6.4 there are all the models presented in Figure 6.3 along with stellar tracks com-
puted with their same mass and metallicity, but different initial rotational velocity and
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mass-loss prescription. In panels b, c, and e there are the extreme WRm models discussed
in Sections 6.2.1 and 6.2.3. In these six panels, we can see the effect of different initial
rotational velocities on wind ejecta masses, and also the impact of the DUP episodes.
Instead, panels a-b, c-d, and e-f show the incidence of the two mass-loss prescriptions
Ṁrdw and Ṁmax. The general trend is that accounting also for pulsation-driven mass loss,
the ejecta mass of the considered elements increases. This is expected since the deőnition
of the two mass-loss recipes adopted. Considering the initial metallicity of the models,
at higher Zi we have higher ejecta masses due to higher mass-loss rates. However, the
most impactful process for example in panels a, b, c, and e is the occurrence of DUP
episodes.

The extreme WRm models eject much more metals compared to the others and this
is because of a deeper penetration of the stellar envelope (DUP) coupled to the mass
loss history of the model. In panel a there are no extreme WRm models, but still, we
see major differences between stars computed with ω = 0.2, 0.4, and 0.5 with respect to
those with ω = 0.0, and 0.3. The reason for this is the metal enrichment of the models
due to DUP episodes (see also Figure 6.3a). Finally, I can say that the differences in the
ejecta are due to differences in the mass loss history, except when dealing with models
with a very high metal enrichment due to DUP mixing episodes. In these latter cases,
the relative ejecta mass of the elements considered is much higher, meaning that mass
loss alone can not explain these differences and the main driving process is the mixing
due to DUP episodes.

6.2.4 Final fate

Figure 6.5 shows the őnal helium core mass (MHe) at the end of calculations for all tracks.
I use MHe as a proxy for the őnal fate of the star, following Woosley (2017); Farmer et al.
(2019). Mi and MHe are positively related, however, both panels present stellar models
that do not follow this trend. This is caused by DUP episodes that reduce the helium
core of the models and in some cases even affect their őnal fate. The helium core mass
is deőned by the chemical composition of the envelope, and for this reason, for the 16
WRm stars (see Section 6.2.1) I consider two extreme possible cases for the őnal fate.
In the őrst one, as usual, I use the MHe core to determine the őnal fate. While, in the
second case, I use the total őnal mass of the star at the end of the computations (Mf)
to derive the őnal fate. The combined effects of rotation and DUP episodes affect the
stellar tracks in different ways. In panel a for example, we can see that rotation increases
the helium core mass with respect to the non-rotating case for Mi = 100M⊙ (see also
Table 6.2). At the same time, DUP episodes and higher mass loss rates prevent a steady
growth of the helium core with increasing initial rotation rate.

Stars with Mi = 150, 200M⊙ have He cores that are massive enough to cause a PISN,
which disrupts the whole star. There are some exceptions though. In panel a, seven tracks
do not follow the main pattern. Four of these models were computed with Ṁmax and
only one has Mi = 150M⊙. This latter is computed with Ṁrdw, ω = 0.5 and has three
possible fates. If we consider the strict deőnition of its helium core, this latter has a
mass of 64.3M⊙. With this core, the model is inside the uncertainty strip around the PI
- PPI boundary. The lower limit of this strip is set to 63.91M⊙, while the upper one is
65.24M⊙. They are the He core masses of the T135D and T140D models from Woosley
(2017), respectively. These two models are computed with Z = Z⊙/10 and Ṁ = 0, sim-
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Figure 6.5: Each panel shows the helium core mass, MHe, as a function of the initial
mass for all models of őve different initial rotation rates with a őxed initial metallicity.
Helium core mass is shown at the end of the calculations. Horizontal lines limit the PPI,
PI explosion, and DBH regimes from bottom to top (Woosley 2017; Farmer et al. 2019,
2020). The lower red strip indicates the uncertainty range of the lower limit for PPI.
Lower and upper boundaries are 34M⊙ (Woosley 2017), and 45M⊙ (Farmer et al. 2019),
respectively. The black line is the average. Panel a: similar uncertainty strip between
PPI and PI with boundaries 63.91M⊙ and 65.24M⊙. These values are the helium core
masses of the T135D and T140D models from Woosley (2017), respectively (see text for
more details).

ulating the evolution of a zero-metallicity star. Even though these two models have a
He core mass very close, and in one case exceeding, the 64M⊙ limit, Woosley (2017)
found that they produced a stellar mass BH. For this reason, I indicate that the stellar
model with He core mass between these two limits could have two possible őnal fates: a
PISN with no remnant or a PPISN leaving a stellar-mass BH. On the other hand, the
low amount of hydrogen of the (Mi = 150M⊙, Z = 0, Ṁrdw, ω = 0.5) star could imply
that the helium core corresponds to the total őnal mass of the star, MHe = 150M⊙. In
this case, the őnal fate of the model should be DBH. This latter scenario also applies to
the (Mi = 200M⊙, Z = 0, Ṁrdw, ω = 0.4) and the (Mi = 200M⊙, Z = 0, Ṁrdw, ω = 0.5)
models if I consider MHe = Mf (see Tables 6.1 and 6.2 for the different őnal fates con-
sidered for each model).

The other tracks in panel a with Mi > 100M⊙ that do not become PISN are the
models (Mi = 200M⊙, Z = 0, Ṁmax) with ω = 0.2, 0.3, 0.4 and 0.5. These four models
are extreme WRm stars due to their almost H-free envelopes (see Sections 6.2.1 and
6.2.3). By considering their helium core masses, these models should undergo PPISN or
fCCSN (see Figure 6.5 and Tables 6.1 and 6.2). On the other hand, in the case where
MHe = Mf , their helium cores are above the 135M⊙ upper threshold for PISN, thus
these stars should directly collapse forming a massive BH.

In panel b there are nine WR-manqué stars, őve of which are computed with Ṁmax.
Both the Mi = 150M⊙ and Mi = 200M⊙ models with Ṁrdw and ω = 0.2 have MHe >
135M⊙, in the case of MHe = Mf . Therefore, these two models could undergo DBH. Be-
sides these two, seven stars in this panel have a double őnal fate. The (Mi = 150M⊙, Z =
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0.0002, Ṁmax, ω = 0.3, 0.4), (Mi = 200M⊙, Z = 0.0002, Ṁmax, ω = 0.2, 0.3, 0.4) and
(Mi = 200M⊙, Z = 0.0002, Ṁrdw, ω = 0.4) models can either collapse directly to a BH
or get totally disrupted in a PISN, depending on the helium core mass considered. On
the other hand, the (Mi = 100M⊙, Z = 0.0002, Ṁrdw, ω = 0.5) star is in the PPISN or
PISN regime in the case MHe < 64M⊙ or MHe = Mf , respectively (see also Table 6.1).

In both panels of Figure 6.5, stars with Mi = 100M⊙ are in the pulsational-pair-
instability regime, but outside the uncertainty region. The only exceptions are the two
models computed with ω = 0.0 (see discussion in Chapter 4) and (Mi = 100M⊙, Z =
0.0002, Ṁrdw, ω = 0.5) already discussed above.

As in Chapter 4, I use the őt formula proposed by Mapelli et al. (2020, see Appendix
6.D for details) to compute the BH mass in the PPISN scenario, while also accounting
for mass loss due to neutrino emission (10% of the baryonic mass of the proto-compact
object, see Fryer et al. 2012; Rahman et al. 2022, and references therein). In DBH cases,
I take the őnal mass of the star as a őrst approximation for MBH, always accounting
for mass loss due to neutrino emission. In Table 6.1 and 6.2, I give two (or even three)
possible outcomes and the corresponding BH masses for all models with an uncertain
fate based on the boundaries in Figure 6.5. Notice that for the (Mi = 150M⊙, Z =
0.0002, Ṁmax, ω = 0.4) model, I assume a 1% error on the 135M⊙ threshold for the upper
limit for PISN in the őt formula by Mapelli et al. (2020). It is worth mentioning that these
limits are based on non-rotating models, as long as the őt formula from Mapelli et al.
(2020). There are different studies on the pair-instability limits and the effects of rotation,
e.g. Glatzel et al. (1985); Woosley (2017); Marchant and Moriya (2020); Woosley and
Heger (2021). For example, Woosley and Heger (2021) mention that high rotation rates
could shift the lower limit for pair instability from 64M⊙ to ∼ 70M⊙. For the case where
the He core mass is close to the 64M⊙ limit (Mi = 150M⊙, Z = 0, Ṁrdw, ω = 0.5), I
can not calculate the BH mass with the őt formula from Mapelli et al. (2020). For this
reason, I use a linear interpolation between MHe and MBH of the models T135D and
T140D. In this way, I can give an estimate of the BH mass for the case of PPISN (see
also Table 6.2).

Tables 6.1 and 6.2 and Figure 6.6 show the results obtained with different mass-
loss prescriptions and initial rotation rates. In Figure 6.6, whenever there are multiple
symbols for the same stellar model, it indicates that for that particular star, there is
more than one possible outcome. For Z = 0, the most massive BHs reach ∼ 180M⊙,
while for Z = 0.0002 they reach ∼ 172M⊙. The complex interplay between DUP and
rotation sets the őnal mass of the BHs I expect from my models. It is worth noticing
that rotation favors the occurrence of DUP episodes, shifting in some cases the mass of
the possible remnant from zero to hundreds of solar masses. Within Section 6.2.5, the
remnants’ mass will be re-discussed and adjusted according to results from the analysis
on possible jet-driven events (see also Tables 6.3 and 6.4).

6.2.5 Progenitors of Jet-driven Events

Within the collapsar scenario (Woosley 1993), the most important characteristics for
being a GRB progenitor are a massive core to produce a BH, the lack of an extended
hydrogen envelope to facilitate the jet outward propagation and high core speciőc angular
momentum for the formation of an accretion disk. There are, however, different studies
that suggest the possibility of a jet propagation even through the very massive envelope of
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Table 6.3: Most Relevant Properties of Possible GRB Events for Models Computed with
Z = 0.0002, Ṁrdw and Ṁmax

Mi τcross τfree−fall τaccretion Laccretion Eaccretion Ebinding, envelope Fate MBH

[M⊙] [s] [s] [s] [log10(erg s
−1)] [log10(erg)] [log10(erg)] [M⊙]

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Ṁrdw ω = 0.2

100 0.35 3.35 2.45 52.48 52.87 - c 39.8
150 46.8 5.09 · 103 5.66 52.52 52.74 50.21 a 40.2

2.32 · 103 9.94 · 105 5.66 52.52 52.74 50.21 a(a) 40.2

200 34.81 2.97 · 103 6.21 52.09 52.89 51.08(II) d 41.4

2.38 · 103 8.89 · 105 6.21 52.09 52.89 51.08(II) d(a) 41.4

ω = 0.3

100 0.35 3.34 2.49 52.47 52.86 - c 39.5
150 - - - - - - PISN -
200 - - - - - - PISN -

ω = 0.4

100 0.37 3.57 2.58 52.45 52.86 - c 39.4
150 - - - - - - PISN -
200 - - - - - - PISN -

7.43 · 103 4.94 · 106 13.23 52.10 53.22 50.93 d(a) 85.7

ω = 0.5

100 0.39 3.86 2.97 52.40 52.88 - c 40.7

- - - - - - PISN(a) -

Ṁmax ω = 0.2

100 0.35 3.31 2.46 52.48 52.87 - c 39.6
150 - - - - - - PISN -
200 - - - - - - PISN -

7.05 · 103 4.73 · 106 7.72 52.39 52.44 50.88 a(a) 82.1

ω = 0.3

100 0.35 3.37 2.59 52.43 52.85 - c 38.2
150 - - - - - - PISN -

6.3 · 103 4.56 · 106 9.47 52.11 53.09 50.69 d(a) 64.3
200 - - - - - - PISN -

6.75 · 103 4.46 · 106 10.46 52.22 53.24 51.02 d(a) 91.0

ω = 0.4

100 0.36 3.53 2.66 52.44 52.86 - c 39.1
150 - - - - - - PISN -

5.11 · 103 3.35 · 106 8.94 52.17 53.12 50.93 d(a)(III) 69.4
200 - - - - - - PISN -

6.77 · 103 4.52 · 106 11.66 52.14 53.21 50.94 d(a) 84.4

ω = 0.5

100 0.39 3.8 2.83 52.43 52.88 - c 40.8
150 - - - - - - PISN -
200 - - - - - - PISN -

Note—The table entries are as follows: (1) star’s initial mass; (2) crossing timescale; (3) free-fall timescale; (4)
accretion timescale,

∑
i τacc,i; (5) accretion luminosity,

∑
i Lacc,i; (6) accretion energy,

∑
i τacc,i · Lacc,i; (7) envelope

binding energy; (8) case for the possible fate of the GRB progenitor according to 4 cases outlined in Figure 6.8; (9)
remnant mass
(II) the bottom of the envelope here is defined as the first point where Y < 10−3;
(III) assuming an error of 1% on upper limit for PISN in fit formula by Mapelli et al. (2020);
(a) considering MHe = Mf .



62 Chapter 6. Rotating Very Massive Star Evolution

Table 6.4: Most Relevant Properties of Possible GRB Events for Models Computed with
Z = 0, Ṁrdw and Ṁmax

Mi τcross τfree−fall τaccretion Laccretion Eaccretion Ebinding, envelope Fate MBH

[M⊙] [s] [s] [s] [log10(erg s
−1)] [log10(erg)] [log10(erg)] [M⊙]

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Ṁrdw ω = 0.2

100 0.36 3.4 0.65 52.52 52.34 b 39.5
1.66 52.32 52.54

150 - - - - - - PISN -
200 - - - - - - PISN -

ω = 0.3

100 0.36 3.46 2.67 52.44 52.87 c 39.6
150 - - - - - - PISN -
200 - - - - - - PISN -

ω = 0.4

100 0.36 3.51 3.12 52.37 52.86 c 39.4
150 - - - - - - PISN -
200 - - - - - - PISN -

7.39 · 103 4.77 · 106 11.04 52.15 53.19 50.92 d(a) 80.6

ω = 0.5

100 0.36 3.47 3.01 52.38 52.86 c 39.0

150 - - - - - - PISN(b) -

6.78 · 103 4.85 · 106 9.12 52.08 53.04 50.61 d(a) 57.9

0.31 2.85 2.08 52.50 52.82 - c(c) 35.8
200 - - - - - - PISN -

7.73 · 103 5.10 · 106 9.86 52.17 53.17 50.84 d(a) 76.5

Ṁmax ω = 0.2

100 0.35 3.31 0.64 52.50 52.30 - b 39.2
1.40 52.23 52.38

150 - - - - - - PISN -

200 5.31 1.80 · 102 0.07 52.40 51.25 - d* 46.7

2.34 · 103 8.66 · 105 0.07 52.40 51.25 50.43 d(a) 58.6

ω = 0.3

100 0.35 3.38 2.66 52.44 52.86 - c 39.5
150 - - - - - - PISN -

200 54.73 6.31 · 103 0.77 52.75 52.36 50.7 a(e) 36.5

2.97 · 103 1.24 · 106 0.77 52.75 52.36 50.7 a(a)-(d) 36.5

ω = 0.4

100 0.36 3.41 2.82 52.41 52.86 - c 39.5
150 - - - - - - PISN -

200 37.66 3.57 · 103 5.74 52.08 52.84 50.84 d(e) 37.5

2.83 · 103 1.15 · 106 5.74 52.08 52.84 50.84 d(a)-(d) 37.5

ω = 0.5

100 0.36 3.52 3.14 52.35 52.85 - c 38.3
150 - - - - - - PISN -
200 6.34 2.30 · 102 6.92 52.10 52.94 - c 49.0

2.77 · 103 1.11 · 106 6.92 52.10 52.94 50.9 d(a) 47.1

Note—Table entries as in Table 6.3.
(b) following Woosley (2017) I set the lower limit of MHe for PISN at 64M⊙;
(c) I set the lower limit of MHe for PISN at 65.24M⊙, which is the MHe of the T140D model in Woosley (2017);
(d) following Farmer et al. (2019) I set the lower limit of MHe for PPISN at 45M⊙;
(e) following Woosley (2017) I set the lower limit of MHe for PPISN at 34M⊙.
* concerning the expected BH mass, the model follows the c case since it should experience PPI
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Figure 6.6: Expected remnant mass for all stellar models presented in this work as a
function of Mi. The extra symbols indicate the predicted BH mass for those stars with
multiple possible fates, see also Tables 6.1 and 6.2. Panel a: models calculated with
Z = 0. Panel b: models calculated with Z = 0.0002.

Pop III stars (e.g., Ohkubo et al. 2009; Suwa and Ioka 2011; Toma et al. 2011; Nagakura
et al. 2012; Wei and Liu 2022). Moreover, there are also multiple criteria for the minimum
core speciőc angular momentum and the mass coordinate to consider when evaluating
this latter (e.g., Woosley and Heger 2006; Yoon et al. 2006; Meynet and Maeder 2007;
Yoon et al. 2012; Aguilera-Dena et al. 2018; Aloy and Obergaulinger 2021; Obergaulinger
and Aloy 2022).

First of all, I have to consider all the shells that have a sufficient speciőc angular
momentum to form a disk instead of falling directly into the newly-formed BH (see
Appendix 6.B for a different approach in the calculations of the shell inertial moment).
Figure 6.7 shows four example models that summarize all possible cases within my current
work. This choice is based on different angular momentum conőgurations within the
progenitors and also the different őnal fates for the jet-driven events. In each panel, I
consider the two limiting cases for the minimum speciőc angular momentum needed to
support mass at the last stable orbit (LSO) of a Schwarzschild and a maximally rotating
Kerr BH. Then, the general case considers a BH with mass and angular momentum
within the speciőc mass coordinate in the stellar model (see Bardeen et al. 1972, for
the exact expressions). We can see that the speciőc angular momentum proőle is very
different between the four models, and therefore the expression j > jcrit where I expect
disk formation follows different patterns in these four progenitors. I assume that the inner
3M⊙ of material would form the BH, and therefore do not contribute to the accretion
disk. For this reason, I exclude the inner 3M⊙ from subsequent calculations throughout
this work for all my models (see Appendix 6.A where I consider the case of MBH = 5M⊙

for the only model where this implies a sizeable difference).
To have enough angular momentum and form a disk is a necessary but not sufficient

condition for a successful GRB. On top of that, the lack of an extended envelope is
needed to allow the jet outlet. To analyze in further detail the jet propagation through
the progenitor, I proceed as in Yoon et al. (2015) by computing the accretion rate from
the disk. With the approximation introduced by Woosley and Heger (2012), the accretion
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Figure 6.7: Speciőc angular momentum proőle as a function of the mass coordinate. In
each panel the black line shows the speciőc angular momentum for the model considered,
the blue line refers to the minimum angular momentum needed to support mass at
the LSO of a Schwarzschild BH, while the green line denotes the minimum angular
momentum for a maximally rotating Kerr BH. The red line shows the speciőc angular
momentum at the LSO for a BH with mass and angular momentum inside the considered
mass coordinate in the computed stellar model. All panels show in lilac the regions within
the stars where j > jcrit. In these regions, I expect the formation of an accretion disk.
The two innermost vertical lines in each panel refer to the mass coordinate 3M⊙ and
5M⊙, respectively; while the outer one corresponds to the carbon-oxygen core of the
model considered.

rate reads

Ṁ =
2Mr

tff

ρ

ρ̄− ρ
, (6.5)

with tff = 1/
√
24πGρ̄ the free-fall timescale and ρ̄ = 3Mr/4πr

3 the mean density within
each shell. As in Yoon et al. (2015), also in this work such accretion rates should be
considered as lower limits. This is because my models do not reach the pre-collapse
stage, and hence the density should increase with respect to the considered one.

Figure 6.8 shows the accretion rate, the free-fall timescale, and the crossing timescale
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for those models presented in Figure 6.7. Also in these four panels, I highlight where
the shells have enough speciőc angular momentum to support a disk (see Figure 6.7 and
related discussion). Panels b and c do not show the entire progenitor. This is because
in the PPISN cases, I plot only the model up to the mass coordinate calculated with
the őt formula by Mapelli et al. (2020). In this way, I consider the model after the
loss of the envelope due to pulsational-pair instability (Ekström et al. 2008), assuming
that the pair-induced pulsations do not affect the angular momentum of the stellar core
(Aguilera-Dena et al. 2018). As a őrst approximation for the velocity of the ejected
material due to PPI, I consider the escape velocity at the mass coordinate given by the
őt formula from Mapelli et al. (2020). I őnd that vesc ∼ 104 km s−1 and the timescale
between the pulsational-pair instability and the collapse of the star should be of the order
of ∼ 100 yr. I can safely stop considering the ejected material in my calculations since
it should be at distances of ∼ 1 pc when the jet forms, thus reducing the density of the
ejected envelope by a factor (1 pc)3. Instead, in panels a and d I show the entire stellar
model since I consider the MHe = Mf case and therefore the stars do not undergo PPI
(see Section 6.2.4 and Tables 6.1, 6.2).

The models in Figure 6.8 represent the four possible cases for a jet-driven event among
all my rotating stellar tracks, except those that undergo PISN. For this reason, I assign
the letter a, b, c, or d in the őnal fate column of Tables 6.3 and 6.4, according to the
structure and őnal fate of the models following one of these four possible cases. Tables 6.3
and 6.4 also summarize different physical properties of possible jet-driven events for all
rotating models considered in this work.

The model in Figure 6.8a does not experience pulsational-pair instability and it is
within the DBH scenario (taking the upper limit MHe = Mf , note in Table 6.3 that the
őnal fate should not change even considering the lower value for MHe). Therefore, I plot
the entire stellar structure where the őnal mass of the model is 143M⊙. Panel a shows
that there could be three distinct accretion episodes due to the distribution of speciőc
angular momentum within the star from matter at 3M⊙ − 14M⊙, 16M⊙ − 38M⊙ and
111M⊙ − 143M⊙, respectively.

Combining the őrst two accretion episodes, the accretion timescale for matter within
the stellar core is 5.66 s. However, this is much lower compared to the crossing timescale
for jet propagation through the envelope, which is ∼ 103 s (see Table 6.3). This shows
that the jets powered by core accretion are not expected to produce a successful GRB,
due to a much difficult jet propagation. Moreover, the crossing timescale is more than
two orders of magnitude smaller than the free-fall timescale (τcross ≪ τff), and thus the
jets would not remain collimated during its propagation within the star (Yoon et al.
2015). Following Suwa and Ioka (2011), to calculate the energy of a jet I assume the
following expression for the luminosity:

L = η Ṁ c2, (6.6)

where Ṁ is the mass accretion rate from Eq. 6.5 and the accretion-to-jet conver-
sion efficiency is η = η0 a

2 = 10−3 a2, where a is the dimensionless spin parameter
(a = J · c/(G · M2)) of the central BH with MBH = 3M⊙ and J the corresponding angu-
lar momentum. The őrst term η0 comes from Suwa and Ioka (2011), while the dependence
on the BH spin is from Blandford and Znajek (1977). In those models where there are
two accretion episodes within the stellar core, to calculate the luminosity of the second
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jet I assume MBH = 3M⊙ + Macc, where Macc is the total mass accreted by the BH
before the second accretion episode. Thus, also the accretion-to-jet efficiency changes
too, because the dimensionless spin parameter is not calculated for a BH of 3M⊙ as for
the other jets. The energy that the jets pump into the stellar envelope is ∼ 3.3 ·1052 erg.
Because these jets can not break out from the progenitor and they are going to spread
out instead of remaining collimated, I sum their energy to compare it with the binding
energy of the envelope. I deőne the bottom of the stellar envelope as the őrst point where
X < 10−3 (note the only exception in Table 6.3 to estimate more accurately MBH), hence
the total envelope binding energy is ∼ 1.6 · 1050 erg. Because of this, the whole envelope
would be ejected by the jets’ energy, therefore hindering the third accretion episode. In
this case, the őnal outcome of the model should be a jet-driven SN.

In panel b, the model has enough angular momentum in its inner core to support
the formation of an accretion disk. The őrst accretion episode lasts 0.65 seconds, while
the crossing timescale for the jet to reach the surface of the star is 0.36 seconds. This
means that in this case, there could be a successful GRB event, powered by the accretion
of matter between 3M⊙ and 15M⊙. The crossing timescale is more than four times
smaller compared to the accretion timescale for matter between 22M⊙ and 44M⊙. This
implies that the second accretion episode can not form another jet before the őrst one
breaks out from the star. Here I assume as an upper limit that the őrst jet does not blow
away any mass of the outer stellar core, though this mass could be very little (Zhang
et al. 2004). Thus, in this case, we have two accretion episodes that produce successful
GRBs."Case b" corresponds to progenitors of successful GRB events that are powered
by two accretion episodes, where in Tables 6.3 and 6.4 there are the results for the two
jets in the τacc, Lacc, and Eacc columns.

Case c is very much similar to the latter. The only difference is that the entire model
has enough angular momentum to form a disk: there is a single accretion episode that
involves the whole star. Even in this case, the accretion timescale is higher concerning
the crossing one, 2.83 and 0.39 seconds, respectively. Therefore, this model should also
produce a successful GRB event. Here I assume that the whole mass of the star is going
to be accreted, and this gives an upper limit for the accretion timescale and hence the
total accretion energy of GRB progenitors that follow the kind of structure presented in
this case c.

The model in Figure 6.8d is very similar to that in panel a (taking the upper limit
MHe = Mf). As between cases b and c, the most important difference is that in Fig-
ure 6.8d there should be only one accretion episode from matter within the stellar core.
Even in this case, the accretion timescale is much shorter compared to the crossing
timescale, (see Table 6.4). Hence, also in this model, the jet powered by core accretion
should produce a jet-driven SN, to which I refer as őnal fate d in Tables 6.3 and 6.4. On
the other hand, if I consider the lower value of MHe for this speciőc model, the jet-driven
event changes deeply. Because of the lack of an extended envelope, the jet could reach
the stellar surface and produce a successful GRB (see Table 6.4 for the numerical details).

Tables 6.3 and 6.4 also present the expected mass of the remnant after the jet-driven
event, where also here I account for neutrino emission and take 90%3 of the considered
őnal mass for the expected MBH (Fryer et al. 2012; Rahman et al. 2022, and references
therein). For jet-driven SNe in cases a and d, I consider only the mass of the core,

3I assume this for consistency with the discussion in Section 6.2.4
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Figure 6.8: Accretion rate, free-fall timescale, and crossing timescale as a function of the
mass coordinate. Lilac regions show the shells with sufficient speciőc angular momentum
to support a disk, where j > jcrit. The two timescales refer to the y-axis on the right,
while the accretion rate is shown on the left.

because the envelope is ejected by the energy of the jet(s). Instead, in cases b and c I
take into account the total mass of the model after pulsational-pair instability mass loss.
All values in the last column in Tables 6.3 and 6.4 are to be considered as upper limits for
the BH mass. This is because there could be more mass ejected by the jet, even though
it might not be that large (Zhang et al. 2004).

Figure 6.9 shows the luminosity due to accretion-powered jets for all rotating mod-
els considered (except those that undergo PISN). The two brightest GRB events have
log(L) ∼ 52.5. The main driver of the jet-powered events is the accretion rate shown in
Figure 6.8, which depends on the density of the models.

Now I consider different values for the accretion-to-jet conversion efficiency param-
eter. With η0 = 10−2; 10−4, the overall results do not change. Of course, I obtain
respectively higher and lower luminosities and accretion energies, but the cases high-
lighted in Tables 6.3 and 6.4 remain unchanged. There is only one exception, which is
the (Mi = 200M⊙, Z = 0, Ṁmax, ω = 0.2) model in the case of DBH scenario (see Ta-
ble 6.4). With η0 = 10−4 the accretion energy results lower than the binding energy of
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Figure 6.9: Jet-driven luminosity for all rotating models besides those that undergo PISN.
Different colors indicate the initial rotation rate of the models, while different symbols
indicate the mass-loss prescription used in the computations. Full symbols indicate a
successful GRB event, while the others refer to jet-driven SNe. Panel a: all models with
initial metallicity Z = 0; Panel b: all models with initial metallicity Z = 0.0002.

the stellar envelope. Thus in this case the expected remnant mass from this progenitor
is higher, 78M⊙. It is worth noting that this latter is almost 20M⊙ above the value
expected when the total stellar envelope is ejected by the energy of the jet. Considering
this lower efficiency, I should expect a failed jet-driven SN from this progenitor, which
greatly impacts the őnal mass of the BH.

6.3 Concluding Remarks

In this work, I study the evolution of rotating zero-metallicity and metal-poor very
massive stars, with initial masses between 100M⊙ and 200M⊙. I investigate the resulting
effect arising from different initial rotation rates ω = 0.0, 0.2, 0.3, 0.4, 0.5 and pulsation-
driven winds (following the prescription of Nakauchi et al. 2020), accounting also for
radiation-driven winds throughout the entire HRD. These are the őrst very massive
models that consider both stellar rotation and pulsation-driven mass loss, extending the
parameter space covered by the PARSEC evolutionary tracks. I follow the evolution until
the occurrence of electron-positron pair instability after carbon, neon, or oxygen ignition
depending on the initial mass, metallicity, rotation, and mass-loss prescription adopted
for the models (see Tables 6.1 and 6.2). For all models, I checked that rotation and radial
pulsations should not inŕuence each other, with the former dominating over the latter
(see discussion in Appendix 6.C).

As in Chapter 4, I discuss the őnal fate of these stars (Section 6.2.4), but then
accounting also for stellar rotation I analyze the possibility of jet-driven phenomena
from these rotating progenitors (Section 6.2.5). I consider the accretion-to-jet efficiency
parameter η = η0a

2, where η0 = 10−2, 10−3, 10−4, while a is the dimensionless spin
parameter of the central BH with MBH = 3M⊙ (see Appendix 6.A where I explore
the MBH = 5M⊙ case). Results in Tables 6.3 and 6.4 assume the standard value of
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η0 = 10−3 from Suwa and Ioka (2011). Following the analysis of Yoon et al. (2015), I
identify four possible cases among my rotating models with different structures and őnal
fates.

For stars that do not lose any mass due to pair instability and still form a BH (DBH
scenario, cases a and d), the expected outcome is a jet-driven SN. In these cases, the
extended stellar envelope prevents the jet breakout, but the energy of this latter is higher
than the envelope binding energy, and thus the jet unbinds the outer layers of the star.
The progenitors of these successful jet-driven SNe have Mi = 200M⊙, except for four
models with Mi = 150M⊙ (see Tables 6.3 and 6.4). Within case d when considering
η0 = 10−4, there is only one exception to the fact that the accretion energy of the jet
is bigger than the envelope binding energy, i.e. (Mi = 200M⊙, Z = 0, Ṁmax, ω = 0.2)
model when considering MHe = Mf . This implies an increase of the expected BH mass
of almost 20M⊙.

All models that undergo pulsational-pair instability lose their envelope, hence fos-
tering the propagation of the jet as opposed to the models in Yoon et al. (2015). Case
b and c correspond only to models with Mi = 100M⊙, except the (Mi = 150M⊙, Z =
0, Ṁrdw, ω = 0.5) model, which has three possible fates (see Table 6.4). The major dif-
ference between the b and c scenarios is that in the former the star does not have enough
angular momentum throughout the whole structure, and thus there are two distinct ac-
cretion episodes. Instead, in the latter, the whole mass of the star is accreted through
the disk in one single episode, which increases the accretion timescale. This difference
also occurs between models in cases a and d.

A factor potentially pivotal in the evolution of these rotating stars, which is not ad-
dressed in this Thesis, is magnetic angular momentum transport (Walder et al. 2012;
Keszthelyi 2023). Magnetic őelds effectively transfer angular momentum from the stel-
lar core outward (Aerts et al. 2019, and references therein). Consequently, the surface
rotational velocity may increase compared to non-magnetic stars. This could inŕuence
chemical mixing and expected mass loss rates in these models. Conversely, magnetic
stars may have slower-rotating stellar cores, impacting anticipated őnal outcomes. Due
to magnetic angular momentum transport and magnetic őeld interactions with stellar
winds, these rotating stellar models might exhibit speciőc angular momentum proőles
below the required threshold for successful GRB events.

A GRB event can be detected by the BAT X-ray detector up to redshift z ∼ 20 if
it has L ≳ 1052 erg s−1s (Komissarov and Barkov 2010; Yoon et al. 2015). All successful
GRB events displayed in Figure 6.9 would be luminous enough to be detected. This
changes as I consider different values for the parameter η0. When adopting a lower value
for efficiency, all the models get below the observability threshold above. On the other
hand, increasing the accretion-to-jet efficiency boosts the possibility of detecting this
kind of event. Also, the afterglow of these GRBs could be of paramount importance.
The reason is that with a bigger energy budget, and therefore a radio ŕux peaked at late
times at gigahertz frequencies (Toma et al. 2011), the radio afterglow of GRBs from Pop
III progenitors should be much brighter than that of Pop II/Pop I stars (Salvaterra 2015;
Burlon et al. 2016). Hence, this could be key for distinguishing GRB events from different
progenitor populations. With current instruments like the Australian Square Kilometer
Array Pathőnder telescope and James Webb Space Telescope with both Near-InfraRed
Camera and Near-InfraRed Spectrograph, the observation of the afterglow from Pop III
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GRB events should be within reach (Macpherson and Coward 2017).
Jet-driven events also have a deep impact on the expected MBH for some of these

progenitors. Comparing the results for the expected BH mass in Tables 6.1 and 6.2 with
those in Tables 6.3 and 6.4, there are őfteen models with a different remnant mass. These
stars are all within the a and d cases (see discussion in Section 6.2.5), while for models
following cases b and c, the expected mass of the BH does not change. The differences
are due to jet-driven SNe that unbind the stellar envelope during the accretion-powered
jet’s propagation. Hence, the BH mass can be reduced by more than 130M⊙ in the most
extreme cases.

Out of őfteen models with a reduced MBH, thirteen stars have an expected remnant
mass that falls within the pair-instability black-hole mass gap (40− 65M⊙ to 120M⊙,
see also Farmer et al. 2020; Sakstein et al. 2020; Croon et al. 2020; Farrell et al. 2021;
Costa et al. 2021; Vink et al. 2021; Tanikawa et al. 2021; Farag et al. 2022, for different
formation scenarios). Several stellar models can produce BHs with a mass close to
one of the primary and the secondary BHs in the gravitational wave event GW190521
(Abbott et al. 2020), which are 85+21

−14M⊙ and 66+17
−18M⊙, respectively. Therefore, rotating

primordial very massive stars could provide a new pathway for the formation of BHs
within the pair-instability black-hole mass gap.

Appendix 6.A An alternative case for central Black Hole

mass

Here I investigate the case study where I assume MBH = 5M⊙ instead of 3M⊙, while
keeping η = 10−3 a2. The different mass of the central BH has two major effects on the
calculations for the jet-driven episode. First, there are two solar masses less for the BH
to accrete, which impacts the total rate of mass accretion and the accretion timescale.
Taking out some of the material with a high accretion rate reduces Ṁ while increasing
τacc. The second effect is that in the luminosity calculations, I have to take into account
the dimensionless spin parameter derived for the inner 5M⊙. This in principle has a
different value compared to a(MBH = 3M⊙).

For all my rotating models, considering MBH = 5M⊙ has very little effects on the
results shown in Tables 6.3 and 6.4. At most there is a difference of ∼ 0.5 s in τacc and
∼ 0.01 in log(Lacc). The only exception is the (Mi = 200M⊙, Z = 0, Ṁmax, ω = 0.2)
model when I consider MHe = Mf , whose timescales and accretion rates are shown in
Figure 6.A.1. We see that there are no shells with j > jcrit within the core outside 5M⊙.
The model has sufficient angular momentum only in the very outer envelope, but the
accretion rate there is much lower compared to the inner core. Since all the inner layers
of the star would fall into the BH right away, the jet formed by the accretion of the outer
layers would not have to pierce any stellar envelope and therefore in this case the crossing
timescale is zero.

In this particular case, the model could be a progenitor of a successful GRB, but
much fainter than those presented above due to the lower accretion rate. The luminosity
is L ∼ 9.3 · 1045 erg s−1, and this transient could last for more than two weeks because
of the very long accretion timescale, ∼ 1.4 · 106 s. This different GRB event also impacts
the expected BH mass from this progenitor. Contrary to cases a and d (see Section 6.2.5),
the envelope is not ejected, and therefore I have to consider the 90% of the total mass of
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Figure 6.A.1: Same as in Figure 6.8. The two black vertical lines are at 3M⊙ and 5M⊙,
respectively.

the model. This increases the mass of the black hole to MBH = 172.8M⊙.
On the other hand in the PPISN case, if I assume MBH = 5M⊙ then in this model

there are no shells with enough angular momentum able to form an accretion disk. Hence,
the whole stellar core should collapse into a BH.

Appendix 6.B GRB Analysis with improved moment of in-

ertia

Here I show a different approach in the moment of inertia calculations for the shells
in two different models (see in Figure 6.B.1). In Section 6.2.5, I evaluate the speciőc
angular momentum proőle averaging the inertia moment within each shell. I improve
my analysis by splitting the integral for the moment of inertia into a polar region and an
equatorial region as follows:

Ipol = 2 · 2πρR
5
1 −R5

2

5

∫ π/4

0
sin3(θ)dθ, (6.7)
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Figure 6.B.1: The two limiting cases in blue and green, the red curve, and the three
vertical lines are as in Figure 6.7. In each panel, the purple line shows the speciőc
angular momentum for the polar region, while the cyan line displays it for the equatorial
region. I highlight in lilac where jeq > jcrit.

Ieq = 2 · 2πρR
5
1 −R5

2

5

∫ π/2

π/4
sin3(θ)dθ, (6.8)

with ρ = 3
4π (M1 −M2)/(R

3
1 − R3

2) where M1, M2, R1, and R2 are the limiting masses
and radii for the considered shell. The speciőc angular momentum proőle is jeq (pol) =
Ieq (pol) · ω/M, where ω is the angular velocity and M the mass of the shell. In this way,
in Figure 6.B.1 there are two different proőles for the speciőc angular momentum in the
polar (purple) and equatorial (cyan) regions. As expected, we can see that jeq > jpol
since the angular momentum is more concentrated in the equatorial region.

To assess the possibility of a successful GRB, I have to consider two different aspects.
First, whether the equatorial region has enough angular momentum to form a disk and
therefore to launch a jet. Second, whether the material in the polar region collapses
directly into the BH, thus favoring the jet propagation.

For every mass coordinate, there could be three possible scenarios, depending on
the relations between jeq, jpol and jcrit. The best scenario for a successful GRB would
be when jeq > jcrit and jpol < jcrit. In this situation, we would have an accretion disk
that powers the jet and no stellar matter that hampers its propagation through the
poles. In the second scenario, both the equatorial and polar regions have enough angular
momentum to prevent direct accretion onto the BH. Here the jet would not break out
and therefore we could not have a successful GRB. Finally, we could have the case where
both jeq and jpol are smaller than jcrit. In this case, the jet could not be launched since
there would be no accretion disk.

I also checked that with this improved analysis, all my rotating models are still
described by the four possible cases presented in Section 6.2.5. The results in Tables 6.3
and 6.4 are still valid except for the models (Mi = 150M⊙, Z = 0.0002, Ṁrdw, ω = 0.2),
(Mi = 200M⊙, Z = 0.0002, Ṁrdw, ω = 0.2), (Mi = 200M⊙, Z = 0, Ṁmax, ω = 0.2), (Mi

= 200M⊙, Z = 0, Ṁmax, ω = 0.3), and (Mi = 200M⊙, Z = 0, Ṁmax, ω = 0.4) that in
the PPISN scenario should follow the b/c cases discussed in Section 6.2.5.

In Figure 6.B.1, I present two models already discussed in Section 6.2.5 to show the
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differences with respect to the previous analysis (they are the models in Figures 6.7c and
6.7d, respectively). In panel a, the star undergoes PPI, so I have to consider only the
stellar core. Here we see that the equatorial region has always enough angular momentum
to form a disk. Instead, the material in the polar region should collapse directly into the
BH. This is the most favorable scenario discussed above. On the other hand, in panel
b I have to consider the whole star since this model should not experience PPI when I
take MHe = Mf . Within the CO core, the situation is very similar to that in panel a.
However, the presence of the stellar envelope should prevent the jet from breaking out.

Figure 6.B.2: Same as in Figure 6.8, but the lilac regions refer to jeq > jcrit.

Figure 6.B.2 shows the corresponding accretion rates, crossing timescales, and free-
fall timescales. There are two main differences with respect to the models presented in
Figure 6.8. Since I split each shell into a polar and an equatorial region, only half of the
total shell mass can be accreted through the disk and power the jet. For this reason,
the mass accretion rate is a factor of 1/2 lower. This implies a difference of ∼0.3 dex in
log(Lacc). The other difference is in the crossing timescale. All models present a smaller
τcross for the jet powered by the inner core material. The difference is not that relevant
because it does not change the outcome of the jet-driven event (e.g. ∆τcross ∼ 0.14 s for
the őrst jet in the model Mi = 100M⊙, Z = 0, Ṁrdw, ω = 0.2). For models like the one
in panel a, τcross is set to zero. The reason is that the polar region is devoid of matter,
and thus the jet should freely propagate outward. Similarly, the second possible jet in
models following Figure 6.7b should have τcross = 0.

Appendix 6.C Interplay between pulsation-driven mass loss

and rotation

Currently, no description of the interplay between rotation and stellar oscillations is
included in PARSEC. However, it can easily be shown that such effects are negligible
under the conditions we are interested in. Indeed, I only consider radial oscillations,
which are unaffected by the centrifugal deformation (e.g. Saio 1981; Anderson et al.
2016). The magnitude of the remaining effects scales approximately as (P/Prot)

2, the
squared ratio between the pulsation and rotation periods (Anderson et al. 2016). To
assess the importance of such effects, the pulsation period can be approximated by the
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Figure 6.C.1: Squared ratio between dynamical timescale τdyn and rotation period Prot

as a function of time (log(t/yr)) for all stellar models computed in this work. For simplic-
ity and visualization convenience, these panels show (τdyn/Prot)

2 from t = 104 yr after
the beginning of the pre-main sequence until the end of computations. Different colors
indicate different initial rotational velocities, while different line-styles refer to the three
possible initial masses. The initial metallicity and the mass-loss recipe adopted in the
sets are indicated at the top of each panel. The three possible initial masses are in units
of M⊙.

dynamical time scale τdyn ∼
√

R3
∗/2GM (e.g. Catelan and Smith 2015).

Figure 6.C.1 shows the squared ratio between τdyn and Prot for all models considered
in this work. We see that there is a consistent difference between τdyn and Prot, with
a maximum squared ratio of ∼ 0.038 in panel c. The resulting effects should be within
at most ∼ 0.4%, thus indicating that rotation and radial pulsations should not inŕuence
each other.

Appendix 6.D Fit formula by Mapelli et al. 2020

I adopt the őtting formula by Mapelli et al. (2020), which relies on models by Woosley
(2017), to calculate the expected remnant mass of my models. The general expression for
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the mass of the remnant is mrem = αPmnoPPI, where mnoPPI is the mass I would obtain
without considering PPISN/PISN. In this work, I assume mnoPPI = 0.9Mf , to account
for mass loss due to neutrino emission (see Fryer et al. 2012; Rahman et al. 2022, and
references therein).

The őtting formula is a function of the helium core mass MHe, the őnal mass Mf , and
the parameters F, K, and S deőned as follows

F =
MHe

Mf
, K = 0.67000F + 0.10000, S = 0.52260F − 0.52974. (6.9)

Then, the coefficient αP reads

αP =































































1 if MHe ≤ 32M⊙, ∀F, ∀ S
0.2(K− 1)MHe + 0.2(37− 32K) if 32 < MHe/M⊙ ≤ 37,F < 0.9, ∀ S
K if 37 < MHe/M⊙ ≤ 60, F < 0.9, ∀ S
K(16.0 − 0.25MHe) if 60 < MHe/M⊙ < 64, F < 0.9, ∀ S
S(MHe − 32) + 1 if MHe ≤ 37M⊙, F ≥ 0.9, ∀ S
5S + 1 if 37 < MHe/M⊙ ≤ 56, F ≥ 0.9, 5S + 1 < 0.82916
(−0.1381F + 0.1309)(MHe − 56) + 0.82916 if 37 < MHe/M⊙ ≤ 56, F ≥ 0.9, 5S + 1 ≥ 0.82916
−0.103645MHe + 6.63328 if 56 < MHe/M⊙ < 64, F ≥ 0.9, ∀ S
0 if 64 ≤ MHe/M⊙ < 135, ∀F, ∀ S
1 if MHe ≥ 135M⊙, ∀F, ∀ S.
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§Chapter 7
Conclusion

In summary, this Thesis concludes by providing a concise overview of its various com-
ponents, each representing distinct stages of my doctoral exploration. Beginning with
Chapter 1, I introduced a unique category of stars central to the two studies presented
in this work. These stars exhibit distinctive traits, including a primordial chemical com-
position and an exceptionally high initial mass.

To explore this speciőc category of stars, I used the PARSEC code, employing it to
compute various stellar evolution models. Chapter 2 then delved into our stellar evolution
code, providing a comprehensive overview of its key aspects, beginning with the equations
governing stellar structure and evolution.

Subsequently, in Chapter 3, I provided a concise historical overview of stellar pulsa-
tions, honing in on massive and very massive stars. The discussion then shifted towards
the primary mechanisms governing stellar pulsations within this speciőc mass range, with
a speciőc mention of the work by Nakauchi et al. (2020). Drawing from their research, the
initial segment of this Thesis hinges on pulsation-driven mass loss in primordial very mas-
sive stars. I elucidated the integration of this novel mass loss mechanism into our PARSEC
code, distinguishing between two distinct phases: the MS phase and the red-supergiant
phase. In the former, radial stellar pulsations are propelled by the ϵ−mechanism, while
in the latter, the sustenance of pulsations is contingent upon the opacity of stellar matter,
known as the κ−mechanism.

In Chapter 4, I elucidated the evolutionary pathways of primordial very massive stars,
considering both radiation-driven winds and pulsation-driven mass loss, with a sensitiv-
ity to the Eddington factor Γe. These stars, initialized with masses of 100M⊙, 150M⊙,
200M⊙, 300M⊙, 500M⊙, 750M⊙, and 1000M⊙, were examined under two initial metal-
licity conditions: Z = 0 or Z = 0.0002. The interplay between the two distinct mass loss
mechanisms manifests dominance at different phases of stellar evolution. Contrary to ex-



78 Chapter 7. Conclusion

pectations for zero-metallicity or very-metal-poor stars, these models exhibit substantial
mass lossÐupwards of several tens or even hundreds of solar masses, particularly evident
during the MS phase owing to pulsation-driven mechanisms.

I traced the evolution of these models from the zero-age main sequence until the
initiation of the pair-creation instability, which occurs after the ignition of carbon, neon,
or oxygen, contingent upon the star’s initial mass. Models with an initial mass ranging
between 300M⊙ and 1000M⊙ are anticipated to culminate in direct collapse into a black
hole. Conversely, stars within the mass range 150 ≤ Mi/M⊙ ≤ 200 are not expected
to leave any remnants, as they are likely to undergo PISN. For lower mass models, the
expectation is for PPISN or, in the scenario of zero-metallicity, the possibility of failed
CCSN. In the latter case, the formation of black holes akin to the primary black hole
observed in the gravitational wave event GW190521 (MBH ≃ 85M⊙) is in agreement.

Subsequently, in Chapter 5, I explored the importance of stellar rotation, as a pivotal
process in stellar evolution. I outlined the key aspects of incorporating stellar rotation
into the PARSEC code, drawing inspiration from the work of Costa (2019); Costa et al.
(2019a,b)Ðfor detailed technical insights, readers are referred to these sources. Stellar
rotation inŕuences both the structure and mixing processes within a star, consequently
altering surface physical characteristics such as luminosity and effective temperature.
Moreover, it impacts the duration of nuclear-burning phases and ultimately shapes the
star’s őnal destiny. Additionally, the relationship between rotation, angular momentum
content, and the mass loss rate further underscores the interconnected nature of these
factors. Geometric distortions induced by rotation facilitate the ejection of external
layers, contributing to the removal of angular momentum from the stellar surface.

In Chapter 6, I explored the combined inŕuence of stellar rotation and various mass
loss mechanisms by introducing rotating stellar evolution models within the mass range
100 ≤ Mi/M⊙ ≤ 200. I recalculated the models presented in Chapter 4, incorporating
four different initial rotational velocities ranging from ω = 0.2 to ω = 0.5. Consequently,
these models comprehensively consider the effects of pulsation-driven mass loss. This
expanded set of calculations broadened the PARSEC parameter space, presenting, for
the őrst time in the literature, models of rotating very massive stars encompassing both
radiative winds and mass loss induced by stellar pulsations.

In this study, particular emphasis was placed on the ultimate destinies of these mod-
els, with a speciőc focus on the impact of stellar rotation leading to diverse jet-driven
events within the collapsar scenario proposed by Woosley (1993). Models undergoing
PPISN are anticipated to generate successful GRBs due to the absence of an extended
stellar envelope in the progenitor. On the other hand, models undergoing DBH forma-
tion are expected to give rise to jet-driven supernovae, signiőcantly inŕuencing the mass
of the resultant BH. In these cases, due to envelope ejection, the models should yield
black holes within the pair-instability BH mass gap, consistent with those observed in the
primary and secondary black holes of the GW190521 merger event. Various values for
the accretion-to-jet efficiency were considered, leading to different expected luminosities
for GRBs and jet-driven supernova events. This variability inŕuences the detectability
of successful GRB explosions by the Swift-BAT X-ray detector, while the observabil-
ity of the afterglows produced by these progenitors should be attainable using current
telescopes, such as the JWST.

To wrap up this study, an analysis was conducted on the progenitors under varying
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assumptions regarding the initial BH mass and a distinct moment of inertia distribution
for the polar and equatorial stellar regions. The outcomes remain largely consistent
when considering different initial BH masses. However, in the latter scenario, where
the moment of inertia is split between the polar and equatorial regions, the equatorial
region plays a crucial role in the formation of the accretion diskÐthe engine of the
jet-driven event. Meanwhile, the polar region inŕuences the jet’s propagation through
the progenitor. In this context, the most favorable conditions for a successful GRB
event involve a high speciőc angular momentum in the equatorial region, facilitating the
generation of a powerful jet, and a low speciőc angular momentum in the polar region,
promoting the collapse of that part of the star and facilitating the propagation of the jet
through a hollow region.

These various investigations into primordial very massive stars could serve as a foun-
dation for enhancing our comprehension of this speciőc stellar category. Future studies
have the potential to expand the explored parameter space by augmenting the initial
mass and, notably, by considering higher initial rotational velocities for the stellar mod-
els. Additionally, there is an opportunity to delve into more advanced phases of these
stars’ evolution, particularly focusing on models that are anticipated to result in failed
CCSN.

Other physical processes could affect the evolution of my models, which I did not take
into account in this Thesis. The őrst one, as mentioned in Section 6.3, is the presence of
magnetic őelds. They impact the evolution of massive and very massive stars in different
ways. First of all, as already discussed, there is the transport of angular momentum from
the core to the outer layers of the envelope. Magnetic angular momentum transport can
impact the rotational velocity proőle of the star, leading toward solid-body rotation, and
thus slowing down the core of these models. This, in turn, could change the expected
GRB event from these progenitors.

Magnetic őeld lines are very efficient in transporting angular momentum but also
can play a big role in the rotational instabilities developing throughout the star. In this
way, meridional currents increase and therefore affect the internal mixing of the different
chemical species (Maeder and Meynet 2005). On top of this, two more factors can alter
the evolution of this kind of stars: magnetic braking and mass loss quenching. The
former is due to the higher loss of angular momentum through mass loss; while the latter
is caused by the coupling of magnetic őeld with stellar winds. The magnetosphere of the
star traps stellar matter, which eventually falls back onto the star. Therefore, this effect
reduces the mass loss rate expected via stellar winds (Walder et al. 2012; Keszthelyi
2023). These effects could heavily impact the őnal mass of these models and thus the
expected mass of the BHs formed by these progenitors.

The second process is the evolution of massive stars in a binary system. Binarity is
a paramount aspect since the majority of massive stars are in binaries or higher-order
multiples (e.g., Sana et al. 2012; Moe and Di Stefano 2017). The most impactful difference
between single-stellar evolution and binary evolution is the possibility of mass transfer
interactions. When and how these interactions take place are linked to the őlling of the
donor’s Roche lobe and the expansion or contraction of the donor’s radius with respect
to its Roche lobe (Costa et al. 2023a). In turn, this stellar interaction is dictated by the
evolution of stellar radii and how energy is transported through the stellar envelopes.

As one would expect, mass transfer impacts in a different way donor and accretor
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stars. In the former, the helium core growth could be limited by envelope stripping and
thus affect the őnal fate of the star. This depends on the evolutionary stage at which
the őrst mass-transfer interaction occurs, along with its efficiency. The őrst interaction
also depends on the stellar metallicity. For high-metallicity stars, this interaction should
occur earlier due to the radial expansion of the star and with a higher efficiency due to
the higher expected mass loss rates. In this case, the donor should become a WR star and
produce a lower-mass compact object. On top of this, the degree of envelope stripping
may affect the subsequent evolution of the binary such as the orbital separation and the
possibility of unbinding the system.

On the other hand, mass accretion can signiőcantly rejuvenate the accretor star, which
can develop a bigger helium core. This could imply a higher mass compact remnant.
The accretor also gains angular momentum therefore increasing its rotational velocity.
However, the subsequent evolution of the star should be different compared to a faster
rotating higher mass model computed within the single stellar evolution scenario. The
reason is the different impact of the accretion on the stellar core, which could experience
only in a partial way the mass and angular momentum gained by the external layers.

Effects other than the mass transfer interaction could be due to tidal forces and
the emission of gravitational waves. The former ones reduce the eccentricity and set
the stellar spins perpendicular to the orbital plane. The stars could even be tidally
locked thus fostering a chemically homogeneous evolution. I do not őnd this chemically
homogeneous evolution among my models but it could be crucial in yielding binary BH
systems due to the reduced orbital separation.

In future studies, we will investigate the effects of both magnetic őelds and binary
evolution that can be crucial for these primordial very massive stars, especially for their
expected remnants and GRB events. Another avenue for future exploration is the critical
consideration of stellar opacity, as improvements in this aspect could not only alter the
position of our models in the H-R diagram but also signiőcantly impact internal struc-
ture and ensuing chemical mixing. Enhanced opacity might induce deeper or shallower
DUP episodes, consequently inŕuencing the evolution of the helium core and, in turn,
substantially altering the őnal fate and expected remnant mass of these massive and very
massive stars.
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§Appendix

A
A python routine to

identify the critical

points

A.1 Introduction

The critical points along a stellar track previously computed with a stellar evolution code
(e.g. PARSEC), are of fundamental importance because they deőne sections of tracks that
can be safely interpolated during the process of creating isochrones.

For stars with mass greater than ∼ 2M⊙, the total number of critical points that
we deőne is 15, where the last one corresponds to the onset of thermal pulses during the
AGB phase or the ignition of carbon in the core (see the 5M⊙ star in Figure A1). This
last distinction depends on whether the initial mass Mi exceeds ∼ 8M⊙ or not. For
stellar models with Mi > 2M⊙ there are 6 or 11 critical points depending on whether
the track reaches the end of the main sequence or not.

In the following sections, there will be a brief description of each critical point and
how they are found in the routine, in order to provide for them a more righteous stellar
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Figure A1: HRD of a 5M⊙ Z = 0.004 model. The evolution starts at the PMS phase
and ends at the őrst thermal pulse during the AGB phase. For this intermediate-mass
star, there are 15 critical points highlighted in red.

evolutionary context besides the mere python code one.

A.2 Beginning of the pre-main sequence phase

The őrst critical point, PMS_BEG, corresponds to the őrst model along the track which
has an age bigger than 0.2 yr, since before that there are some őctitious models generated
by the stellar evolution code.

Then there is the őrst deőnition of the critical point PMS_END, though it will be
found later on in the code. This point corresponds, now, to the last model which has
a central temperature Tc > 106K and the luminosity due to gravitational contraction
Lgrav > 60%Ltot, this index is referred to as ipms.

Before going on with the other critical points, there is a very important step where
the code deőnes the end of each track in the set. This is done to search for critical
points only up to this model. The point tra_end will be useful also in the deőnition of
the last critical point for intermediate and massive stars. The őrst differentiation, only
for those tracks that have an initial mass M < 8M⊙, is whether or not the last model
available has a central helium abundance Y = 0. If this is the case, models with Y = 0
and the luminosity due to the carbon burning, with respect to the total one, LC > 3
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are considered, where the total number of such models is cnt1. Then, also models with
Y = 0 and LC > Lν are taken into account, where Lν is the neutrino luminosity, with
cnt2 the total number of these models. If any of these two counts, cnt1 and cnt2, is
non-zero, then tra_end is deőned as the őrst model with the characteristics described
above.

In the case where we have both cnt1 and cnt2 bigger than zero, then tra_end is the
maximum between the őrst models that have LC > 3, Y = 0 and LC > Lν , Y = 0.
For stars that have both cnt1 and cnt2 equal to zero, I consider models with Y = 0,
LY > 3, LY being the luminosity due to helium burning, and MCO > 3

4 MHe. If there
are models with these properties, then tra_end is the őrst one among them. Instead, if
there is not at least one model like this, then tra_end is set to the last model available
for the track.

The same deőnition of tra_end is applied to those tracks that have an initial mass
M ≥ 8M⊙ or Y > 0 for the last model available, i.e. those tracks that do not fulőll the
őrst differentiation.

Finally, there is one last case: if the initial mass of the star M < 3M⊙, then is
considered the őnal hydrogen abundance at the center of the star. If this latter is zero,
the code looks for those tracks that are still burning helium in the last model available:
for this kind of stars tra_end is set to the last model with X > 0.

A.3 Beginning of the main sequence phase

To őnd the beginning of the main sequence phase, MS_BEG, the arrays with the dif-
ferential increment in x and y axis of the HR diagram are created from those with the
logarithm of the effective temperature Teff , logte, and the logarithm of the luminosity
L/L⊙, logl. This differential increment reads

dx =
log(Teff)[1 : nmod]− log(Teff)[0 : nmod− 1]

max(log(Teff)−min(log(Teff)
, (A.1)

where nmod is the last index of the array here considered and this goes as well for the
array dy derived from logl.

Having found dx and dy, the derivative of the position in the HR diagram is

ds_dt =
√

(dx2 + dy2)/dt, (A.2)

where dt contains the time step for each model.
Now I take the minimum in ds_dt, dmin, but considering only models after the

possible end of the pre-main sequence phase, meaning after ipms, where the central
hydrogen abundance is higher than Xi − 0.2, with Xi the initial hydrogen abundance.
Then, the beginning of the main sequence phase is the last model before dmin where
ds_dt is ten times larger than dmin. This procedure is followed őrst for those tracks
that during their evolution deplete hydrogen in their core and then for those that do not
complete the main sequence. In this latter case, the only difference is that the model for
the beginning of the main sequence is still chosen among those that have a ds_dt value
ten times bigger than dmin, but it is not simply the last one. It is the last model for
which ds_dt is bigger than all models that follow. Before the next critical point, two
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arrays are calculated as follows

dl_dt =
dy

dt ·max(dt)
(A.3)

dte_dt =
dx

dt ·max(dt)
, (A.4)

which are the time derivatives for luminosity and effective temperature.

A.4 Critical points in pre-main sequence phase

Here I consider all models between the PMS_BEG critical point and the index ipms.
First of all, the őrst model with central temperature Tc greater than 106K is found (i.e
imin1), and then the code searches for the minimum luminosity among all models up
to imin1. If this minimum occurs before the luminosity minimum of all models up to
ipms, then it is set to this latter value. Moreover, if this is the case ipms is reset to the
model with the maximum luminosity, imaxlum, if this latter occurs later than the overall
minimum and before ipms.

Finally, there is one last check: if the index corresponding to the minimum luminosity
is exactly ipms, then is set to the last model with central temperature Tc lower than that
corresponding to the luminosity minimum of the previous track analyzed. So with this
procedure are found the two critical points PMS_MIN and PMS_END.

A.5 Point B during the main sequence phase

To őnd this critical point, stellar tracks are divided into different cases according to the
properties of their evolution.

The őrst differentiation is whether or not a star reaches a central hydrogen abun-
dance 0 < X < 0.4; if this is not the case, then POINT_B corresponds to the last
model of the track. This situation occurs for very low mass stars, approximately with
a mass M ≲ 0.5M⊙. For the positive case, the second differentiation is whether or not
there are models with the central hydrogen abundance 0.001 < X < 0.4, the luminosity
due to contraction of the star Lgrav > 0 and a mass of the convective core, given by
Schwarzschild criterion, QSCHW > 0. Then, assuming that there are some models with
these characteristics and that they are grouped in an array, it is considered the őrst
such model with its index being not consecutive with respect to that of the following
model in the array. From this one, namely ipb, are considered models with an effective
temperature Teff lower than that of ipb, but only in a range of 50 indexes from ipb,
with this latter included. Finally, POINT_B is the model with the minimum effective
temperature among these, but only in the case that X < 0.05 for this model, otherwise
POINT_B becomes the last model with X ≥ 0.05.

In the case where the track never fulőlls the requirements in the second differentiation,
then ipb is set to the last model with the luminosity due to hydrogen core burning
Lx > 0.5. Here there are two different sub-cases: if ipb has a hydrogen central abundance
X ≤ 0.05, then POINT_B is the őrst model with X ≤ 0.05; instead, if at ipb X > 0.05,
then POINT_B is the last model with X ≥ 0.05.
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A.6 The NEAR_ZAMS critical point

For stellar tracks with an initial mass M > 5, the effective temperature and the stellar
luminosity at the end of the pre-main sequence phase, ipms, and at POINT_B, ipb, are
stored in different variables, respectively xa, xb for Teff and ya, yb for the luminosity.
Then, is considered the effective temperature of all models between ipms and ipb, and
the core stores these values in the xxx array. The next step is to calculate the luminosity
corresponding to this temperature array with the following interpolation

yyy = ya +
yb − ya
xb − xa

(xxx− xa). (A.5)

With this new array yyy, the point NEAR_ZAMS, ilmin, is the model for which
yyy[i]-log(L)[i] is maximized, where i is the index of the model.

Instead, for stars with M ≤ 5, only those models with X > 0.2 are considered. Here
ilmin is the minimum luminosity among those models; if ilmin occurs after the fourth
model before the beginning of the main sequence phase, imsbeg, then ilmin is set to
imsbeg-4. In the case where ilmin < ipms+2, meaning before the second model after the
end of the pre-main sequence phase, ipms is set to ilmin-2 and NEAR_ZAMS remains
ilmin.

After this critical point, the code skips the research for the following ones for stars that
don’t deplete the hydrogen in the core, therefore stellar tracks that have an incomplete
main sequence phase have only 6 critical points.

A.7 Point C during the main sequence phase

Here are considered models, after ipb, with Teff greater than that of POINT_B; then
ipc, the index for the critical point POINT_C, is set to that model among these with
the maximum Teff . If there is not at least one model with the characteristics described
above, then for this critical point I take the őrst model which has X = 0. Finally, if
neither of these is the case, then POINT_C coincides with the last model for the track,
i.e. tra_end.

A.8 The tip of the red-giant branch: RG_TIP

For this critical point, the stellar tracks are divided into three categories. For those
that do not extinguish helium in their core, RG_TIP, with index itip, is the model with
the minimum effective temperature between the beginning of the main sequence and
tra_end. For those that do extinguish helium, models with a central helium abundance
Y > 0.9− Z are considered, where Z is the initial metallicity of the star. In this case,
RG_TIP coincides with the minimum Teff among those models. The last possible kind of
track in the research of this critical point is a track that has an incomplete main sequence
phase, i.e. a very low-mass star. For this kind of tracks, RG_TIP is set to tra_end.
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A.9 The base of the red-giant branch: RG_BASE

First of all, in this section, I consider all models in the tracks between ipc and itip,
with the latter being included while the former is not. Once I have both the luminosity
and the effective temperature for each one of these models, with all these values stored
respectively in the l_ and te_ array, I use the following relation to compute the array
dist2

dist2 =
|l_ − log(L)[ipmsmin]|
|max(l_)−min(l_)| +

|te_ − log(Teff)[ipms_min]|
|max(te_)−min(te_)| , (A.6)

where the minimum of this latter is stored in the variable irgbb.
Then in iminrgbl and aveteff are stored the index of minimum luminosity among these

models and the index of average Teff , respectively. If iminrgbl > 0, the corresponding
minimum luminosity is lower than log(L)[irgbb] and the corresponding Teff is lower than
the average one, then irgbb is set to iminrgbl. After that, there is a check performed
only for low-mass stars, i.e. those stars that do not extinguish helium in their core.
Here, models with QDISC > 0 and X = 0 are taken into account, where QDISC is the
fractional mass, normalized to the total value, of the őrst mesh point in the stellar track
where the chemical composition changes with respect to the stellar surface, i.e. the end
of the external envelope of the star in mass coordinate. Then, the minimum QDISC
value for these models is calculated, i23, and irgbb is set to the minimum between irgbb
and i23. The őnal step for this critical point is to check whether or not irgbb is a "false"
red-giant branch base. If log(Teff) > 3.9 or LY > 0.99, then the red giant branch base
is too hot and so irgbb is set to itip-20. In this latter case, RG_BASE is "false", while
in all the other possible cases the critical point RG_BASE set to irgbb is a real feature
of the stellar track.

A.10 Luminosity bumps during hydrogen shell burning

For this critical point, the őrst distinction is whether or not a star is a low-mass star
(see for example the 0.8M⊙ model in Figure A2), i.e. whether or not it extinguishes
helium in its core. If this is the case, we consider models between irgbb+1 and tra_end
with an helium core mass 0.1M⊙ < MHe < 0.4M⊙. After that, among these models is
selected the őrst one that has a greater luminosity compared to those that follow and
those that precede. The index of this model is indicated as isearchbump. If this latter is
either zero or bigger than itip then it is set to (itip + irgbb)/2 and the index of the őrst
bump, irgbbp1, is set to isearchbump. The next step is to consider models after the őrst
bump with a luminosity log L < log L[irgbbp1] + 0.1. The irgbbp2 index, corresponding
to the second bump, is then set to minimum luminosity for these models. If irgbbp2 is
not the following model with respect to irgbb1, then the second bump is kept to irgbbp2,
while in the other possible case, irgbbp2 is irgbbp1 plus the difference between irgbbp2
and irgbbp1 for the previous track. Finally, for this kind of stars, an additional check.
If there is not a single model such that dl_dt[irgbbp1 + 3 : irgbbp2] < 0, then irgbbp2
is set to irgbbp1+10. In the opposite case, the index irgbump1 is set to the őrst model
with those characteristics. Having irgbump1 smaller or equal to irgbbp1+3, irgbump1
takes the value of irgbbp1, otherwise irgbump does not change. Now I take into account
those models after irgbbp1+3 that have dl_dt < 0 and L < L[irgbump1]. If the track
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does not have any of such models then irgbump2 = irgbbp2, otherwise irgbump2 is the
last model among these. After that, irgbbp1 = irgbump1 and irgbbp2 = irgbump2, but
this latter only if the luminosity of irgbump2 is smaller than that of irgbbp2.

Figure A2: HRD evolution of a stellar track with Mi = 0.8M⊙ and Z = 0.004. The
inset shows the temporary decrease in luminosity when the h-burning shell crosses the
hydrogen discontinuity left by the őrst DUP episode.

The research for luminosity bumps now continues for intermediate and massive stars,
if they do not have a false red-giant branch base. The index isearchbump is found in the
same way as before. In the case that isearchbump is larger or equal to itip then it is set
to (itip + irgbb)/2, but if isearchbump is not found, i.e. it is equal to irgbb+1, then this
index becomes the őrst model, after irgbb+1, with a luminosity larger than l_med; with
this latter computed as follows:

l_med = log(L)[irgbb] +
log(L)[itip]− log(L)[irgbb]

3
, (A.7)

and eventually, irgbbp1 is set to isearchbump. Moreover, now following what has been
done for lower mass stars, irgbbp2 is set to the minimum luminosity between irgbbp+1
and itip. If irgbbp2 is not the following model with respect to irgbbp1 then we keep its
value, otherwise, irgbbp2 is equal to irgbbp1+1+dirgbbp, where this latter is equal to:

dirgbbp = min

{

5,max

[(

itip− irgbbp1

2

)

, 1

]}

. (A.8)
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After this, there are two last checks: if irgbbp2 coincides with itip then irgbbp2 =
itip-1, and if irgbbp1 = irgbbp2 then the previous one is set to irgbbp2-1. Finally, for
intermediate and massive stars that have a "false" red-giant branch base, irgbbp1 is equal
to itip-12 and irgbbp2 is itip-8.

A.11 Blue-loop during CHeB

Three different points characterize this evolutionary phase of intermediate and massive
stars: LOOP_A, LOOP_B, and LOOP_C. First of all it’s found the last model with
X = 0 and Y > 0.1, imx, and then the index of minimum luminosity and maximum
effective temperature for those models between itip+1 and imx, minl, and mxte respec-
tively, with ltmax as the luminosity of this latter. If minl > mxte, minl is set to the
index of minimum luminosity between itip+1 and mxte and the ŕag lmin_before_tmax
is set to false. After that, all models between itip+1 and imx with a luminosity smaller
than that of imx are considered, where the őrst one among these is called istart. If this
latter does not coincide with itip+1, then the following search is performed for all models
between istart and minl. Each one of these models is considered singularly inside a "for
loop": with respect to model j, those between itip+1+j and imx with a luminosity bigger
than L[j] are taken into account. Then, the őrst one of these is called ipara and it is
computed the following:

dt = log(Teff)[ipara]− log(Teff)[j]. (A.9)

The indexes ipm1 and ipm2 are set to respectively j and ipara if dt is bigger than
maxdt, which initially is set to a negative value, and if this is the case, maxdt = dt
at the end of the iteration. In this way, when the "for loop" is over, ipm1 and ipm2
are the two models with the biggest difference in effective temperature where ipm2
is the őrst model that has a luminosity bigger than that of ipm1. A őrst check on
ipm2 follows: if mxte > ipm2 and ltmax > log(Teff)[ipm2], then ipm2 is set to mxte.
A second check on ipm1 and ipm2 is performed after that: if |ipm2− ipm1| < 10 or
max(log(Teff)[itip + 1 : imx])− log(Teff)[ipm2] > 0.2, then ipm2 is set to the model with
maximum effective temperature between itip+1 and imx, minl is now the index of the
minimum luminosity between itip+1 and ipm2 and őnally even ipm1 is reset. If there
are models between itip+1 and minl that have a luminosity smaller than that of ipm2,
then ipm1 is the őrst one among such models, otherwise, ipm1 is set to minl/2.

Another "distance" in the HR diagram is now computed as follows:

dt2 =

[

log(L)[minl + 1 : imx]− log(L)[ipm1]

max(log(L)[minl + 1 : imx])−min(log(L)[minl + 1 : imx])

]2

+ (A.10)

+

[

log(Teff)[minl + 1 : imx]− log(Teff)[ipm1]

max(log(Teff)[minl + 1 : imx])−min(log(Teff)[minl + 1 : imx])

]2

.

The index corresponding to the minimum of dt2 is then called ipm3. This index ipm3 is
useful in the following check: if the ŕag lmin_before_tmax is false, minl1 corresponds to
the index of minimum luminosity between ipm3 and imx, if minl1 is bigger than ipm3,
then this latter is set to minl1 and if ipm2 > minl, then minl and ipm2 are switched.
After this check, ipm3 is set to the őrst model with Y = 0 and two őnal checks are
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performed: if minl coincides with itip then minl is set to itip+2 and if minl ≥ ipm2 then
ipm2 is set to minl+5.

Finally, having minl, ipm2, and ipm3 these three indexes correspond respectively to
the critical points LOOP_A, LOOP_B, and LOOP_C.

A.12 Final critical point: TPAGB or C_BUR

For this last critical point, the deőnition of tra_end that we saw earlier in ğA.2 now
comes in handy. The critical point C_BUR is set to tra_end if there is at least one model
within the track with a luminosity due to carbon burning LC > 3 and Y = 0, otherwise
to the index tra_end corresponds the critical point TPAGB. These two different cases
correspond to massive and intermediate-mass stars, respectively. There is an exception
regarding intermediate-mass stars, for which the last critical point is set to HEBTP,
where this latter stands for helium before the thermal pulse. If the current track has at
least one model, after the end of core helium burning, with the luminosity due to helium
burning LY > 2 and LY > 3 · LX, where LX is the luminosity due to hydrogen burning,
then a thermal pulse is present. HEBTP is set to the last model with LY < 3 · LX

before the őrst thermal pulse in the track.

A.13 Critical points for WR stars

If a massive star, initial mass M > 10M⊙, has a ratio between initial and őnal mass
below 0.8 and reaches an effective temperature log(Teff)[tra_end] > 4.5 (and also is not
the only one with these characteristics in the set), then it is considered a WR star. This
kind of stars is treated differently from the others, and so the critical points of a WR star
are not the same as those seen so far, except for PMS_BEG, MS_BEG, and C_BUR.

A.13.1 Critical points in pre-main sequence phase

During the pre-main sequence phase, the same two points, PMS_MIN and PMS_END,
are found. In this case, the deőnition of the previous one, imin, is simply the minimum
luminosity along the track before ipms, with this latter included. If PMS_MIN coin-
cides with the beginning of the pre-main sequence phase, then imin is set to ipms/4.
PMS_END holds the deőnition of the end of this phase that we found above.

A.13.2 Point B and Point C

For a track that eventually becomes a WR star, the two points described above after
the beginning of the main sequence, POINT_B and POINT_C, are computed with a
slightly different deőnition. Here POINT_B is set to the last model with X > 0, while
POINT_C, with index ipb1, is the őrst model that has X = 0, Y > 0 and LY > 0.01.

A.13.3 Critical points HE_HE and He_08

The index ipb2 refers to the last model with X = 0, Y > 0.8 and LY > 0.01. If
ipb2− ipb1 < 10, then the new value for ipb1 is ipb1-6, while ipb is set to ipb2-3;
otherwise, in the other possible case, minipb is set to the index of minimum effective
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temperature between ipb1 and ipb2. If minipb > ipb + 3 and minipb < ipb2− 3, then
ipb is minipb, else ipb is (ipb1 + ipb2)/2. Having ipb and ipb2, these two indexes corre-
spond to the critical points HE_HE and He_08, respectively.

A.13.4 Other critical points during CHeB

There are 6 other critical points regarding this type of track, bringing the total number
of critical points to that found for intermediate and massive stars.

Namely they are He_06, He_05, He_04, He_02, He_01 and He_001. The őrst three
are found as the last model in the track that has X = 0, LY > 0.01 and, respectively,
Y > 0.6, 0.5 or 0.4. For the last three, instead, the őrst two conditions are the same,
while the third one is, respectively, Y < 0.2, 0.1 or 0.01, where the critical point is set
to the őrst model with these characteristics.

So, all the possible tracks inside a set have now been processed and all critical points
available for each track have been found; this leaves us with an output őle that shows all
the critical points found for each track in an ordered table.

A.14 Critical points for HB stars

In the code, there is another section separated from the main one, other than that
regarding WR stars. Here the focus is on stars in the so-called HR diagram horizontal
branch. These are low-mass stars that successfully evolve beyond the helium-ŕash and
after that start to burn helium in a non-degenerate core. This HR diagram feature is
explained by the fact that all low-mass stars start to burn He with approximately the
same core mass, hence the luminosity during this phase is almost entirely independent of
the initial mass of the star. To properly model the evolution of a low-mass star through
the helium ŕash and the consequent helium burning, the evolution of this kind of stars is
resumed after the ŕash with a stellar track that burns helium in its core having a smaller
total mass, since the experienced mass loss during the Red-Giant phase.

The őrst critical point, He1, is set to the őrst available model in the track, which
corresponds to the beginning of the core helium burning phase. Then, there are eight
critical points, He0.5, He0.4, He0.3, He0.2, He0.1, He0.01, He0.001 and He0, that refer to
the last model where the central helium abundance is greater than 0.5, 0.4, 0.3, 0.2, 0.1,
10−2, 10−3 and 10−5, respectively. Finally, the last critical point in this kind of tracks
is HEBTP as deőned in ğA.12, or, in case this latter can not be found, it is the last
available model, which is labeled HeLST.

A.15 Input őles for TRILEGAL and IDL

In the following, the two main possible output őles of the code are described, which then
can be used as input őles for isochrones computing codes such as TRILEGAL (Girardi
et al. 2005; Marigo et al. 2017) and an IDL routine. The main difference between the
two possible formats of the output őles is the number of models that are written for
each track. To select those models that are going into the őnal őle is used the function
"compute_selmods", whose main task is to return the selmods array containing the
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indexes of the selected models. Through the parameter "shstep" it is possible to set how
many models will be in the output. The variable "nsteps" is computed as

nsteps =
max(sh)

shstep
, (A.11)

where sh is the cumulative sum of the derivative of the position in the HRD during the
track’s evolution. So, by increasing or decreasing shstep you can decrease or increase
the number of the models in the output respectively. Then, if nsteps is smaller than the
total number of models present in the track, the array selmods is calculated with a linear
interpolation as

selmods = np.interp(shvals, sh, tmd), (A.12)

where shvals = shstep ∗ np.arange(nsteps) and tmd = np.arange(nmod), with "nmod"
corresponding to the model of the last critical point.

Figure A3: HRD with a set of 91 stellar tracks by Nguyen et al. (2022). The diagram
shows the evolution from the PMS until carbon ignition, the őrst thermal pulse in the
AGB, the helium ŕash, and the end of the MS for massive, intermediate, low, and very
low-mass stars, respectively. In red, there are the critical points found for each track in
the set. Numbers indicate the initial mass in M⊙ of 10 selected stellar tracks.

Having computed selmods for each track in the current set, you can choose the format
of the output őle setting the parameters "trilegal" or "idl" to true. In the őrst case,
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usually, shstep is 0.017, while for the latter is 0.004. For TRILEGAL there are three
possible formats: default, rot, and sismo. For each one of these, you can choose to create
the őle INT2, LOW2, or HB2 or instead INT, LOW, or HB for IDL format.

If you choose this latter then in the őle INT will be printed a total of 24 columns, from
the F7 őle, including data about nuclear abundances and rotation-correlated quantities,
for each model present in the selmods array for all the tracks in the set. As preliminary
information in the őrst lines of the output, there are the numbers of very low, low,
intermediate, massive, and very massive stars in the set; the number of models in the
selmods array for each track, and also their masses. After the last model of the last
track, there is the total number of critical points found for each track (see Figure A3
for a visual example) and the models in selmods corresponding to these critical points.
Finally, the He core mass at the beginning of the thermally pulsing AGB phase is printed
for all tracks with kind=3. The LOW and HB őles are very similar to INT, but in the
former, only very low and low tracks are present, while in the latter there are only HB
tracks.

The rot format (for INT2, LOW2, and HB2) of TRILEGAL is quite similar to the
INT output of IDL, except for the number of models that are written; while the default
format contains only 11 columns without any information on nuclear abundances and
rotation.
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§Appendix

B
Algorithm for

isochrones

B.1 Introduction

Given a set of tracks of masses Mi, with i = 1, 2, 3, . . . , we have information about stellar
properties (L, Teff) along vertical lines in the age versus mass diagram of Figure B1. The
problem of making isochrones is that of deriving the same information for an arbitrary
horizontal line, of age t0, in this diagram.

The interpolation of L and Teff is better (and easier) if performed between points of
equivalent evolutionary stage located on two neighboring tracks. Thus, it’s convenient
to change the representation and use the "evolutionary stage" versus mass diagram in
Figure B2.

Isochrones in this diagram run diagonally. The intersection of an isochrone t0 with any
evolutionary track is straightforward to őnd (dots in the őgure). This already gives you
some (very few) points in the isochrone. The problem, instead, is to derive interpolations
of L and Teff , for a given age t0, between any pair of equivalent evolutionary points.
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Figure B1: Age versus mass diagram with 7 stellar tracks. The red horizontal line at
t0 represents an example of isochrone. The black dots along each dashed curve show
equivalent evolutionary points for the end of the MS, the beginning of helium burning,
and the end of cHeB.

B.2 Deőning equivalent evolutionary stages

The important evolutionary stages are the points j, with j = 0, 1, 2, 3, . . . . They can be,
for instance, points of maximum and minimum L and/or Teff along the tracks. The end
of the MS phase (with central X=0) is an important stage and deőned for all tracks.
Other important stages are the points of maximum and minimum Teff during the overall
contraction phase at the end of the MS, but they can be deőned only for stars with
M > 1.1M⊙. This is not a problem, as we’ll see later.

Once you have deőned the important stages, you should isolate, one at a time, the
squares drawn in the plane of Figure B2. Every square is limited by: two adjacent tracks
i and i+1, of masses Mi and Mi+1 and two subsequent evolutionary stages, j, and j+1.
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Figure B2: Evolutionary stage versus mass diagram. Each horizontal line in this plot
is a line of equivalent evolutionary stages. The red line shows an example of isochrone,
which in this diagram runs diagonally. There are the same three evolutionary stages as
in Figure B1. The black dots indicate the intersections between the isochrone and the
evolutionary tracks.

B.3 Interpolations inside a square

Figure B3 details one of these squares. The corners of the square are the points with ages
tji, t

j+1
i (both along the track i), and tji+1, t

j+1
i+1 (along the track i+1). First, we should

know if the isochrone t0 crosses it: if (tji < t0 < tj+1
i ) or (tji+1 < t0 < tj+1

i+1) then continue
to work with this square, else jump to the next square.

Let us suppose the isochrone crosses the square from a to b as shown in Figure B3. For
every point over the őrst track i, we should őnd an equivalent point over the track i+1.
This is easy. This point over the őrst track has an age t, which satisőes tji < ti < tj+1

i . It
is located at a fraction f1 = (ti − tji)/(t

j+1
i − tji+1) of the interval [tji, t

j+1
i ]. An equivalent

point over the second track is the one located at the same fraction f1 of the interval
[tji+1, ti + 1j+1]. By using the formula f1 = (ti+1 − tji+1)/(t

j+1
i+1 − tji+1) where only ti+1 is

unknown, we can őnd the age ti+1.
Then, we single out the values of L and Teff for the points of age ti and ti+1. This is

also easy since you have a lot of points in every evolutionary track.
Now, we test if the age ti and ti+1 contain a point of the isochrone: we test if

ti < t0 < ti+1 or ti > t0 > ti+1. If this is the case, the isochrone age is located at a
fraction f2 = (log(t0)−log(ti))/(log(ti+1)−log(ti)) of the interval [ti, ti+1]. This fraction f2
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Figure B3: Detail of one of the highlighted squares in Figure B2. This illustrates the
interpolation process at the basis of isochrone construction. See text for more details.

is then used to interpolate the quantities L and Teff between the two tracks. For instance
f2 = (log L/L⊙(t0)− log L/L⊙(ti))/(log L/L⊙(ti+1)− log(ti)), where only log L/L⊙(t0) is
unknown, or log L/L⊙(t0) = (1− f2) ∗ log L/L⊙(ti) + f2 ∗ log L/L⊙(ti+1).

Why did I use log(t) instead of t for computing f2? Because I want to estimate
also the mass of the isochrone point, and, for the main evolutionary stages, logM scales
more or less linearly with log(t). This means that by using log we can safely use linear
interpolations between the quantities on the different tracks.

The stellar mass of the isochrone point, Mt0 , is found using log(Mt0) = (1 − f2) ∗
log(Mi) + f2 ∗ log(Mi+1). Then, we have found M, log L/L⊙, and log Teff for a single
isochrone point. You repeat the process for as many points as you want over the track.
When you őnish the interpolations inside a square, you jump to the next square between
the tracks [i, i+1]. When you őnish the tracks [i, i+1], you jump to the tracks [i+1, i+2].
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B.4 Interpolating between tracks with different numbers of

equivalent evolutionary stages

Figure B4 illustrates the situation we őnd passing from stars with radiative to convec-
tive burning core: suddenly we have to consider the important evolutionary stages of
minimum and maximum Teff which delimit the overall contraction phase.
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Figure B4: Example of HRD with four different evolutionary tracks, and the transposition
in the corresponding evolutionary stage versus mass diagram. These two plots show the
transition from tracks with radiative core hydrogen burning to those with a convective
one. The black dots show the corresponding equivalent points in the two cases.

This situation is dealt very simply with the "squares algorithm" described above.
The right panel of Figure B4 shows the sample of squares for some tracks, limited to
those that comprehend the core H-burning. For masses M < 1.1M⊙, the complete MS
is described by a single square per pair of tracks, whereas for M > 1.1M⊙ we need 3
squares per pair. M = 1.1M⊙ is the transition mass: passing from left to right, we
simply introduce additional squares, taking care that the deőnition of the equivalent
evolutionary stages is consistent (notice e.g. that for M < 1.1M⊙ the stage Xc = 0 is the
second one, whereas for M > 1.1M⊙ it becomes the fourth one).

B.5 Practical issues

It is convenient to deal with small tables containing a limited number of points per
track (about 200 models well distributed on the HR diagram), in which the important
evolutionary stages are marked. Mark the equivalent evolutionary points with a simple
(increasing) number so that the code can easily identify which points to use in the square
corners. When the number of equivalent points increases (e.g. the case of the 1.1M⊙

track in Figure B4), the simplest thing to do is to write this track twice. The őrst
time with a smaller number of equivalent points, the second time with more equivalent
points. In this way, you have always pairs of tracks with the same number of squares to
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interpolate between.

B.6 Practical application

For this application, I selected the stellar models shown in Figure A3, computed by
Nguyen et al. (2022). Then, I divided each track within the set into evolutionary phases
with the python code presented in Appendix A. Next, I adopted the TRILEGAL code
to construct the isochrones by interpolating the stellar properties as described in the
sections above. The present algorithms have been used in Nguyen et al. (2022) and are
now being adapted to the more complicated case of Volpato et al. (2023) tracks.

Figure B5: Theoretical isochrones calculated with the TRILEGAL code. The diagram
shows isochrones of the models in Figure A3 for ten different ages.

These theoretical isochrones cover a range of masses, from very low mass (∼ 0.09M⊙)
up to massive stars (∼ 14M⊙). They have an initial metallicity of Z = 0.004 and zero
initial rotational velocity. You can őnd a detailed discussion of rotating and non-rotating
theoretical isochrones at different metallicities in Nguyen (2022).

You can obtain the same isochrones using a dedicated web interface1. Additionally,
1http://stev.oapd.inaf.it/cgi-bin/cmd_3.7
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there is a separate web interface2 for stellar tracks computed with the PARSEC code.
Both of these repositories are managed by the PARSEC team, with Dr. Léo Girardi and
Dr. Guglielmo Costa being primarily responsible for them.

2http://stev.oapd.inaf.it/PARSEC/tracks_v2.html
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