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Abstract—Isolated multi-port converters can host loads
and sources at different power and voltage levels to their
ports by a single topology, giving potential merits in terms
of power density and efficiency. However, the higher the
number of ports, the higher the number of degrees of
freedom in the modulation patterns. This high number of
modulation variables complicates the optimization prob-
lem, making closed-form solutions impractical. This paper
avoids the analytic solution to the optimization problem by
proposing a data-driven solution. The presented approach
is based on an artificial neural network (ANN) trained to
minimize the rms value of the currents flowing through the
switches and the transformer windings of a triple active
bridge (TAB) converter. This minimization is achieved by
determining suitable values of the duty-cycles for modu-
lating the converter switches. The proposed ANN-based
modulation is validated considering an experimental TAB
prototype rated 5 kW.

Index Terms—Artificial neural network (ANN), multi-port
converter, triple active bridge (TAB).

I. INTRODUCTION

Isolated multi-port converters (IMPCs) present advanta-
geous features for interconnecting loads or energy resources
operating at different voltage and power levels while providing
galvanic isolation between the ports and high power density
[1], [2]. Applications of IMPCs can be found, for example,
in electrified vehicles [3], electrified aircraft [4], [5], and
in nanogrids [6] and microgrids [7], [8]. A common IMPC
topology is the triple active bridge (TAB) converter, shown in
Fig. 1(a) [9], [10]. The TAB consists of three full bridges with
active switches (i.e., transistors), hence the name, connected
through a three-winding high-frequency transformer.

To control the power flow among the ports, phase-shift
modulation (PSM), shown in Fig. 1(b), is commonly applied,
as done with dual active bridge (DAB) converters [11], [12].
With PSM, the three bridges generate ac voltages v1, v2, and
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Fig. 1: (a) Triple active bridge converter; (b) phase-shift
modulation; (c) penta phase-shift modulation with modulation
variables φ2, φ3, D1, D2, D3 highlighted.

v3 with duty-cycle fixed at 50% and variable phase-shifts φ2
and φ3. By controlling the phase-shifts magnitude and sign, it
is possible to regulate the power flow intensity and direction,
respectively [9]. PSM is simple and allows low switching and
conduction losses at moderate to high load conditions, while
operating with dc voltages such that V1 :V2 :V3 =n1 :n2 :n3.
Differently, at light-load conditions or with significant voltage
mismatches among the transformer terminals, transformer rms
currents increase with the possibility of losing zero voltage
switching (ZVS), dramatically increasing switching and con-
duction losses relative to the transferred power [13]. Penta
phase-shift modulation schemes, shown in Fig. 1(c), overcome
these drawbacks [13]. By these approaches, the modulation
exploits not only the phase-shifts φ2 and φ3 but also the
duty-cycles D1, D2, D3. The increased number of modulation
variables significantly increases the complexity; controlling
five modulation parameters gives a total number of possible
switching patterns in the order of hundreds [12]. Tackling
and analyzing each switching pattern separately to find the
optimum operation, for example, in terms of losses, is time-
consuming or even impossible.

The literature reports different approaches pursuing effi-
ciency optimization of the converter utilizing penta phase-shift
modulation [13]–[21]. Based on the current literature, the most
critical limits are i) the heavy mathematical analyses needed
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for the modeling of the TAB, ii) the inevitable mismatch
among the obtained models and the actual converter operation,
which impairs the results of off-line searches based on convert-
ers models, iii) the use of large and complex multidimensional
look-up tables, and iv) the time-consuming searches, local-
minima issues, and low effectiveness during transients typical
of on-line optimization methods.

In this context, data-driven approaches may overcome the
mentioned limits [22]. In particular, the application of arti-
ficial neural networks (ANNs) in power electronics can be
found in the literature, aiming at different purposes, such as,
model predictive controllers [23], [24], fault diagnostic and
management [25], optimal design of converters [26], [27], and
efficiency-optimized modulation [28]–[30]. According to [31],
ANN approaches emerge as promising tools when considering
complex problems including non-linearities and uncertainties.
Besides, ANNs can implement continuous non-linear maps
between multiple inputs and outputs. For example, in [28],
an ANN model is built for an interleaved boost with coupled
inductors converter, showing its merits over a look-up table
from the point of view of memory usage. Such an advantage
is expected to be even more appreciable with the additional
degrees of freedom of a TAB. In [29], based on simulation
data, an ANN is trained to provide the peak current in the high-
frequency transformer of a DAB converter. Then, to minimize
the peak current stress of the DAB, the optimum duty-cycles
are derived through a particle swarm optimization algorithm
using a map implemented by an ANN. Differently, herein,
the additional complexity of the TAB converter is tackled
using an ANN that directly maps the operating points into the
corresponding duty-cycles that allow to minimize the total rms
current of the converter. This is done by avoiding mathematical
modeling and control techniques. Besides, no applications of
ANN for TAB modulation were found in the literature.

In this paper, an ANN approach is proposed for computing
the optimum modulation parameters D1, D2, and D3 for a
TAB converter, given the operating conditions in terms of
operating voltages and power flows. Optimality is measured in
terms of total rms currents at the transformer ports. The ANN
is trained off-line by exploiting the results from a systematic
search of the optimal modulation parameters. This search is
performed considering a simulation model calibrated to match
the operation of the actual experimental TAB prototype.

The proposed approach details, implementation, and exper-
imental verification are discussed in the following.

II. PROPOSED ANN-BASED APPROACH

The proposed approach consists in training an ANN to
calculate the suitable modulation parameters for achieving
optimal converter operation. The function to be optimized can
have different expressions, including, for example, the overall
converter efficiency, the switching and conduction losses of
the power semiconductors, etc. Independently of the function
adopted, the proposed approach can be used. For the sake of
simplicity, the function considered in the following is the rms
current on the active devices, that is, the focus is on rms current
minimization, pursuing reduced converter conduction losses.

Specifically, the considered measurement for optimization is
the total rms current defined as:

irms =

√√√√ 3∑
p=1

rp
(
irms
p

)2
= f(φ2, φ3, D1, D2, D3) (1)

where rp, p = 1, . . . , 3, are the equivalent path resistances of
the respective p-th port. Notably, the total rms current depends
on five modulation parameters, as mentioned in Sec. I.

Solving this complex non-convex function to find the min-
imum total rms current is challenging [16]. Herein, this com-
plexity is overcome by a data-driven approach, exploiting the
information collected from a simulation model to compute the
optimal TAB modulation parameters for rms current reduction.

The presented ANN approach consists of four steps:

1) validation of the simulation model and collection of the
data-set, in Sec. III;

2) definition of the ANN structure, in Sec. IV;
3) training of the ANN based on the collected data, in

Sec. V;
4) validation on the experimental prototype of the obtained

results, in Sec. VI.

The aimed ANN has four inputs, representing the operating
point of the TAB, and three outputs, which are the correspond-
ing optimum duty-cycles D1, D2, and D3. The four inputs
are the port-2 and port-3 dc voltages and powers, V2, V3,
P2, and P3, respectively. The other modulation parameters
φ2 and φ3 are adjusted by a couple of proportional-integral
regulators to provide closed-loop control of V2 and V3 (see,
e.g., [21]). Remarkably, given the operating point, the solution
to the optimization problem associated with (1) is unique.

As a final note about the defined control scheme, the phase-
shifts are used to regulate the power flow between the ports,
which determines the dc output voltages across the loads con-
nected at the ports; whilst, the duty-cycles are modulated for
optimizing the converter operation. The control organization
is analogous to others described in the relevant literature for
the DAB [11], [12] or the TAB [13]–[21] converters.

III. DATA-SET GENERATION FOR ANN TRAINING

The proposed approach involves training an ANN to
map the operating point to desired modulation parameters
D1, D2, D3. The mapping is based on a data-set, which can
be generated in different ways [13]–[21]. Herein, the data-set
was generated in simulation considering a PLECS model of
the TAB converter and considering the target of minimizing
rms currents, as done in [29]. Remarkably, the same approach
can be applied using a data-set generated considering different
targets, like, for example, efficiency optimization. If efficiency
optimization is considered, the data-set can even be generated
on-line on the real converter, as done, for example, in [21].
These latter works may be used to generate the data-set to be
considered within the scope of Sect. III-B. Sect. III-A describes
the validation of the simulation model confronted with the
actual converter. Sect. III-B describes the collection of the
data-set for the training of the ANN.
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Fig. 2: Verification of the simulation model confronted with
the experimental prototype considering several test points.
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A. Model Validation
First, the simulation model has been calibrated and vali-

dated, considering parameters including transformer leakage
inductance, switching frequency, deadtime, etc. The process
aims at matching the simulation models with the experi-
mental prototype in terms of transformer rms currents and
instantaneous current and voltage waveforms, at various test
points. Fig. 2 verifies the matching between simulation and
experimental waveforms of transformer currents i2 and i3,
while Fig. 3 shows the rms current deviation for the test cases,
all presenting maximum deviation below 10%.

B. Data Collection
Second, a systematic, brute-force (BF) search (i.e., grid

search) is run on the duty-cycles D1, D2, and D3, changing
each duty-cycle from 0.15 to 0.50 with a fixed step of 0.05.
Finer duty-cycles steps may be used for higher resolution data-
sets; on the other hand, this would increase the number of
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Fig. 4: BF search simulation results: (a) optimum duty-cycles;
(b) total rms current for different grid search granularities.

required simulations. An advantage of using the BF search,
applied in simulation or experimentally, is that it is not affected
by local minima, which may be a potential issue in the solution
of the non-convex problem of minimizing (1). Fig. 4 illustrates
the BF search simulation results with a step size of 0.05
and 0.01. The maximum deviation between the obtained rms
currents with the two different step sizes is below 1.5%. The
difference between the two currents is negligible, but the use
of a finer resolution, from 0.05 to 0.01, implies a number of
simulations that increases from 512 to 46,656 points, for each
power and voltage set point.

Considering a reasonable number of simulations for each set
point, 0.05 duty-cycles step is used in the BF search. Phase-
shifts φ2 and φ3 are adjusted by employing two separate linear
regulators. The BF search, which finds duty-cycles giving
minimum total rms current, is repeated for about 15,000 set-
points of different ports voltages and powers. Those points
cover the power range from 1% to 100% of the rated power
at port-2 and 3, with voltage levels spanning the range 80% to
120% of the rated ports voltages. The 15,000 records collected
from the BF search constitute the data-set eventually used to
train the ANN, as shown next.

IV. ANN BASICS AND DESIGN

Among various kinds of ANNs [32], the multilayer per-
ceptron neural networks (MLP-NNs) are considered in this
work. In MLP-NNs, the neurons are divided into layers that
are typically fully connected. When the relationship between
inputs and outputs is a non-linear static function, the MLP-NN
is the most suitable architecture of ANN [33].

The essential elements in a MLP-NN are [34] i) the number
of layers, ii) the number of neurons in each layer, iii) the
activation function of each layer, iv) the algorithm used during
the training process. There are at least three layers: the input,
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the output, and the hidden layers in between. Commonly, the
higher the problem’s complexity (i.e., the complexity of the
function to be estimated), the higher the number of neurons
and hidden layers required.

Fig. 5 displays a standard configuration of MLP-NN, with
n inputs, q hidden layers with p neurons each, and m outputs.
The linear combination of the inputs of a neuron is processed
through a so-called activation function, giving the neuron’s
output. The ability of an ANN to fit non-linear problems
is provided by the use of non-linear activation functions.
Among different types of activation functions [35], in this
work, the sigmoid activation function is used for all the layers.
A comprehensive evaluation of various activation functions
commonly utilized in MLP-NNs, including sigmoid, rectified
linear unit (ReLU), and hyperbolic tangent (tanh), was carried
out too. The sigmoid function for all the layers of the ANN
provided the lowest error values during the ANN development
described in Sec. V.

The development of an ANN aims to find the hyperpa-
rameters. In machine learning, the hyperparameters are the
variables that determine the network structure (e.g., number
of layers and neurons, activation function) and its training
procedure (e.g., learning rate). Hyperparameters are set before
training and they need to be adapted if performance, in terms
of estimation error, is insufficient.

The development of an ANN is divided into three stages:
1) Preliminary operations: the given data-set is split into

portions for training (' 80%), validation (' 10%), and
test (' 10%). The data-set is partitioned randomly to
guarantee homogeneity between the different portions.
Training data are used for the learning phase, validation
data are used for testing the generalization capability
of the network during the training process, and the test
data are used for performance assessment. The data-set
is commonly normalized; in our case, between 0 and 1.

2) Training: the backpropagation algorithm for updating
the network weights and biases is applied n times, with
n the number of epochs. The training ends when the
loss function, the mean squared error (MSE) herein,
stops decreasing. The validation data-set is used to detect
over/under-fitting.

3) Performance evaluation: the test-set is evaluated and the
obtained output compared with the data-set output. If
the performances of the ANN, in terms of error, are not

TABLE I: Hyperparameters used for training.

Parameter Value Parameter Value

Optimizer Adam Batch Size 256
Learning Rate 0.01 Activation Function Sigmoid
Loss Function MSE Number of parameters 883
Epochs 2000 Training time 15 s

sufficient, the ANN hyperparameters should be updated.

V. ANN DEVELOPMENT FOR OPTIMAL MODULATION

Several deep learning frameworks and libraries are avail-
able, like, for example, Matlab Deep Learning, TensorFlow,
PyTorch. Herein, the ANN is developed on Keras Tensor-
Flow 2.6 on an Intel i9-12900KF CPU with 32GB of RAM.
With this setup, the average training time is less than 20 s.

Being not possible to determine a-priori the number of
hidden layers or neurons needed in each layer, a systematic,
BF exploration is adopted. As a design choice, the maximum
number of layers qmax was set to 4 and the number of
neurons per layer constrained between pmin = 5 and pmax = 40.
Tab. I lists the used hyperparameters. The initial weights of
the network are chosen randomly, and the entire training
process (i.e., data splitting, training, and computation errors) is
repeated three times to avoid non-optimal solutions resulting
from specific unfavorable initial conditions.

To compare the different ANN architectures, the metrics
mean absolute percentage error (MAPE) is used:

MAPEi(%) =
100

K

K∑
k=1

|Dk,i − D̂k,i|
Dk,i

, (2)

where Dk,i is the estimated i-th duty-cycle, D̂k,i is the i-th
true duty-cycle, with i ∈ {1, 2, 3}, and K is the dimension of
the test-set. The metric is computed on the test data-set. Other
metrics including the root mean square error (RMSE), and
mean absolute error (MAE) were also considered during the
process, bringing equivalent conclusions in the comparison.

The best results were obtained with an ANN with q = 4
layers and 40, 40, 30, 10 neurons, respectively, providing an
MAPE of 2.64%; this solution involves 2, 283 parameters
for its implementation. A sub-optimal solution, whose perfor-
mance in terms of MAPE displayed in Fig. 6, was obtained
with q = 3 and 20, 20, and 15 neurons, respectively. This
last solution sports an MAPE of 2.85% and involves 883
parameters for its implementation. On this basis, this last,
smaller network is deemed to provide the most convenient
trade-off between accuracy and complexity and was chosen
for deployment.

Fig. 7 shows the performance of the developed ANN. In
Fig. 7(a), P3 is constant at 500W and P2 varies from zero
to nominal power, in Fig. 7(b), P2 is constant and P3 varies;
voltages V2 and V3 are fixed. Solid lines represent the ANN
output, dashed lines the results from the BF search. These lat-
ter present values on a discrete set because the BF search was
performed with a duty-cycle quantization of 0.05. Remarkably,
Fig. 7—displaying in (a)-(b) the duty-cycles as a function
of the power at one port while keeping the other variables
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Fig. 6: Errors as a function of number of neurons in HL1 and
HL2, in (a) with two hidden layers and in (b) with 15 neurons
on the third hidden layer.

composing the operating point constant—shows seemingly
linear relations. Still, the overall relationship between the
operating point V2, V3, P2, P3 and the duty-cycles is highly
non-linear, as illustrated in Fig. 8.

The duty-cycle quantization in the BF search may cause
sharp variations in the optimum parameters D1, D2, and D3

because the optimization problem is non-convex with multiple
local minima [16]. An example is visible in Fig. 7(b) around
P3 = 2kW. Such abrupt variations with positive and negative
slopes may originate detrimental effects in closed-loop control,
like limit-cycle oscillations, and should be avoided. Instead,
the ANN with the used sigmoid activation function inherently
smooths the input-output relation, with a negligible impact on
the resulting rms currents. To show this, PLECS simulations
were run for the same points reported in Fig. 7(a) and (b) to
evaluate the difference in terms of obtained rms currents by
the duty-cycles from the BF search and the ANN. Fig. 7(c)
shows that the difference is less than 5% for 95% of the test
cases.

Fig. 8 shows a three-dimensions surface of the optimum
three duty-cycles under the same voltage levels; this represen-
tation highlights better the complexity of the problem tackled
by the ANN approach.

The performance of the ANN model are now evaluated
in terms of MAPE as a function of the number of data
points composing the data-set. The initial data-set of 15, 000
operating points is gradually reduced by removing random
points, finally leaving only 750 points for ANN development,
that is, 5% of its initial size. The ANN architecture and the
partitioning of the data-set into training, validation, and testing
subsets are kept unchanged. The error at each decimation
level is obtained by averaging the resulting MAPE over ten
independent tests to limit the variability due to the random
choices in the decimation and in the training. Fig. 9 displays
the obtained results. Notably, the measured MAPE show only
small increments up to a decimation of ≈ 60% of the initial
size.
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VI. EXPERIMENTAL VALIDATION

A. Experimental Setup

The proposed ANN-based approach has been verified exper-
imentally using the laboratory prototype displayed in Fig. 10,
whose parameters are listed in Tab. II. The leakage inductances
were designed to provide the nominal power at about 35°phase
shift [13], [36]; the phase-shifts were constrained to limit the
values of peak and rms currents through the components (e.g.,
switches) [11], [36]. Fig. 11 illustrates the converter prototype
structure, where port-1 of the TAB converter is connected to a
fixed dc power supply at rated voltage V1 = 400V, and port-2
and port-3 are connected to corresponding dc electronic loads.
The ANN model and the converter control and modulation

TABLE II: Experimental Prototype Parameters

Parameters Value

Nominal power at each port Prated kW 5
Switching frequency fS = 1/TS kHz 40
Rated dc voltages V1 = V2 = V3 V 400
Transf. turns ratio n1 : n2 : n3 1:1:1
Transf. leakage inductances:
Port-1 leakage inductance L1 µH 40
Port-2 leakage inductance L2 µH 47
Port-3 leakage inductance L3 µH 41
Dead time µs 1
Switching Devices MMIX1Y100N120C3H1

Gating signal

Imperix B-Box RCP controller
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Fig. 11: Structure of the experimental setup.

are deployed on an Imperix B-Box RCP controller driving six
Imperix PEB8032-A half-bridges. Fig. 11 shows the clocking
logic in the digital controller. The analog-to-digital conversion,
PI control, and modulators are executed at the switching fre-
quency (i.e., 40 kHz). The ANN, which performs a secondary
optimization process, can be run at a slower pace to conserve
computational resources. Herein, the ANN is executed at a
rate of 10 kHz. Anti-aliasing low-pass filters (LPF) are used
at the interface with the ANN inputs.

The optimum five modulation variables corresponding to
the actual operating point are generated as follows. The ANN
computes the duty-cycles D1, D2, and D3 based on the
operating point V2, V3, P2, P3, given as input to the ANN.
The duty-cycles are expected to bring to minimum rms current
through the converter ports. Instead, the phase-shifts φ2 and
φ3 are set by proportional-integrative regulators followed by
a decoupling matrix, as done in [13].

B. Considerations on the Digital Implementation
To evaluate the impact in terms of computation-burden of

the designed ANN in a common low-cost microcontroller, the
deployment on an STM32F334R8 of the same ANN has been
considered. Operatively, the ANN developed in TensorFlow,
with three layers and 20, 20, and 15 neurons, has been
converted into C-language and deployed as a library on the
microcontroller. The conversion was performed by exploiting
the toolbox STM32Cube. AI provided by STMicroelectronics.

The deployment of the ANN, which involves a total of 883
parameters, implies the allocation of about 3.45 kB of read-
only memory (ROM) and 188B of random-access memory
(RAM), of which 16B are due to the input layer, 12B
to the output layer, and 160B to the activation functions.
The network complexity is measured in terms of multiply-
and-accumulate (MAC) operations. In the considered case,
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the number of MAC operations involved is 1463. Further
details are reported in Tab. III, layer-by-layer. Finally, the
measured average computation time of the ANN is 127.43 µs.
Negligible deviations due to numerical errors of the digital
implementation were recorded.

TABLE III: ANN deployment on an STM32 microcontroller.

Layer # Neurons Param. Memory (ROM) MAC

Input 4 - - -
Hidden 1 20 100 400B (11.3%) 100 (06.8%)
Act. funct. - - - 200 (13.7%)
Hidden 2 20 420 1.6 kB (47.6%) 420 (28.7%)
Act. funct. - - - 200 (13.7%)
Hidden 3 15 315 1.3 kB (47.6%) 315 (21.5%)
Act. funct. - - - 150 (10.3%)
Output 3 48 192B (5.4%) 078 (05.4%)
Act. funct. - - - 000 (00.0%)

C. Results and Discussion

Eleven power and voltage setpoints are tested, covering a
wide range of transferred power across TAB converter ports
starting from low to high power levels and characterized by
significant dc voltage mismatch between the converter ports.
A comparison between the proposed ANN-based modulation,
BF search, and PSM is shown for the test cases. The com-
parison with PSM is included for reference, demonstrating
the operation performance compared to a common, standard,
and simple test case often referred to in related literature
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and highlighting the advantage of applying duty-cycles opti-
mization [15]–[17], [21]. The test cases present voltage levels
V1 = 400V, V2 = 320V, and V3 = 480V, with port-2 power
fixed at P2 = 350W, and port-3 power P3 varying in the range
from 200W to 3 650W.

Fig. 12(a) shows the optimum duty-cycles computed by the
ANN approach compared to the results by the BF search on
the experimental prototype; BF results are deemed the true
optimal values. Overall, a slight deviation between the ANN
and BF search is noticed. In fact, Fig. 12(b) shows a deviation
below 2% in the measured rms current, with a reduction in
the total rms current of up to 60% at low power levels with
respect to the PSM. Fig. 13 shows the percentage of measured
reduction of converter total losses compared to PSM.

Fig. 14 and Fig. 15 show steady-state transformer voltage
and current waveforms of the PSM and the proposed ANN-
based modulation for two test cases, with P3 = 200W and
P3 = 1 400W, representing low and high power operation,
respectively. Fig. 14 shows that the total rms current reduces
from about 8.3A using PSM to about 3.9A using the proposed
ANN-based modulation, that is, a total rms current reduction
of about 53%. The total rms current reduction in Fig. 15
is about 19%, because at high power levels the optimum
operating point is located nearby the full duty modulation.

To demonstrate the dynamic performance of the ANN
approach, a step change from P2 = 200W to P2 = 800W of the
load at port-2 shown in Fig. 16. Fig. 16(b) shows the response
of the ANN, which updates the computed optimum duty-
cycles within a few switching cycles immediately after the

transient. Fig. 16(c) shows the response of the PI regulators
adapting the phase-shifts to keep the output voltage constant
as the operating conditions evolve. Notably, the ANN response
is almost instantaneous, which is a distinctive merit of the
proposed approach compared to alternative solutions based on
iterative or on-line search methods.

Fig. 17 and Fig. 18 display the current and voltage wave-
forms, respectively, of the transformer across the transition
considered above. In particular, Fig. 17(a) shows the step-
change of current i2 due to the corresponding change of power
at port-2. A zoomed-in view of this detail is provided in
Fig. 17(c). Fig. 17(b) and (d) show the steady-state current
waveforms before and after, respectively, the applied step-
change transient. The corresponding voltage waveforms are
provided in Fig. 18(b) and in Fig. 18(c), after and before the
transient, respectively. Remarkably, the ANN is capable of
promptly and automatically adapting the duty-cycles to the
actual operating conditions within about four switching cycles.

VII. CONCLUSION

An artificial neural network (ANN) approach for achiev-
ing reduced rms operation of triple active bridges (TAB)
converters has been proposed and verified in this paper. A
multilayer perceptron neural network was designed and trained
in order to estimate the optimal modulation parameters of
the TAB, aiming at converter operation with minimum total
rms currents. The ANN was trained based on a data-set
generated by means of a simulation model. The simulation
model was preliminarily calibrated to accurately describe the
actual TAB prototype. The approach features ease of data gen-
eration for ANN training, and deployability in real converter
hardware, and allows significant improvements in terms of
total rms current circulation compared to the classical phase-
shift approach. The proposed ANN approach shows other
potential benefits with respect to the use of a look-up table for
the modulation of the converter, including smooth operation
under different operating points, lower memory requirements,
extension to converters with multiple ports, the possibility of
tuning the model with a reasonably limited number of samples
of operating points, and the potential advantage of providing
solutions in conditions not included in the training data-set.
Finally, the presented approach can be used to generate a pre-
trained ANN input/output map that can be adapted/refined by
on-line learning techniques, thus speeding up and facilitating
the on-line training. This possibility and the extension to
converters with additional ports may be considered as future
research directions.
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