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Abstract The current understanding of the carbon-

ation and the prediction of the carbonation rate of

alkali-activated concretes is complicated inter alia by

the wide range of binder chemistries used and testing

conditions adopted. To overcome some of the limita-

tions of individual studies and to identify general

correlations between mix design parameters and

carbonation resistance, the RILEM TC 281-CCC

‘Carbonation of Concrete with Supplementary

Cementitious Materials’ Working Group 6 compiled

and analysed carbonation data for alkali-activated

concretes and mortars from the literature. For com-

parison purposes, data for blended Portland cement-

based concretes with a high percentage of SCMs

(C 66% of the binder) were also included in the

database. The analysis indicates that water/CaO ratio

and water/binder ratio exert an influence on the

carbonation resistance of alkali-activated concretes;

however, these parameters are not good indicators of

the carbonation resistance when considered
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individually. A better indicator of the carbonation

resistance of alkali-activated concretes under condi-

tions approximating natural carbonation appears to be

their water/(CaO ? MgOeq ? Na2Oeq ? K2Oeq)

ratio, where the subscript ‘eq’ indicates an equivalent

amount based on molar masses. Nevertheless, this

ratio can serve as approximate indicator at best, as

other parameters also affect the carbonation resistance

of alkali-activated concretes. In addition, the analysis

of the database points to peculiarities of accelerated

tests using elevated CO2 concentrations for low-Ca

alkali-activated concretes, indicating that even at the

relatively modest concentration of 1% CO2, acceler-

ated testing may lead to inaccurate predictions of the

carbonation resistance under natural exposure

conditions.

Keywords Alkali-activated materials � Durability �
Carbonation � Accelerated testing

1 Introduction

The carbonation of cementitious materials is a degra-

dation phenomenon taking place when CO2 from the

air enters the material, promoting chemical reactions

that modify the chemistry and microstructure of the

carbonated binders, potentially leading to the corro-

sion of embedded steel reinforcement. This degrada-

tion mechanism can have significant consequences, in

many cases being the limiting factor for the service life

of reinforced concrete structures. For concretes based

on conventional cements (Portland and blended Port-

land cements), the water-to-reactive CaO (w/CaOreac-

tive) ratio has been found to be the major parameter

determining their carbonation resistance [1, 2].

Related to this ratio are concepts that involve the

water-to-binder (w/b) ratio and the clinker content [3]

as well as the k-value concept described in EN 206 [4].

However, for concretes and mortars based on alkali-

activated binders and other alternative cements these

approaches seem to be not applicable without modi-

fications [5, 6]. Alternative approaches that apply

specifically to alkali-activated concretes are currently

not available, mainly because the mechanisms and

factors determining the carbonation resistance of

alkali-activated concretes are not yet completely

understood. This is partly due to the wide range of

chemistries of alkali-activated binders, notably their

variability in CaO content, and the fact that individual

carbonation studies are generally limited to only a few

mix designs, curing conditions and exposure condi-

tions [7].
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To address these issues, the RILEM TC 281-CCC

Working Group 6 compiled carbonation data for a

wide range of alkali-activated concretes and mortars

from the literature. This has been done with the aim of

resolving the shortcomings of individual studies and to

identify general correlations between mix design

parameters of alkali-activated concretes and mortars,

and their carbonation resistance. For comparison

purposes, data for blended Portland cement-based

concretes and mortars with a high percentage of

supplementary cementitious materials (SCMs) in the

binder were included in the database. In this report, the

database, the assumptions made in the evaluation of

the data, the analysis results and their implications are

presented.

2 Data inventory and processing

2.1 Data inventory

To create the database, the literature was searched for

studies that report carbonation depth (dc)-versus-

carbonation duration (t) data for alkali-activated

concretes or mortars, for concretes or mortars based

on blended Portland cements with at least 70%1 SCMs

in the binder, as well as for concretes or mortars based

on CEM III/B [66–80% ground granulated blast

furnace slag (GGBS) in the binder according to EN

197–1]. Only data obtained at controlled relative

humidity (conditions approximating indoor or ‘‘shel-

tered’’ natural carbonation, and accelerated carbona-

tion) were included in the database. Results for

unsheltered natural exposure were not considered,

because the degree of saturation of the pore systems of

the exposed concretes is not controlled in these

experiments, complicating the comparison and inter-

pretation of the results. Carbonation data for pastes

were not considered, as the potential effects of

aggregates (particularly, but not solely, due to the

presence of the microstructurally distinct interfacial

transition zone between paste and aggregate) on the

carbonation coefficient would not be observed for

these. Studies with incomplete or internally inconsis-

tent information about the mix design or the test

conditions were also excluded from the database.

In most of the studies, the carbonation depths were

determined by spraying a phenolphthalein solution

(usually with a concentration of 1%) on fracture

surfaces; in one case alizarin yellow R was used as the

indicator, and in another case thin sections were

examined. It is noted that there are difficulties and

open questions regarding the phenolphthalein-spray-

ing method for the determination of the carbonation

depths of alkali-activated concretes, which may influ-

ence the outcomes of carbonation testing [8]. How-

ever, this method is currently the most widely used

and, thus, the present analysis had to rely on the results

obtained with this method to be able to include a

significant number of studies.

The mix designs of the concretes or mortars, the

chemical compositions of the binders (solid precursors

and activators), the physical properties of the con-

stituents, the compressive strengths of the cured

materials as well as curing, preconditioning and

carbonation conditions were included in the database

together with the respective carbonation-depth data.

The full database is provided in the Electronic

Supplementary Material.

For the present purpose, ‘GGBS-based AAC’ were

defined as alkali-activated concretes/mortars in which

the most abundant (by mass) component of the binder

was GGBS. ‘FA- and MK-based AAC’ are corre-

spondingly defined as alkali-activated concretes/mor-

tars with fly ash (FA) or metakaolin (MK) as the most

abundant binder component; only one of the twelve

pertinent mixes in the database was based on MK.

Mixes in which GGBS and FA were present in equal

amounts in the binder, were assigned to the GGBS-

based AAC. The term ‘other AAC’ is used to denote

alkali-activated concretes/mortars with binders based

on municipal solid waste incineration (MSWI) bottom

ash, silico-manganese slag or natural pozzolans. Two

hybrid cements, i.e. cements containing Portland

clinker as well as a second activator, were assigned

to this class as well. Most of the AAC in the database

were activated with sodium silicate solutions, while

fewer were activated with NaOH, Na2CO3, or a

mixture of sodium silicate and Na2CO3. In some cases,

portlandite [Ca(OH)2] or gypsum [CaSO4�2H2O] were

employed as additional activators.

1 In the present report, all ratios and fractions pertaining to the

compositions of the materials are given as mass ratios (or

equivalent mass ratios; see Sect. 2.2) and mass fractions,

respectively, unless indicated otherwise by giving a unit other

than kg/kg in parentheses [for example, total binder content (kg/

m3), activator modulus or SiO2/Na2O molar ratio (mol/mol)].

Gas concentrations are given as volume fractions.
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The compressive strengths of the alkali-activated

concretes and mortars in the database differed widely.

A consideration of the parameters determining the

strength of these materials is beyond the scope of the

present article, but influences on the compressive

strength of alkali-activated concretes have been dis-

cussed extensively in the literature (e.g., Ref. [9]).

However, there is no correlation apparent between the

compressive strength of these materials and their

durability-related transport parameters, such as chlo-

ride penetration coefficients [8]; thus, a classification

or preselection of the concretes/mortars based on their

compressive strength or strength class was not

conducted for the present analysis.

The majority of the materials based on blended

Portland cements in the database are concretes (68

concretes, six mortars); these will be collectively

referred to as ‘BCC’ below. The SCMs in these

materials were GGBS and/or FA; in one case, a natural

pozzolan was added to a CEM III/B.

The database contains data for 125 GGBS-based

AAC [6, 8, 10–31]; 12 FA- or MK-based AAC

[8, 32–36]; 18 other AAC [36–40]; and 74 BCC

[1, 2, 6, 16, 29, 41–52]. A plot of the SCM fractions of

the binders of the materials (including the compounds

dissolved in the activator solution as part of the binder

in the calculation) is shown in Fig. 1.; the plot does not

contain the 20 mixes based on CEM III/B with no

exact specification of the GGBS content.

For most of the concretes/mortars, either data for

carbonation approximating natural exposure, or data

for accelerated carbonation were available; for a

limited number of materials, data for both conditions

were reported.

2.2 Data evaluation

The carbonation resistance of concretes and mortars is

commonly described by a single parameter, the

carbonation coefficient (kc) [4]. The definition of kc

and its computation from experimental data is based

on Fick’s first law of diffusion, and it implies that the

carbonation rate of cementitious materials can be

accurately described by the square-root-of-time law

[53]. As has been discussed previously [5, 18, 20], this

is likely not true for all alkali-activated materials,

since in these materials the carbonation rate is

influenced to a great extent by the reactions that take

place, and it is, thus, not purely diffusion-controlled.

However, to create an internally consistent dataset

with values that can be compared between AAC and

BCC, kc was calculated in the usual manner for all

materials in the present analysis. The thus obtained

results demonstrated limitations of this approach when

applied to alkali-activated materials, as will be shown

below (Sect. 3.2).

When only one dc-versus-t value was given for a

material tested at specific carbonation conditions, the

carbonation coefficient was calculated as kc = dc/Ht,

meaning that dc = 0 mm at t = 0 d was implicitly

assumed. When multiple dc-versus-t values were

available for a material tested under specific carbon-

ation conditions, the carbonation coefficient was

obtained by fitting a linear function to all available

data points plotted as dc(Ht) up to t = 365 d (or up to

393 d in four cases). If that fit yielded a positive

intercept with the ordinate, the slope of the function

was used as kc for the evaluation. If the fit yielded a

negative intercept with the ordinate (i.e. a negative

carbonation depth at t = 0 d, which would be unphys-

ical), the fit was repeated with the linear function

forced through the origin of the coordinates, and the

value thus obtained was used. It is noted that the

assumption of dc = 0 mm at t = 0 d is not necessarily

Fig. 1 SCM fractions of the binders of the mixes included in the

database. ‘Binder’ refers to the solid starting materials and the

oxides (Na2O, SiO2 etc.) dissolved in the activator solution

combined. Twenty additional blended-cement concretes/mor-

tars (BBC) based on CEM III/B (66–80% GGBS in binder) are

not included in the plot. Black lines represent the medians; boxes
represent the ranges between the 25% percentile and the 75%

percentile; and the whiskers represent the 5% percentiles and the

95% percentiles
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true, particularly for materials based on alkali-acti-

vated binders or blended cements, which can show

some surface carbonation during curing and/or condi-

tioning prior to testing [8, 54]. However, in the

absence of carbonation-depth data for the start of the

exposure to CO2, an assumption about dc at t = 0 d had

to be made.

The dataset resulting from the round robin testing

programme of RILEM TC 247-DTA [8] were treated

as if they were obtained in a single laboratory, using

the average of the carbonation depths at given

exposure times, obtained in the participating institutes.

However, the dc values obtained in laboratory G in that

testing programme were not included in the present

analysis, because this laboratory had employed a

curing regime that differed from the curing used in the

other participating laboratories. The coefficient of

variation (COV) of the dc in the reduced dataset was in

the range 21.2–42.1% for carbonation under condi-

tions approximating indoor/sheltered natural expo-

sure, and 1.0–45.4% for accelerated carbonation. To

translate these uncertainties into the uncertainty of the

resulting kc, it was assumed that the COV of the latter

was 40%, i.e. the standard deviation (s.d.) of the

carbonation coefficient was estimated to be

s.d. = 0.40 9 kc.

In the discussion that follows, kc-nat will be used as

the symbol for carbonation coefficients obtained under

conditions approximating natural carbonation (indoor/

sheltered), and kc-acc will be used as the symbol for

carbonation coefficients obtained under accelerated

conditions. If the coefficient refers to a specified CO2

concentration (or range), this will be noted in brackets

(e.g., kc-acc[1%] or kc-acc[3–4%]).

From the mix designs of the concretes/mortars and

the chemical compositions of their constituents,

several parameters that may be hypothesised to exert

an influence on the carbonation rate were computed.

These parameters included the w/CaO ratio, where

w is the mass of water in the concrete/mortar, and CaO

is the mass of CaO in the binder paste of the

mortar/concrete, including the contributions from the

solid binder starting materials (e.g., GGBS) as well as

from any compounds added as part of the activator.

Analogously, the Na2O, K2O, and MgO contents refer

to the respective masses of these oxides in the solid

binder starting materials and in the activator com-

bined. No attempt was made to discriminate ‘‘reac-

tive’’ and ‘‘non-reactive’’ oxides (cf. Refs. [1, 2, 55]) in

the paste, as the information given in the reports

containing the carbonation data was usually not

sufficient to calculate these fractions with reasonable

accuracy. However, inspection of the mix designs of

the concretes/mortars in the database and the infor-

mation given in the associated reports indicated that

the majority of the alkali metals and alkaline-earth

metals in the binder starting materials can be consid-

ered ‘‘reactive’’, since the employed starting materials

were generally of a type (GGBS, FA, MK) that

typically contains only low fractions of these elements

in potentially insoluble, crystalline compounds. For

the concretes/mortars classified as ‘other AAC’ this

assumption may be somewhat less justified, i.e. for

these materials the oxide masses used for the compu-

tations might reflect the ‘‘reactive’’ oxide fraction less

accurately, but detailed analysis of this point is beyond

the scope of the current discussion.

For a combined consideration of the alkali metal

and alkaline-earth metal oxides in the binder pastes,

the masses of Na2O, K2O, and MgO were converted to

‘‘equivalent’’ masses (designated Na2Oeq, K2Oeq, and

MgOeq, respectively) by multiplying them by the ratio

of the molar mass of CaO to the molar mass of the

respective oxide; for example, Na2Oeq = Na2O�MCaO/

MNa2O. Through this conversion, the equivalent

masses reflect the theoretical maximum CO2 binding

capacity of the respective oxides, analogous to the

binding capacity of CaO on a molar basis. It is noted

that a simplified analysis of the database using the

uncorrected fractions of Na2O, K2O, and MgO yields

similar conclusions as the analysis using the converted

values presented in the following sections. This is

because the conversion ratios are in the range

0.60–1.39, i.e. in a rather narrow range around unity,

and, therefore, the error introduced by the use of

uncorrected values is low compared to the general

scatter of the data.

Several other parameters of the mix designs of the

concretes/mortars were also evaluated. For all calcu-

lations, the total binder content of the concretes/mor-

tars was defined as including the dissolved activator

compounds (e.g., Na2O and SiO2 in a sodium silicate

solution). This definition was followed also for the

calculation of the w/b ratios of the concretes/mortars,

i.e., b in this ratio represents the total binder mass

including the dissolved activator compounds.
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3 Results and discussion

3.1 Carbonation under conditions approximating

natural exposure

Figure 2 shows a plot of the carbonation resistance of

the concretes/mortars under conditions approximating

natural carbonation kc-nat versus the w/CaO ratio of

their binders. It is evident that the carbonation

resistance of alkali-activated concretes and mortars

cannot be predicted based on their w/CaO ratio alone.

The FA-based AAC, and particularly the MK-based

AAC (see also Supplementary Fig. S1 in the Elec-

tronic Supplementary Material), deviate considerably

from a linear relationship that might otherwise be

considered for the data from the more Ca-rich binders

(BCC- and GGBS-based AAC) in the plot. A plot of

the data for the GGBS-based AAC alone (Fig. 3)

reveals that also within this class of materials there is

not a clear a correlation between kc-nat and w/CaO. As

GGBS typically contains significant amounts of MgO

(usually in the range 5–14 wt.%), it might be

conjectured that a correlation could be more evident

when the ratio w/(CaO ? MgOeq) is considered.

However, the present dataset does not yield a signif-

icant improvement when MgO is considered in

addition to CaO in this way (Supplementary Figs. S2

and S3).

Within the group of BCC, a reasonable correlation

between kc-nat and w/CaO was observed (coefficient of

determination R2 = 0.5484; Fig. 4). This finding is in

line with previous assessments [1, 2, 4] and extends

these previous findings to blended cement concretes

with particularly high SCM fractions (66–94%) in the

binder. It is noted that a correlation between kc-nat and

w/CaO can only be expected if CaO is approximately
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proportional to CaOreactive, which is assumed to be the

case for the present database, as discussed in Sect. 2.2.

This assumption is possibly less likely to be valid for

BCC than for GGBS-based AAC, as the two distinct

sources of CaO in the slag-rich Portland cement blends

(clinker and slag) will provide a clearly bimodal

distribution of CaO reactivity, whereas the CaO in a

GGBS-based AAC mix is all from a single source. As

with the GGBS-based AAC, there was no improve-

ment in the correlation when considering w/

(CaO ? MgOeq) instead of w/CaO (R2 = 0.5061;

Supplementary Fig. S4).

The observation that the AAC do not follow the

same trend as the BCC as regards the relationship

between kc-nat and w/CaO can be attributed to the fact

that in alkali-activated binders, carbonation is deter-

mined to a large extent by the amount of alkali ions

present in the pore solution [5, 56]. Indeed, in a plot

considering all alkali metals and alkaline-earth metals

in the binders, i.e. kc-nat versus w/(CaO ? MgOeq-

? Na2Oeq ? K2Oeq) (Fig. 5), the FA-based AAC

cluster more closely together with the BCC and the

GGBS-based AAC than in the plot of kc-nat versus w/

(CaO), and a correlation between kc-nat and w/

(CaO ? MgOeq ? Na2Oeq ? K2Oeq) can be dis-

cerned, although the scatter of the data is substantial.

In particular, there is a significant deviation between

the w/(CaO ? MgOeq ? Na2Oeq ? K2Oeq) ratios of

the MK-based AAC and the FA-based AAC, although

both exhibit kc-nat in the range approx. 0.6–1.4 mm/

Hd. This demonstrates that additional parameters not

captured in this analysis influence the carbonation

resistance of these concretes.

A linear regression of all data points except the

MK-based AAC yields R2 = 0.4748 (Fig. 5). The

obtained linear function yields an intercept with the

abscissa (i.e. kc-nat = 0.0 mm/Hd) at w/

(CaO ? MgOeq ? Na2Oeq ? K2Oeq) = 0.45. For

conventional cementitious materials (BCC in the

present study), an intercept at a value higher than

zero can be rationalised by the fact that their capillary

pore system will theoretically become discontinuous

at a porosity of 18 vol.% [57], which corresponds to a

degree of hydration of 86% for Portland cement at w/

b = 0.50, or a degree of hydration of 57% at w/

b = 0.35 [57] (see also Ref. [58]), which is equivalent

to a w/(CaO ? MgOeq ? Na2Oeq ? K2Oeq) ratio in

the range approx. 0.6–1.1. A discontinuous pore

system inhibits the ingress of CO2, thus strongly

decreasing the rate of carbonation. Since the reactions

and hardening of alkali-activated materials also

involve the formation of (hydrous) reaction products

with a higher volume than that of the solid starting

materials, it can be proposed that an analogous

reasoning is valid for these materials also; i.e., there

will be a theoretical w/(CaO ? MgOeq ? Na2Oeq-

? K2Oeq) ratio that leads to depercolation of the

capillary pore system, and thus significantly decreased

carbonation rates. However, the absolute value of the

critical w/(CaO ? MgOeq ? Na2Oeq ? K2Oeq) ratio

will strongly depend on the starting materials and the

mix design of a specific alkali-activated material, and

numerical values have not yet been calculated sys-

tematically across the full range of compositions of

alkali-activated materials. For GGBS activated by

various sodium salts, simulation results [59] indicate

that at w/b = 0.40, a porosity of 18 vol.% is only

reached at approx. 90% extent of reaction, so it is

expected that rather a low water content will be

required to achieve capillary depercolation of AAC in

practice, due to the relatively low space-filling char-

acter of the key AAC binding phases compared to

those in BCC.

A separate plot of kc-nat versus w/(CaO ? MgOeq-

? Na2Oeq ? K2Oeq) for the GGBS-based AAC

(Fig. 6) does not allow a clear correlation to be

discerned. This observation that a general correlation

y = 0.6802x - 0.3038
R² = 0.4748
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Fig. 5 Carbonation coefficients obtained under conditions

approximating natural carbonation (indoor/sheltered) versus

w/(CaO ? MgOeq ? Na2Oeq ? K2Oeq) ratio. The dashed line
is a linear fit through all data points except the MK-based AAC.

Error bars represent the estimated s.d. of the results obtained in

the round robin testing programme by RILEM TC 247-DTA
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between these parameters for the GGBS-based AAC

alone cannot be identified, as it is found for all

concretes combined, may be related to the fact that

particularly for the GGBS-based AAC additional

factors can have an important effect on their carbon-

ation resistance; these factors include the role of

curing in microstructural development and the forma-

tion of alterable carbonate-binding reaction products

[5, 11, 22, 23, 26].

Additional parameters were evaluated, including

the w/b ratio of the concretes/mortars; the binder

content of the concretes/mortars; the binder paste

(binder ? water) content of the concretes/mortars; the

activator (anhydrous) content of the AAC; the silicate

modulus (SiO2/M2O, where M = K or Na, in mol/mol)

of the activator of the AAC; and the Portland clinker

content of the BCC. None of these yielded a satisfac-

tory correlation with kc-nat for all concretes/mortars

combined (Supplementary Figs. S7–S12).

It is noted that for the BCC, correlations were found

for kc-nat versus w/(CaO ? MgOeq ? Na2Oeq ? K2-

Oeq) and for kc-nat versus w/b (Supplementary Figs. S5

and S6). However, both coefficients of determination

were considerably lower than for the relationship

between kc-nat and w/CaO (Fig. 4). That a correlation

between kc-nat and w/b was found can be explained by

the fact that GGBS was the major SCM in most of the

BCC mixes in the database; thus, for these materials,

w/CaO is approximately proportional tow/b. However,

since the CaO content of the binders was not identical,

the coefficient of determination was lower for w/b than

for w/CaO. This result is an additional demonstration

of the usefulness of w/CaO to predict the carbonation

resistance of concretes based on high-volume SCM

blended cements.

3.2 Accelerated carbonation versus carbonation

under conditions approximating natural

exposure

Accelerated carbonation testing involves exposing

concrete or mortar samples to an atmosphere with a

CO2 concentration (cCO2) higher than the natural CO2

concentration in air (* 0.04%). The advantage of

accelerated carbonation testing is that the results are

available much earlier than for natural carbonation

testing. Assuming that the square root-of-time law

holds for estimating the depth of carbonation of

concrete [4, 53], the relationship between the carbon-

ation coefficients obtained with accelerated carbona-

tion and natural carbonation can be derived as [60, 61]:

kc�acc

kc�nat

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cCO2;acc

cCO2;nat

r

ð1Þ

where cCO2,acc is the CO2 concentration applied in

accelerated carbonation testing, and cCO2,nat is the

natural CO2 concentration in air. For example, insert-

ing 1% for cCO2,acc and 0.04% for cCO2,nat yields kc-

acc[1%]/kc-nat = H(1/0.04) = 5. It is important to note

that this is only applicable when other exposure

conditions such as relative humidity and temperature

are similar in both natural and accelerated carbonation

testing. There are some experimental data supporting

at least the approximate validity of Eq. (1) for BCC

[6, 61], though the deviations between computed and

measured carbonation coefficients can be significant

[1, 4, 62, 63]. Whether Eq. (1) holds, at least

approximately, for alkali-activated materials has not

previously been systematically investigated.

Figure 7 shows that for BCC and GGBS-based

AAC, the relationship between kc-acc and kc-nat appears

to generally conform to Eq. (1). Conversely, FA- and

MK-based AAC yield considerably lower kc-acc than

what would be expected from Eq. (1) at CO2 concen-

trations of 1% and in the range 3–4%. The finding that

the behaviour of the FA- and MK-based AAC deviates
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Fig. 6 Carbonation coefficients of the GGBS-based AAC

obtained under conditions approximating natural carbonation

(indoor/sheltered) versus w/(CaO ? MgOeq ? Na2Oeq ? K2-

Oeq) ratio. Error bars represent the estimated s.d. of the results

obtained in the round robin testing programme by RILEM TC

247-DTA
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significantly from the expected relationship between

kc-acc and kc-nat has important implications. Most

importantly, it indicates that the outcomes of acceler-

ated carbonation testing of low-Ca alkali-activated

materials can lead to inaccurate predictions of their

carbonation resistance under natural exposure, as has

previously been indicated based on thermodynamic

considerations [5]. However, the number of available

studies of these materials that include both accelerated

and natural carbonation testing results for the same

materials is currently very limited (five data points);

thus, additional data are required to verify the above

conclusion. It is also noted that the testing programme

of RILEM TC 247-DTA [8] gave similar relative

performance rankings of a diverse set of AAC from

natural and accelerated carbonation testing, indicating

the usefulness of accelerated testing at least for the

purpose of comparison between samples, if not in an

absolute sense.

It is noted that an underestimation of the carbon-

ation rate has been observed also for high-volume fly

ash (50% fly ash in the binder) concrete and mortar

when comparing the carbonation coefficient obtained

by testing at cCO2 = 10% with the coefficient obtained

at cCO2 = 1% [62], and when comparing the carbon-

ation coefficients obtained at cCO2 = 10% and at

cCO2 = 1% with the coefficient obtained at natural

CO2 concentration [63]. This may suggest that Eq. (1)

is generally not valid for concretes with a high

proportion of SCMs in the binder, though the data

for the GGBS-based AAC and the BCC in the present

study appear to conform to Eq. (1), possibly in part

due to the limited number of data points.

3.3 Accelerated carbonation

No relationship between kc-acc and w/CaO or w/

(CaO ? MgOeq) of the concretes/mortars was found,

no matter which CO2 concentration was considered

(Supplementary Figs. S13–S18). As above for natural

carbonation testing, this is mainly explained by the

fact that the CO2 binding capacity of AAC is

influenced to a large extent by the alkali metals in

the pore solution and the binder, usually introduced by

the activator.

A comparison of the kc-acc[1%] values and w/

(CaO ? MgOeq ? Na2Oeq ? K2Oeq) (Fig. 8) indi-

cates that there is a weak correlation between these

parameters. A linear regression of the data, ignoring

the data point for the MK-based AAC, yields a

coefficient of determination of 0.4332 (Fig. 8), lower

than for the correlation between kc-nat and w/

(CaO ? MgOeq ? Na2Oeq ? K2Oeq). The obtained

linear function yields an intercept with the abscissa
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(i.e. kc-nat = 0.0 Hmm/d) at w/(CaO ? MgOeq ? Na2-

Oeq ? K2Oeq) = 0.28. As discussed above, this find-

ing might be explained by the existence of a

theoretical, critical value below which the capillary

pore system of the concretes/mortars becomes dis-

continuous, thus inhibiting the ingress of CO2. How-

ever, in accelerated carbonation of AAC, the influence

of any microstructural changes in the binding phases

induced by the carbonation reactions would be

expected to be more marked than under natural

carbonation conditions, and so this critical composi-

tional value for pore network depercolation (discon-

tinuity of the capillary pore system) will become

dependent on the testing conditions rather than being a

defining material characteristic.

The evident large scatter of the data in Fig. 8 in

some ways appears to mask the fact that the kc-acc[1%]

obtained for FA- and MK-based AAC do not reflect

their carbonation resistance under natural conditions

in the same way as is the case for BCC and GGBS-

based AAC (Sect. 3.2). Thus, the numerical correla-

tion identified appears to be partly fortuitous, and does

not necessarily imply accurate predictive power.

For carbonation testing under higher CO2 concen-

trations (cCO2 C 3%), no correlation between kc-acc

and w/(CaO ? MgOeq ? Na2Oeq ? K2Oeq) is

observed (Fig. 9), indicating that the significance of

these tests is limited, and/or that other parameters

beyond the scope of the current analysis, such as the

microstructural damage noted above, could play a

more important role here. It is also possible that this

relates to deviations from the assumptions that under-

pin the use of the square root-of-time relationship to

obtain a characteristic coefficient to describe carbon-

ation kinetics for materials that differ significantly

y = 1.7915x - 0.5102
R² = 0.4332
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from plain Portland cement [5, 18, 20]; this merits

further investigation. The scope of analysis that is

possible for conditions of 10–100% CO2 (Fig. 9B) is

further restricted by the fact that all available data fall

into a very narrow range of w/(CaO ? MgOeq ? Na2-

Oeq ? K2Oeq) values. However, current trends in

materials testing are moving away from these very

highly accelerated carbonation tests due to their

unrealistic impacts on material chemistry and

microstructure compared to natural conditions.

Additional parameters were evaluated regarding a

correlation with kc-acc, including the w/b ratio of the

concretes/mortars, and the silicate modulus of the

activator of the AAC. None of these yielded a

satisfactory correlation for all concretes/mortars com-

bined (Supplementary Figs. S19–S24).

4 Concluding remarks

The reported data for the carbonation resistance of

alkali-activated concretes and mortars are very

unevenly distributed: While a comparatively high

number of studies concerning GGBS-based AAC were

found, only a small number of studies that report the

carbonation rate of FA- and MK-based AAC exist.

Concerning ‘other AAC’, i.e. materials with binders

based on municipal solid waste incineration bottom

ash, non-ferrous slag or natural pozzolans, and hybrid

cements, more data are available, but the majority of

these were obtained under highly accelerated carbon-

ation conditions (cCO2 C 10%); thus, these results

might not be directly comparable with those obtained

under lower CO2 concentrations. Thus, to better

understand the carbonation of alkali-activated binders

as a class of cements, i.e. over their complete range of

chemistries, it will be necessary to obtain more data on

the carbonation resistance of FA- and MK-based AAC

concretes/mortars (low-Ca alkali-activated materials)

as well as concretes based on non-conventional alkali-

activated binders, such as natural pozzolans or

calcined clays other than MK.

An equally important issue is the comparison of

results obtained under accelerated carbonation condi-

tions with results of conditions approximating natural

carbonation: While several studies have investigated

this issue for Portland cement concretes and BCC,

there is only limited data available in this regard for

GGBS-based AAC, and only two studies [8, 33] were

found that relate to FA- and MK-based AAC. Thus,

future studies should focus on the comparison between

the results obtained under accelerated carbonation

conditions and conditions approximating natural

exposure of these concretes. Though not subject of

the present analysis, it appears also necessary to study

the effects of relative humidity during carbonation

testing in the laboratory and under unsheltered natural

conditions, as has been done for conventional

(blended) cement concretes [1].

As regards the present results, two findings appear

particularly significant in that they have important

implications for the design of alkali-activated con-

cretes and tests of their carbonation resistance:

(1) The carbonation coefficient of GGBS- and FA-

based AAC obtained under conditions approx-

imating natural exposure and, by implication,

under natural carbonation, appears to be related

to their w/(CaO ? MgOeq ? Na2Oeq ? K2Oeq)

ratio. This correlation included the high-volume

SCM concretes (BCC) in the present database;

thus, alkali-activated concretes and high-vol-

ume SCM concretes appear to behave similarly

at least in this respect. However, the scatter of

the pertinent data is considerable; thus, this ratio

may serve as a rough indicator of the carbon-

ation resistance at best. Other factors that

influence the carbonation resistance of alkali-

activated concretes have been studied and

discussed in the literature in considerable

details, and these factors must be considered in

addition when alkali-activated concretes with

satisfactory real-world performance are to be

designed.

(2) For FA- and MK-based AAC (low-Ca alkali-

activated materials), accelerated carbonation

testing at CO2 concentrations in the range

1–4% leads to considerably lower carbonation

coefficients than what would be expected from

carbonation testing under conditions approxi-

mating natural exposure and the square root-of-

time law. Thus, the present data suggests that

accelerated carbonation testing combined with

the application of the square root-of-time law

leads to inaccurate predictions of the actual

carbonation resistance of these materials;

namely, this approach may lead to underesti-

mated carbonation coefficients (overestimated

Materials and Structures          (2022) 55:225 Page 11 of 15   225 



carbonation resistance) under real-world condi-

tions. Additional work is required to verify this

conclusion and to elucidate the underlying

mechanisms. For CO2 concentrations higher

than 1%, the present database shows no corre-

lation with any of the investigated mix design

parameters, including w/(CaO ? MgOeq-

? Na2Oeq ? K2Oeq), thus indicating that the

establishment of a relationship between these

results and the carbonation resistance under

natural conditions will be difficult to achieve.

In addition, the present data demonstrate that there

is a correlation between the carbonation coefficient of

high-volume SCM concretes obtained under condi-

tions approximating natural exposure and their w/CaO

ratio. This finding is in line with previous studies

[1, 2, 4] that have shown that the carbonation

coefficient of materials based on blended Portland

cements obtained under conditions approximating

natural exposure is related to their w/CaOreactive ratio,

and it indicates that the w/CaO ratio of high-volume

SCM concretes can serve as a proxy for their w/

CaOreactive ratio.

The above conclusions are based on results

obtained using the phenolphthalein-spraying method

to determine the carbonation depths of concretes and

mortars based on alkali-activated cements or blended

cements. As mentioned above, peculiarities of the

phenolphthalein-spraying method applied to alkali-

activated concretes have been reported [8], and the

method relates to the pH of the pore solutions of the

analysed concretes and mortars, while the precipita-

tion of carbonates and other processes in the materials

cannot be directly analysed with it. Due to the

presence of significant concentrations of alkali metal

ions in the pore solutions of alkali-activated materials,

the main carbonation products and the pore solution

compositions of alkali-activated materials differ from

those of Portland cement-based materials (see, e.g.,

refs. [5, 56, 64]). Thus, differences between these

materials may also exist as regards the significance of

the carbonation depths obtained with the phenolph-

thalein-spraying method and the influence of CO2

concentration on these. To fully understand and

describe these differences, additional studies are

required, the outcomes of which may ultimately

motivate a re-evaluation of the present dataset.

Finally, it is noted that the application of data

science methods, such as machine learning [65, 66], to

the present dataset might yield insights into the

carbonation resistance of alkali-activated materials

in addition to those obtained in the present analysis. To

enable such analyses in future studies, the full dataset

underlying the present analysis is provided as Elec-

tronic Supplementary Material alongside this article.
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