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Abstract
Feynman integrals play a central role in the modern scattering amplitudes research pro-
gram. Advancing our methods for evaluating Feynman integrals will, therefore, strengthen
our ability to compare theoretical predictions with data from particle accelerators such
as the Large Hadron Collider. Motivated by this, the present manuscript purports to
study mathematical concepts related to Feynman integrals. In particular, we present
both numerical and analytical algorithms for the evaluation of Feynman integrals.

The content is divided into three parts.
Part I focuses on the method of DEQs for evaluating Feynman integrals. An otherwise

daunting integral expression is thereby traded for the comparatively simpler task of solving
a system of DEQs. We use this technique to evaluate a family of two-loop Feynman
integrals of relevance for dark matter detection.

Part II situates the study of DEQs for Feynman integrals within the framework
of D-modules, a natural language for studying PDEs algebraically. Special emphasis is
put on a particular D-module called the GKZ system, a set of higher-order PDEs that
annihilate a generalized version of a Feynman integral. In the course of matching the
generalized integral to a Feynman integral proper, we discover an algorithm for evaluating
the latter in terms of logarithmic series.

Part III develops a numerical integration algorithm. It combines Monte Carlo
sampling with tropical geometry, a particular offspring of algebraic geometry that stud-
ies "piecewise-linear" polynomials. Feynman’s iε-prescription is incorporated into the
algorithm via contour deformation. We present a new open-source program named
Feyntrop that implements this algorithm, and use it to numerically evaluate Feynman
integrals between 1-5 loops and 0-5 legs in physical regions of phase space.
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Chapter 1

Introduction

Eugene Wigner famously pondered about the unreasonable effectiveness of mathematics in
the natural sciences [1]. How can it be that esoteric mathematical structures such as group
theory, calculus and geometry - often developed for entirely independent reasons - are able
to describe the "laws of Nature" so powerfully? A prime example is that of quantum field
theory (QFT). This theory combines two pillars of our modern understanding of Nature:
quantum mechanics and special relativity. Although some intuition can be gained from
describing QFT in plain English, it is only in terms of mathematics that we can properly
(insofar as possible) define the theory and do something with it!

The standard model (SM) is the crown jewel of the modern QFT program. It describes
three out of four known forces of Nature: electromagnetism, the weak and the strong
nuclear forces. Although it does not incorporate gravity (the last, known force) at the
quantum level, the mathematical techniques that were developed to probe the SM are
now also being used to study gravity in the weak field limit [2].

Physicists test the SM in the same way Rutherford first investigated the sub-atomic
world a century ago: by scattering particles together and measuring their cross sections
(roughly speaking the effective range of interaction of the scattered particles). Figure (1.1)
compares a host of experimentally determined total cross sections, from ATLAS data,
with corresponding theoretical predictions made within the SM. The level of agreement is
striking.

A QFT, such as the SM, is typically defined in the abstract language of Lagrangians,
i.e. polynomials in quantum fields and derivatives thereof. How can this be connected to
concrete, observable quantities such as the aforementioned cross sections? The connection
is made through the calculation of scattering amplitudes. These are complex-valued
functions (depending on data such the masses, spins and momenta of the particles involved
in a given scattering experiment) which measure the quantum mechanical probability for
turning an initial state into a final state. Given such an amplitude A, one obtains a total

2



3

Figure 1.1: Summary plot anno 2019 comparing experimental vs. theoretical values for
Standard Model cross sections [4].

cross section by integrating |A|2 over a relevant region of phase space.
Because the SM Lagrangian contains several small parameters in the form of coupling

constants, it is natural to compute scattering amplitudes as perturbative expansions in
said constants. The numerical accuracy of a given amplitude is then determined by how
many orders of this expansion we are able to compute. Ever since the work of Feynman [3],
physicists have organized these expansions in terms of Feynman diagrams. Schematically,
the perturbative expansion of an amplitude A is written as

(1.1)

The Feynman rules, derived from the Lagrangian of a given theory, give instructions for
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how to calculate each diagram. The leading-order contributions, written as sums of tree
diagrams, are, arguably, now under control, and so will not be a focus of this thesis. The
subleading-order contributions are written as sums of loop diagrams. In these cases, the
Feynman rules instruct us to compute integrals over the momenta of virtual particles
running inside the loops. These Feynman integrals (FIs) are the source of nearly all
the computational complexity that goes into the calculation of perturbative scattering
amplitudes beyond leading order. If we want to probe the SM at increased accuracy in
the hopes of detecting signs of physics beyond the SM (which we know must exist, due
to unexplained phenomena such as neutrino masses, dark matter and the supposedly
"unnatural" value of the Higgs mass), it thus behooves us to strengthen our mathematical
capabilities for computing FIs. Indeed, following Wigner, we should use the unreasonable
effectiveness of mathematics to our benefit!

The context of this thesis

There is a very long road from writing down a Lagrangian in, say, QCD to actually arriving
at a cross section at some given order in perturbation theory (this includes writing down
all the relevant Feynman diagrams, taking care of tensor structure, renormalizing and
regularizing UV and IR divergences respectively, feeding in non-perturbative information
via parton distribution functions, choosing proper values for factorization/renormalization
scales, and much much more). The modern scattering amplitudes program is, in a word,
all about finding potential simplicity hiding within this highly complex process in order
to lessen the calculational burden [5]1. More narrowly, for the purpose of this thesis we
may ponder the question: do FIs also exhibit any simple mathematical structure?

IBPs and DEQs. The first sign of "simplicity" was arguably the discovery of the linear
relations among FIs called integration-by-parts identities (IBPs) [6, 7, 8]. To mention a
concrete application of these relations, take the recent 3-loop QCD amplitude computed in
[9]. The original expression for the amplitude contains of order O(105) FIs to be evaluated.
However, only O(300) of these integrals are actually linearly independent! In other words,
the original O(105) integrals can all be written as linear combinations of O(300) master
integrals (MIs), where the coefficients in front of the MIs are rational functions in the
kinematic variables and the dimension of spacetime. When such linear relations can be
generated systematically and efficiently, it constitutes a significant simplification of a given

1In fact, it is now quite common in this field to dispense with Lagrangians entirely, as they carry so
much physically irrelevant (i.e. off-shell) information!
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calculation. There are now many public codes dedicated to this purpose being used in
virtually every current amplitude calculation beyond leading order [10, 11, 12, 13, 14, 15].
Indeed, we shall make frequent use of them in this thesis.

Suppose the many FIs in a given calculation have been reduced to a small set of MIs.
The question is then how to evaluate the MIs themselves. IBPs once again lend a helping
hand, as they can be used to derive differential equations for MIs [16, 17, 18, 19]. The
second example of "simplicity" that we highlight was discovered by Henn [20]: there is
a freedom in choosing which FIs that are promoted to MIs, and if this choice is made
judiciously, then their DEQs simplify considerably. Concretely, the simplification stems
from the decoupling, or factorization, of a parameter in the DEQs called ϵ, which appears
because it is related to the dimension D of spacetime (as mentioned above, D is brought
into the game due to IBPs). Such a basis is dubbed to be canonical. When the DEQs are
brought into this canonical form, they are much easier to solve.

D-modules. These two notions, IBPs and DEQs, thus appear to be central to the
(analytical, or symbolic) evaluation of FIs. To learn more about the mathematical
structure of these integrals, we argue that it is interesting to reformulate these two notions
in novel mathematical frameworks2, as new perspectives often tend to bring new insights.
One such mathematical framework, which will occupy a large portion of this thesis, is that
of D-modules. D-modules study DEQs from an algebraic point of view, as a supplement
to the usual tools from complex analysis. Its mathematical development goes back to
the Japanese school of the 70s and 80s spearheaded by M. Sato and M. Kashiwara. (See
[22] for a historical account and the textbooks [23, 24] for technical details. Early studies
on the relationship between FIs and D-modules include [25, 26] in the 1970s, and later
[27, 28, 29] in the 2010s.)

One of the goals of this thesis is thus to re-interpret IBPs and DEQs in this language.
To foreshadow the contents of future chapters, we shall interpret IBPs in terms of so-called
Macaulay matrices, and solutions to DEQs via "restrictions" of D-modules.

Numerical integration. Alongside the aforementioned developments in the analytical
evaluation of FIs, there is also a tradition for the numerical evaluation thereof (see [30,
Section 3.3] for a historical account). However, because of limited computer resources
in the previous century, this tradition only goes back roughly two decades (some of
the earliest developments include [31, 32]). But why go down this route? Although

2A prime example hereof is the recent reformulation of IBPs within the framework of twisted cohomology
[21].
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analytic control over FIs is arguably the most favorable situation, sometimes the symbolic
expressions are just too complicated even with current tools! Nevertheless, blind numerical
evaluation is rarely the most efficient way to proceed. It is better to perform some kind
of symbolic preprocessing, so as to reveal an expression that is simple to numerically
evaluate. For instance, one could still use IBPs to derive DEQs for FIs, but now with
every parameter except one fixed to a number in order to simplify the IBPs. The DEQs
are then written w.r.t. this single, unfixed parameter, and are solved through numerical
series expansions rather than the analytic method of canonical bases. This approach,
called auxiliary mass flow, has proven to be very fruitful in recent years [33, 34].

Tropical geometry. With the goal of numerical evaluation in mind, we shall carry
out such a symbolic preprocessing by stepping into the world of tropical geometry. The
mathematical disciple of algebraic geometry is perhaps already familiar to the reader. The
latter studies the "smooth" geometries associated to the solutions of polynomial equations.
Tropical geometry, instead, studies the solutions to equations involving "piecewise-linear"
polynomials. This "piecewise" nature then translates into more "chunky" geometric
figures, more precisely polytopes, which are comparatively easier to handle. (See the
textbook [35] for a pedagogical exposition on tropical geometry.) The connection to FIs
comes from representing them as integrals over certain polynomials raised to rational
powers. By studying the simpler, tropical nature of these integrand polynomials, one can
learn about the UV/IR divergent behaviour of FIs [36], as well as the connection between
QFT and string theory amplitudes [37, 38].

For our purposes, the central notion will be that of a tropical approximation to a
polynomial, envisioned by Panzer [39], which essentially just replaces ”+” with ”max”.
We obtain tropical versions of FIs by applying this operation to the integrands. Despite
their simplicity (or perhaps because of it!), tropical versions of FIs appear to retain an
uncanny amount of information about the original integral [39, Section 5.1]. We shall
employ this particular symbolic preprocessing, i.e. the tropicalization of the Feynman
integrand, to simplify the numerical evaluation of FIs. This idea was originally put
forward by Borinsky [40].

The content of this thesis

The above discussion hopefully motivates the main topic of this thesis, namely the
evaluation of FIs. We have divided the presentation into three parts.
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Part I. The first part of the thesis focuses on the evaluation of FIs through the method
of DEQs.

In Chapter (2), starting from a single FI, we show how to associate to it a whole
family of integrals Iν1...νn , where each νi ∈ Z. There exist linear relations among integrals
with different values of (ν1, . . . , νn), namely the IBPs mentioned above. We shall describe
how to derive these relations, how to identify a set of MIs I⃗, and lastly how set up a
system of first-order DEQs

∂

∂zi
I⃗(z) = Pi(z) · I⃗(z) for i = 1, . . . , N . (1.2)

z = (z1, . . . , zN ) is a collection of kinematic variables, and Pi(z) are rational matrices.
This is called a Pfaffian system of DEQs. Direct integration of FIs, often being too hard,
is thereby sidestepped in favor of the comparatively easier task of solving Pfaffian systems.

In Chapter (3), we use the method of IBPs and Pfaffian systems to calculate a
collection of 2-loop 3-point FIs with internally massive propagators. These integrals are
then fed into the form factors for a scattering amplitude that is of relevance to dark
matter detection.

Part II. The second part of this thesis is much more mathematically formal (though
hopefully still accessible to a physicist audience), as it dives into the theory of D-modules.

In Chapter (4), we begin by describing those concepts in the theory of D-modules that
are needed for developments in future chapters. This includes the notion of a holonomic
D-module, which carries the structure of a finite-dimensional vector space. This mimics
the vector space structure of families of FIs due to IBPs.

In Chapter (5), we present a novel algorithm whose output is a Pfaffian system
for a holonomic D-module. It takes as input a collection of differential operators that
annihilate a given function as well a basis of operators for the associated vector space.
The key concept of the algorithm is that of a Macaulay matrix, which encodes relations
among differential operators. This matrix is frequently used in the setting of commutative
polynomial rings to avoid Gröbner basis computations, as they tend to scale poorly with
the complexity of the problem. Indeed, one feature of the algorithm presented here is that
it too avoids the need for Gröbner bases, now in a non-commutative ring of differential
operators.

In Chapter (6), we draw our attention to a specific holonomic D-module called the
GKZ system, named after Gel’fand, Kapranov and Zelevinsky [41, 42]. It is built from
a collection of differential operators that can immediately be written down given the
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integral representation of an Euler integral. The benefit from employing the GKZ system
is two-fold: 1) a complete set of annihilating operators is known, and 2) an explicit vector
space basis can be computed very fast.

In Chapter (7), the connection between Euler integrals and FIs is established by
generalizing the parameters present in the Lee-Pomeransky representation [43] of a FI.
The GKZ system can consequently be used to study this generalized FI. In particular,
we use the GKZ system as input for the Macaulay matrix algorithm in order to derive
Pfaffian systems for a couple of simple FIs.

In Chapter (8), we address the discrepancy between Euler integrals and FIs: an Euler
integral often has too many parameters compared to the number of kinematic variables
in a FI. To land on the D-module for the FI proper, one must take a kind of "limit" of
the GKZ system, called a restriction in the language of D-modules. We develop two
different methods for computing restrictions whose output is the Pfaffian system for the
restricted D-module. The first method is based on manipulating Pfaffian systems through
series expansions and gauge transformations. The second method simply takes the limits
directly at the level of the Macaulay matrix. The first method turns out to be applicable
to the computation of logarithmic series solutions to Pfaffian systems. The second method
turns out to allow for restrictions onto hypersurfaces in addition to just hyperplanes,
which, to the best of our knowledge, has so far not been achieved within the theory of
D-modules.

In Chapter (9), we showcase both restriction algorithms through several FI examples.
The examples concerning logarithmic solutions to Pfaffian systems unfortunately only
contain partial results, and so will have to be completed in future work.

Part III. The third and final part of this thesis shifts focus from analytical to numerical
methods for evaluating FIs. The mathematical framework is that of tropical geometry.

In Chapter (10), we begin by describing the notion of a tropical approximation to a
polynomial. For instance, given

p(x) = 2x1x2 + 3x21 − 8x22 , (1.3)

then its tropical approximation is

ptr(x) = max{x1x2, x21, x22} . (1.4)

We thereafter present a striking observation made by Borinsky [40]: for an integral of
a polynomial raised to some power

∫
p(x)adnx (over a certain integration contour and
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modulo some technical conditions), one can build a probability measure from ptr(x). By
sampling points from this measure, it is thereby possible to perform numerical Monte
Carlo integration. This can be used to evaluate FIs in parametric representation. We
combine this tropical integration algorithm with the ϵ-expansion of FIs in the dimensional
regularization scheme. Feynman’s iε-prescription is incorporated via a certain contour
deformation x→ xeif(x), which maps the Schwinger integration variables x from real line
into a path in the complex plane.

In Chapter (11), the program Feyntrop is introduced. It is an implementation of
the tropical Monte Carlo integration scheme, and includes both the ϵ-expansion and the
iε-prescription. The program can therefore numerically evaluate dimensionally regulated
FIs for physical kinematics in Minkowski space (rather than just Euclidean kinematics).
After a tutorial of the program, we then apply it to several non-trivial examples between
1-5 loops and 0-5 legs.

In Chapter (12), we present the conclusions reached throughout this thesis and speculate
on developments for the future.



Part I

Multi-loop Technology

10



Chapter 2

Feynman Integrals

This chapter is a summary of basic concepts pertaining to Feynman integrals. It is far
from an exhaustive review (for such a text, consult e.g. [44] and [45]).

Section 2.1

Definition

The main object of study in this thesis is the Feynman integral (FI) associated to an
L-loop Feynman diagram G:

IG = lim
ε→0+

∫
(R1,D−1)L

dL·Dℓ
Eint∏
e=1

1

[−qe(p, ℓ)2 +m2
e − iε]νe

. (2.1)

We often also write Iν1ν2... = I(ν1, ν2, . . .). Let us go through the notation used above.

2.1.1 Feynman diagram

A (scalar) Feynman diagram G = (E, V ) is defined by a set of edges E = {e1, . . . , e|E|}
and vertices V = {v1, . . . , v|V |}. Given the number of edges and vertices, the number
of loops is given by L = |E| − |V | + 1 . To each edge e, we associate a D-dimensional
momentum vector flowing along the orientation of e. Momentum conservation is imposed
at each vertex v, meaning that all edge momenta flowing into v equal those flowing out
of v (in analogy with Kirchhoff’s law for currents in electrical circuits).

2.1.2 The integrand

Let us partition the set of edges into external and internal ones, i.e. E = Eext ⊔ Eint.
The external edges have one end which is not connected to any other edge, while the
internal edges are connected to at least one other edge on each end.

11
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Consider an edge e. If e ∈ Eext is external, then we label its associated momentum
vector by

pe =
(
p0e, . . . , p

D−1
e

)
∈ R1,D−1 , (2.2)

where R1,D−1 denotes D-dimensional Minkowski space equipped with the inner product

a · b = a0b0 − a1b1 − . . .− aD−1bD−1 . (2.3)

On the other hand, if e ∈ Eint is internal, then we associate to it the vector qe ∈ R1,D−1

written as a sum of external momenta pi and loop momenta ℓj :

qe(p, ℓ) =
∑
i

± pi +
∑
j

± ℓj . (2.4)

The signs and summation ranges for (i, j) depend on the chosen momentum routing for
the graph G. The L loop momenta {ℓ1, . . . , ℓL} can be viewed as the leftover degrees
of freedom after imposing momentum conservation at each vertex. In (2.1), these loop
momenta are integrated against the measure

dL·Dℓ := dℓ
(0)
1 ∧ · · · ∧ dℓ

(D−1)
1 ∧ · · · ∧ dℓ

(0)
L ∧ · · · ∧ dℓ

(D−1)
L (2.5)

over the whole of Minkowski space R1,D−1.
To any edge e, we additionally assign a scalar mass me ∈ R≥0. For an external

momentum, we say that it is on-shell if it satisfies Einstein’s energy momentum relation:
p2e = m2

e. An internal momentum is generally not on-shell, that is q2e ̸= m2
e (apart from

special points within the integration range).
The integrand of (2.1) is constructed by taking a product of Feynman propagators

1

[−qe(p, ℓ)2 +m2
e − iε]νe

(2.6)

for each internal edge. The integers νe ∈ Z are called edge weights or simply propagator
powers. The infinitesimal imaginary part iε is introduced to set a particular integration
contour. We shall have more to say about this in Section (10.2.1), but until then we
can safely leave the iε as well as the limit ε→ 0+ in front of (2.1) as implicit. In gauge
theories such as QED and QCD, Feynman propagators become dressed with numerators
having some theory-dependent tensor structure. This additional structure is often factored
out in front of scalar FIs (cf. Section (3.2)).
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Example 2.1. Consider the Feynman diagram

G =

4

2

1

3

p2

p1

p3

q2

q1

q4

q3

q5
. (2.7)

It has L = 2 loops by inspection. As a sanity check, we get the same value by writing
L = |Eint| − |Vint|+ 1 = 5− 4 + 1 = 2, where we just used the internal edges and vertices
for counting (the external lines add three edges but technically also three vertices, so
these cancel in the formula for L).

We have chosen an arbitrary momentum routing by drawing arrows on each edge.
The external momenta are denoted by {p1, p2, p3}, and the internal ones are {q1, . . . , q5}.
Imposing momentum conservation at each vertex, we have

vertex 1: p1 + q1 + q5 = q4

vertex 2: p2 + q2 = q1

vertex 3: p3 + q4 = q3

vertex 4: q3 = q2 + q5 .

(2.8)

There are not enough relations here to completely fix all of the momenta qe. Given that
L = 2, there will be two leftover degrees of freedom ℓ1 and ℓ2. Arbitrarily choosing to
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call q1 = ℓ1 and q5 = ℓ2, then a solution to the linear system above is

q1 = ℓ1

q2 = ℓ1 − p2
q3 = ℓ1 + ℓ2 − p2
q4 = ℓ1 + ℓ2 − p2 − p3
q5 = ℓ2 .

(2.9)

Suppose the internal masses are given by {m1,m2,m3,m4,m5} = {m, 0, 0, 0,m}, and
that the edge weights are {ν1, ν2, ν3, ν4, ν5} = {1, 2, 1, 1, 3}.

The FI associated to this data is then

IG =

∫
(R(1,D−1))

2

d2·Dℓ[
−q21 +m2

] [
−q22

]2 [−q23] [−q24] [−q25 +m2
]3 , (2.10)

where the qe are given by (2.9). ■

2.1.3 General features

Having defined our object of study, let us now describe some general features of FIs. The
first thing to mention is that they are often divergent when the loop momenta are small
and/or large, i.e. when ℓ → 0 and/or |ℓ| → ∞. This should not deter us, since we can
introduce a regularization scheme to make these integrals well-defined. The most common
scheme, and the one we adopt throughout this thesis, is that of dimensional regularization
(DR) [46]. Although (2.1) will generically diverge in, say, D = 4 spacetime dimensions,
we can promote D to an indeterminate parameter, thereby considering IG = IG(D) as a
function of D. Divergences then show up as poles in (D− 4), leading us to interpret the
FI a Laurent series in (D− 4). It is customary to write

D = D0 − 2ϵ (2.11)

with D0 ∈ Z>0 and |ϵ| ≪ 1, such that

IG(D) =

∞∑
i=imin

I
(i)
G ϵi , imin ∈ Z . (2.12)

The poles in ϵ happily cancel during the computations of physical observables. There
are two mechanisms for these cancellations: UV renormalization and IR subtraction,
but we shall not dive into these deep topics here. Note that the mass dimension of the
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integral measure
[
dD·Lℓ

]
= D · L changes in DR. To counterbalance this, one introduces

another arbitrary parameter µ with mass dimension [µ] = 1, leading to a new measure
(µ2)ϵL dD·Lℓ. We will often be sloppy with factors of µ throughout this thesis, since they
are easy to reinstate.

The end goal of a FI computation is to obtain the coefficient functions I(i)G . What
do they look like, qualitatively speaking? Inspecting (2.1), observe that I(i)G will be a
functions of masses me and (|Eext| − 1)/2 scalar products pe · pd. The factor of 1/2 is due
to pe · pd = pd · pe, and the factor (|Eext| − 1) comes from momentum conservation

p|Ext| = −
|Eext|−1∑

e=1

pe , (2.13)

with the convention that all external momenta are in-coming. In practical calculations, it
is useful to trade the dependence on scalar products for a dependence on Mandelstam
variables sij = (pi + pj)

2.

So the I(i)G are functions of masses and external momenta, but what kind of functions?
The answer to this question is not yet settled in full generality, though much is known at
low loop-order [47]. Part of the answer depends on what properties we would like a space
of functions to have. Take, for instance, the famous Γ-function

Γ(z) =

∫ ∞

0
xz−1e−xdx , Re(z) > 0 . (2.14)

Because Γ is defined by its integral representation, we don’t think of that integral as
being "leftover work" to be done, as opposed to e.g.

∫ z
0 x2 dx. The integral representation

of Γ is perfectly fine because

1. It allows for the derivation of many identities, such as the famous reflection formula
Γ(1− z)Γ(z) = π

sin(πz) , which can simplify calculations involving large expressions.
For instance, there could be two terms like 4Γ(1− z)Γ(z)− 4 π

sin(πz) in some result,
but it would be wasteful to numerically evaluate this expression since it gives 0.

2. It opens the door to other representations which allow for accurate numerical evalu-
ations, such as the Stirling series Γ(1 + z) =

√
2πz (z/e)z exp

(∑∞
i=1

B2i

2i(2i−1)z2i−1

)
written in terms of Bernoulli numbers Bi.

3. It is a starting point for determining the analytic continuation of Γ(z) to larger
regions of the complex plane.

Based on this analogy, we claim that "calculating" the ith ϵ-coefficient function I
(i)
G
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is equivalent to rewriting it in terms of functions with "nice" numerical and analytic
properties. A natural choice for such "nice" functions turns out to be the Chen iterated
integrals which we define in Section (2.4).

Section 2.2

Integration-by-parts identities

In state-of-the-art computations at 2- or 3-loop orders, one typically encounters O(104)
to O(106) different FIs. Fortunately, only a select few of these integrals, typically of order
O(102), need to be calculated. This huge decrease in workload is a consequence of linear
relations among FIs called integration-by-parts identities (IBPs) [6, 7, 8]. These identities
express the many integrals appearing in a QFT computation in terms of a small basis of
master integrals (MIs). The MIs can then be computed via the method of differential
equations [16, 17, 18, 19], as outlined in Section (2.3).

IBPs are born from the fact that a total derivative vanishes in DR [44, Section 6.1]:

0 =

∫
dD·Lℓ

∂

∂ℓµ
[
vµ · f(ℓ)

]
, (2.15)

where vµ is an arbitrary vector and f(ℓ) is some product of propagators. Let us go
through an example to see why (2.15) leads to linear relations among FIs.

Example 2.1. Consider the following 1-loop bubble integral family1

I(ν1, ν2) = =

∫
dDℓ

[−ℓ2 +m2]ν1 [−(ℓ+ p)2]ν2
. (2.16)

Say we choose vµ = pµ in (2.15). Setting D1 = −ℓ2 +m2 and D2 = −(ℓ+ p)2, then the
chain and product rules yield

∂

∂ℓµ
pµ

Dν1
1 D

ν2
2

=
pµ

Dν2
2

∂

∂ℓµ
1

Dν1
1

+
pµ

Dν1
1

∂

∂ℓµ
1

Dν2
2

(2.17)

=
pµ

Dν2
2

2ν1ℓµ

Dν1+1
1

+
pµ

Dν1
1

2ν2(ℓµ + pµ)

Dν2+1
2

. (2.18)

The combination 2pµℓµ = 2p · ℓ appears in both terms. It can be rewritten in terms of
1The solid, thick line has mass m, the solid, thin line is massless, and the dashed lines have squared

momentum p2.
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the two propagators D1 and D2 as follows:

D2 = −ℓ2 − p2 − 2p · ℓ = D1 −m2 − p2 − 2p · ℓ =⇒
2p · ℓ = D1 −D2 −m2 − p2 .

(2.19)

Inserting this into (2.18) gives

ν1
D1 −D2 −m2 − p2

Dν2
2 Dν1+1

1

+ ν2
D1 −D2 −m2 − p2 + 2p2

Dν1
1 Dν2+1

2

. (2.20)

Simplifying, reinstating the integral sign, and equating to zero, we find the family of IBPs

0 = (ν2 − ν1)I(ν1, ν2)
+ ν1

[(
m2 + p2

)
I(ν1 + 1, ν2) + I(ν1 + 1, ν2 − 1)

]
(2.21)

+ ν2
[(
m2 − p2

)
I(ν1, ν2 + 1)− I(ν1 − 1, ν2 + 1)

]
.

Choosing instead vµ = ℓµ, then a similar calculation yields

0 = (D− 2ν1 − ν2)I(ν1, ν2)
+ 2m2ν1I(ν1 + 1, ν2) (2.22)

+ ν2
[
(m2 − p2)I(ν1, ν2 + 1)− I(ν1 − 1, ν2 + 1)

]
.

The latter derivation requires the additional identity

∂

∂ℓµ
ℓµ = (∂0,−∂i)µ ηµν (ℓ0, ℓi)ν = D. (2.23)

Let’s now showcase an IBP reduction. Setting ν1 = ν1 = 1 in (2.21), we have

0 = (m2 + p2)I(2, 1) + I(2, 0) + (m2 − p2)I(1, 2) . (2.24)

Here we set I(0, 2) = 0. This is an example of a scaleless integral, i.e. it does not depend
on any variables with mass dimension. It can be shown that scaleless integrals vanish in
DR [44, Page 40]2.

Setting also ν1 = ν2 = 1 in (2.22), we get

0 = (D− 3)I(1, 1) + 2m2I(2, 1) + (m2 − p2)I(1, 2) . (2.25)

2I(0, 2) naively does appear to depend on the scale p. But we can shift ℓ → ℓ− p without altering the
integral since we are integrating over the whole space R1,D−1, thereby removing the p-dependence.
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The last equation we will need is (2.22) for ν1 = 1, ν2 = 0:

0 = (D− 2)I(1, 0) + 2m2I(2, 0) . (2.26)

Combining the three equations (2.24), (2.25) and (2.26), a few lines of algebra grant

I(2, 1) =
D− 2

2m2(p2 −m2)
I(1, 0) +

D− 3

p2 −m2
I(1, 1) . (2.27)

This is an example of an IBP reduction: we have expressed an integral I(2, 1) with "large"
denominator powers in terms of two simpler integrals, I(1, 0) and I(1, 1). In fact, the
IBPs (2.21) and (2.22) allow us to express any integral I(ν1, ν2) in terms of I(1, 0) and
I(1, 1). These two integrals are thereby dubbed the master integrals (MIs) for the integral
family I(ν1, ν2). These MIs are of course not unique. The MI I(1, 1) could for instance
be swapped for I(2, 1) via (2.27). ■

IBP reduction has been automated in many public codes such has kira [10], Fire

[11], Reduze [12], NeatIBP [13], Blade [14], and LiteRed [15].

2.2.1 Irreducible scalar products

There is an important detail to deriving IBPs which did not feature in Example (2.1),
namely that of irreducible scalar products (ISPs). Recall (2.19), where we expressed the
scalar product 2p · ℓ in terms of the propagators D1 and D2. This is always possible at
1-loop order because there is a one-to-one correspondence between scalar products and
propagators. At 2-loop order or higher, this is no longer the case, as there will generally
be more scalar products than propagators. These "extra" scalar products are called
irreducible.

Example 2.2. Take for instance a 2-loop integral written in terms 3 propagators:

I(ν1, ν2, ν2) =

∫
d2·Dℓ

Dν1
1 Dν2

2 Dν3
3

where (2.28)

D1 = −ℓ21 , D2 = −ℓ22 , D3 = −(ℓ1 + ℓ2 + p)2 ,

with p being the only external momentum. It is possible to form 5 > 3 scalar products

ℓ21 , ℓ21 , ℓ1 · ℓ2 , ℓ1 · p , ℓ2 · p . (2.29)

Two out of the last three scalar products are irreducible; say we choose ℓ1 · ℓ2 and ℓ1 · p.
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The trick is simply to enlarge the original integral family to include two new integrand
factors D4 = ℓ1 · ℓ2 and D5 = ℓ1 · p, leading to

I(ν1, . . . , ν5) =

∫
d2·Dℓ

Dν1
1 · · ·Dν5

5

. (2.30)

In intermediate steps of an IBP reduction, D4 and D5 will generally appear in numerators.
This is the reason for letting the edge weights νe ∈ Z be integral rather than just
non-negative. ■

Section 2.3

The method of differential equations

So IBPs allow us to write a given FI in terms of MIs. The next question is how to
compute the MIs themselves. Let I(ν) = I(ν1, ν2, . . .) denote a family of FIs. This
family depends on some kinematic variables, call them z = (z1, z2, . . .), such as masses
m2

e and Mandelstam variables sij . Suppose a vector of MIs I⃗ has been revealed after IBP
reduction. The method of differential equations for computing the MIs consists of the
following steps:

1. Take derivatives ∂iI⃗ , w.r.t. the kinematic variables zi. These derivatives lead to
shifts in the edge weights νe.

2. IBP reduce the integrals with shifted νe down to MIs I⃗. The reduction can be
factored as Pi(z) · I⃗ for some matrices Pi whose entries are rational functions of z
and D. The resulting system of DEQs is

∂iI⃗ = Pi(z) · I⃗ . (2.31)

This is called a Pfaffian system, and will be a major topic of interest for this thesis.
The matrices Pi are called Pfaffian matrices.

3. Solve the Pfaffian system in terms of a path-ordered exponential.

Let us illustrate the first three steps by an example. The fourth step will be discussed in
the next section.
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Example 2.1. This is a continuation of Example (2.1), wherein we found two MIs

I⃗ =

[
I(1, 0)

I(1, 1)

]
(2.32)

for a 1-loop integral family.
There are two kinematic variables (z1, z2) = (m2, p2) w.r.t. which we can take deriva-

tives. The derivative w.r.t. z1 works out to

∂1I⃗ =

[
−I(2, 0)
−I(2, 1)

]
(2.33)

IBP
=

 D−2
2z1

I(1, 0)

D−2
2z1(z1−z2)

I(1, 0) + D−3
z1−z2

I(1, 1)

 (2.34)

=

[
D−2
2z1

0
D−2

2z1(z1−z2)
D−3
z1−z2

]
·
[
I(1, 0)

I(1, 1)

]
(2.35)

= P1 · I⃗ . (2.36)

A similar computation can be carried out for z2. The result is

∂2I⃗ =

[
0 0

D−2
2z2(z1−z2)

(2−D)z1+(4−D)z2
2z2(z1−z2)

]
· I⃗ = P2 · I⃗ . (2.37)

Pfaffian matrices such as P1 and P2 satisfy interesting identities. The Euler homo-
geneity condition

z1P1 + z2P2 =

[
D−2
2 0

0 D−4
2

]
(2.38)

reflects the fact that the MIs are certain homogeneous functions of z. Furthermore, the
integrability condition

∂1P2 − ∂2P1 = [P1, P2] (2.39)

follows from the fact that the MIs are C2 (twice continuously differentiable). ■
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2.3.1 Canonical bases

Obtaining the Pfaffian system for a basis of MIs is only part of the work, the next step
is to calculate a solution. In practice, we are only interested in computing solutions up
a specific order in the ϵ-expansion (2.12). As discovered by Henn [20], it is particularly
simple to find this expansion if we first write the Pfaffian system in canonical form.

The starting point is the Pfaffian system ∂iI⃗ = Pi(z|ϵ) · I⃗ for N kinematic variables
z = (z1, . . . , zN ). Note that we highlight both the z- and ϵ-dependence of the matrix Pi. It
is more clean to write this system in terms of the total derivative dz = dz1

∂
∂z1

+. . .+dzN
∂

∂zN

as

dz I⃗ = P (z|ϵ) · I⃗ where P = P1(z|ϵ) dz1 + . . .+ PN (z|ϵ) dzN . (2.40)

Suppose we would like to change to a new basis of MIs J⃗ . Due to IBP identities, there
must necessarily exist an invertible matrix G = G(z|ϵ) such that I⃗ = G · J⃗ . Inserting this
expression for I⃗ into (2.40), it follows from the chain rule that

dzJ⃗ = Q(z|ϵ) · J⃗ where Qi(z|ϵ) = G−1 ·
[
Pi ·G− ∂iG

]
. (2.41)

We say that the new Pfaffian matrices Qi are obtained from a gauge transformation of Pi

by G. Now, assume that the basis J⃗ has the following special properties:

1. The ϵ-dependence factorizes in its associated Pfaffian matrices, that is

Q(z|ϵ) = ϵQ(z) . (2.42)

2. The poles coming from the denominators of the Pfaffian matrices all have order 1.
In particular, we can write

ϵQ(z) = ϵ
∑
η∈A

Qi d log η(z) , (2.43)

where

d log η(z) =
1

η(z)

∂η(z)

∂z1
dz1 + . . .+

1

η(z)

∂η(z)

∂zN
dzN . (2.44)

Every matrix entry (Qi)ab ∈ Q is here a rational number, and the (possibly algebraic
or even transcendental) functions η(z) are called letters. The full set of letters,
denoted here by A, is called the alphabet.
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By virtue of these two properties, J⃗ is called a canonical basis. Many calculations in
the literature have shown that when condition 1 is satisfied, then condition 2 follows
automatically - though, to the best of our knowledge, this has yet to be proven rigorously.
In practice, the effort in searching for canonical bases is hence put into ϵ-factorization.

The ϵ-expansion of the canonical solution vector J⃗ is now particularly simple:

J⃗ = P exp

(
ϵ

∫
Γ
Q(z)

)
· J⃗0(ϵ) , (2.45)

where the path-ordered exponential is given by

P exp

(
ϵ

∫
Γ
Q(z)

)
= 1+ ϵ

∫ t

0
Q(Γ(t1)) + ϵ2

∫ t

0
Q(Γ(t1))

∫ t1

0
Q(Γ(t2)) +O(ϵ3) (2.46)

for some chosen integration contour Γ parametrized by t ∈ R. The vector of boundary
constants also has an ϵ-expansion:

J⃗0(ϵ) = J⃗0
(0) + ϵJ⃗0

(1) + ϵ2J⃗0
(2) +O(ϵ3) , (2.47)

with each vector J⃗0(n) consisting solely of real numbers. These boundary vectors are
often determined by considering special limits of the MIs; concrete examples are given in
Section (3.3).

The solution above is written somewhat abstractly in terms of a matrix-valued one-form
Q(z) (given in (2.43)) and some unspecified contour Γ. In Section (2.4), we shall rewrite
the iterated integrals (2.46) in form that is more suitable for computer implementations.

2.3.2 Magnus expansion

With the discussion above in mind, the key question is thus the following: given a Pfaffian
system ∂iI⃗ = Pi · I⃗ , is it possible to algorithmically construct a gauge transformation
G such that the vector J⃗ = G−1 · I⃗ satisfies a new system in canonical form? Such an
algorithm should preferably terminate in reasonable time, and be applicable to a large
category of FIs. This question has been, and is, subject to intense study (see e.g. [44,
Chapter 7] and the references therein). In this section, we present a method for that
calculating canonical forms that is at least effective for the class of functions called
generalized polylogarithms (GPLs), to be defined in Section (2.4). (There are now also
many methods that output canonical forms for FIs even when they cannot be evaluated
in terms of GPLs [48, 49, 50, 51, 52, 53, 54].)

The approach described here is based on the Magnus expansion for solving systems of
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DEQs [55]. 60 years after Magnus’ work, Argeri et al. [56] discovered that his expansion can
be used to obtain canonical forms. The starting point is a Pfaffian system in pre-canonical
form:

dz I⃗ =
[
P (0)(z) + ϵP (1)(z)

]
· I⃗ . (2.48)

I.e. a system linear in ϵ (the algorithm can be generalized to a polynomial dependence
on ϵ too [57, Section 5.2.4]). By choosing judicial edge weights and simple ϵ-dependent
prefactors for the MIs I⃗, it is often not too difficult to find a pre-canonical form.

The clever observation is now this: suppose that there exists a matrix G = G(z),
depending only on z, subject to the matrix DEQ

dzG = P (0)(z) ·G . (2.49)

If we change basis to I⃗ = G · J⃗ , then the gauge transformation (2.41) simplifies to

Q(z|ϵ) = G−1 ·
[(
P (0) + ϵP (1)

)
·G− dzG

]
(2.50)

= G−1 ·
[(
P (0) + ϵP (1)

)
·G− P (0) ·G

]
(2.51)

= ϵG−1 · P (1) ·G , (2.52)

which is indeed ϵ-factorized.
The question is thus how to find the solution G to the matrix DEQ (2.49). It turns

out that the solution takes the form of a matrix exponential:

G = eΩ[P
(0)] ·G(z = 0) . (2.53)

For our purposes, we can simply take the boundary condition to be the identity matrix,
G(z = 0) = 1. The Ω matrix in the exponent enjoys a Magnus expansion

Ω
[
P (0)

]
=

∞∑
n=1

Ωn

[
P (0)

]
, (2.54)

with each term computed by integrating iterated commutators:

Ω1

[
P (0)

]
=

∫ z

•
dz1 P

(0)(z1)

Ω2

[
P (0)

]
=

1

2

∫ z

•
dz1

∫ z1

•
dz2

[
P (0)(z1), P

(0)(z2)
]

(2.55)
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Ω3

[
P (0)

]
=

1

6

∫ z

•
dz1

∫ z1

•
dz2

∫ z2

•
dz3

{[
P (0)(z1),

[
P (0)(z2), P

(0)(z3)
]]

+[
P (0)(z3),

[
P (0)(z2), P

(0)(z1)
]]}

.

Clean formulas for the nth term of this expansion can be found in [58]. Here P (0) was
assumed to depend on just a single variable z. For multivariate problems, one can simply
apply these formulas one variable at a time [59, Page 108].

It turns out that the Magnus expansion truncates for FIs that can be evaluated in
terms of GPLs, i.e. Ωnmax = 0 for some nmax ∈ Z>0. In such cases, the matrix P (0) is
apparently sparse enough to become nilpotent, meaning that the iterated commutators
eventually evaluate to zero.

Example 2.2. Here we apply the Magnus expansion to the bubble integral from Examples
(2.1) and (2.1). Consider a basis with squared propagators:

I⃗ =

[
I(2, 0)

I(2, 1)

]
. (2.56)

Using IBPs as in Example (2.1), it is possible to obtain two Pfaffian matrices P1 and P2

in the variables z1 = m2 and z2 = p2. Working in units such that z1 = 1, then P1 can be
discarded. Call z2 = z. We thence get a pre-canonical system

∂

∂z
I⃗ =

[
P (0) + ϵ P (1)

]
· I⃗ , (2.57)

where the constant and linear matrices w.r.t. ϵ are

P (0) =

[
0 0

0 −1
z

]
and P (1) =

[
0 0
1

(1−z)z
1+z

(1−z)z

]
. (2.58)

The Magnus expansion truncates at the first term, giving

Ω
[
P (0)

]
= Ω1

[
P (0)

]
=

∫ z

•

[
0 0

0 − 1
z′

]
dz′ =

[
0 0

0 − log(z)

]
, (2.59)

wherefore

G = eΩ[P
(0)] =

[
1 0

0 1
z

]
. (2.60)
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Gauge transforming with G via (2.52) yields a new Pfaffian matrix

Q = ϵ

[
0 0
1

1−z
2

1−z + 1
z

]
, (2.61)

which is indeed canonical. ■

Example 2.3. Every physicist’s favorite equation is the DEQ for the harmonic oscillator:

d2f(t)

dt2
+ ω2f(t) = 0 . (2.62)

The angular frequency ω is taken to be constant. Let us solve this equation using the
Magnus expansion. The initial step is to rewrite the DEQ as a first-order matrix equation.
Setting f1(t) = f(t) and f2(t) =

df(t)
dt , then the DEQ is equivalent to

d

dt

[
f1(t)

f2(t)

]
=

[
0 1

−ω2 0

]
·
[
f1(t)

f2(t)

]
. (2.63)

In addition to solving matrix DEQs such as (2.49), the Magnus expansion also grants
solution vectors in the form [

f1(t)

f2(t)

]
= eΩ(t) ·

[
f1(0)

f2(0)

]
. (2.64)

The Magnus expansion truncates at the first term because ω is constant. Thus,

eΩ(t) = exp

(∫ t

0

[
0 1

−ω2 0

]
dt′
)

(2.65)

=

 cosh
(√
−ω2t

)
sinh(

√
−ω2t)√

−ω2√
−ω2 sinh

(√
−ω2t

)
cosh

(√
−ω2t

)
 (2.66)

=

[
cos(ωt) sin(ωt)

ω

−ω sin(ωt) cos(ωt)

]
. (2.67)

We obtain oscillating functions as expected. Further, this solution satisfies f2(t) = ḟ1(t).
■
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Section 2.4

Generalized polylogarithms

The path-ordered exponential (2.46) naturally leads to a class of functions called Chen
iterated integrals [60]. Let us first say what we mean by an integration contour for
these integrals. Suppose that there are N kinematic variables z = (z1, . . . , zN ) which
parametrize an N -dimensional (smooth) complex manifold Z. We write write a path in
this space as

Γ : [a, b]→ Z , (2.68)

where Γ(a) = za ∈ Z and Γ(b) = zb ∈ Z are the start and end points. One can think of
t ∈ [a, b] ⊂ R as being a "time" coordinate.

Let {ω1, . . . , ωM} denote a collection of differential 1-forms on Z. For example, they
could be the dlog forms from (2.43). These 1-forms are supposed to be integrated over the
contour Γ. So instead of parametrizing the ωi in terms of z, we would like to parametrize
them using t ∈ [a, b]. This is called a pullback to the interval [a, b], written as

Γ∗ωi = fi(t)dt . (2.69)

This gives a concrete expression for the integral of 1-form along Γ:∫
Γ
ωi =

∫ b

a
fi(t)dt . (2.70)

The question is how to compute the function fi(t). Writing

ωi =
N∑
j=1

ωij(z)dzj and Γ(t) =


Γ1(t)

...
ΓN (t)

 , (2.71)

then the formula for fi(t) follows from the chain rule:

Γ∗ωi =
N∑
j=1

ωij

(
Γ(t)

)dΓj(t)

dt
dt =⇒ fi(t) =

N∑
j=1

ωij

(
Γ(t)

)dΓj(t)

dt
. (2.72)
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Example 2.1. To demystify the construction above, let us compute∫
Γ
ω (2.73)

with

ω =
2

z2 − 2
dz1 +

3

z1 + 4
dz2 , and Γ : [0, 1]→ C2 given by Γ(t) =

[
t2

1− t

]
.

Inserting this data into (2.72) gives

f(t) = ω1

(
Γ(t)

)
× dΓ1(t)

dt
+ ω2

(
Γ(t)

)
× dΓ2(t)

dt
(2.74)

=
2

(1− t)− 2
× 2t +

3

t2 + 4
× (−1) (2.75)

= − 4t3 + 19t+ 3

(1 + t)(4 + t2)
. (2.76)

Using any CAS, one can then easily integrate∫
Γ
ω =

∫ 1

0
f(t)dt ≈ −1.923 . (2.77)

■

Given a t ∈ [a, b], the Chen iterated integral can now be defined as

IΓ(ω1, . . . , ωM |t) =
∫
Γ
ω1 ∧ · · · ∧ ωM (2.78)

=

∫ t

a
f1(t1)dt

∫ t1

a
f2(t2)dt2 · · ·

∫ tM−1

a
fM (tM )dtM . (2.79)

An equivalent, recursive definition is

IΓ( |t) = 1 (2.80)

IΓ(ω1, . . . , ωM |t) =
∫ t

a
f1(t1)IΓ(ω2, . . . , ωM |t1)dt1 . (2.81)

Chen proved that IΓ is independent of Γ, provided that Γ does not hit any singularities nor
cross any branch points of the integrand for a < t < b. If the integrand has singularities
at the endpoints t = a or t = b, these are assumed to be integrable singularities (caveat:
endpoint singularities can also be regularized using so-called shuffle identities [61]).
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Consider now a special class of 1-forms with a simple pole at t = zi:

ωGPL(zi) =
dt

t− zi
= d log(t− zi) . (2.82)

The complex number zi is treated as a parameter. Let Γ be a path along the non-negative
real axis such that Γ(a = 0) = 0 and Γ(t) = y ∈ R≥0. The special class of Chen iterated
integrals called generalized multiple polylogarithms (GPLs) [62] is defined by

G(z1, . . . , zM |y) = IΓ
(
ωGPL(z1), . . . , ωGPL(zM )|y

)
. (2.83)

Explicitly,

G(0, . . . , 0︸ ︷︷ ︸
M times

|y) = 1

M !
logM (y) (2.84)

G(z1, . . . , zM |y) =
∫ y

0

dy1
y1 − z1

G(z2, . . . , zM |y1) . (2.85)

The z-parameters are often called weights. The case z = 0 above naively constitutes a
divergence of the integral representation, so the first formula above is more of a stipulation
than a derivation.

There is a huge literature on these functions, see [61] [44, Chapters 6,8] and references
therein. There are also plenty of powerful codes for symbolically manipulating and
numerically evaluating these functions: the Maple package [63], Hyperint [64], HPLog

[65], HPL [66], PolyLogTools [67], Ginac [68], Chaplin [69], handyG [70], and
FastGPL [71].

Now harken back to the path-ordered exponential (2.46). If the functions η(z) from
(2.43) are rational functions of the kinematic variables z, then the solution for the FI
in question can be written in terms of GPLs. This is indeed a favorable form for the
solution because so much is known about the identities among GPLs, how to analytically
continue them, and how to numerically evaluate them.

One may encounter letters η that depend on z in terms of algebraic roots. In those
cases, one can sometimes find a change of a variables w = f(z) that turns the roots into
rational functions. The package RationalizeRoots [72] automates the procedure for
finding such an f .



Chapter 3

Two-loop Feynman Integrals for
Dark Matter Detection

We now apply the multi-loop technology from the previous chapter to compute form
factors for a leptophillic dark matter (DM) model. Form factors are certain building
blocks of scattering amplitudes. For phenomenological implications of these results, we
refer to the paper [73] on which this chapter is based.

Section 3.1

The model

Consider a DM particle χ that scatters elastically off a nucleon A: χA → χA. This is
called a direct DM search, and is probed by remarkable experiments having large tanks
filled with e.g. oxygen, helium or xenon nucleons.

Assuming that DM does not couple directly to SM particles, this scattering can
only occur via a mediator particle ϕ that does couple to the SM. Here we consider a
leptophillic DM model, wherein χ couples to ϕ, which in turn only couples to SM leptons;
the interaction between leptons and the quarks inside the nucleon A is finally mediated
via photons. The mediator ϕ is taken to be a singlet scalar (called ϕS) or a pseudo-scalar
(called ϕP ). The Lagrangian interaction terms are thus of the form

−LS ⊇ gS ϕS ℓ̄ ℓ + gχ ϕS Γχ or − LP ⊇ i gP ϕP ℓ̄ γ5 ℓ + gχ ϕP Γχ , (3.1)

where Γχ = χ†χ for scalar DM and Γχ = {χ̄ χ, χ̄ γ5 χ} for fermionic DM, {gS , gP , gχ} are
coupling constants, and {ℓ, ℓ̄} denote a lepton and an anti-lepton.

Since this model assumes no tree-level couplings to quarks, the χA scattering cross
section is purely loop-induced. It turns out that the leading contributions come from

29
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Figure 3.1: Leading contributions to the scattering amplitude for the leptophillic DM
model.

the diagrams1 in Figure (3.1). This is a t-channel process, with an incoming mediator
ϕ(q) (dashed black lines) transferring momentum to a nucleon A(p) (leftmost red lines),
leading to a final state nucleon A(p′) (rightmost red lines). Momentum conservation
dictates that q = p′ − p. The blue triangle loops represent a lepton which couples to (the
quarks inside) the nucleon via photons (wiggly black lines).

Let mA denote the nucleon mass, meaning that it can either be the proton or neutron
mass. The kinematic invariants for this process are then defined by

t = q2 = (p′ − p)2, m2
A = p2 = p′2 . (3.2)

Section 3.2

The scattering amplitude

According to the Feynman rules dictated by the Lagrangian terms (3.1), the desired
scattering amplitude takes the form

AS,P (t,mℓ,mA) = i gS,P Q
2
A

∑
ℓ=e, µ, τ

Q2
ℓ

[
ūA(p

′) · ΓS,P (t,mℓ,mA) · uA(p)
]
. (3.3)

Let us parse this expression from left to right. The amplitude A has an index S or
P , depending on whether the mediator ϕS,P is taken to be scalar or pseudo-scalar. A
has kinematic dependence on the momentum transfer variable t, the lepton masses

1These are only the so-called one-body diagrams. The virtual photons can also scatter off two nucleons,
yielding additional one-loop two-body diagrams. See [73] for more details.
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mℓ = {me,mµ,mτ} and the nucleon mass mA. The prefactor in front of the sum contains
the coupling constants gS,P from (3.1) and the electric charge of the nucleon, where
QA = 1 for the proton and QA = 0 for the neutron2. The lepton electric charge inside the
sum is Qℓ = 1. The sum over leptons contains an operator ΓS,P (t,mℓ,mA) sandwiched
between spinors ū(p′) and u(p) for the final and initial state nucleons respectively. This
operator stems from the sum of the two diagrams above. Its analytic expression is

ΓS,P (t,mℓ,mA) = −32π2αem

∫
dDℓ1
(2π)D

dDℓ2
(2π)D

gµρ γ
ρ (/ℓ2 −mA) gνσ γ

σ TrµνS,P
D1D2D3D4D5D6

, (3.4)

where the electromagnetic coupling is αem = e2/(4π), and the Dirac trace over spinor
indices is given by

TrµνS,P = Tr
[
(/ℓ1 + /q +mℓ) · ΛS,P · (/ℓ1 +mℓ) · γµ · (/ℓ1 + /ℓ2 + /p

′ +mℓ) · γν
]
, (3.5)

with ΛS = 1 and ΛP = γ5. The denominators of the momentum space integral (3.4) are

D1 = ℓ21 −m2
ℓ , D2 = (ℓ1 + q)−m2

ℓ , D3 = ℓ22 −m2
A (3.6)

D4 = (ℓ2 + p)2, D5 = (ℓ2 + p′)2, D6 = (ℓ1 + k2 + p′)2 −m2
ℓ .

It is standard to write such an amplitude containing tensor structure as

AS,P (t,mℓ,mA) ∝
∑

ℓ=e,µ,τ

FS,P (3.7)

where the form factors FS,P are related to ΓS,P via projection:

FS,P (t,mℓ,mA) =
1

2(p′ ± p)2Tr
[
ΛS,P · (/p±mA) · ΓS,P · (/p′ ±mA)

]
. (3.8)

The signs are (+1) and (−1) for the scalar (S) and pseudo-scalar (P ) cases respectively.
These form factors can in turn be expanded as sums over scalar FIs:

FS,P =
∑
ν⃗

cν⃗S,P (t,mℓ,mA|ϵ)× Iν⃗(t,mℓ,mA|ϵ), ν⃗ ∈ N7 . (3.9)

2The expression (3.3) therefore vanishes when A is the neutron. This is an approximation which holds
only in the non-relativistic limit, which is the regime being probed by DM experiments. See [73] for more
details.
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The integral family Iν⃗ is given by

Iν1,...,ν7(t,mℓ,mA|ϵ) =
∫

dDℓ1
(2π)D

dDℓ2
(2π)D

Dν7
7

Dν1
1 · · ·Dν6

6

, (3.10)

with denominators defined in (3.6) and an ISP chosen to be

D7 = (ℓ1 − p)2 . (3.11)

The coefficients cν⃗S,P are rational functions of the kinematic variables and the DR parameter
ϵ, and stem from carrying out the Dirac algebra3.

It turns out that FS is a sum of 34 integrals, and FP a sum of 5 integrals. The 34

integrals are not all linearly independent due to IBP relations. The goal for the rest
of this chapter is to compute a linearly independent set of MIs, which in turn leads to
expressions for the form factors FS,P via (3.9).

Section 3.3

Computing the Feynman integrals

Although the diagrams in Figure (3.1) are finite in D = 4 dimensions, we treat them in
DR in order to benefit from IBPs and DEQs. The limit ϵ→ 0 in (3.9) then recovers the
desired form factor results.

For the purpose of verification, we compute MIs for both the two-mass (mA ̸= mℓ)
and equal-mass (mA = mℓ) cases. The ab initio equal-mass calculation can then be
compared with the limit mA → mℓ taken on the two-mass form factors.

3.3.1 Two-mass case

We begin by computing MIs for the family of FIs associated to Figure (3.2). The integral
family was defined in the formulas (3.6), (3.10) and (3.11). As before, the kinematics are
p2 = p′2 = m2

A and t = (p− p′)2. MIs for this topology have already been computed in
[75] in the context of H → b̄ b decay; here we re-compute them independently.

IBP reduction and differentiation of FIs is performed with the codes Reduze2 [12]
and LiteRed [15]. Using the Magnus expansion from Section (2.3.2), the following set of
canonical MIs are identified:

3The prescription for treating γ5 in D ̸= 4 dimensions is taken from [74].



3.3 Computing the Feynman integrals 33

Figure 3.2: Two-mass Feynman diagram.

I1 = ϵ2J1 I2 = ϵ2J2

I3 = ϵ2λℓJ3 I4 = −ϵ2tJ4
I5 = ϵ2

[
λℓ−t
2 J4 + λℓJ4

]
I6 = −ϵ2tJ6

I7 =
ϵ2m2

AρA(t+λℓ)

ρℓ(t+λA) [J7 + 2J8] I8 = ϵ2m2
AJ8

I9 = ϵ2λℓJ9 I10 = −ϵ2tλℓJ10
I11 = ϵ3λAJ11 I12 = ϵ2λℓ

4t

[
(t− λA)(J4 + 2J5)− 4m2

AλAJ12
]

I13 = ϵ3λAJ13 I14 = ϵ3(2ϵ− 1)tJ14

I15 = ϵ3λℓλAJ15 I16 = ϵ3λAJ16

I17 = ϵ3λAJ17 I18 = (3.13)
I19 = (3.14) I20 = −ϵ4tλAJ20 ,

(3.12)

where

I18 =
ϵ2

t
[λℓ(λA − t)J9 + ϵλA(t− λℓ)J17 + (2ϵ− 1)λℓλAJ18] (3.13)

and

I19 =
ϵ2

2t

[
t(λℓ − t)J3 − 2tm2

ℓ (J7 + 2J8) +
(
4tm2

ℓ + λℓ(λA − t)
)
J9 +

4t2m2
A

λA + t
J16 (3.14)

+ ϵ
(
λA(t− λℓ)4tm2

ℓ

)
J17 + (2ϵ− 1)(4tm2

ℓ + λℓλA − t2)J18 + 2t2(m2
ℓ −m2

A)J19

]
.

The integrals Ji are graphically represented in Figure (3.3).
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J1 J2 J3 J4

J5 J6 J7 J8

J9 J10 J11 J12

J13 J14 J15 J16

J17 J18 J19 J20

Figure 3.3: The MIs Ji appearing in the canonical basis (3.12). Squared propagators are
represented by dots.

The canonical integrals contain square root prefactors λi and ρi defined by

λi =
√
−t
√
4m2

i − t , ρi =

√
2m2

i − t− λi
m2

i

, i = ℓ, A . (3.15)
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These roots are simultaneously rationalized by the change of variables

t = −m2
ℓ

(1− x)2
x2

, m2
A = m2

ℓ

(1− x2)2y2
(1− y2)2x2 , (3.16)

with a corresponding inverse map

x =

√
4− σℓ −

√−σℓ
2

, y =

√
4− σA −

√−σA
2

, σi =
t

m2
i

. (3.17)

The Euclidean kinematic regime4

{
t < 0

} ⋂ {
0 < m2

A < m2
ℓ or 0 < m2

ℓ < m2
A

}
(3.18)

is parametrized by

{
0 < x < 1

} ⋂ {
0 < y < x or 0 < x < y

}
(3.19)

in the (x, y) coordinates.
The basis (3.12) satisfies a canonical Pfaffian system

dI⃗(x, y|ϵ) = ϵ P (x, y) · I⃗(x, y|ϵ) , P (x, y) =
12∑
i=1

Pi d log ηi(x, y) , Pi ∈ Q20×20 (3.20)

with letters

η1 = x , η2 = 1 + x , η3 = 1− x ,
η4 = 1 + x2 , η5 = y , η6 = 1 + y , (3.21)

η7 = 1− y , η8 = 1 + y2 , η9 = x+ y ,

η10 = x− y , η11 = 1 + xy , η12 = 1− xy .

The general solution to this Pfaffian system is given by the path-ordered exponential
(2.46). The result takes the form I⃗(x, y|ϵ) =

[∑4
i=0Mi(x, y) ϵ

i +O(ϵ5)
]
· I⃗0(ϵ) , where

the matrices Mi(x, y) contain GPLs built from the letters ηi, and I⃗0(ϵ) is a vector of
boundary constants. The latter is fixed as follows:

4It is standard to solve Pfaffian systems for Euclidean kinematics and then analytically continue the
resulting GPLs to physical kinematic regimes.
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• By normalizing the integration measure as(
m2

ℓ

µ2

)ϵ ∫
dDℓi

iπD/2Γ(1 + ϵ)
, i = 1, 2 , (3.22)

then direct integration (via Feynman parametrization) of the tadpoles {I1, I2} as
well as the factorized integral I6 gives

I1 = 1

I2 =

(
(1− y2)x2
(1− x2)y2

)ϵ

(3.23)

I6 =

(
x2

(1− x2)2
)ϵ [

1− ζ2ϵ2 − 2ζ3ϵ
3 − 9

4
ζ4ϵ

4 +O(ϵ5)

]
,

where ζn is the nth Riemann zeta value. These external inputs are fed into the
DEQ to give relations among the remaining boundary constants.

• Boundary constants for the set of integrals {I3, I4, I5, I9, I10, I11, I12, I14, I16, I17, I18,
I19} are fixed by requiring regularity at the pseudo-threshold limit t → 0. In
particular for {I3, I4, I5, I9, I10, I14, I16, I17}, the prefactors in (3.12) make them
vanish in this limit5. Further, {I11, I12, I18, I19} are seen to vanish as t → 0 by
analyzing their DEQs. Finally, the factorized double-bubble integral I10 vanishes in
the limit because the massive bubble factor (drawn in blue in Figure (3.3)) goes
to 0 at a faster rate than the divergence of the massless bubble factor (drawn in
black).

• Boundary constants for {I7, I8} are determined by regularity at m2
A → 0. Due to

the prefactors in (3.12), both integrals vanish in this limit.

• Regularity at the limit t→ 4m2
A fixes boundary constants for the final three integrals

{I13, I15, I20}. Thanks to the prefactors of (3.12), they all vanish in this limit.

• In some of the cases listed above, the equations for the boundary constants only
led to solutions at very high precision, as opposed to analytic expressions in terms
of transcendental constants. Fortunately, using the implementation of the PSLQ

algorithm [77] in PolyLogTools [67], we can reconstruct the analytic constants
by fitting to an ansatz.

5The vanishing of I14 as t → 0 follows from the results of [76].
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3.3.2 Equal-mass case

The equal-mass topology is shown in Figure (3.4). Its associated FI family is given by
(3.10) upon setting m2

A = m2
ℓ = m2 in (3.6) and (3.11).

Figure 3.4: Equal-mass Feynman diagram.

IBP reduction reveals 15 MIs. The Magnus expansion then yields the canonical basis

I1 = ϵ2J1 I2 = ϵ2λmJ2

I3 = −ϵ2tJ3 I4 = ϵ2
[
λm+t

2 J3 + λmJ4
]

I5 = −ϵ2tJ5 I6 = ϵ2m2J6

I7 = −ϵ2tλmJ7 I8 = ϵ3λmJ8

I9 = ϵ2
[
4m2−λm−t

4 (J3 + 2J4) + m2(4m2 − t)J9
]

I10 = ϵ3λmJ10

I11 = ϵ3(1− 2ϵ)tJ11 I12 = ϵ3t(t− 4m2)J12

I13 = ϵ3λmJ13 I14 = (3.25)
I15 = −ϵ4λmtJ15 ,

(3.24)

with

I14 = ϵ2
[
(4m2 − λm − t)(J2 − ϵJ13) + (2ϵ− 1)(4m2 − t)J14

]
. (3.25)

Diagrams for the integrals Ji can be seen in Figure (3.5).
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J1 J2 J3 J4

J5 J6 J7 J8

J9 J10 J11 J12

J13 J14 J15

Figure 3.5: The MIs Ji appearing in the canonical basis (3.24). Squared propagators are
represented by dots.

The canonical integrals contain an algebraic function λm given by

λm =
√
−t
√

4m2 − t . (3.26)

Both of these roots are simultaneously rationalized by the coordinate change

t = −m2 (1− w)2
w

, (3.27)
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whose inverse map is given by

w =

√
4m2 − t−√−t√
4m2 − t+√−t

. (3.28)

The Euclidean kinematic regime

{
t < 0

} ⋂ {
m2 > 0

}
(3.29)

is then given by

0 < w < 1 . (3.30)

The canonical Pfaffian system for the basis (3.24) takes the form

dI⃗(w, ϵ) = ϵ P (w) · I⃗(w, ϵ) , P (w) =

3∑
i=1

Pi d log ηi(w) , Pi ∈ Q15×15 , (3.31)

where the three letters are

η1 = w , η2 = 1 + w , η3 = 1− w . (3.32)

This means that the Pfaffian system has a solution in terms harmonic polylogarithms
(HPLs) denoted by H(z⃗|w), i.e. GPLs with weights zi ∈ {−1, 0, 1} [78].

Boundary constants are determined as follows:

• The integrals {I1, I5, I6} can be directly integrated, and are provided as external
input. The first integral is normalized to unity by the measure, and the second
integral is swiftly computed with Feynman parameters, giving

I1 = 1 (3.33)

I5 =

(
w

(1− w)2
)ϵ [

1− ζ2ϵ2 − 2ζ3ϵ
3 − 9

4
ζ4ϵ

4 +O(ϵ5)

]
. (3.34)

The equal-mass sunrise integral I6 is computed by following the strategy of [79].
Since the square of its external momentum equals its internal masses, p2 = m2,
this integral evaluates to a number rather than a function, wherefore it cannot
immediately be computed from a Pfaffian system. The trick is to change two of
the propagator masses to M2 rather than m2, and then solve a Pfaffian system in
the auxiliary variable x = m2/M2. Boundary constants are fixed by regularity at
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x = 0. The desired integral is obtained by setting x = 1, giving the result

I6 =−
ζ2
2
ϵ2 +

[
3ζ2 log(2)−

7

4
ζ3

]
ϵ3 (3.35)

+

[
31

4
ζ4 − 6ζ2 log

2(2)− log4(2)

2
− 12Li4(

1
2)

]
ϵ4 +O(ϵ5) .

• Boundary values for the integrals {I2, I3, I4, I7, I8, I9, I11, I13, I14} are fixed by regu-
larity at the pseudo-threshold t→ 0. In particular, due to the prefactors in (3.24),
the integrals {I2, I3, I4, I8, I11, I13} go to 0 in this limit. By analyzing the Pfaffian
system as t → 0, we obtain the relations I9|t→0 = 3I6 and I14|t→0 = 6I6, which
fixes boundary values for I9 and I14 because I6 is known by the formula (3.35). The
integral I7 vanishes because the massive canonical bubble factor goes to zero faster
than the divergence of massless bubble factor.

• For I10, we use regularity at the pseudo-threshold t→ 4m2. Thanks to the prefactor
in (3.24), the integral vanishes in this limit.

• Boundary constants for the integral I12 follow from comparing the left- and right-
hand sides of I12 = I2 × I10, since I2 and I10 are known. This relation can be
gleaned from Figure (3.24) by recalling that the double-tadpole I1 is normalized to
unity due to the integration measure.

• We are able to determine boundary constants for the top sector integral I15 by
comparing our result with [80].

The final results for the canonical MIs are quite compact. For instance, the top sector
integral reads

I15 = ϵ4
[
2ζ3H(0|w) + 4ζ2H(0, 0|w) + 8H(0, 0,−1, 0|w) +H(0, 0, 0, 0|w) (3.36)

+ 6H(0, 0, 0, 1|w) + 4H(0, 1, 0, 0|w) + 3ζ4

]
+O(ϵ5) .

3.3.3 Soft limit

The soft limit t→ 0 of the form factors in Section (3.4.3) is of phenomenological interest.
For this reason, we now compute the two-mass MIs in this limit. The original two-mass
topology simplifies in this limit, as depicted in Figure (3.6).
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Figure 3.6: Diagrammatic representation of the soft limit.

The reason for this simplification is as follows. Recall that t = q2, where qµ is the
momentum of the mediator particle. Setting qµ = 0 in the integral family (3.10) implies
that D2 → D1 and D5 → D4, wherefore we only need to consider IBPs and DEQs for
the simplified integral family

Iν1ν3ν4ν6ν7 =

∫
dDℓ1
(2π)D

dDℓ2
(2π)D

Dν7
7

Dν1
1 D

ν3
3 D

ν4
4 D

ν6
6

(3.37)

having four denominators

D1 = ℓ21 −m2
ℓ , D3 = ℓ22 −m2

A ,

D4 = (ℓ2 + p)2 , D6 = (ℓ1 + ℓ2 + p)2 −m2
ℓ ,

(3.38)

and an ISP D7 = (ℓ1 − p)2. Note that p′ has been set equal to p due to momentum
conservation.

IBP reduction for the family (3.37) reveals 4 MIs. By the Magnus exponential, we
obtain the canonical basis

I1 = ϵ2J1 , I2 = ϵ2J2 ,

I3 = ϵ2mℓmA

[
J3 + 2J4

]
, I4 = ϵ2m2

AJ4 ,
(3.39)

in terms of the integrals {J1, J2, J3, J4} shown in Figure (3.7).

J1 J2 J3 J4

Figure 3.7: The integrals J1 appearing in the canonical basis (3.39). Squared propagators
are depicted by dots.
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Defining the mass-ratio variable

z =
mA

mℓ
, (3.40)

the canonical Pfaffian system takes the form

dI⃗(z|ϵ) = ϵ P (z) · I⃗(z|ϵ) , P (z) =
3∑

i=1

Pi d log ηi(z) , Pi ∈ Q4×4 , (3.41)

where the ηi are HPL letters

η1 = z , η2 = 1 + z , η3 = 1− z . (3.42)

Boundary constants for the solution vector are fixed as follows:

• The two double-tadpoles {I1, I2} can be directly integrated to

I1 = 1 and I2 = z−2ϵ . (3.43)

• Boundary values for the two sunrises {I3, I4} are fixed by regularity at mA → 0 as
in [79]. In particular, due to the prefactors of (3.39), both integrals vanish in this
limit.

Section 3.4

Form factor results

We now present form factor results for the following cases:

• Two masses (mA ̸= mℓ): scalar and pseudo-scalar.

• Equal-mass (mA = mℓ): scalar and pseudo-scalar.

• Soft limit (t→ 0): scalar and pseudo-scalar.

Let us emphasize again that we only include results for one-body interactions. The
analytic form factors in this section are all rescaled as FS,P → π2

αem
FS,P for the sake of

readability.
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3.4.1 Two-mass case

The analytic expressions for the two-mass form factors FS,P (t,mℓ,mA) would span several
pages, so we omit them here. Instead, we showcase the results as numerical plots in
Figures (3.8a) and (3.8b).

3.4.2 Equal-mass case

Define the shorthand notation G(z⃗|w) := Gz⃗(w).

Scalar form factor

The analytic expression for the equal-mass form factor with a scalar mediator particle is

FS(w) = −
(20w2+4w)

(w−1) (w+1)2
G0(w) +

w

(w−1) (w+1)

[
24G−1,0(w)+4G1,0(w)

]
+

w

(w−1)2 (w+1)3
[−12w3−38w2+8w+2]G0,0(w) −

w

π2 (w−1)2
[
2G0,0,0(w)+4 ζ3

]
+

w ζ3
(w−1)3 (w+1)

[5w2−6w+5]G0(w) +
w

π2 (w+1)2

[
12G0,0,1(w)−

4π2

3
G0(w)+16G1(w)

]
+

w

(w−1)2 (w+1)2

[
(−16w2+64w−16)G0,−1,0(w)+(8w2−48w+8)G1,0,0(w)+16wG0,1,0(w)

]
+

w

(w−1) (w+1)3

[
(−14w2+4w−14)G0,1(w)+

(
w2

3
+2w+

1

3

)
G1,0(w)π

2 (3.44)

+(2w2+12w+2)
(
G1,0,0,0(w)−G0,0,1,0(w)

)
+

(
2w2−20w

3
+2

)
π2

]

+
w

(w−1)3 (w+1)3

[(
5w4

6
−2w3+

23w2

3
−2w+5

6

)
G0,0(w)π

2

+
(
8w4−32w3+112w2−32w+8

)
G0,0,−1,0(w)+

(
3w4

2
−2w3+9w2−2w+3

2

)
G0,0,0,0(w)

+
(
−9w4+12w3−54w2+12w−9

)
G0,0,0,1(w)+

(
−2w4+24w3−76w2+24w−2

)
G0,1,0,0(w)

+

(
w4

18
−2w3

45
+
11w2

45
−2w

45
+

1

18

)
π4

]
.

This expression can be turned into an s-channel form factor by crossing symmetry. Then
it is related to a form factor for Higgs decay into two heavy quarks [81].
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(a) Two-mass pseudoscalar form factor as a function
of momentum transfer t. The nucleon mass mA is set
equal to the proton mass. The dashed lines represent
individual contributions from the electron (e), the
muon (µ), and the tau lepton (τ). The solid red
line shows the sum of all contributions. The grey
shaded band indicates the range of t that is expected
to be relevant for DM particles arriving from our local
galaxy.

(b) Two-mass scalar form factor as a function of
momentum transfer t. See the caption of Figure (3.8a)
for additional details.
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Pseudo-scalar form factor

The equal-mass form factor for the pseudoscalar reads

FP (w) = −
w2

(w−1)3 (w+1)

[
2π2

3
G0(w)+4G0,0,0(w)

]
+

w

(w−1)2
[
G0,0(w)−4G0,0,1(w)−4G0,1,0(w)+8G1,0,0(w)+12 ζ3+

π2

3

]
(3.45)

+
w

(w−1) (w+1)

[
−3 ζ3G0(w)−

π2

6
G0,0(w)−

π2

3
G1,0(w)−

1

2
G0,0,0,0(w)

+3G0,0,0,1(w)+2G0,0,1,0(w)−2G0,1,0,0(w)−2G1,0,0,0(w)−
π4

45

]
.

Using crossing symmetry, this form factor is related to the s-channel QCD form factor
dubbed AR(s,m,m) in [74].

3.4.3 Soft limit

The soft limit t→ 0 is important for phenomenological applications, as the DM particles
are expected to scatter elastically. It is therefore useful to have simple expressions for the
form factors in this limit that can be easily numerically evaluated.

Scalar form factor

The scalar form factor is finite at t = 0, so the result FS(t = 0,mℓ,mA) will only depend
on the mass ratio z = mA/mℓ. Writing the form factor as an expansion in terms of FIs
as in (3.9), we then IBP reduce those integrals to the soft limit MIs from Section (3.3.3).
The smooth 4-dimensional limit ϵ→ 0 finally yields the result

FS(t = 0,mℓ,mA) = −
2

z

[
1− log(z)

2
+ fS(z) + fS(−z)

]
(3.46)

with fS(z) =
4 + 3z + z3

4z2
[
log |z| log(1 + z) + Li2(−z)

]
.

Pseudo-scalar form factor

The pseudo-scalar form factor is logarithmically divergent as t→ 0, so we compute an
asymptotic expansion in terms of the variables (x, y) from (3.16). Keeping mA,ℓ fixed,
the soft limit then corresponds to (x, y)→ (1, 1).
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Our strategy for computing the asymptotic expansion is as follows:

1. Staring with the full expression for the form factor FP (t,mℓ,mA) in terms of GPLs,
we use PolyLogTools to rewrite every G(z⃗ | v) such that z⃗ ∈ ZM and v = x or
v = y. The weight vectors z⃗ will thereby not contain any x’s or y’s, which makes it
easier to expand the GPLs.

2. PolyLogTools has a built-in function for asymptotically expanding GPLs. How-
ever, it only supports an expansion around v ∼ 0, not v ∼ 1. Introducing a dummy
variable v′ by v = 1−v′, we hence seek to rewrite every G(z⃗ | v) in terms of G(z⃗ | v′).
This is done by employing the well-known recursion

G(z1, . . . , zM |v) = G(z1, . . . , zM |1− v′) (3.47)

= G(z1, . . . , zM |1) +
∫ v′

0

dt

t− (1− z1)
G(z2, . . . , zM |1− t) ,

which produces GPLs having argument v′ due to the upper integration bound in
the second term. Experimentally, we find that this recursion admits a closed-form
solution

G(z1, . . . , zM |1− v′) =
M∑
i=0

G(1− z1, . . . , 1− zi|v′) (3.48)

×G(zi+1, . . . , zM |1)
∣∣
shuffle reg. ,

where we emphasized the need for shuffle regularization to deal with divergent GPLs
[61, Section 5.3]. We use the convention G(1− z1, . . . , 1− zi|v′) = 1 when i = 0.

As an aside, although it is not a deep result, we have not been able to locate this
closed-form solution elsewhere in the literature.

3. PolyLogTools can now expand the terms G(1 − z1, . . . , 1 − zi|v′) from (3.48)
around v′ ∼ 0 up the desired order O

(
(1−x)n, (1−y)m

)
. The latter notation means

that we first expand in (1−x) up to nth order, and then in (1− y) up to mth order.
The reversed expansion order is written as O

(
(1 − y)n, (1 − x)m

)
. The maximal

powers (n,m) are chosen so as to give sufficiently accurate numerical results in
comparison with the full form factor FP (t,mℓ,mA) when the latter is evaluated for
small t.
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A double asymptotic expansion in (x, y) will depend on the orderings x < y or y < x,

so we treat these two cases separately. The orderings correspond to the mass hierarchies
mℓ < mA and mA < mℓ respectively. By the steps outlined above, we obtain the following
results for the pseudoscalar form factor in the soft limit:

• Mass hierarchy mℓ < mA (x < y):

FP (t ∼ 0, mℓ < mA) = −2ζ2 +
(1− x)
(1− y)

[
− 2 log(1− x)− 2 log(2) + 3

]
+
(1− x)2
(1− y)

[
− log(1− x)− log(2) +

1

2

]
+(1− x)2

[
log(1− x)

2
+

log(2)

2
+

37ζ2
60
− 1

4

]
(3.49)

+
6(1− x)

ζ2

[
log(1− x) + log(2) +

3ζ2
2
− 3

2

]
+O

(
(1− y), (1− x)3

)
.

• Mass hierarchy mA < mℓ (y < x):

FP (t ∼ 0, mA < mℓ) =
(1− x)
(1− y)

[
−3 log(1− x)

2
− (1− y)

2
− 2 log(2) +

17

8

]
(3.50)

+(1− x)
[
3 log(1− x)

4
+

log(1− y)
4

+ log(2) +
3ζ2
2
− 21

16

]
+O

(
(1− x)2, (1− y)

)
.

These formulas differ by roughly 1% in comparison with the full analytic results evaluated
at t = −10−7GeV2.
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Chapter 4

Introduction to D-modules

The preceding chapters of this thesis dealt with tried and tested methods for evaluating
FIs. We now venture into somewhat uncharted territory from the perspective of the
physics literature.

Based on the papers [82, 83], the next six chapters of this thesis study FIs within
the framework of D-modules. A D-module can, informally, be thought of as a vector
space of linear differential operators that annihilate a given function. As a supplement
to the tools coming from complex analysis, D-modules provide algebraic machinery to
uncover properties of PDEs. For instance, one can learn the dimension of the solution
space, construct bases of differential operators, obtain relations between basis elements,
and more. We will only scratch the surface of this vast topic, so we refer to the classic
textbooks [23] and [24] for exhaustive discussions on D-modules.

Our overarching goal in Part II of this thesis is to build a bridge between these two
independently well-studied topics, namely FIs and D-modules. But, as it so often happens
in blue skies research, practical applications will spring out as well.

Section 4.1

What is a D-module?

How might one represent a function? Take sin(x) as an example. It can be represented in
several ways, each one having different advantages. For instance, it can be analytically
represented as a power series, or geometrically via the unit circle. In the philosophy of
D-modules, sin(x) is represented by the set of linear PDEs which annihilate the function;
in this case simply {∂2 + 1}.

We note that this philosophy would not work for non-linear PDEs, since a differential
operator L cannot be "pulled out" in the form L • f = 0 if there is a term like f(x)2.

49



4.1 What is a D-module? 50

Example 4.1. A striking example of this philosophy comes from calculating roots of an
Nth order polynomial

z0 + z1x+ z2x
2 + · · ·+ zN−1x

N−1 + zNx
N = (x− r1) · · · (x− rN ) . (4.1)

Is there an equation for the roots rk = rk(z1, . . . , zN ) in terms of the indeterminate
polynomial coefficients zk? There is, for instance, a well-known formula for r1,2(z0, z1, z2)
in the quadratic case N = 2.

Alas, Galois theory teaches us that no such formula exists in terms of radicals when
N ≥ 5. But if we settle for an infinite series representation of rk, then such a formula
does exist!

Fixing k, it turns out that rk is annihilated, indeed represented, by the following set
of partial differential operators:

∂2

∂zi∂zj
− ∂2

∂zk∂zl
whenever i+ j = k + l ,

N∑
i=0

i zi
∂

∂zi
+ 1 and

N∑
i=0

zi
∂

∂zi
. (4.2)

Many features of polynomial roots can then be learned from studying these differential
operators. For one, it is possible to construct power series solutions of the form rk =∑∞

i0...iN
fk(i0, . . . , iN )zi00 · · · ziNN , where the fk’s are various combinations of factorials [84].

■

So, what is a D-module? It is a module over a ring of Differential operators. Let us
spell this out more formally.

Let R be a ring with a unit ”1”, and M an abelian group w.r.t. addition ” + ”. Given
r ∈ R and m ∈M , we assume the existence of a map

ψ : R×M →M

ψ(r,m) = r •m, (4.3)

where r •m denotes the action of r on m. For instance, if R = C and M = Cn, then ψ
could represent the scalar multiplication of a complex number r on a complex vector m.

Definition 4.1. An abelian group M becomes a left1 R-module when the following three
axioms are fulfilled2:

1Right R-modules are defined by the same axioms with r’s acting from the right, i.e. m • r.
2We omit ” + ” subscripts of kind (r1 +R r2) •m = r1 •m+M r2 •m for notational cleanliness.
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1. For any r ∈ R and mi ∈M , we have r • (m1 +m2) = r •m1 + r •m2.

2. For any ri ∈ R and m ∈M , we have (r1r2) •m = r1 • (r2 •m) and (r1 + r2) •m =

r1 •m+ r2 •m.

3. For any m ∈M , we have 1 •m = m.

If R is a commutative field such as C, then a left R-module is nothing but an R-vector
space.

The Nth Weyl algebra

DN = C[z1, . . . , zN ]⟨∂1, . . . , ∂N ⟩ (4.4)

is generated by symbols zi and ∂i subject to the commutation relations

[zi, zj ] = 0 , [∂i, ∂j ] = 0 , [∂i, zj ] = δij . (4.5)

We shall often suppress the subscript in DN when the number of variables is understood.
The square brackets [. . .] in (4.4) mean that the zi are thought of as coefficients of
the generators ∂i. Note that the last commutator of (4.5) encodes Leibniz’ rule of
differentiation when we insert a dummy function f(z): ∂

∂z [zf(z)] − z ∂
∂zf(z) = 1. We

therefore interpret D as the collection of all differential operators having polynomial
coefficients. For instance, (z21 + z3 + 1)∂21 ∈ D3. We emphasize that D has the structure
of a ring.

We also have the Nth rational Weyl algebra

RN = C(z1, . . . , zN )⟨∂1, . . . , ∂N ⟩ , (4.6)

wherein the coefficients are promoted to rational functions. We shall often shorten RN to
R. In this case, the commutators are extended to

[zi, zj ] = 0 , [∂i, ∂j ] = 0 , [∂i, r(z)] =
∂r(z)

∂zi
, (4.7)

for a rational function r(z) ∈ C(z1, . . . , zN ). The rational Weyl algebra is also endowed
with a ring structure.

Definition 4.2. A D-module is a left R-module (see Definition (4.1)) with the specific
choice of ring R = D. An R-module is defined similarly for R = R.
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We shall be careful in distinguishing between ring multiplication and ring action ” • ”,
because there is a difference between e.g.

∂izi = zi∂i + 1 and ∂i • zi = 1 . (4.8)

Definition (4.2) can be instantiated in many different ways because it only specifies
the ring R. Particular D- and R-modules follow from further specifying the abelian group
M and the action map ψ. Let us list some examples.

Example 4.2. The Weyl algebras D andR are themselves D- and R-modules respectively.
The abelian group M is formed from the addition of differential operators. The algebras
acts on themselves according to (4.5) in the case of D and (4.7) in the case of R, which
specifies ψ. ■

Example 4.3. Many function spaces are equipped with the structure of a D-module.
Take M to be some suitable space of holomorphic functions on a domain of Cn. Assume
that M is closed under differentiation, meaning that if f(z) ∈M then also ∂f

∂zi
∈M . The

addition of such functions indeed forms an abelian group. The action map ψ : R×M →M

is defined by

ψ(∂i, f) = ∂i • f :=
∂f

∂zi
, ψ(zi, f) = zi • f := zi · f , (4.9)

where ” · ” in the last equation stands for ordinary scalar multiplication. ■

Example 4.4. The most important example of a D-module (or R-module) for the study
of PDEs is arguably that of the quotient ring D/I (or R/I), where I is a so-called left
ideal to be defined shortly. The abelian group M is given by the addition of operators,
and the action is that of the Weyl algebra.

To motivate the notion of a left ideal I, consider a collection of differential operators
{L1, L2, . . .} that annihilate some function f : L1 •f = L2 •f = . . . = 0. Note that we still
get zero if we act with any other operator L ∈ D from the left: LL1•f = LL2•f = . . . = 0.

The definition3 of a left ideal I in the Weyl algebra encapsulates this fact:

I = ⟨L1, L2, . . .⟩ = {LL1, LL2, . . . | ∀ L ∈ D} . (4.10)

The notation ⟨L1, L2, . . .⟩ means that the L’s generate I.
3This is more of a "physicist’s definition". Formally, a left ideal I of a ring R satisfies 1) it is a

subgroup under addition, and 2) for r ∈ R and L ∈ I we have r L ∈ I.
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The quotient ring D/I is then given by all operators L ∈ D modulo the equivalence
relation ∼ determined by

L ∼ K ⇐⇒ L = K +KI where K ∈ D , KI ∈ I . (4.11)

Take, for instance, the left ideal generated by I = ⟨∂1∂2⟩ . Define two operators by

L = ∂2 and

K = ∂1z1∂2
(4.5)
= (1 + z1∂1)∂2 = ∂2 + z1∂1∂2 . (4.12)

L and K represent the same element inside D2/I because they only differ by a term
z1∂1∂2 ∈ I. We say that L and K lie in the same equivalence class, written as [L] = [K].

We shall see that the algebraic structure of the D-module D/I carries a wealth of
information about the functions that are annihilated by the ideal I. This D-module hence
embodies the intuition, argued for in the beginning of this section, that a function can be
represented by the differential operators that annihilate it. ■

Section 4.2

Holonomic D-modules

A D-module D/I has particularly nice features when it is holonomic. Holonomic D-
modules describe FIs, trigonometric functions, various probability distributions, hypergeo-
metric functions, Bessel functions, and GPLs. It is necessary to introduce a few concepts
before we can define the notion of holonomicity (we refer to the seminal text [85] for
many more details).

• Using the Weyl algebra commutation relations, any operator L ∈ D can be uniquely
expressed in the normally ordered form

L =
∑

(p,q)∈ supp(L)

cp,q z
p ∂q , cp,q ∈ C . (4.13)

The summation range supp (L) denotes a finite set of non-zero multi-indices (p, q) =
(p1, . . . , pN , q1, . . . , qN ), and we introduced the multi-index exponent notation

zp = zp11 · · · zpNN and ∂q = ∂q11 · · · ∂qNN , (4.14)

which will be used frequently throughout this text.



4.2 Holonomic D-modules 54

• For a given a vector (u, v) ∈ R2N , the (u, v)-weight of zp ∂q is defined by u · p+ v · q.

• The differential operator in(u,v)(L) is constructed by only keeping the largest (u, v)-
weight terms in L.

• The initial form is defined by in(u,v)(L) for the specific choice u = (0, . . . , 0) = 0

and v = (1, . . . , 1) = 1. I.e. one assigns weight 0 to all z’s, and weight 1 to all ∂’s.
The standard notation for the initial form is

in(0,1)(L) =
∑

(p,q)∈ supp(L),
|q| is max

cp,q z
p ξq , (4.15)

where |q| = q1+ . . .+qN . The ∂’s have here been replaced by commuting ξ variables,
but this replacement may only be done after writing L in normally ordered form.
As an example, take the normally ordered operator

L = z21 + 2∂21∂2 + z32∂1∂2 + z1z2∂
3
1 . (4.16)

From left to right, the terms have weights (0, 3, 2, 3). So we only keep the 2nd and
4th terms, giving

in(0,1)(L) = 2ξ21ξ2 + z1z2ξ
3
1 . (4.17)

• Given a left ideal I in DN , we set

in(0,1)(I) = C · {in(0,1)(L) | L ∈ I} , (4.18)

i.e. the ideal generated by the highest (0,1)-weight terms in I. It is a polynomial
ideal since it is written in terms of commuting variables (z, ξ).

• The characteristic variety of an ideal is defined as

char(I) =
{
(z, ξ) | p(z, ξ) = 0 for all p ∈ in(0,1)(I)

}
⊂ C2N . (4.19)

Namely, it the zero-set of all the polynomials in the ideal in(0,1)(I). The computation
of char(I) typically requires knowing a Gröbner basis for I (to be defined in the
next section).

With all of these notions in place, we can finally state
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Definition 4.3. An ideal I is holonomic when its characteristic variety char(I) has
dimension4 N . A D-module D/I is holonomic if and only if I is holonomic5. The
holonomic rank is defined as the following vector space dimension over C(z):

rank(I) = dimC(z)
(
C(z)[ξ] /C(z)[ξ] · char(I)

)
.

The above definition of rank(I) relies on the following important fact: a holonomic
D-module carries the structure of a finite-dimensional vector space [85, 86]. It follows
that there exists a basis of differential operators for the vector space D/I having exactly
rank(I) many elements. Quite remarkably, rank(I) also counts the number of independent
holomorphic solutions to the system of PDEs defined by I. When I is the annihilating
ideal for a FI, then rank(I) is indeed the number of MIs!

4.2.1 Regular holonomic

Throughout the rest of this thesis, when we say an ideal I is holonomic we shall always
mean regular holonomic. The extra adjective "regular" signifies, loosely speaking, that
the solutions to the PDEs dictated by I only have mild singularities.

Suppose that z = 0 is a singularity of a solution f(z) in the univariate case. It is a
regular singularity if there exists a k ∈ Z>0 such that |z|kf(z)→ 0 as z → 0 at a fixed
angle arg(z) in the complex plane.

The definition of regular holonomic is much more complicated in the multivariate
case. We refer to [85, Section 2.4] [23, Chapter 6] for details. A working definition for our
purposes is to say that the solutions to I admit logarithmic series expansions near the
singular hypersurfaces. Equivalently, the Pfaffian system born from I, to be discussed in
Section (4.4), will have at most simple poles (higher-order poles can appear, but they are
"fake" in the sense they can be turned into simple poles via a gauge transformation).

4According to a result called Bernstein’s inequality, all connected components of char(I) have dimension
at least N . An ideal is hence holonomic when its characteristic variety has the smallest possible dimension
(the maximal dimension would be 2N).

5There is actually an independent definition of holonomicity for D-modules, depending on so-called
Bernstein filtrations. The fact that holonomic D-modules coincide with holonomic ideals is then a
non-trivial theorem. See [86, Chapter 6] for details.



4.3 Gröbner bases 56

Section 4.3

Gröbner bases

How does one compute a basis for a holonomic D- or R-module? The answer, as with
almost any computational question in commutative and non-commutative algebra, is via
Gröbner bases. A couple of extra concepts are needed before the definition can be stated.

• Given two monomials ∂p and ∂q, a term order ≺ discerns which of them is the
largest one. We refer to [86] for the technical definition, and content ourselves
with giving an example, namely the graded reverse lexicographic order6. Setting
|p| = p1 + · · ·+ pN , then ∂p ≺ ∂q iff

|p| < |q| or |p| = |q| and the last non-zero entry of q − p ∈ ZN is negative.

So the monomial with the largest degree wins, unless there is a tie, in which case
the one with the smallest variable index wins. In the case of N = 3 variables and
degree less than 3, we have

1 ≺ ∂3 ≺ ∂2 ≺ ∂1 ≺ ∂23 ≺ ∂2∂3 ≺ ∂1∂3 ≺ ∂22 ≺ ∂1∂2 ≺ ∂21 . (4.20)

• Consider an operator L =
∑

q∈supp(L) cq(z) ∂
q ∈ R in normally ordered form. Fixing

a term order, the initial monomial7 in≺(L) is defined as the largest monomial ∂q

(stripped of its rational function cq(z) ∈ C(z)) w.r.t. ≺.

• The initial ideal of I is the ideal generated by its initial monomials:

in≺(I) = C ·
{
in≺(L) | L ∈ I

}
⊂ C[∂1, . . . , ∂N ] . (4.21)

Definition 4.4. A finite subset G = {g1, . . . , gM} ∈ R is called a Gröbner basis for the
ideal I w.r.t. the term order ≺ iff

1. G generates I, i.e. ⟨g1, . . . , gM ⟩ = I.

2. in≺(I) = ⟨in≺(g1), . . . , in≺(gM )⟩.
6The speed with which Gröbner bases are calculated can heavily depend on the chosen term order (of

which there are many). The graded reverse lexicographic order tends to be the fastest.
7The similarity between this notation and in(u,v) from (4.15) is not coincidental. There is indeed a

strong connection between comparing monomials according to weights (u, v) ∈ R2N and according to
term orders ≺ [85, Chapter 1].
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A Gröbner basis containing the minimal number of generators gi is called reduced, and is
unique for a given term order. A monomial ∂q is called a standard monomial w.r.t. G
when it does not belong to in≺(I).

Absent any other methods, the standard monomials only become known at the end of
a Gröbner basis computation.

We can now answer the question posed in the very beginning of this section: there
are exactly rank(I) many standard monomials, and they form an operator basis for the
D-module D/I!

Gröbner basis computations are typically performed using Buchberger’s algorithm8

[86]. The intensity of such calculations grows significantly with the number of variables.
For this reason, the main theme of the next chapter will be to develop a more efficient
algorithm that avoids Gröbner bases.

Section 4.4

Pfaffian systems

Let I be a holonomic ideal born from a system of PDEs, and suppose f = f(z) is a
solution to this system. Assume a basis of standard monomials is known for the R-module
R/I. It is here denoted by

Std = {∂q1 , ∂q2 , . . . , ∂qR} , (4.22)

where R := rank(I) and each qi ∈ ZN
≥0. Without loss of generality, we may set Std1 = 1.

A basis of functions for the PDE solution space is then given by the action of each
standard monomial on f :

e =


Std1 • f = f

Std2 • f
...

StdR • f

 . (4.23)

We are interested in finding a set of first-order PDEs satisfied by e. To this end, consider
the Weyl algebra element ∂iStdj . Since the standard monomials form a basis for R/I, it

8Bruno Buchberger was in fact himself the inventor of Gröbner bases, but he named them after his
doctoral supervisor Wolfgang Gröbner as a sign of respect.
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must be possible to write

∂iStdj =

R∑
k=1

pkij(z) Stdk mod I , pkij(z) ∈ C(z) . (4.24)

The notation ”mod I” means that this equation holds modulo the ideal I, in the sense of
(4.11). Most of the time we leave the ”mod I” as implicit.

Combining (4.23) with (4.24), we then have

∂i • e =


(∂iStd1) • f
(∂iStd2) • f

...
(∂iStdR) • f

 = Pi(z) · e mod I , i = 1, . . . , N , (4.25)

where Pi(z) is an R×R matrix whose (j, k)th entry equals the rational function pkij(z).
The set of first-order PDEs (4.25) is dubbed a Pfaffian system. By manipulating the
standard monomials, it can be shown [86] that the Pfaffian matrices Pi satisfy the
integrability condition

∂i • Pj + Pi · Pj = ∂j • Pi + Pj · Pi . (4.26)

The next chapter will be dedicated to deriving Pfaffian systems from the point of view
of D-modules. Such a calculation requires two steps:

1. Find a set of standard monomials Std.

2. Derive the decomposition (4.24).

Both steps are possible when a Gröbner basis is known (the second step is then performed
via an algorithm analogous to that of polynomial division). However, as mentioned earlier,
we shall seek to avoid Gröbner bases as their computation often requires huge resources.
As an aside, if a Pfaffian system is known by other means, then one can immediately
construct a Gröbner basis too [82, Appendix B].

We end this section with the following observation: if f were a single FI, then (4.25)
is exactly the kind of Pfaffian systems that we studied in Part I of this thesis! The
decomposition of ∂iStdj in (4.24) is then analogous to an IBP reduction.



Chapter 5

Macaulay Matrices

Based on [82], this chapter presents a novel algorithm for the computation of Pfaffian
systems. It avoids the use of Gröbner bases in favor of linear algebra methods, making it
quite efficient.

Throughout this chapter we assume that

a set of standard monomials Std = {∂qi}i=1,...,R is given, (5.1)

where the cardinality |Std| = R equals the holonomic rank of a given left ideal I. While
this is a strong assumption, it will actually be fulfilled for the so-called GKZ system that
we study in Chapter (6).

Section 5.1

From Pfaffian to Macaulay matrix

Let I = ⟨d1, . . . , dD⟩ be a holonomic ideal generated by a collection of D operators di ∈ R.
In this section we suppose to know the Pfaffian matrices Pi associated to I. It holds that

∂iStdj =
R∑

k=1

(Pi)jk Stdk in R/I . (5.2)

This expression can be lifted from the quotient ring R/I to the whole ring R by writing

∂iStdj =
R∑

k=1

(Pi)jk Stdk +
D∑

k=1

∆jk dk in R , (5.3)

where each ∆jk ∈ R. Our short-term goal is to aptly rewrite the second sum above,
which will culminate in (5.7). We warn that this will require some index gymnastics, but

59
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the final result does simplify. To ease the notation in intermediate expressions, we shall
keep the index i fixed (otherwise we would have to write ∆ijk etc.). The index i will be
reinstated at the very end.

To start, we bring the operator ∆jk into normally ordered form:

∆jk =
∑

q ∈ supp(Der)

δjkq(z) ∂
q , ∂q ∈ Der , (5.4)

where δjkq ∈ C(z)R×D×|Der| is a newly introduced rank-3 tensor of rational functions. The
set Der contains all the derivative monomials appearing on the RHS.

If we substitute the operators ∆jk from (5.4) into the second sum of (5.3), then the
monomials ∂q ∈ Der will act on the generators di (which potentially contain rational
functions in z as prefactors). In normally ordered form, this action is written as

∂q dk =
∑

p∈ supp(Mons)

Mqkp(z) ∂
p , ∂p ∈ Mons . (5.5)

Here we introduced a rank-3 tensor of rational functions Mqkp ∈ C(z)|Der|×D×|Mons| and
defined a set Mons whose elements consists of all the monomials ∂p appearing on the
RHS. Upon concatenation of the first two indices q and k, the rank-3 tensor Mqkp turns
into the Macaulay matrix [87]

Mop(z) :=M(qk)p(z) ∈ C(|Der|·D)×|Mons| . (5.6)

The combined index o = (qk) = (kq) runs over the Cartesian product of sets supp (Der)×
{1, . . . , D}.

Plugging equations (5.4), (5.5) and (5.6) into the second sum of (5.3), this term now
takes the form of a triple matrix product:

D∑
k=1

∆jk dk =
∑
o, p

δjo(z)Mop(z) ∂
p =

(
C ·M ·Mons

)
j
. (5.7)

C ∈ C(z)R×(|Der|·D) stands for the coefficient matrix Cjo = δj(kq)(z), when Der is regarded
as a column vector in (5.4). The set Mons is here also regarded as a column vector.

Some of the monomials in Mons may be standard, but all need not be. The non-
standard monomials in Mons shall henceforth be called exterior monomials:

Ext = Mons \ Std . (5.8)
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The disjoint union

Mons = Ext ⊔ Std (5.9)

then induces a partition on the columns of the Macaulay matrix:

M =
[
MExt

∣∣∣ MStd

]
, with (5.10)

MExt ∈ C(z)(|Der|·D)×|Ext| and MStd ∈ C(z)(|Der|·D)×|Std|

Thinking of the set Std as a column vector, we further decompose the LHS of (5.3) as

∂iStd =
[
CExt

∣∣∣ CStd

]
·Mons = CExt · Ext + CStd · Std , with (5.11)

CExt ∈ {0, 1}|Std|×|Ext| and CStd ∈ {0, 1}|Std|×|Std| .

In other words, CExt and CStd are two binary matrices that encode whether the monomials
in ∂iStd are exterior or standard.

Finally, inserting equations (5.7), (5.10) and (5.11) into the Pfaffian equation (5.3),
we arrive at

(CExt − C ·MExt) + (CStd − C ·MStd) = Pi · Std . (5.12)

But, because Ext and Std are linearly independent in R, this is equivalent to the system

C
(i)
Ext − C(i) ·MExt = 0

C
(i)
Std − C(i) ·MStd = Pi .

(5.13)

(5.14)

Here we also reinstated the dependence on the index i, as promised earlier in this section.
These two matrix equations are central to the algorithm for computing Pfaffian matrices
that we propose in the next section.

Section 5.2

From Macaulay to Pfaffian matrix

Now we reverse the logic in the derivation leading to equations (5.13) and (5.14). Although
we started by assuming to know the Pfaffian system (5.2), we now regard it as the goal.
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Supposing that C(i)
• and M• in (5.13) and (5.14) are easily calculable (• = Ext, Std),

then C(i) and Pi are the only unknowns. The purported strategy is this:

solve (5.13) for the rational matrix C(i) =⇒ insert C(i) into (5.14) to obtain Pi.

Let us formalize this strategy into a proper algorithm. To begin, define the set of all
derivative monomials bounded by a degree Q ∈ Z≥0:

DerQ = {∂q}|q|≤Q . (5.15)

In analogy with Mons from (5.5), we let MonsQ denote the derivative monomials appearing
in the normally order form of the set

{
∂q dk

}k=1,...,D

∂q ∈DerQ
. The Macaulay matrix MQ of degree

Q is defined as in (5.6), but with Der and Mons replaced with DerQ and MonsQ. It thus
holds that {

∂q dk

}k=1,...,D

∂q ∈DerQ
=

∑
p∈ supp(MonsQ)

(MQ)(qk)p ∂
p (5.16)

= MQ ·MonsQ . (5.17)

The set on the LHS of (5.16) is here viewed as a column vector of operators with
rational function coefficients, and MQ =MQ(z) is the coefficient matrix of the monomial
derivatives MonsQ. The set DerQ can be thought of as "seeding" the Macaulay matrix.

The idea is now to adjust the degree Q until (5.13) admits a solution for C(i):

Algorithm 1 : Pfaffian matrix by the Macaulay matrix method
Input: Standard monomials Std, generators {d1, . . . dD} of a holonomic ideal I, direction i.

Output: Pfaffian matrix Pi.

1: Q = 0
2: M =M0 =

[
MExt

∣∣ MStd

]
3: Mons = Mons0
4: while C

(i)
Ext = C(i) ·MExt is not solvable w.r.t. C(i) do

5: Q++
6: M ←MQ

7: Mons← MonsQ
8: end while
9: Solve C(i)

Ext = C(i) ·MExt for C(i)

10: return Pi = C
(i)
Std − C(i) ·MStd
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There are a couple of immediate optimizations to this algorithm. First, notice that (5.13)
has a solution when the rows of C(i)

Ext lie in the row space of MExt. The condition in the
while statement in line 4 of Algorithm (1) then translates into the requirement

rank

[
MExt

C
(i)
Ext

]
= rank

[
MExt

]
. (5.18)

It is quick to check this equality by setting every parameter in the problem to a number
in Q or a finite field Fp = Z/pZ where p is prime.

Second, to solve the system (5.13), it often suffices to pick only a subset of the rows
in MExt. The reason is that some rows may be linearly dependent. Such a subset can be
identified by replacing parameters with numbers and row reducing.

Lastly, since every matrix in the problem is defined over the rational function field
C(z), it is vastly more efficient to employ rational reconstruction algorithms rather than
Gaussian elimination. These algorithms reconstruct analytic expressions for rational
functions by repeated evaluations over Fp. One need not even reconstruct the intermediate
"dummy matrix" C(i), as we are ultimately only interested in the Pfaffian matrix Pi. I.e.,
rational reconstruction can be postponed until all the matrix operations have been carried
out in (5.14). This thesis employs the rational reconstruction software FiniteFlow

[88], because it allows one to easily chain together several operations (such as matrix
multiplication and addition of matrices), with reconstruction postponed until the final
step. See [89, 90, 91, 92] for alternative implementations.

Example 5.1. Consider the holonomic ideal

I = ⟨z∂ − β⟩ , (5.19)

where z1 = z, ∂1 = ∂ and β ∈ C is a parameter. Although this example is too simple for
an interesting application of the Macaulay matrix method, we include it to showcase the
many definitions in the above text.

To build the Macaulay matrix, we must first choose the seeds DerQ defined in (5.16).
It turns out that Q = 0 is a sufficient degree, but for the sake of illustration let us pick
Q = 1. Then DerQ = {1, ∂}. Following (5.16), we apply the monomials in DerQ to the
generator of I:

1(z∂ − β) = z∂ − β (5.20)

∂(z∂ − β) = ∂z∂ − β∂ = (1 + z∂)∂ − β∂ = z∂2 + (1− β)∂ . (5.21)
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The set MonsQ is formed from all the derivative monomials appearing above:

MonsQ = {∂2, ∂, 1} = Ext ⊔ Std = {∂2, ∂} ⊔ {1} . (5.22)

The Macaulay matrix can now be constructed as[
1(z∂ − β)
∂(z∂ − β)

]
=
[
MExt MStd

]
·MonsQ (5.23)

=

[
0 z −β
z 1− β 0

]
·

 ∂2

∂

1

 . (5.24)

Next we build the two matrices CExt and CStd as per (5.11):

∂Std = ∂
[
1
]
=
[
∂
]

(5.25)

=
[
CExt CStd

]
·MonsQ (5.26)

= CExt · Ext + CStd · Std (5.27)

=
[
0 1

]
·
[
∂2

∂

]
+
[
0
]
·
[
1
]
. (5.28)

At this point we have all ingredients present in (5.13) and (5.14). The first equation is

CExt − C ·MExt =
[
0 1

]
−
[
C11 C12

]
·
[

0 z

z 1− β

]
=
[
0 0

]
. (5.29)

Its solution is C =
[

1
z 0

]
. Inserting this into (5.14), we get

CStd − C ·MStd =
[
0
]
−
[

1
z 0

]
·
[
−β
0

]
=

[
β

z

]
= P , (5.30)

where P is the Pfaffian matrix (albeit just a scalar in this case). In other words, we have
derived that

∂Std = P · Std =⇒
[
∂
]
=

[
β

z

]
, (5.31)

which is exactly the relation dictated by the ideal (5.19)! So we have obtained a trivial
result, but we can at least be satisfied that everything is self-consistent. ■
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Example 5.2. Let I = ⟨d1, d2, d3, d4⟩ be the ideal generated by

d1 = z1∂1 + z2∂2 + z3∂3 + z4∂4 − β1
d2 = z2∂2 + z4∂4 − β2 (5.32)

d3 = z3∂3 + z4∂4 − β3
d4 = ∂1∂4 − ∂2∂3 .

In Section (6.5), we show that this is the annihilating ideal for Gauss’ 2F1 hypergeometric
function. The D-module D/I turns out to have a basis of standard monomials given by
Std = {∂4, 1} (later on, in Section (6.4), we explain how to easily find such a basis). The
goal of this example is to find the Pfaffian system in direction z4:

∂4Std = ∂4

[
∂4

1

]
=

[
∂24
∂4

]
= P4 ·

[
∂4

1

]
. (5.33)

To compute P4, we need to resolve the higher-order monomial ∂24 in terms of ∂4 and 1.
But ∂24 does not appear in the generators di from (5.32), so the seeding set DerQ=0 = {1}
is insufficient. It turns out that the degree Q = 1 monomials Der1 = {1, ∂1, ∂2, ∂3, ∂4}
lead to a solvable system.

It is rather tedious to compute the Macaulay matrix by hand given this seed. Instead,
we use the newly developed package mt_mm written by Nobuki Takayama and Saiei J.
Matsubara-Heo in the CAS called asir. asir can be built from source by cloning the git

repository https://github.com/openxm-org/OpenXM. Source code and documentation
for mt_mm can be found in the directories

OpenXM/src/asir-contrib/packages/src/mt_mm

OpenXM/doc/asir-contrib/en.

For the case at hand, the Macaulay matrix is obtained by entering the following commands
into asir1:

D1 = z1*dz1 + z2*dz2 + z3*dz3 + z4*dz4 - b1;
D2 = z2*dz2 + z4*dz4 - b2;
D3 = z3*dz3 + z4*dz4 - b3;
D4 = dz1*dz4 - dz2*dz3;
Ideal = [D1 , D2 , D3 , D4];
Std = [dz4 , 1];
mt_mm.find_macaulay(Ideal , Std , [z1, z2 , z3 , z4]);

The output is a list {MExt,MStd,Ext, Std}. Explicitly, we obtain the following data:
1We call the generators Di rather than di since most lower-case objects are name-protected in asir.

https://github.com/openxm-org/OpenXM
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MStd =



Std→ ∂4 1

1d1 z4 −β1
1d2 z4 −β3
1d3 z4 −β3
1d4 · ·

∂1d1 1− β1 ·

∂1d2 1− β3 ·

∂1d3 1− β3 ·

∂1d4 · ·

∂2d1 · ·

∂2d2 · ·

∂2d3 · ·

∂2d4 · ·

∂3d1 · ·

∂3d2 · ·

∂3d3 · ·

∂3d4 · ·

∂4d1 · ·

∂4d2 · ·

∂4d3 · ·

∂4d4 · ·



.

The 21 columns in MExt are labeled by the exterior monomials Ext. The two columns in
MStd are labeled by Std. The 20 rows in MExt and MStd are labeled by the seeds Der1

acting on the generators di.
Rows of the matrix MExt dictate relations among the external monomials. One notices,

however, that some of the rows are linearly dependent on each other (this stems from an
overzealous choice of the set

{
∂qdk

}
from (5.16), as only a subset of the seeds would suffice).

Row reduction of MExt reveals that the 17 rows numbered by {1, . . . , 14, 16, 17, 20} are
independent. Let M ′

Ext be the 17× 21 matrix built from these rows. The 17× 2 matrix
M ′

Std is defined in a similar manner. This row reduction can naturally be performed by
fixing parameters to numbers for more complicated examples.
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Next we construct the two matrices C(4)
Ext and C(4)

Std according to (5.11), finding that

C
(4)
Ext =

[
· · · · · · · · · · · · · · · · · 1 · · ·

· · · · · · · · · · · · · · · · · · · · ·

]
(5.34)

C
(4)
Std =

[
· ·

1 ·

]
. (5.35)

Now we can employ the central equations (5.13) and (5.14): The two-step process is

1. Define an unknown matrix C(4) of size R × S where R = |Std| = 2 and S =

#{rows in M ′
Ext} = 17. This matrix is determined by solving

C
(4)
Ext − C(4) ·M ′

Ext = 0 , (5.36)

which can be done instantaneously with e.g. Mathematica.

2. The solution for C(4) is inserted into

C
(4)
Std − C(4) ·M ′

Std = P4 (5.37)

to obtain the Pfaffian matrix P4.

The resulting Pfaffian system in direction z4 works out to

∂4

[
∂4

1

]
=

[ −β1+β3+β3−1
z4

+ β1z1
z1z4−z2z3

β3β3z1
z4(z2z3−z1z4)

1 0

]
·
[
∂4

1

]
. (5.38)

In particular, the first row of this Pfaffian equation says that

∂24 =
z2z3(β1 − β3 − β3 + 1) + z1z4(β3 + β3 − 1)

z4(z1z4 − z2z3)
∂4 −

β3β3z1
z4(z1z4 − z2z3)

1 mod I ,

which, in physicist terms, could be thought of as an "IBP reduction" of ∂24 in terms of
the "MIs" ∂4 and 1.

Pfaffian matrices in the directions {z1, z2, z3} are found in a similar manner. ■



Chapter 6

GKZ Systems

Among the Euler type integrals ... there are the integrals
∫
ΠPi(t1, . . . , tn)

αi ×
tβ1

1 . . . tβn
n dt1 . . . dtn, where Pi are polynomials, i.e. practically all integrals which

arise in quantum field theory.

Gel’fand, Kapranov, Zelevinsky (’89) [41]

A GKZ system is a particular D-module D/HA(β), where HA(β) is an annihilating ideal
built from an integer matrix A and a collection of complex parameters βi. We have
secretly already shown examples of generators for GKZ systems in equations (4.2), (5.19)
and (5.32).

Why study this specific D-module? As indicated by the quote above, GKZ systems
can be related to FIs when they are written in parametric representations rather than in
momentum space (the connection between GKZ systems and FIs will be explained in the
next chapter). What’s more, it is easy to determine the annihilating ideal HA(β) as well
as a basis of standard monomials, which is computationally advantageous.

Section 6.1

Euler integrals

To define the GKZ system, let us begin by considering the class of functions annihilated
by the generators of HA(β). These functions are called Euler integrals [93], written as1

fβ(z) =

∫
Γ
g(z|x)β0x−β1

1 · · ·x−βn
n

dx

x
with

dx

x
:=

dx1 ∧ · · · ∧ dxn
x1 · · ·xn

. (6.1)

Let us dwell on the building blocks of this integral.
1The most general definition contains several polynomials {g1, . . . , gl} in the integrand, but for our

inquiry a single polynomial g(z|x) will suffice.

69
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1. Γ is some chosen integration cycle in Cn. For the purpose of this thesis we may pick
Γ = (0,∞)n (though to be rigorous one should also specify a Riemann sheet data,
as the integrand is multivalued; see [93, Section 3.1]).

2. g(z|x) is a Laurent polynomial in the integration variables x = (x1, . . . , xn) with
monomial coefficients z = (z1, . . . , zN ). In multivariate exponent notation

g(z|x) =
N∑
i=1

zi x
αi , αi ∈ Zn . (6.2)

Crucially, each monomial coefficient zi is regarded is an independent variable of the
function fβ(z).

3. The exponents β = (β0, . . . , βn) ∈ Cn+1 are complex parameters. We generally
assume that they are generic real numbers, meaning that they should not be integral.
This will be formulated more precisely as a non-resonance condition later on.

By appending2 a "1" in front of each multi-index αi from (6.2), we define a collection
of N column vectors ai =

[
1, αi

]T ∈ Zn+1. These vectors are assumed to span Zn+1.
Further, they give rise to an (n+ 1)×N dimensional matrix

A =
[
a1 . . . aN

]
. (6.3)

The polynomial g in the integrand of (6.1) thus specifies the integer matrix A, and vice
versa. The (left) kernel of A is defined as

ker (A) =

{
(u1, . . . , uN ) ∈ ZN

∣∣∣ N∑
i=1

ui ai = 0

}
. (6.4)

This can alternatively be viewed as a linear space spanned by finitely many integer vectors
u satisfying A · u = 0. Given a vector u ∈ ker (A), we shall decompose it into positive
and negative components by writing u = u+ − u− for u+, u− ∈ ZN

≥0.

2This is called the Cayley trick or the Cayley configuration.
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Section 6.2

GKZ D-module

The main characters of this chapter are the following operators parametrized by the
integer matrix A and the complex parameters β:

E = A · θ − β (6.5)

□u = ∂u
+ − ∂u−

, ∀u ∈ ker (A) . (6.6)

The vector θ =
[
θ1, . . . , θN

]T is a collection of Euler operators θi = zi ∂i . The n + 1

operators Ei are often called the homogeneity operators (cf. Section (6.5)). The ideal
generated by the operators □u is called the toric ideal3.

Quite remarkably, E and □u can be shown [42] to be the complete set of annihilating
operators for the Euler integral (6.1):

Ei • fβ(z) = 0 , i = 0, . . . , n (6.7)

□u • fβ(z) = 0 , ∀u ∈ ker (A) . (6.8)

The GKZ system [41, 94] associated to an Euler integral is defined as the D-module
D/HA(β), where HA(β) is the annihilating ideal generated by E and □u:

HA(β) =
n∑

i=0

DEi +
∑

u∈ ker(A)

D□u . (6.9)

Given some complicated integral, it might well be very hard to find the complete
set of annihilating operators. But for the case of Euler integrals having indeterminate
z variables, we can apparently immediately write down all of those operators! In the
D-module philosophy, we may thus study the GKZ system as a proxy for studying the
Euler integral itself.

The GKZ system is holonomic [95], so it is endowed with the structure of a finite-
dimensional vector space. This means that we can use the Macaulay matrix method to
construct first-order Pfaffian systems for Euler integrals given the higher-order operators
that generate HA(β). This will be topic of Chapter (7).

3The name stems from its relation to toric geometry, a field of algebraic geometry that studies varieties
containing a torus as an open dense subset [85].
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Example 6.1. Consider the Euler integral

fβ(z) =

∫
Γ

(
z1x1 + z2x2 + z3x3 + z4x1x2 + z5x

2
3

)β0x−β1
1 x−β3

2 x−β3
3

dx

x
. (6.10)

We seek to construct its GKZ system. The first step is to input the exponent multi-indices
(with 1’s appended) into the columns of the A-matrix (6.3):

A =


1 1 1 1 1

1 0 0 1 0

0 1 0 1 0

0 0 1 0 2

 . (6.11)

The 4th column, for instance, represents the monomial z4x(1,1,0) = z4x1x2. The operators
Ei from (6.5) can now be written as

E = A · θ − β =


θ1 + θ2 + θ3 + θ4 + θ5 − β0

θ1 + θ4 − β1
θ2 + θ4 − β2
θ3 + 2θ5 − β3

 . (6.12)

The toric part (6.6) of the GKZ system requires knowing ker (A). This can be found by
solving a linear system, or by using one’s favorite CAS (e.g. the command NullSpace

in Mathematica). One finds that ker (A) = span(u), where u is a vector that we
decompose as

u =


1

1

−2
−1
1

 = u+ − u− =


1

1

0

0

1

−


0

0

2

1

0

 . (6.13)

The toric operator is therefore

□u = ∂u
+ − ∂u−

= ∂1∂2∂5 − ∂23∂4 . (6.14)

In summary, the annihilating ideal for the Euler integral (6.10) is generated as
HA(β) = ⟨E,□u⟩, where E and □u are given by (6.12) and (6.14). ■
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Section 6.3

Twisted de Rham cohomology

The GKZ system can be related to another useful vector space for studying Euler integrals,
namely the twisted de Rham cohomology group. The elements of this group are, loosely
speaking, Euler integrands. By defining this space we will discover concrete formulas for
representing the Euler integral (6.1) as a differential operator inside a D-module.

Twisted de Rham cohomology has recently garnered a lot of attention in the study of
FIs because it offers a novel and potentially more powerful framework for IBP reduction.
See e.g. [21, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108] and references
therein.

6.3.1 "Traditional" de Rham cohomology

Before discussing the "twisted" de Rham cohomology group, it is instructive to first
summarize the "traditional" theory. The story begins with the celebrated theorem by
Stokes: ∫

Γ
dω =

∫
∂Γ
ω . (6.15)

ω = h(x)dkx is a differential k-form, where h(x) is some rational function, and d is the
total derivative on integration variables acting as

dω =
∂h(x)

∂x1
dx1 ∧ dkx+ · · ·+ ∂h(x)

∂xn
dxn ∧ dkx . (6.16)

Note that d sends a k-form to a (k + 1)-form.
The notation ∂Γ denotes the boundary of the k-dimensional integration contour Γ

(see the classical textbook [109] for a rigorous definition). Note that the boundary is
(k − 1)-dimensional.

We focus on a particular class of integrals
∫
Γ ω for which

Γ is a cycle ⇐⇒ ∂Γ = 0

ω is a co-cycle ⇐⇒ dω = 0 .

Consider now the following two scenarios:

1. Fix ω and shift Γ by the boundary of another contour, Γ→ Γ+ ∂γ. It follows from
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Stokes’ theorem that

∫
Γ+∂γ

ω =

∫
Γ
ω +

∫
∂γ
ω =

∫
Γ
ω +

�
�
��
0∫

γ
dω =

∫
Γ
ω . (6.17)

So, the value of the integral does not depend on any particular contour, but rather
an equivalence class [Γ] of contours, where Γ ∼ Γ′ precisely when Γ = Γ′ + ∂γ.

2. Fix Γ and shift ω by the total derivative of another differential form, ω → ω + dψ.
Stokes’ theorem implies that

∫
Γ
(ω + dψ) =

∫
Γ
ω +

∫
Γ
dψ =

∫
Γ
ω +

�
�
��
0∫

∂Γ
ψ =

∫
Γ
ω . (6.18)

The numerical value of the integral is thus determined by an equivalence class [ω]

of differential forms, where ω ∼ ω′ iff ω = ω′ + dψ.

It is therefore natural to study contours up to boundary terms, and differential forms up
to total derivatives. Let’s formalize these notions.

Define

Ck =
{
formal sums of k-dimensional cycles Γ

}
. (6.19)

The boundary map ∂k : Ck → Ck−1 sends k-cycles to (k − 1)-cycles. An important result
is that "the boundary of a boundary is zero":

∂k ◦ ∂k+1 = 0 =⇒ Image(∂k+1) ⊂ Kernel(∂k) . (6.20)

It thus makes sense to define the kth homology group as the quotient space

Hk =
Kernel(∂k)

Image(∂k+1)
. (6.21)

The numerator indicates that we focus on k-cycles Γ for which ∂kΓ = 0, and the
denominator means that we mod out by boundary terms of the form ∂k+1γ. So this space
indeed consists of the equivalence classes [Γ] discussed above.

Furthermore, let

Ωk =
{
formal sums of co-cycle k-forms ω

}
. (6.22)
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The total derivative dk : Ωk → Ωk+1 sends k-forms to (k + 1)-forms. It holds that

dk ◦ dk−1 = 0 =⇒ Image(dk−1) ⊂ Kernel(dk) . (6.23)

The kth de Rham cohomology group is then defined by the quotient

Hk =
Kernel(dk)

Image(dk−1)
. (6.24)

The numerator consists of co-cycles satisfying dkω = 0, and the denominator mods out
by total derivatives dk−1ψ. This space therefore consists of the equivalence classes [ω]

mentioned earlier.

6.3.2 Twisted de Rham cohomology

Now consider integrals of the form∫
Γ
U ωq where U = g(z|x)β0 x−β′

and ωq = g(z|x)−q0xq
′ dx

x
, (6.25)

with xβ′
= xβ1

1 · · ·xβn
n . We collect the integer exponents of ωq into a vector

q = (q0, q
′) ∈ Z× Zn . (6.26)

In "traditional" de Rham cohomology, we restricted ourselves to integrals of differential
forms with rational coefficient functions. Here there is a new ingredient: the twist U . This
function is multivalued because the exponents β = (β0, β

′) are non-integer by stipulation.
In this setting, Stokes’ theorem (6.15) says∫

Γ
d
[
U ωq

]
=

∫
∂UΓ

U ωq . (6.27)

We have upgraded the usual boundary operator to ∂U due to the multivaluedness of U .
∂U keeps track of the branch of U because Γ might cross some branch cuts in its path;
we refer to [93, Chapter 3.1] for a proper definition.

On the LHS, we can expand the integrand to get

d
[
U ωq

]
= Udωq + dU ∧ ωq (6.28)

= U

[
d +

dU

U
∧
]

︸ ︷︷ ︸
∇

ωq . (6.29)
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In the last line we defined the covariant derivative ∇. Inserting the twist U from (6.25),
it can be represented as

∇ = d + β0
dg(z|x)
g(z|x) ∧ −

n∑
i=1

βi
dxi
xi
∧ . (6.30)

We choose to focus on integrals
∫
Γ Uωq such that

Γ is a twisted cycle ⇐⇒ ∂UΓ = 0

ωq is a twisted co-cycle ⇐⇒ ∇ωq = 0 .

Following the same logic as before, we infer that the integral in question only depends on
the equivalence classes [Γ] and [ωq], where Γ ∼ Γ′ ⇐⇒ Γ = Γ′ + ∂Uγ and ωq ∼ ω′

q ⇐⇒
ωq = ω′

q +∇ψ.
We won’t need the twisted homology group in what follows, so we skip that definition.

To define the twisted de Rham cohomology group, we need to be careful in distinguishing
between the x- and z-variables appearing in the integrand. Let

X =
{
(z, x) ∈ AN × (C∗)n

∣∣ g(z|x) ̸= 0
}

and Y = AN , (6.31)

where A is the complex affine line (essentially C without a distinguished choice of origin),
and C∗ is the complex torus (which equals C \ {0} as a set). The space of holomorphic
functions on X (technically a sheaf ) is written as

O(X) = C
[
z1, . . . , zN , x

±1
1 , . . . , x±1

n ,
1

g

]
. (6.32)

For 1 ≤ k ≤ n, ωq from (6.25) should be thought of as a differential k-form in the
x-variables (i.e. we allow for dkx but not dkz), with a coefficient function that lives in
O(X). These objects are called relative k-forms in the literature [23, Section 1.5] [110,
Section 4.1], and they live in the space4

Ωk
X/Y =

⊕
K⊂{1,...,n}

|K|= k

O(X) dxK . (6.33)

The covariant derivative ∇k : Ωk
X/Y → Ωk+1

X/Y thus sends a relative k-form to a relative

4The subscript X/Y does not denote a quotient. This is merely the standard notation for the space of
relative k-forms.
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(k + 1)-form. A calculation shows that

∇k ◦ ∇k−1 = 0 =⇒ Image(∇k−1) ⊂ Kernel(∇k) . (6.34)

The kth twisted de Rham cohomology group can at last be defined as

Hk
A(β) =

Kernel(∇k)

Image(∇k−1)
. (6.35)

We have emphasized the dependence on the A-matrix and the β-parameter vector, as
they are used to build the integrand (6.25).

Hk
A(β) is endowed with the structure of a finite-dimensional vector space [111]. When

β is generic enough (loosely speaking, it should not be integral), then the dimension of
Hk

A(β) equals number of roots of the likelihood equations [112, 113]

β0
g(z|x)

∂g(z|x)
∂xi

− βi
xi

= 0 for i = 1, . . . , n . (6.36)

The integer obtained in this fashion in fact equals the Euler characteristic χ of the space
(C∗)n \{x1 · · ·xn ·g(z|x) = 0}. For FIs, this integer even corresponds to the number of MIs
[114]5! What is more, this counting works whether or not the z’s take on special values.
In the GKZ case, these variables are required to be independent and indeterminate. But
one is often interested in situations where some of the z’s are equal to each other, and
others equal unity. The dimension of Hk

A(β) will generally change when the z’s are fixed
to special values, but the counting via (6.36) will still be valid.

Hk
A(β) can also be endowed with the structure of a D-module. For generic z and β, it

is in fact isomorphic to the GKZ system as a D-module! That is,

DN/HA(β) ∼= Hk
A(β) . (6.37)

Appendix (A.4) presents a rough sketch for the proof of this claim. Here we simply take
this fact as given, and in the next subsection we leverage it to map elements from the
RHS of the isomorphism to elements on the LHS.

5Albeit without taking symmetry relations into account, which arise when different momentum routings
result in the same FI.
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6.3.3 Representing Euler integrals inside D-modules

The isomorphism (6.37) sends the equivalence class of operators [1] ∈ D/HA(β) to the
equivalence class of differential forms

[
dx
x

]
∈ Hk

A(β). Suppose we are given some other
equivalence class [ω(z)]. In this section we shall construct an operator d with the property

d •
[
dx

x

]
= [ω(z)] . (6.38)

Given a vector q = (q0, q
′) ∈ Z × Zn, recall the expression for ωq from (6.25). For

some fixed Γ, the Euler integral associated to this differential form is denoted by

⟨ωq⟩ =
∫
Γ
Uωq . (6.39)

By differentiating w.r.t. zi, then q gets shifted by the ith column vector of the A-matrix:

∂i • ⟨ωq⟩ = (β0 − q0)⟨ωq+ai⟩ . (6.40)

There exists an operator which shifts q in the opposite direction as well, i.e. by −ai. To
set this up, the authors of [115] construct a so-called creation operator Ci and a b-function
bi(β) such that

Ci ∂i − bi(β) = 0 mod HA(β) . (6.41)

Using that ⟨ωq⟩ is a solution to HA(β − q), one can then derive that

Ci • ⟨ωq⟩ = bi(β − ai)⟨ωq−ai⟩ . (6.42)

Suppose that an integral ⟨ωq⟩ is given. Since the vectors ai span Zn+1 by stipulation,
it is possible to write the q-vector for ⟨ωq⟩ as

q =
N∑
i=1

ri ai , ri ∈ Z . (6.43)

The integers ri allow us to balance shifts by ±ai in the q-vector of ⟨ωq⟩ via (6.40) and
(6.42). It thereby becomes possible to erect the operator

dq =
∏
ri<0

C−ri
i

∏
ri>0

1

B(β)B′(β)
∂ri (6.44)
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satisfying6

dq • ⟨ω0⟩ = ⟨ωq⟩ , ω0 =
dx

x
. (6.45)

The two functions B(β) and B′(β) are built from the prefactors of (6.40) and (6.42).
Their explicit formulas are somewhat lengthy, so we refer to [116] for details. The formula
(6.44) has been implemented in the asir package mt_gkz; see Example (6.1) below.

Note that the vector r = [r1, . . . , rN ]T ∈ ZN from (6.43) is not unique for fixed
q. Given a collection of vectors ui ∈ ZN which lie in ker (A), then it is the case that
q = A ·

(
r +

∑
i ci ui

)
for any choice of ci ∈ Z. This freedom can be exploited to simplify

the operator dq from (6.44). In particular, the creation operators Ci tend to have a large
degrees in ∂i, so for practical purposes it is useful to adjust the coefficients ci such that
ri > 0, in which case the first product of (6.44) drops out.

Later on when we discuss applications to FIs, the q-vector will be used to specify a
particular integral within a family. In the Lee-Pomeransky representation of a FI (shown
in the future equation (7.3)), q0 is related to the spacetime dimension, and q′ contains
the propagator powers.

Example 6.1. Consider the GKZ system for the 4-fold Euler integral

fβ(z) =

∫
Γ

(
z1x1 + z2x2 + z3x3 + z4x4 + z5x1x3 + z6x2x4

)β0x−β′ dx

x
. (6.46)

The goal of this example is to build the operator dq corresponding to the differential form

ωq =

[
x1x2
g2

dx

x

]
with q = (2, 1, 1, 0, 0) . (6.47)

We shall gain more insight from deriving dq by hand rather using the closed formula
(6.44). The idea is to take suitable derivatives of fβ(z) w.r.t. zi. Since ωq has a g2 in the
denominator, we ought to take two derivatives to decrease β0 → β0 − 2. The powers of
x1 and x2 in ωq are obtained by specifically choosing derivatives w.r.t. z1 and z2. So we
have

∂1∂2 • fβ(z) = β0(β0 − 1)

∫
Γ
g(z|x)β0−2x−β′

x1x2
dx

x
. (6.48)

6Contrary to what was promised in the early remarks of this section, this equation is formulated as an
action on a integral ⟨ωq⟩ rather than on a differential form [ω(z)]. The action of a differential operator
on [ω(z)] follows from (A.42), but the formula for dq remains the same in that case.
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Rearranging factors,

∂1∂2
β0(β0 − 1)

• fβ(z) =
∫
Γ
g(z|x)β0x−β′

[
x1x2
g2

dx

x

]
. (6.49)

The D-module representative for the differential form ωq is therefore dq = ∂1∂2
β0(β0−1) .

The same computation can be performed in asir via the following script:

import (" mt_gkz.rr");

A = [
[1,1,1,1,1,1]
[1,1,0,0,0,0]
[0,0,1,1,0,0]
[1,0,0,0,1,0]
[0,0,1,0,0,1]

];
Ap = mt_gkz.make_Ap(A, 1);
Ap = vtol(Ap);
Beta = [b0 ,b1 ,b2,b3,b4];

Rvec = [1,1,0,0,0,0];
mt_gkz.ff(Rvec , A, Ap, Beta);

The first row of Ap consists of 1’s, and the remaining rows contain only 0’s7. The r-
vector Rvec satisfies q = A · r. The final command mt_gkz.ff(...) outputs the result
(dx1*dx2)/(b0^2-b0), as expected. ■

To summarize, we now have three ways of representing the same object:

1. The Euler integral ⟨ωq⟩ =
∫
Γ Uωq, written in the notation of (6.25). This lives in

some suitable space of functions.

2. The equivalence class of differential forms [ωq]. This lives in the twisted cohomology
group (6.35).

3. The equivalence class of differential operators [dq] defined by formula (6.44). It lives
inside the D-module DN/HA(β).

7Ap is built from the vectors called a′
i in [116]. See the documentation of mt_gkz for additional

details.
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Section 6.4

Basis of standard monomials

As the GKZ D-module is holonomic, it must have a finite collection of standard monomials
serving as a basis. There is a simple formula for the size of this basis given a genericity
condition on the parameter vector β = (β0, . . . , βn). We require some definitions from
polyhedral geometry to state the formula.

• Interpret the column vectors ai of the A-matrix as points in Zn+1. The positive
real cone generated by these points is defined as

C[A] =

{
N∑
i=1

λi ai

∣∣∣ λi ≥ 0

}
. (6.50)

• We say that β is non-resonant if any integer shift β + Zn+1 contains no points on
the facets of C[A]. Facets are defined as codimension-1 faces of C[A].

Alternatively, we can say that β is resonant when some integer translate of the facet
hyperplanes for C[A] can be made to "hit" β.

While this definition is somewhat technical, in practice it just means that β should
be "generic enough", in the sense of not containing integer values.

• The Newton polytope associated to A is

N[A] =

{
N∑
i=1

λi ai

∣∣∣ λi ≥ 0 and
N∑
i=1

λi = 1

}
. (6.51)

In other words, N[A] is the convex hull of A’s column vectors ai ∈ Zn+1.

When β is non-resonant, it was proved in [95] that the holonomic rank of the GKZ system,
and hence also the number of standard monomials, is given by

R = n! × vol(N[A]) , (6.52)

where vol(N[A]) is the volume of the Newton polytope (this can be efficiently computed
with software such as Polymake [117]). This formula is quite remarkable. Recall that
R counts the number of independent solutions to the PDEs (6.7)-(6.8). The latter is
statement of complex analysis, while the formula (6.52) is purely combinatorial.
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For GKZ systems, not only is the number of basis elements known a priori, there is
even a fast algorithm to determine explicit standard monomials due to Hibi, Nishiyama
and Takayama [118]. The idea of the algorithm is to compute standard monomials for a
simpler, auxiliary ideal. The construction can be summarized as follows. Given the toric
ideal of a GKZ system

I□ =
〈
□u

〉
∀u∈ ker(A)

, (6.53)

one must first build its ideal of initial terms in≺(I□) (recall (4.21)). Any generator d
of in≺(I□) can be written in the form d =

∏N
i=1 ∂

qi for qi ∈ Z≥0 The distraction of d is
defined by

dist(d) =

N∏
i=1

∂i(∂i − 1) · · · (∂i − qi − 1) . (6.54)

The authors of [118] then consider the ideal I ′ generated as

I ′ =
n∑

i=0

DEi

∣∣
z1=···=zN=1

+
∑

∀d∈ in≺(I□)

D dist(d) , (6.55)

where Ei are the homogeneity operators from (6.5). Surprisingly, the set of standard
monomials for D/I ′ also constitutes a basis for the GKZ system D/HA(β). Hibi et
al. thus obtain standard monomials for the latter by a Gröbner basis computation in the
former. Crucially, I ′ is an ideal in the commutative subring C[∂1, . . . , ∂N ], which makes
the computation much more efficient than the execution of Buchberger’s algorithm in a
non-commutative Weyl algebra.

Example 6.1. To illustrate the efficiency of this algorithm, consider the following
A-matrix formed from a polynomial with N = 26 terms:

A =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 · · · · · · · · · · · 1 1 1 1 1 1 · · · · ·

1 · · · 1 1 1 · · · · · · · · 1 1 · · · · 1 1 1 1 ·

· 1 · · 1 · · 1 1 1 1 · · · · · · 1 1 · · 1 1 · · 1

· · · · · 1 · 1 · · · 1 1 · · · · · · · · · · 1 · 1

· · · · · · 1 · 1 · · · · 1 1 1 · 1 · 1 1 1 · · 1 ·

· · 1 · · · · · · 1 · 1 · 1 · · 1 · 1 1 · · 1 1 1 ·

· · · 1 · · · · · · 1 · 1 · 1 · · · · · 1 · · · · 1


.

The algorithm of [118] has been implemented by Nobuki Takayama in asir via the
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command

mt_gkz.cbase_by_euler(A);

In less than a minute on a laptop, this command gives a list of R = 238 standard
monomials for the GKZ system. The first few elements are

Std =
{
∂26∂

4
25, ∂

4
26∂14, ∂

2
25∂

2
24, ∂

3
25∂8, ∂

3
25∂12, . . .

}
. (6.56)

■

Section 6.5

Integrand rescaling

By cleverly rescaling the z-variables of the Euler integral (6.1), we show here how to
reduce the number of variables from N to N − (n + 1). This reduction is useful for
practical computations.

The construction follows from a homogeneity property satisfied by Euler integrals:

fβ(t
a1z1, . . . , t

aN zN ) = tβ0
0 tβ1

1 · · · tβn
n fβ(z) , (6.57)

where the vectors ai ∈ Zn+1 come from the columns of the A-matrix. By differentiating
w.r.t. t and using the chain rule, it can be shown that this property is equivalent to
the collection of PDEs Ei • fβ(z) = 0 from (6.5). This is the reason for calling Ei the
"homogeneity operators".

We can freeze (n+ 1) of the z-variables to unity by judiciously choosing the rescaling
parameters t ∈ Cn+1. This is best illustrated by an example.

Example 6.1. This is a continuation of Example (5.2). After relabeling βi → βi−1 in
the generators called di in (5.32), we now see that this is the GKZ system built from
A-matrix

A =

 1 1 1 1

0 1 0 1

0 0 1 1

 . (6.58)

The associated Euler integral is

fβ(z) =

∫
Γ

(
z1 + z2x1 + z3x2 + z4x1x2

)β0x−β1
1 x−β2

2

dx

x
. (6.59)
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In this case, the homogeneity property (6.57) reads

fβ(t0z1, t0t1z2, t0t2z3, t0t1t2z4) = tβ0
0 t

β1
1 t

β2
2 fβ(z1, z2, z3, z4) . (6.60)

Choosing

t0 =
1

z1
, t1 =

z1
z2
, t2 =

z1
z3
, (6.61)

then (6.60) becomes

fβ(1, 1, 1, w) = z−β0+β1+β2
1 z−β1

2 z−β2
3 fβ(z1, z2, z3, z4) with w =

z1 z4
z2 z3

. (6.62)

A 4-variable problem has thereby been reduced to one that depends on a single cross-ratio
variable w.

The three homogeneity operators {E0, E1, E2} have now been "gauge fixed" away by
this rescaling. The GKZ system then only depends on a single toric operator:

□u • fβ(z) = (∂1∂4 − ∂2∂3) • fβ(z) = 0 . (6.63)

Inserting the representation of fβ from the RHS of (6.62), a short calculation shows that
the two terms in □u get mapped to

∂1∂4 → −w−1(β0 − β1 − β2 − w∂w)(w∂w)
∂2∂3 → (β1 + w∂w)(β2 + w∂w) .

(6.64)

The toric PDE (6.63) thus turns into the second-order ODE

L • fβ(1, 1, 1, w) = 0 with (6.65)

L = w(1− w)∂2w +
[
1− β0 + β1 + β2 − (1 + β1 + β2)w

]
∂w − β1β2 ,

which is recognized to be the DEQ for Gauss’ hypergeometric 2F1 function. ■

The rescaling parameters (6.61) were here pulled out of a hat. In Appendix (A.3), we
present a general formula for how to choose these t’s.
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Section 6.6

Recurrence relations

This section describes a method, relying solely on products of Pfaffian matrices, to
determine recurrence relations among Euler integrals with different values of β. (We
remark that these matrix products can be swiftly calculated using rational reconstruction.)
One can think of these recurrence relations as being a counterpart to IBP for FIs, though
in this case the IBPs come first and the Pfaffian systems last. That logic is reversed by
the method presented here, as we obtain Pfaffian matrices first (via the Macaulay matrix
method), and then use those Pfaffians to derive recurrence relations/IBPs.

6.6.1 Shifting β by matrix factorials

For convenience, we shall work with a rescaled version of the Euler integral:

fβ(z)→ f(β) =
1

Γ(β0 + 1)

∫
Γ
g(z|x)β0x−β′ dx

x
, (6.66)

where we chose to only emphasize the β-dependence of f(β) since z will stay fixed
throughout the discussion. The Γ-function prefactor provides a clean shift relation when
a derivative is taken w.r.t. zi:

∂i • f(β) = f(β − ai) . (6.67)

Let Std be a basis of standard monomials for a GKZ system D/HA(β). We convert
this D-module basis into a basis of functions by writing

F (β) =


Std1 • f(β)

...
StdR • f(β)

 . (6.68)

Suppose we have computed the Pfaffian system for F (β) via the Macaulay matrix method.
Combining the relation ∂iStdj = Stdj∂i with (6.67), we deduce that

∂i • F (β) = Pi(β) · F (β) = F (β − ai) . (6.69)

In other words, matrix multiplication by Pi(β) induces a difference equation for F (β).
It is possible to shift β in the opposite direction as well. Assuming β is non-resonant,
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then Pi(β + ai) is invertible. Setting

Qi(β) = Pi(β + ai)
−1 , (6.70)

we thereby obtain an "inverse derivative operator" ∂−1
i acting as

∂−1
i • F (β) = Qi(β) · F (β) = F (β + ai) . (6.71)

Let b ∈ Z≥0. If b > 0, we write the falling matrix factorial as

[
Pi(β)

]
b
= Pi

(
β − (b− 1)ai

)
· Pi

(
β − (b− 2)ai

)
· · ·Pi(β − ai) · Pi(β) , (6.72)

and the rising matrix factorial as

(
Qi(β)

)
b
= Qi

(
β + (b− 1)ai

)
·Qi

(
β + (b− 2)ai

)
· · ·Qi(β + ai) ·Qi(β) . (6.73)

If b = 0, then
[
Pi(β)

]
0
=
(
Qi(β)

)
0
= 1.

When the subscript b is promoted to an integer vector v ∈ ZN
≥0, these definitions are

extended to

[
P (β)

]
v
=

N∏
i=1

[
Pi

(
β −∑N

j=i+1 vj aj

)]
vi

(6.74)

(
Q(β)

)
v
=

N∏
i=1

[
Qi

(
β −∑N

j=i+1 vj aj

)]
vi
, (6.75)

with the convention that
∑N

j=i+1 vjaj = 0 when i = N .
Now, by induction over b > 0, it is short proof (see [82, Lemma 6.3]) to show that

∂bi • F (β) =
[
Pi(β)

]
b
· F (β) = F (β − bai)

∂−b
i • F (β) =

(
Qi(β)

)
b
· F (β) = F (β + bai) .

(6.76)

Repeatedly applying these relations for each vi in a given vector v ∈ ZN
≥0, we obtain the

general shift relations

∂vi • F (β) =
[
Pi(β)

]
v
· F (β) = F

(
β −∑N

i=1 vi ai

)
∂−v
i • F (β) =

(
Qi(β)

)
v
· F (β) = F

(
β +

∑N
i=1 vi ai

)
.

(6.77)
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Note that these matrix factorial relations are not uniquely represented because

F
(
(β − ai)− aj

)
= Pi(β − aj) · Pj(β) · F (β)

and
F
(
(β − aj)− ai

)
= Pj(β − ai) · Pi(β) · F (β)

(6.78)

imply the commutation relation

Pi(β − ai) · Pj(β) = Pj(β − ai) · Pi(β) , (6.79)

and likewise for Qi.

6.6.2 General β shift algorithm

Here we employ the formulas derived in the previous subsection to state a general algorithm
for expressing a given Euler integral as a sum of basis integrals. To begin, write the
standard monomials in the form Stdi = ∂qi for some qi ∈ ZN

≥0. Recalling that the ith
component of F (β) is of the form Stdi • f(β), then (6.67) implies that

F (β) =


f(β −A · q1)

...
f(β −A · qR)

 . (6.80)

Given an integer vector q0 ∈ ZN , we seek a recurrence relation for f(β − A · q0) of the
form

f(β −A · q0) =
R∑
i=1

ci(β, z) f(β −A · qi) with ci ∈ Q(β, z) . (6.81)

Observe that f(β − A · q0) is the first element of the vector F
(
β − A · (q0 − q1)

)
.

Combining this fact with the shift relations (6.77), we are lead to the following algorithm.
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Algorithm 2 : Recurrence relations for Euler integrals
Input:

• Vector q0 ∈ ZN .

• Indeterminate vector β.

• Monomial basis Std =
{
∂q1 , . . . , ∂qR

}
for qi ∈ ZN

≥0.

Output: The recurrence relation (6.81).

1: Calculate Pi(β), i = 1, . . . , N, w.r.t. the basis Std by calling Algorithm (1).

2: Decompose

q0 − q1 = q+ − q− = q

for q± ∈ ZN
≥0.

3: Compute the matrix factorial[
P
(
β −∑qj<0 qj aj

)]
q+
·
(
Q(β)

)
q−
· F (β) .

4: return the first element of step 3.

Since this algorithm avoids the use of derivatives, it is possible to fix the z-variables to
special values in the Pfaffian matrices. We give a simple example of how to use this
algorithm in Section (7.4).



Chapter 7

Generalized Feynman Integrals

In the physics literature, Tullio Regge observed already in 1968 that FIs often evaluate to
hypergeometric functions [119] (for instance the 2F1 function that we saw in the previous
chapter). In the mathematics literature, although a large zoo of hypergeometric1 functions
(carrying famous names such as Gauss, Kummer, Mellin, Barnes, Appell, Kampé de
Fériet, Lauricella, Horn and Meijer) were known in the last half of the previous century,
there was arguably no overarching framework that tied them all together. The work
of Gel’fand, Kapranov and Zelevinsky in the 1990s did exactly that: it gave a general
construction which subsumed the whole zoo of hypergeometric functions as special cases.

Following in the footsteps of Regge, it is then natural to wonder whether GKZ systems
can say something about FIs. The first proper study in this direction appears to have
been by Nasrollahpoursamami in 2016 [28, 120]. There has since then been a flurry of
works studying this topic [82, 83, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131,
132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143]. There is now even a practical
program, named FeynGKZ [123], that computes series expansions for FIs based on the
GKZ framework.

The connection between FIs and GKZ systems is not so immediate in the momentum
space representation. The connection becomes more clear in parametric representations
such as the Lee-Pomeransky representation (LPr) [43]. The FI then looks more like the
Euler integral defined in (6.1), which is a solution to the GKZ system. The difference is
that the z-variables take on special values in the LPr, so the class of Euler integrals is
too general. Though the proper function space for FIs is unknown (cf. Section (2.1.3)),
the Euler integral can thus be thought of as an "upper bound" on the complexity of this
space.

In what follows, we use the technology developed in the preceding chapters to study
some simple FIs in the GKZ framework. We especially focus on Pfaffian systems for MIs.

1Let F (z) =
∑∞

n=0 cnz
n. We say that F is hypergeometric if cn+1/cn is a rational function of n. The

generalization to multivariate and logarithmic series is immediate.
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Section 7.1

Lee-Pomeransky representation as a GKZ system

Fix a Feynman graph G. There are two special Symanzik polynomials associated to G,
given by

U(x) =
∑
T

∏
e /∈T

xe (7.1)

F(x) = −
∑
F

p(F )2
∏
e /∈F

+ U(x)
n∑

i=1

m2
ixi . (7.2)

T and F are sets of so-called spanning trees and spanning forests respectively, and p(F )2

is the Minkowski square of the momentum flowing into certain forest components. We
shall not dwell on these definitions here, as there are many exhaustive expositions already,
see e.g. [44, Chapter 3]. The parameters mi denote the internal masses associated to the
n internal edges of G.

Starting from the momentum space representation of a FI, it is possible to derive an
equivalent parametric representation called the Lee-Pomeransky representation (LPr) [43]
(see also [44, Section 2.5]). We denote it by

I(D0|ν) =
Γ
(
D
2

)
Γ
(
D
2 − ω

)
Γ(ν)

∫ ∞

0
G(x)−D

2 xν
dx

x
, (7.3)

where

• G is the Lee-Pomeransky (LP) polynomial

G(x) = U(x) + F(x) . (7.4)

• ω is the superficial degree of divergence

ω =

n∑
i=1

νe −DL/2 (7.5)

written in terms of edge weights ν = (ν1, . . . , νn) ∈ Zn, the spacetime dimension
D = D0 − 2ϵ, and the number of loops L. We assume D0 ∈ 2 · Z>0 is even for
simplicity.

• Γ(ν) is shorthand for
∏n

i=1 Γ(νi).
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7.1.1 Generalized Feynman integral

Let 0 < δ ≪ 1. The two small parameters (ϵ, δ) correspond to analytic regulators in the
works of Speer [144, 145]. Fix the exponents β of the Euler integral fβ(z) from (6.1) to2

β = (ϵ, −ϵδ, . . . ,−ϵδ) − (D0/2, ν1, . . . , νn) . (7.6)

The generalized FI (GFI) is now defined to be

I(D0|ν) = c(D0|ν)× fβ(z) . (7.7)

• Inserting the special choice of β from (7.6), the Euler integral reads

fβ(z) =

∫
(0,∞)n

G(z|x)ϵ−D0/2 xν1+ϵδ
1 · · ·xνn+ϵδ

n

dx

x
, (7.8)

where the integration contour has been fixed to Γ = (0,∞)n.

• Rewriting the prefactor in (7.3) with this β, we have

c(D0|ν) =
Γ
(
D0/2− ϵ

)
Γ
(
(L+ 1)(D0/2− ϵ)− |ν| − nϵδ

)∏n
i=1 Γ

(
νi + ϵδ

) , (7.9)

with |ν| = ν1 + . . .+ νn.

• The monomials xαi in G come from the LP polynomial (7.3):

G(z|x) = U(z|x) + F(z|x) =
N∑
i=1

zi x
αi . (7.10)

But, in contrast to the original LP polynomial, each monomial coefficient zi is here
taken to be indeterminate.

There is a GKZ system D/HA(β) associated to such a GFI. According to the isomorphism
(6.37), I(D0|ν) is also represented by a twisted cohomology group Hk

A(β). In the notation
of Section (6.3.3), given a twist U = G(z|x)ϵ xϵδ and a differential form

[ωD0/2,ν ] = c(D0|ν)× G−D0/2 xν
dx

x
, (7.11)

2Writing −ϵδ instead of, say, δ is merely a matter of convention. This convention was chosen so as to
more easily compare results from Section (7.2) with [101].
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we then have that I(D0|ν) = ⟨ωD0/2,ν⟩. The r-vector from (6.43) therefore satisfies
A · r =

(
D0/2, ν

)
. The columns ai = [1, αi]

T of this A-matrix come from the multi-indices
αi in (7.10).

Now, making the identifications

• δ → 0

• zi → Z>0 or
{
kinematic variables (m2

i , p
2
i , pi · pj)

}
then a GFI agrees exactly with the LPr. The δ → 0 limit is not so troublesome (this
parameter is inserted to ensure non-resonance of the GKZ system). The more pressing
issue is how to deal with each zi being indeterminate in the GFI. By the homogeneity
rescaling described in Section (6.5), we can at least rescale (n+ 1) of the z-variables to
unity in order to match with some or all of the monomial coefficients in the U -polynomial.
In doing so, it is possible to exactly match the GFI with a large class of 1-loop graphs
[82, Section 5.1] - in particular those which are fully massless, or contain off-shell legs
whose squared momenta are independent, p2i ̸= p2j ̸= 0.

In general, however, there are more GKZ variables than there are independent
monomial coefficients in the proper LP polynomial. This is especially true at L = 2

loops and beyond. In those cases one must take a kind of "limit", called a restriction,
of the GKZ system. We study such restrictions in detail in Chapters (8) and (9). For
the remaining part of this chapter though, we only study examples where the number of
GKZ variables can be made to match with the proper FI.

Section 7.2

Macaulay matrix example: 1-loop massless box

Here we compute the Pfaffian system for the 1-loop massless box diagram using the
Macaulay matrix method from Chapter (5). This example was studied in the LPr using
twisted cohomology in [101].

The kinematic configuration is

4∑
i=1

pi = 0 , p21 = · · · = p24 = 0 , s = 2p1 · p2 , t = 2p2 · p3 .
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In momentum space, one has the following four inverse propagators:

D1 = −ℓ2 , D2 = −(ℓ− p1)2 ,
D3 = −(ℓ− p1 − p2)2 , D4 = −(ℓ− p1 − p2 − p3)2 .

(7.12)

The corresponding GFI reads

I(D0|ν) = c(D0|ν)
∫
(0,∞)4

G(z|x)ϵ−D0/2 xν1+ϵδ
1 · · ·xν4+ϵδ

4

dx

x
, (7.13)

where

G(z|x) =
4∑

i=1

zixi + z5x1x3 + z6x2x4 . (7.14)

Upon rescaling the integration variables in the proper LPr as x→ x/(−s), then its
monomial coefficients become

z1 = . . . = z5 = 1 , z6 =
t

s
= z . (7.15)

So the proper LP has one independent coefficient z. On the other hand, the GKZ system
has N = 6 variables. Using homogeneity, we can rescale n + 1 = 4 + 1 = 5 of those
variables to unity. To match with (7.15), we choose to rescale {z1, . . . , z5}. Including an
overall s-dependent prefactor because of the x-rescaling above,

I(D0|ν)→ (−s)D0/2−ϵ−4ϵδ−|ν| × I(D0|ν) , (7.16)

then our GFI matches exactly with the LPr in the limit δ → 0.
Having "gauged away" the Euler homogeneity operators, the GKZ system now only

contains the toric part. Using (A.34) or the asir command mt_gkz.gkz_b, the single
toric operator works out to

I□ = z3[1 + z]∂3 + z2
[
3(1 + z) + ϵ(2 + z + 6δ(1 + z))

]
∂2 (7.17)

+ z
[
(1 + ϵ+ 3δϵ)2 + z(1 + ϵ+ 6δϵ+ ϵ2δ(2 + 9δ))

]
∂ + zϵ3δ2[1 + 4δ] ,

where ∂ = ∂z.
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7.2.1 Basis

Since the number of GKZ variables matches with the proper LPr, the formula R =

n!× vol(N[A]) ought to correctly count the number of MIs. In polymake, this volume
can be computed as

$P = new Polytope(POINTS =>
[[1,1,0,0,0],
[1,0,1,0,0],
[1,0,0,1,0],
[1,0,0,0,1],
[1,1,0,1,0],
[1,0,1,0,1]]

);
print $P -> VOLUME;

The matrix above is the transpose of the A-matrix associated to the LP polynomial (7.14),
due to the conventions of the software. The script outputs the volume 1/8, so we expect
R = 4!× 1/8 = 3 MIs. This indeed holds true, as can be verified by an IBP calculation.

Taking inspiration from [146], we choose the following basis of canonical integrals near
4 dimensions:

e(I) = (−s)ϵ+1

 z I(4|0102)
I(4|1020)

ϵ z (−s) I(4|1111)

 . (7.18)

Using (7.11), this corresponds to the basis of differential forms

e(dR) = c ·


x4

x1 x2 G2dx

x3
x2 x4 G2dx

1
G2dx

 , (7.19)

where c is a 3× 3 diagonal matrix containing the Γ-function constants c(D0|ν) multiplied
by the prefactors from (7.18). The formulas (6.44) and (A.34) turn these differential
forms into a D-module basis

e(D) = c ·


ϵδ−1
ϵ(ϵ−1)∂ − z

ϵ(ϵ−1)∂
2

ϵ(1−3δ)(4δ−1)
ϵ−1 + z(7ϵδ−2ϵ−1)

ϵ(ϵ−1) ∂ − z2

ϵ(ϵ−1)∂
2

4ϵδ−ϵ−1
ϵ(ϵ−1) ∂ − z

ϵ(ϵ−1)∂
3

 . (7.20)
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7.2.2 Macaulay matrix

Our goal is to obtain the Pfaffian system ∂e(D) = P · e(D). Using the Macaulay matrix
method, we first construct the Pfaffian system in the basis of standard monomials,

∂Std = ∂

 ∂2

∂

1

 =

 ∂3

∂2

∂

 = P (Std) ·

 ∂2

∂

1

 , (7.21)

whereafter we gauge transform to the e(D) system. With the toric operator (7.17) and
the basis Std as input, the Macaulay data works out to

MExt =
[
z2(z + 1)

]

MStd =


z
[
ϵ(6δ + 2) + z(6ϵδ + ϵ+ 3) + 3

](
3ϵδ + ϵ+ 1

)2
+ z
[
ϵ2δ(9δ + 2) + 6ϵδ + ϵ+ 1

]
ϵ3δ2(4δ + 1)


T

(7.22)

CExt =
[
1 0 0

]
, CStd =

 0 0 0

1 0 0

0 1 0


Mons = Ext ⊔ Std = {∂3} ⊔ {∂2, ∂, 1} .

Letting C =
[
c11 c12 c13

]
be an unknown matrix, we then solve CExt − C ·MExt = 0 to

obtain

C =
[

1
z2(z+1)

0 0
]
. (7.23)

The Pfaffian matrix in the basis of standard monomials is then

P (Std) = CStd − C ·MStd (7.24)

=

 P
(Std)
11 P

(Std)
12 P

(Std)
13

1 0 0

0 1 0

 , (7.25)
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with

P
(Std)
11 = −ϵ

[
6δ(z + 1) + z + 2

]
+ 3(z + 1)

z(z + 1)

P
(Std)
12 = −

(
3ϵδ + ϵ+ 1

)2
+ z
[
ϵ2δ(9δ + 2) + 6ϵδ + ϵ+ 1

]
z2(z + 1)

(7.26)

P
(Std)
13 = −ϵ

3δ2(4δ + 1)

z2(z + 1)
.

Finally, using the basis change method described in Appendix (A.1) we build a matrix G
such that e(D) = G · e(Std), leading to the gauge transformation

P =
(
∂ •G+G · P (Std)

)
·G−1 (7.27)

= ϵ

 −1
z 0 0

0 0 0

− 2
z(z+1)

2
z+1 − 1

z(z+1)

 . (7.28)

The limit δ → 0 has already been taken here. This matrix is canonical as expected, and
is in agreement with an independent LiteRed computation.

Section 7.3

Macaulay matrix example: 1-loop pentagon with off-shell leg

Here we compute a Pfaffian system for the 1-loop massless pentagon integral with one
massive leg. The kinematics are

5∑
i=1

pi = 0 , p21 = · · · = p24 = 0 , p25 = p2

and sij = 2pi · pj .

Note that the identity (p1 + p2 + p3 + p4)
2 = (−p5)2 = p2 can be used to eliminate one of

the Mandelstam variables sij .
The inverse propagators are given by

D1 = −ℓ2 , D2 = −(ℓ− p1)2 , D3 = −(ℓ− p1 − p2)2
D4 = −(ℓ− p1 − p2 − p3)2 , D5 = −(ℓ− p1 − p2 − p3 − p4)2 .

(7.29)
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The associated GFI is

I(D0|ν) = c(D0|ν)(−s12)D0/2−ϵ−|ν|−5ϵδ

∫
(0,∞)5

G(z|x)ϵ−D0/2 xν1+ϵδ
1 · · ·xν5+ϵδ

5

dx

x
, (7.30)

with LP monomials given by

G(z|x) =
5∑

i=1

zi xi + z7 x1 x4 + z8 x1 x5 + z9 x2 x4 + z10 x1 x5 + z11 x3 x5 , (7.31)

corresponding to A =



1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 1 1 1 0 0 0

0 1 0 0 0 0 0 0 1 1 0

0 0 1 0 0 1 0 0 0 0 1

0 0 0 1 0 0 1 0 1 0 0

0 0 0 0 1 0 0 1 0 1 1


.

The s12-dependent prefactor in (7.30) results from rescaling integration variables by
xi → xi/(−s12).

The proper LP polynomial has the monomial coefficients

z1 = . . . = z6 = 1

z7 = 1 + y2 + y4

z8 = y1

z9 = y4

z10 = −1 + y1 − y2 − y3
z11 = −1 + y1 − y2 − y3 − y4 − y5

(7.32)

in terms of ratios

y1 =
p2

s12
, y2 =

s13
s12

, y3 =
s14
s12

, y4 =
s23
s12

, y5 =
s24
s12

. (7.33)

There are 5 monomial coefficients that differ from unity. We can exactly match them
with GKZ variables using homogeneity. More precisely, the GKZ system originally has
N = 11 variables, but n+ 1 = 5 + 1 = 6 variables can be rescaled as z1 = . . . = z6 = 1,

leaving us with 5 variables {z7, . . . , z11}.
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7.3.1 Basis

Computing the volume of the Newton polytope with polymake, we expect R = 5! ×
13/120 = 13 MIs. With the asir command mt_gkz.cbase_by_euler, we instantly identify
a basis of 13 standard monomials

e(Std) =



∂9∂
2
11

∂29
∂210
∂8∂11

∂9∂11

∂10∂11

∂211
∂7

∂8

∂9

∂10

∂11

1



. (7.34)

For the sake of verifying our results against an independent IBP calculation, we also
determine an integral basis using LiteRed:

e(I) = (−s12)ϵ



I(2|0, 0, 1, 0, 1)
I(2|0, 1, 0, 0, 1)
I(2|0, 1, 0, 1, 0)
I(2|1, 0, 0, 0, 1)
I(2|1, 0, 0, 1, 0)
I(2|1, 0, 1, 0, 0)
ϵI(4|1, 0, 1, 0, 1)

ϵ(−s12)I(4|0, 1, 1, 1, 1)
ϵ(2ϵ− 1)I(6|1, 0, 1, 1, 1)
ϵ(−s12)I(4|1, 1, 0, 1, 1)
ϵ(−s12)I(4|1, 1, 1, 0, 1)
ϵ(−s12)I(4|1, 1, 1, 1, 0)
ϵ2(−s12)I(6|1, 1, 1, 1, 1)



. (7.35)
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This basis has been slightly dressed up with prefactors to simplify its Pfaffian system.
Moreover, the dimension D0 of each I(D0|ν) is chosen to ensure that its associated
r-vector only contains non-negative integers, as per the remark above Example (6.1). The
D-module basis corresponding to (7.35) is computed by inserting these r-vectors into the
asir command mt_gkz.rvec_red2, with the result

e(D) = c ·



∂11

∂10

∂9

∂8

∂7

ϵ(5δ + 1) + z7∂7 + z8∂8 + z9∂9 + z10∂10 + z11∂11

(4ϵδ + ϵ+ 1)∂11 + z11∂
2
11 + z9∂9∂11 + z10∂10∂11

∂9∂11

e
(D)
9

∂7∂10

(5ϵδ + ϵ+ 1)∂10 + z10∂
2
10 + z7∂7∂10 + z8∂8∂10 + z9∂9∂10 + z11∂11∂10

(5ϵδ + ϵ+ 1)∂9 + z9∂
2
9 + z7∂7∂9 + z8∂8∂9 + z10∂10∂9 + z11∂11∂9

(4ϵδ + ϵ+ 2)∂11∂9 + z9∂11∂
2
9 + z10∂10∂11∂9 + z11∂

2
11∂9



,

(7.36)

where

e
(D)
9 = ϵδ (4ϵδ + 1) ∂11 + z11ϵδ∂

2
11 + z7 (4ϵδ + ϵ+ 1) ∂7∂11 + z9 (5ϵδ + ϵ+ 2) ∂9∂11

+ z10ϵδ∂10∂11 + z7z11∂7∂
2
11 + z9z11∂9∂

2
11 + z29∂

2
9∂11 (7.37)

+ z7z9∂7∂9∂11 + z7z10∂7∂10∂11 + z9z10∂9∂10∂11 ,

and c is a 13× 13 diagonal matrix containing prefactors (it can be downloaded from a
mathematica notebook in [147]).

7.3.2 Macaulay matrix

The Macaulay matrix data is obtained in less than a second on a laptop via the asir

command mt_mm.find_macaulay. The matrix MExt has dimensions 189× 113, meaning
that there are 113 exterior monomials. After fixing every parameter in MExt to a number,
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row reduction reveals that only 133 out of the 189 rows are independent. The matrix
containing these independent rows is denoted by M ′

Ext. Starting from the 189× 13 matrix
MStd, we similarly define the 133× 13 matrix M ′

Std.
For each i ∈ {7, . . . , 11} we proceed to solve the equation

C
(i)
Ext − C(i) ·M ′

Ext = 0 (7.38)

for the unknown matrices C(i). This only takes a few minutes on a laptop with Finite-

Flow. The Pfaffian matrix in direction i is finally obtained from

C
(i)
Std − C(i) ·M ′

Std = P
(Std)
i . (7.39)

To compare it with LiteRed, we perform a gauge transformation from the basis e(Std) in
(7.34) to e(D) in (7.36). After sending δ → 0, we find perfect agreement.

Section 7.4

Recurrence relation example: 1-loop bubble

Here we showcase Algorithm (2) by computing an IBP relation for a simple bubble
diagram. The inverse propagators are

D1 = −ℓ2 +m2 , D2 = −(ℓ+ p)2 ,

where p is an incoming external momentum. The GFI takes the form

I(D0|ν1, ν2) = c(D0|ν1, ν2)
∫
(0,∞)2

G(z|x)ϵ−D0/2 xν1+ϵδ
1 xν2+ϵδ

2

dx

x
, (7.40)

with the LP monomials

G(z|x) = z1 x1 + z2 x2 + z3 x1 x2 + z4 x
2
1 , A =

 1 1 1 1

1 0 1 2

0 1 1 0

 . (7.41)

We avoid the use of homogeneity in order to follow the steps of Algorithm (2) as closely
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as possible3. Instead, we simply specify

z1 = z2 = 1 , z3 = m2 − p2, z4 = m2 (7.42)

at the end of the computation to match with the physical LPr.
Fixing a basis of MIs

e =

[
I(4|1, 1)
I(4|2, 0)

]
, (7.43)

we now proceed to find c1,2 in the decomposition4

e0 = I(4|1, 2) = c1e1 + c2e2 (7.44)

using Algorithm (2).

Step 0: Input. Set β = {ϵ,−ϵδ,−ϵδ} ∈ C3 \ Z3. According to the formula (6.81),
Algorithm (2) pertains to Euler integrals of the form

f(β −A · q) = I(D0|ν)/c(D0|ν) . (7.45)

By the definition of I(D0|ν) from (7.7), we thus require that the argument of f be

β −A · q = β −
(
D0/2, ν) . (7.46)

(Such a q-vector plays a similar role as the r-vector from (6.43).) For the integrals in the
example at hand, we have

q A · q Stdq = ∂q

I(4|1, 2) q0 = (0, 1, 1, 0) (2, 1, 2) ∂2∂3

I(4|1, 1) q1 = (1, 1, 0, 0) (2, 1, 1) ∂1∂2

I(4|2, 0) q2 = (2, 0, 0, 0) (2, 2, 0) ∂21

(7.47)

In the final column, we provided the D-module representatives of the integrals (up to
prefactors).

3Algorithm (2) assumes that the input Std consists of single monomials. Rewriting the basis in
rescaled variables using (A.34) would generally lead to operators with several terms, slightly modifying
the algorithm.

4Here we pick an example where all the νi are non-negative. For negative νi, one has to slightly tweak
the algorithm with the shift vector α from [82, Equation 6.28].
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Step 1. Calling Algorithm (1), we obtain the 2× 2 Pfaffian matrices {P1, P2, P3, P4} in
the basis Std = {∂q1 , ∂q2}.

Step 2. We decompose

q0 − q1 = (−1, 0, 1, 0)
= (0, 0, 1, 0)− (1, 0, 0, 0) (7.48)

= q+ − q−

= q .

Step 3. This step instructs us to compute the matrix factorial corresponding to the
operator ∂+1

3 ∂−1
1 , where ∂3 stems from q+ and ∂1 stems from q−. Explicitly, we compute

P3(β + a1) ·Q1(β) · e . (7.49)

Step 4: Output. The sought after recurrence relation is encoded in the first element
of (7.49). After sending δ → 0 and replacing the zi variables as in (7.42), we obtain the
result

I(4|1, 2) = (1− 2ϵ)(p2 +m2)

(p2 −m2)2
I(4|1, 1)− 2m2

(p2 −m2)2
I(4|2, 0) , (7.50)

which is in agreement with LiteRed.



Chapter 8

Restriction of D-modules

As emphasized in the previous chapter, the GKZ system does not perfectly capture the
nature of FIs in the LPr. The former requires all monomial coefficients zi of the integrand
polynomial G(z|x) to be indeterminate, but the latter has some of the zi fixed to special
values. The question is then whether there exists a kind of limit of the GKZ system,
at the level of D-modules, which will exactly identify it with the annihilating ideal of a
proper FI.

To motivate the need for a restriction procedure, let us consider an example.

Example 8.1. Let

I(D0|ν) ∝
∫
(0,∞)5

G(z|x)ϵ−D0/2 xν1+ϵδ
1 · · ·xν5+ϵδ

5

dx

x

p1

p2

p4

p3

denote the GFI associated to the 2-loop massless N-box diagram. The kinematics are

p21 = · · · = p24 = 0 s = 2p1 · p2 t = 2p2 · p3 , (8.1)

and the LP monomials read

G(z|x) = z1x1x2 + z2x1x4 + z3x1x5 + z4x2x3 + z5x2x4 + z6x2x5 (8.2)

+ z7x3x4 + z8x3x5 + z9x1x2x4 + z10x2x3x5 .

The holonomic rank of the GKZ system is R = 9, as dictated by the formula (6.52), and
it stays fixed when six of the zi variables are rescaled to unity via homogeneity.

After rescaling integration variables by x → x/s, the proper LPr has monomial

103
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coefficients confined to the space

Y ′ =
{
(z1, . . . , z10) ∈ A10

∣∣ z1 = . . . = z9 = 1
}
, (8.3)

with z10 = t/s being generic. Counting the dimension of the twisted cohomology group
Hk

A(β) for z ∈ Y ′ via the likelihood equation (6.36), one finds that dim(Hk
A(β)) = 3. This

is the correct number of MIs, as as verified by an IBP calculation.
As R = 9 > 3, we infer that the GKZ system is "too big". We therefore seek some way

to recover the space Hk
A(β), having special values for the z’s, via some limiting procedure

of the D/HA(β). ■

"Limits" of D-module are known under the name of restrictions [85, Chapter 5].
Standard techniques for computing restrictions require huge computational resources,
and can generally not be applied to FIs of interest. In this chapter, we shall develop two
new methods for computing restrictions that are more efficient. The first one takes the
Pfaffian system associated to a basis of Euler integrals as input. The second one works
at the level of the Macaulay matrix. These two methods have different strengths and
weaknesses, so it depends on the context whether to apply one or the other.

Section 8.1

Preliminaries

We begin with some extra D-module formalism. More details and examples besides what
is presented here can be found in [83, Appendix A].

8.1.1 Tensor products

Tensor products of vector spaces are familiar to physicists from the study of quantum
mechanics. It is possible to define tensor products of D-modules as well. LetM and N
be two D-modules. We proceed now to define the tensor product N ⊗DM.

Let n⊗m denote the tuple (n,m) where n ∈ N and m ∈ M, and define the space
S(N ⊗M) =

{
finite, formal sums

∑
i ni ⊗mi

}
. We specify an equivalence relation on

S:

1. Linearity in the left slot:

n1 ⊗m+ n2 ⊗m ∼ (n1 + n2)⊗m. (8.4)
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2. Linearity in the right slot:

n⊗m1 + n⊗m2 ∼ n⊗ (m1 +m2) . (8.5)

3. Moving factors "across" the ⊗ sign:

(nd)⊗m ∼ n⊗ (dm) , (8.6)

for d ∈ D. This is the reason for the subscript in ⊗D.

The D-module tensor product is then defined by the space S(N ⊗M) modulo this
equivalence relation, that is N ⊗DM := S(N ⊗M)/ ∼ .

8.1.2 Definition of restriction

The variables z = (z1, . . . , zN ) parametrize an affine space Y = AN . We write DY ,RY

etc. for spaces of operators defined on Y . Consider an affine hyperplane Y ′ ⊂ Y of lower
dimension - this will, later on, represent the proper space of kinematic variables. By an
affine linear change of coordinates, we can define Y ′ as the vanishing locus

Y ′ = {z ∈ Y | z1 = · · · = zN ′ = 0} . (8.7)

Definition 8.1. Denote by ι : Y ′ ↪→ Y the natural inclusion map. LetM be a DY -module.
The restriction module ofM is defined as the DY ′-module

ι∗M :=
M

z1M+ . . .+ zN ′M . (8.8)

The operation ι∗ can be thought of as a pullback from Y to Y ′. See [85, Chapter 5] [86,
Chapter 6] for details.

A typical use case for the restriction module is the following. Suppose the DY -module
M = DY /I is constructed from the annihilating ideal I of some function f(z) for z ∈ Y .
By computing ι∗M = DY ′/I ′ for some I ′, then I ′ is the annihilating ideal for f(z) where
now z ∈ Y ′. Naturally, it is not necessary that M be given by a quotient of operator
spaces. As in Example (4.3), the DY -module M can also be equal, as a set, to a suitable
space of functions.
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Example 8.1. Consider the GKZ system associated to the Euler integral

fβ(z1, z2, z3) =

∫
(0,∞)2

(z1x1 + z2x2 + z3x1x2)
β0x−β1

1 x−β2
2

dx

x
. (8.9)

The annihilating ideal I = HA(β) is solely generated by the homogeneity operators

E0 = z1∂1 + z2∂2 + z3∂3 − β0
E1 = z1∂1 + z3∂3 − β1 (8.10)

E2 = z2∂2 + z3∂3 − β2 .

We are interested in the annihilating ideal for the function fβ(1, 1, z3). By an affine linear
coordinate change {z1 → z1+1 , z2 → z2+1 , z3 → z3}, we hence have the affine subspace
given by Y ′ = {z1 = z2 = 0}.

A variant of the restriction algorithm presented in Oaku’s seminal work [148] has been
implemented in the asir package nk_restriction [149]. Inputting the data above, one
finds the annihilating ideal

I ′ = ⟨−z3∂3 − β0 + β1 + β3⟩ . (8.11)

One can check that this indeed annihilates the function

fβ(1, 1, z3) =
Γ(−β0 + β1)Γ(−β0 + β2)Γ(β0 − β1 − β2)

Γ(−β0)
z−β0+β1+β2
3 . (8.12)

■

The discussion above was directed at D-modules, i.e. when the action is given by
operators with polynomial coefficient functions. We are, more broadly, interested in
R-modules having rational function coefficients, because this is what appears in Pfaffian
systems. An R-module naturally arises from a given D-module M by taking a tensor
product: R⊗DY

M.

Definition 8.2. The rational restriction of a DY -moduleM onto Y ′ is defined by

RY ′ ⊗DY ′ ι
∗M , (8.13)

where ι∗M is the restriction module (8.8).

The restriction algorithms presented in this chapter will output Pfaffian systems that
live in the space (8.13).
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8.1.3 Normal form

Let ∂i • e(z) = Pi · e(z) be a Pfaffian system that is regular singular (cf. Section (4.2.1)).
Loosely speaking, this means that the solutions vector e(z) is free of essential singularities
such exp(1/z) at z = 0. It is expected that FIs fall into this category, as the poles in
ϵ-factorized Pfaffian systems always appear to be simple.

We focus on a single pole of the system, which can be written as Y ′ = {z1 = 0} by a
change of coordinates. Theorems by Deligne [150, 151] ensure that the Pfaffian system
can be brought into normal form w.r.t. Y ′. Namely, there exists another set of Pfaffian
matrices P̃i(z) such that

1. P̃1 has a simple pole on Y ′ and {P̃2, . . . , P̃N} are finite on Y ′:

P̃1(z) =

∞∑
n=−1

P̃1,n(z
′)zn1 , and (8.14)

P̃i(z) =

∞∑
n=0

P̃i,n(z
′)zn1 , for i = 2, . . . , N , (8.15)

where the truncated list of variables is

z′ = (z2, . . . , zN ) . (8.16)

Note that the expansion of P̃1 starts at n = −1, and the expansions for P̃i=2,...,N

start at n = 0.

2. The spectrum of the residue matrix P̃1,−1(z
′) is non-resonant, meaning that 1) no

two distinct eigenvalues of P̃1,−1(z
′) have an integral difference, and 2) the only

integral eigenvalue, if it exists, is 0.

The matrices P̃i(z) are related to the original ones Pi(z) via a gauge transformation. By
the work of Moser [152], and later Barkatou et al. [153, 154], there exist explicit Moser
reduction algorithms for constructing such a gauge transformation (see [83, Appendix B]
for a review). Moser reduction has been implemented in software such as Fuchsia [155]
and Isolde [156].

It can be computationally expensive to enforce a non-resonant spectrum on a Pfaffian
system, as this step of the algorithm requires the calculation of Jordan decompositions1.
However, if we only seek to perform Moser reduction w.r.t. a single pole z1 = 0 rather

1In particular, one is required to know the sizes of the Jordan cells [83, Appendix B.2].
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than many, then the algorithm can readily be applied to rather large systems. Moreover,
since the Jordan decomposed matrix does not depend on the z-variables [157, Theorem
12.1], it is possible speed up the computation by fixing the variables to generic numbers.

Section 8.2

Restriction at the level of Pfaffian systems

In this section, we present a restriction algorithm which takes a Pfaffian system on
Y = AN as input and outputs a new Pfaffian system that holds true on an affine subspace
Y ′ ⊂ Y . As has been mentioned, the original motivation was to calculate restrictions
of GKZ systems. However, the algorithm turns out to work for any regular holonomic
D-module. So it can, rather serendipitously, also be applied to Pfaffian systems for FIs
obtained by conventional means, such as IBPs in momentum space.

As it will turn out, the algorithm can also be used to compute logarithmic series
solutions to Pfaffian systems. This is helpful for calculating asymptotic expansions for
FIs, such as threshold and small-mass expansions.

8.2.1 Restriction of a logarithmic connection

Suppose we are given a Pfaffian system on the "big" space Y . We want to restrict it onto
a "smaller" space Y ′ = {z1 = 0}. Further, z1 = 0 should constitute a pole in the Pfaffian
system. There might poles elsewhere on Y , but we imagine working "locally" around this
single pole2. Assume that the Pfaffian system is in normal form w.r.t. Y ′ (cf. Section
(8.1.3)). Then it is possible to write it in a peculiar way:

z1∂1 • e(z) = P1 · e(z) (8.17)

∂i • e(z) = Pi · e(z) , i = 2, . . . , N , (8.18)

where e(z) is an R-dimensional vector of functions. We would like to use this Pfaffian
system to construct a certain D-moduleM consisting of regular functions. The action
of the derivative ∂i should be well-defined on such a space, in the sense of not creating
unwanted singularities. We have therefore guarded ourselves in two ways to ensure
well-definedness: 1) by working locally around Y ′ we can thereby ignore singularities
elsewhere, and 2) by moving 1/z1 from the RHS of (8.17) to get z1∂1 on the LHS. We

2The notion of "local" is here meant w.r.t. the Zariski topology. So to be rigorous, we ought to formulate
everything in terms of Zariski open subsets Y0 of Y as in [83, Section 3]. Many such mathematical details
are neglected here in order to take the shortest path towards defining the practical algorithms.
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are thence motivated to define a subring of DY by

DY (log Y
′) = C⟨z1, . . . , zN , z1∂1, ∂2, . . . , ∂N ⟩ , (8.19)

and the abelian group

M =
{
R-dimensional vectors of functions on Y that are regular near Y ′} . (8.20)

The action of the ring DY (log Y
′) onto M is well-defined. The generators zi act by

scalar multiplication, and the generators {z1∂1, ∂2, . . . , ∂N} act according to the RHSs of
the Pfaffian system (8.17)-(8.17). This turnsM into a DY (log Y

′)-module. In technical
jargon, such an M is called a logarithmic connection [110, Section 11.4] [23, Section
5.2.2]. We now proceed to study the rational restriction RY ′ ⊗DY ′ ι

∗M of the logarithmic
connectionM.

To start, let P1,−1(z
′) be the residue matrix (cf. (8.14)) associated to P1(z) defined in

(8.17), where z′ = (z2, . . . , zN ). The entries of P1,−1(z
′) live in the field KY ′ consisting of

rational functions on Y ′. The R rows of P1,−1(z
′) generate a subspace of KR

Y ′ which we
call N ′. The following quotient space is important for our construction of the rational
restriction:

M′ = KR
Y ′ /N ′ . (8.21)

As a set, this consists of R-dimensional vectors of rational functions on Y ′, and we identify
two vectors if they differ by another vector lying in the row space of P1,−1(z

′). M′ can
actually be turned into an RY ′-module. The action of the derivatives {∂2, . . . , ∂N} on an
R-dimensional equivalence class [m] ∈M′ is

∂i • [m] = Pi,0(z
′) · [m] for i = 2, . . . , N , (8.22)

where the matrices Pi,0(z
′) come from the leading terms in the z1-expansion (8.15).

With all of this build-up, we can finally state the following crucial isomorphism of
RY ′-modules3:

RY ′ ⊗DY ′ ι
∗M ≃ M′ . (8.23)

3The formula (8.23) shows the rational restriction of M when it equals a space of functions as a set.
Recalling the discussion from Section (4.4), this isomorphism can also be employed when M is of the
form DY /I for some annihilating ideal of differential operators I.
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We refer to [83, Proposition 3.4] for many more mathematical details as well as a proof.
The takeaway message up until now is this. We are given some Pfaffian matrices

{P1(z), . . . , PN (z)} on Y which defineM. We would like to know the Pfaffian matrices
{Q2(z

′), . . . , QN (z′)} on the smaller space Y ′. The matrices Qi(z
′) are associated to

the rational restriction module ofM. Because of the isomorphism (8.23), the matrices
Qi(z

′) are equally well associated to the quotient spaceM′. Fortunately, we have a lot
of information aboutM′: it is completely specified by the residue matrix P1,−1(z

′)! In
the following subsection, we use this information to provide an explicit formula for the
Pfaffian matrices Qi(z

′).

8.2.2 Constructing the restricted Pfaffian system

Let R′ denote the holonomic rank of M′. In general R′ < R, i.e. the holonomic rank
drops when we fix z-variables to special values. Given an element m ∈ KR

Y ′ , we write [m]

for its equivalence class inM′.
We define three sets of Pfaffian systems:

1. We suppose the existence of a special basis f = f(z′) = {f1, . . . , fR} obeying the
Pfaffian system

∂i • f = Q̃i(z
′) · f for i = 2, . . . , N . (8.24)

We do not yet know f nor Q̃i(z
′).

2. The basis f is special for the following reason: we assume that {fR′+1, . . . , fR} is a
basis of N ′. The set [f ] = {[f1], . . . , [fR′ ]} is then a basis forM′, with an associated
Pfaffian system

∂i • [f ] = Qi(z
′) · [f ] for i = 2, . . . , N . (8.25)

By stipulation, the first R′ ×R′ block of Q̃i(z
′) equals Qi(z

′). We do not yet know
[f ] nor Qi(z

′).

3. Let e = e(z′) = {e1, . . . , eR} be the basis associated to the Pfaffian system

∂i • e = Pi,0(z
′) · e for i = 2, . . . , N . (8.26)

The matrices Pi,0(z
′) are assumed to be known via the formula (8.15). In contrast

to Q̃i(z
′), the matrices Pi,0(z

′) have no nice block structure.
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We are hence in the following situation: we know Pi,0(z
′) (for the basis e), but we do not

know Q̃i(z
′) (for the special basis f). We would like to know Q̃i(z

′), because then we
would automatically get the Pfaffian matrices Qi(z

′) for the rational restriction module
M′. We shall achieve this goal by building a gauge transformation mapping e to the
special basis f . This is done by through three new matrices {B,R,M}, which we define
now.

• Recall the basis [f ] = {[f1], . . . , [fR′ ]} of M′. Each representative of these equiv-
alence classes can be expanded in the basis e via some R′ × R matrix B having
entries in KY ′ :

fi =
R∑

j=1

Bij ej for i = 1, . . . , R′ . (8.27)

The entries of B are not known at this point.

• By the definition ofM′, the residue matrix P1,−1(z
′) has exactly R−R′ independent

rows. Define an (R−R′)×R matrix by

R = RowReduce
[
P1,−1(z

′)
]
, (8.28)

where RowReduce includes the deletion of zero-rows. Then

fi =
R∑

j=1

Rij ej for i = R′ + 1, . . . , R (8.29)

forms a basis of N ′.

• Aligning the row of B and R produces an invertible R×R matrix M:

M =

[
B

R

]
=

R′

R−R′

R

. (8.30)

Note that R is known by stipulation, and the matrix B can be anything as long as
M becomes invertible. We shall give a simple recipe for generating B later on.
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In vector notation, we now have that f = M · e. This means that the unknown matrices
Q̃i(z

′) (associated to f) are obtained from the known matrices Pi,0(z
′) (associated to e)

by gauge transforming with M−1. Because the sought after matrix Qi(z
′) is given by the

first R′ ×R′ block of Q̃i(z
′), we can finally write the key formula

Q̃i(z
′) =

[
∂i •M + M · Pi,0(z

′)
]
·M−1 =

[
Qi(z

′) ⋆

0 ⋆

]
. (8.31)

See [83, Appendix C.2.1] for an explanation of the zero block in the lower left corner.
Obtaining this block is a useful check for practical computations.

Before closing this section, let us observe that the integer N does not have to be the
"N" of the GKZ system. In fact, we did not use any notions related to the GKZ system
to derive (8.31), so the preceding discussion holds true for any (regular singular) Pfaffian
system!

8.2.3 Holomorphic restriction of solutions

The previous section focused on the matrices associated to Pfaffian systems. In the
following two subsections, we draw our attention to the solution vectors of Pfaffian
systems, in particular how to obtain actual series representations using restriction. This
topic can be viewed as singular boundary value problem (see [157] [158] and references
therein).

To emphasize the connection to MIs, let us use the notation I⃗(z) for the solution
vector of a Pfaffian system

∂i • I⃗(z) = Pi(z) · I⃗(z) , i = 1, . . . , N . (8.32)

Suppose that we are interested in solutions that are holomorphic on Y ′ = {z1 = 0}. This
means that I⃗(z) enjoys a Taylor expansion

I⃗(z) =

∞∑
n=0

I⃗ (n)(z′) zn1 , (8.33)

where as usual z′ = (z2, . . . , zN ). The issue at hand is how compute the expansion
coefficient functions I⃗ (n) up to some appropriate order O(zk1 ).

Assume that the matrices Pi(z) are in normal form. Insert the z1-expansions of Pi(z)

and I⃗(z), given by (8.14)-(8.15) and (8.33), into the Pfaffian system (8.32). Relations
among the I⃗ (n) are then obtained by comparing powers of zn1 on both sides of the equality
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[157, Chapter 4] [83, Appendix D.6]. Comparing the leading-order terms in z1, the
following relations are found:

∂i • I⃗ (0)(z′) = Pi,0(z
′) · I⃗ (0)(z′) , i = 2, . . . , N

Rank jump constraint: P1,−1(z
′) · I⃗ (0)(z′) = 0 .

(8.34)

The higher-order terms in z1 yield the recursion relation4

I⃗ (n)(z′) =
[
n1− P1,−1(z

′)
]−1 ·

n−1∑
i=0

P1,n−i−1 · I⃗ (i)(z′) , n > 0 . (8.35)

The set of PDEs (8.34) is dubbed the holomorphic restriction of the Pfaffian system
(8.32). The first equation of (8.34) shows that I⃗ (0) plays the role of the basis e in (8.26).
The second equation of (8.34) shows why the residue matrix P1,−1(z

′) played such a
central role in the construction of Section (8.2.1), wherein we modded out by the rows of
P1,−1(z

′) to obtain the rational restriction module.
At the level of solutions for Pfaffian systems, we now have a clear interpretation for

the rank jump from R to R′: the equation P1,−1(z
′) · I⃗ (0)(z′) = 0 imposes constraints

among the entries of I⃗ (0)(z′) in the limit z1 → 0, meaning that some of them become
linearly dependent on each other. For FIs, these relations turn out to be the new IBP
relations among MIs which arise when the limit z1 → 0 is taken at the integrand level.
An example of this phenomenon is shown in Section (9.2).

Observe that once I⃗ (0) is determined from the PDEs (8.34), then (8.35) fixes all
higher-order terms I⃗ (n) via simple matrix multiplication (one can even use finite field
reconstruction in this step for efficiency). The PDEs (8.34) are, however, written in a
redundant way due to the residue matrix constraint. We thus seek to "mod out" by this
constraint, in order to write the system in a minimal basis. To set this up, begin by
writing I⃗ (0) in terms of some dummy symbols, say

I⃗ (0) =


I1
...
IR

 . (8.36)

Recall the definition of the R-matrix from (8.28). Because of the second equation in
4The matrix in front of the sum is indeed invertible because the spectrum of P1,−1(z

′) is non-resonant.
More precisely, the only potential integral eigenvalue of P1,−1(z

′) is 0, and the diagonal is shifted by
some n > 0, wherefore the determinant of the full expression is non-zero.
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(8.34), we have that

R · I⃗ (0) = 0. (8.37)

This equation can be solved to determine which of the Ii symbols are linearly dependent
on each other. Removing those linearly dependent entries from I⃗ (0), the remaining ones
are collected into a new R′-dimensional basis

J⃗ =


Ii1
...
IiR′

 = B · I⃗ (0) . (8.38)

The newly introduced B-matrix has dimension R′ ×R and entries Bij ∈ {0, 1}. In fact,
this is precisely the B-matrix from (8.27). Therefore, both blocks of the M-matrix (8.30)
are now known. By construction, it holds that

M · I⃗ (0) =

[
B

R

]
· I⃗ (0) =

[
J⃗

0

]
. (8.39)

The Pfaffian matrices Qi(z
′) for the basis J⃗ now immediately follow from (8.31), giving

the desired, restricted Pfaffian system

∂i • J⃗(z′) = Qi(z
′) · J⃗(z′) for i = 2, . . . , N . (8.40)

This system is simpler to solve than the original Pfaffian system (8.32) for I⃗(z) because
1) it has a smaller rank R′ < R, and 2) it contains one less variable. Once J⃗ is solved for,
then I⃗ (0) is determined by multiplying equation (8.39) with M−1.

Algorithm (3) summarizes the preceding discussion. Note that an initial Moser
reduction step is required if the input is not in normal form.
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Algorithm 3 : Holomorphic series expansion
Input:

• Pfaffian system in normal form of rank R: ∂i • I⃗(z) = Pi(z) · I⃗(z) for i = 1, . . . , N.

• Integer k > 0.

Output: The first k coefficient functions of I⃗(z) =
∑∞

n=0 I⃗
(n)(z′) zn1 .

1: Set R = RowReduce[P1,−1] and R′ = R− rank(R).

2: Write I⃗ (0) =
[
I1, . . . , IR

]T . Eliminate linearly dependent dummy symbols Ii by
solving R · I⃗ (0) = 0. Collect linearly independent ones into J⃗ . Fix B via J⃗ = B · I⃗ (0).

3: Set M =

[
B

R

]
.

4: For each i = 2, . . . , N , compute
(
∂i •M + M · Pi,0

)
·M−1 and save the upper left

R′ ×R′ block matrices dubbed Qi.

5: Solve ∂i • J⃗ = Qi · J⃗ for J⃗ and set I⃗ (0) = M−1 ·
[
J⃗

0

]
.

6: For each n = 1, . . . , k, calculate I⃗ (n) using the recursion (8.35).

7: return {I⃗ (0), . . . , I⃗ (k)}.

A geometric interpretation of the holomorphic restriction is illustrated in Figure
(8.1). There are three axes, one for the variable z2 and two for the vector components
of I⃗ (0)(z′) = [I1(0, z2), I2(0, z2)]

T , where I1(z1, z2) and I2(z1, z2) represent a basis before
restriction.

The red surface depicts all possible solutions to the rank jump constraint, i.e. the
nullspace of the residue matrix P1,−1(z2). For fixed z2, this nullspace spans a 1-dimensional
vector space shown as the red lines. As z2 varies, the lines trace out the whole red surface5.
The solutions living on the surface constitute a basis, determined by the row space of the
B-matrix (8.27), for the restricted Pfaffian system. Since the nullspace is 1-dimensional,
the size of this basis is R′ = R− 1 = 1.

For fixed z2, each purple line represents the 1-dimensional span of the row vectors in
P1,−1(z2). Varying z2, then these lines trace out the purple surface. This surface is thus
a depiction of the R-matrix (8.28).

5Such a family of vector spaces is naturally formalized in terms of vector bundles.
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Since the red and purple surfaces are orthogonal to each other, together they span
a 2-dimensional vector space. This implies that the M-matrix (8.30) is full rank and
therefore invertible.

The yellow curve illustrates a particular solution vector I⃗ (0)(z2), given some initial
condition I⃗ (0)(0). Observe that this solution is constrained to lie on the red surface - this
is analogous to the situation in classical mechanics where one finds the solution to some
equations of motion given a holonomic constraint. According to (8.34), the "flow" of the
solution vector is governed by the Pfaffian matrix P2,0(z2): given some point I⃗ (0)(

◦
z2) on

the curve, then the solution is evolved a small step in z2 by

I⃗ (0)(
◦
z2 +∆z2) ≃ I⃗ (0)(

◦
z2) + ∆z2

[
∂2 • I⃗ (0)(z2)

]∣∣∣
z2=

◦
z2

= I⃗ (0)(
◦
z2) + ∆z2

[
P2,0(

◦
z2) · I⃗ (0)(

◦
z2)
]
. (8.41)

z2

I1

I2

in
crease

z
2

P1,−1(z2) · I⃗ (0)(z2) = 0

initial condition I⃗ (0)(0)

solution I⃗ (0)(z2)

Span[P1,−1(z2) ]

Figure 8.1: The holomorphic restriction of a rank R = 2 solution vector I⃗(z1, z2) =[
I1(z1, z2)
I2(z1, z2)

]
as z1 → 0. The purple and red surfaces depict R and B respectively.
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8.2.4 Logarithmic restriction of solutions

Now suppose that the solution vector I⃗(z) to the Pfaffian system (8.32) is logarithmically
singular rather than holomorphic on Y ′ = {z1 = 0}. Our goal is to state an algorithm for
calculating the logarithmic series expansion of I⃗(z).

The first step is to write down the most general ansatz to a Pfaffian system with
regular singularities. When the Pfaffian system is in normal form, it is known that the
ansatz decomposes into a sum over unique eigenvalues of the residue matrix [157, Chapter
4]. Write the spectrum of the residue matrix as

spec
(
P1,−1(z

′)
)
=
{
λ1, . . . , λ1︸ ︷︷ ︸

Λ1

, λ2, . . . , λ2︸ ︷︷ ︸
Λ2

, . . .
}
, (8.42)

where Λi is the multiplicity of eigenvalue λi. Even though P1,−1(z
′) depends on z′, the

integrability relations (4.26) actually dictate that the eigenvalues λi are independent of
z′ [157, Theorem 12.1]. For FIs in DR, it means that λi can only depend on ϵ. In all
examples known to us, the dependence is even linear in ϵ:

λi = ai + biϵ for ai, bi ∈ Q . (8.43)

We are not aware of a proof of the above statement.
The ansatz for a logarithmically divergent solution vector can now be represented as

I⃗(z) =
∑

λ ∈! spec(P1,−1)

zλ1 ×
∞∑
n=0

zn1 ×
Mλ∑
m=0

I⃗ (λ,n,m)(z′) × logm(z1) , (8.44)

where "∈!" means "unique element of". In DR, I⃗ (λ,n,m) can be further expanded in
ϵ. Note that there are two sources of logarithms in that case: from the ϵ-expansion of
zλi
1 = zai+biϵ

1 and from the finite sum over m.
The integer Mλ ∈ Z≥0 denotes the maximal power of logm(z1). Its value depends on

the Jordan form of the residue matrix. Decomposing this matrix into blocks labeled by
unique eigenvalues

JordanDecomposition[P1,−1] =
⊕

λ ∈! spec(P1,−1)

J(λ) , (8.45)
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then6

Mλ =
[
size of the largest Jordan block of J(λ)

]
− 1 . (8.46)

The ansatz (8.44) can now be inserted into the Pfaffian system (8.32) together with
the z1-expansions of Pi(z) from (8.14)-(8.15). One thereby obtains relations among the
coefficient functions I⃗ (λ,n,m) by comparing the coefficients of zn1 logm(z1) on both sides
of the equality [157, Chapter 4]. For fixed λ, among these relations one finds

∂i • I⃗ (λ,0,0)(z′) = Pi,0(z
′) · I⃗ (λ,0,0)(z′) for i = 2, . . . , N

Rank jump constraint :
[
P1,−1(z

′)− λ1
]Mλ+1 · I⃗ (λ,0,0)(z′) = 0 .

(8.47)

We call this the logarithmic restriction of the solution vector. If λ = 0, which is the unique
integral eigenvalue for a system in normal form, then (8.47) reduces to the holomorphic
restriction (8.34).

The second equation of (8.47) represents a constraint on the vector I⃗ (λ,0,0); it must
be a generalized eigenvector for P1,−1(z

′). Recall that we modded out by the rows of
P1,−1(z

′) in the holomorphic case because of the constraint P1,−1(z
′) · I⃗ (0) = 0 (cf. (8.21)).

For fixed λ, in the logarithmic case we instead mod out the rows of
[
P1,−1(z

′)− λ1
]Mλ+1

(this would therefore supplant the N ′ in (8.21)).
The vector I⃗ (λ,0,0) hence plays the role of the basis e in (8.26), and we can repeat the

construction of Section (8.2.1) by replacing R with

R(λ) = RowReduce
[(
P1,−1(z

′)− λ1
)Mλ+1

]
. (8.48)

This matrix can be inserted into the formula (8.31) together with some basis matrix B(λ).
The result is a restricted Pfaffian system of size R ′(λ) for a basis J⃗ (λ)(z′):

∂i • J⃗ (λ)(z′) = Q
(λ)
i (z′) · J⃗ (λ)(z′) for i = 2, . . . , N . (8.49)

The rank of this system is precisely the eigenvalue multiplicity of λ, which also equals the
size of the block matrix J(λ) in (8.45). That is,

R ′(λ) = Λ . (8.50)

The higher-order terms I⃗ (λ,n,m) follow from recursion relations given I⃗ (λ,0,0) as input.
6Recall that a Jordan block has the eigenvalue λ on the diagonal, and 1’s on the superdiagonal. 0’s on

the superdiagonal correspond to Jordan blocks of size 1.
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• Shifting powers of logm(z1). Set

Φ(λ,m) =
P1,−1 − λ1

m
. (8.51)

Then

I⃗ (λ,0,m) = Φ(λ,m) · I⃗ (λ,0,m−1) for 0 < m ≤Mλ . (A)

The terminating condition is I⃗ (λ,0,Mλ+1) = 0.

• Shifting powers of zn1 . Define

Ψ(λ,n) =
[
(λ+ n)1− P1,−1

]−1
. (8.52)

It holds that

I⃗ (λ,n,m) = Ψ(λ,n) ·
(

n−1∑
ν=0

P1,n−ν−1 · I⃗ (λ,ν,m) − (m+ 1)I⃗ (λ,n,m+1)

)
. (B)

The last term drops out when m =Mλ, leading to7

I⃗ (λ,n,Mλ) = Ψ(λ,n) ·
n−1∑
ν=0

P1,n−ν−1 · I⃗ (λ,ν,Mλ) . (C)

The index n runs up to ∞, so this recursion ought to be truncated based on a
numerical accuracy condition for the full solution vector I⃗(z).

Starting from I⃗ (λ,0,0), we present a flowchart showing how to use the recursion relations
(A), (B) and (C) to compute I⃗ (λ,n,m) for all 0 ≤ n ≤ Nλ and 0 ≤ m ≤Mλ. The flowchart

7(B) in fact also reduces to (A) when n = 0.
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is adapted from [157, Page 42], and the tuple (n,m) represents I⃗ (λ,n,m).

(0, 0)
(A)−→ (0, 1)

(A)−→ · · · (A)−→ (0,Mλ − 1)
(A)−→ (0,Mλ)

(C
)

−→

(1, 0)
(B)←− (1, 1)

(B)←− · · · (B)←− (1,Mλ − 1)
(B)←− (1,Mλ)

(C
)

−→

...

(C
)

−→

(Nλ, 0)
(B)←− (Nλ, 1)

(B)←− · · · (B)←− (Nλ,Mλ − 1)
(B)←− (Nλ,Mλ)

(8.53)

Example 8.1. Fix λ and drop the λ-index from I⃗ (λ,n,m), Φ(λ,m) and Ψ(λ,n). We showcase
the recursion for 0 ≤ n ≤ 2 and 0 ≤ m ≤ 2.

1. n = 0: Using (A) twice,

I⃗ (0,1) = Φ(1) · I⃗ (0,0) (8.54)

I⃗ (0,2) = Φ(2) · I⃗ (0,1) . (8.55)

2. n = 1: Using (C) once,

I⃗ (1,2) = Ψ(1) · P1,0 · I⃗ (0,2) . (8.56)

Using (B) twice,

I⃗ (1,1) = Ψ(1) ·
(
P1,0 · I⃗ (0,1) − 2I⃗ (1,2)

)
(8.57)

I⃗ (1,0) = Ψ(1) ·
(
P1,0 · I⃗ (0,0) − 1I⃗ (1,1)

)
. (8.58)

3. n = 2: Using (C) once,

I⃗ (2,2) = Ψ(2) ·
(
P1,1 · I⃗ (0,2) + P1,0 · I⃗ (1,2)

)
. (8.59)
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Using (B) twice,

I⃗ (2,1) = Ψ(2) ·
(
P1,1 · I⃗ (0,1) + P1,0 · I⃗ (1,1) − 2I⃗ (2,2)

)
(8.60)

I⃗ (2,0) = Ψ(2) ·
(
P1,1 · I⃗ (0,0) + P1,0 · I⃗ (1,0) − 1I⃗ (2,1)

)
. (8.61)

Note that this recursion can be performed over a finite field for the sake of efficiency. ■

The discussion above is summarized in the following algorithm.

Algorithm 4 : Logarithmic series expansion
Input:

• Pfaffian system in normal form: ∂i • I⃗(z) = Pi(z) · I⃗(z) for i = 1, . . . , N.

• Integer k > 0.

Output: The series expansion coefficients I⃗ (λ,n,m) from (8.44) up to order O(zk1 ).

1: Compute JordanDecomposition[P1,−1(z
′)] with z′ fixed to generic numbers. Save

• unique eigenvalues {λ1, λ2, . . .}
• eigenvalue multiplicities {Λ1,Λ2, . . .}
• integers {Mλ1 ,Mλ2 , . . .} from (8.46).

2: for each unique λ do

3: Repeat steps 1. to 5. in Algorithm (3) with the replacements

• R← R(λ) = RowReduce
[(
P1,−1(z

′)− λ1
)Mλ+1

]
• R′ ← Λ

• I⃗ (0) ← I⃗ (λ,0,0)

and save the result for I⃗ (λ,0,0).

4: for 0 ≤ n ≤ k and 0 ≤ m ≤Mλ do

5: Input I⃗ (λ,0,0) into the recursion relations (A), (B), (C) to compute I⃗ (λ,n,m).

6: end for

7: end for

8: return The coefficient functions
⋃

λ

⋃
0≤n≤k

⋃
0≤m≤Mλ

I⃗ (λ,n,m)

We expect this to be an efficient method for computing series expansions of MIs. Its
efficiency stems from trading a "big" Pfaffian system (satisfied by the full solution vector
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I⃗(z)) for several "small" Pfaffian systems (satisfied by the restricted bases J⃗ (λ)(z′)), each
one containing one less variable. For instance, if the "big" system includes unrationalizable
square roots and elliptic functions, then it is likely that the "small" systems only contain
simple GPLs.

The catch is that the algorithm does not produce results valid in the entire phase space;
there must exist a variable z1 ≪ 1 that can be used for the expansion. Luckily, there
are many such situations in high-energy physics: z1 could be a small mass, a threshold
variable (e.g. s− 4m2), an angle between two collinear momenta (e.g. in Regge theory), a
small or large transverse momentum (z1 = pT or z1 = 1/pT ), a soft momentum variable
in Post-Newtonian/Minkowskian gravity, and so forth.

The method of regions is the classic approach to asymptotic expansions [159, 160, 161].
More recent approaches include [162, 163, 164, 165, 166]. It would be interesting to import
some of the wisdom from these studies in order to enhance the logarithmic restriction
approach presented here.

Section 8.3

Restriction at the level of Macaulay matrices

While the protocol of the previous section is applicable to any regularly singular Pfaffian
system, it does require an unrestricted system as input, which might be hard to obtain.
It should also be mentioned that this method is only conjectured to yield the rational
restriction of the twisted cohomology group (6.35) when it is viewed as a D-module [83,
Remark 3.5].

Building on the Macaulay matrix method introduced in Chapter (5), this section
presents a holomorphic restriction protocol which works entirely at the level of D-modules.
Theorems from [83, Section 4] ensure that the method yields correct results. Some steps
of the construction are technical, so we refer to the previous reference for details.

8.3.1 Restriction to a hyperplane

Let I be a holonomic ideal in DY . This could e.g. be the annihilating ideal for the GKZ
system. The goal is to compute a Pfaffian system for the rational restriction module onto
the hyperplane given by Y ′ = {z1 = · · · = zN ′ = 0}.

The first question to answer is that of a basis for the restriction module. In [83,
Algorithm 4.7], a systematic search algorithm is formulated which succeeds when the
dimension of the basis matches the expected holonomic rank R′ of the restriction module.
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The algorithm requires R′ as input, but this is easily obtained for the case of Euler
integrals by computing the Euler characteristic χ via the likelihood equations (6.36).
Moreover, this algorithm relies entirely on numerical linear algebra, with all parameters
fixed to generic numbers, meaning that it will terminate with modest computing power
even for relatively large Pfaffian systems.

The resulting standard monomials for the restriction module, call them RStd, now
serve as input for the Macaulay matrix M in Algorithm (1). Recall that M is built
by acting with "seed" monomials on the generators of I. Since I contains unrestricted
variables defined on Y , so will M . The key observation is this: all the entries of M are
polynomial in z ∈ Y , so we can simply fix z1 = . . . = zN ′ = 0 in M , and then proceed
with the usual Macaulay matrix algorithm.

Algorithm 5 : Rationally restricted Pfaffian system by the Macaulay matrix
Input:

• The restricted basis RStd.

• Generators {d1, . . . , dD} of a holonomic ideal I in DY .

• Direction i.

Output: Pfaffian matrix Qi(z
′) for the restriction

RY ′ ⊗DY ′ DY /
(
I + z1DY + . . .+ zN ′DY

)
. (8.62)

1: Call Algorithm (1) with the replacements

• Std← RStd

• M ←
[
MExt MRStd

] ∣∣∣
z1=...=zN′=0

2: return Qi(z
′) = C

(i)
RStd − C(i) ·MRStd

Let us remark that the basis RStd can also be guessed, assuming R′ is known, by executing
Algorithm (5) several times with all parameters set to numbers until it succeeds.

Algorithm (5) has been implemented in the asir package mt_mm by Nobuki
Takayama, as showcased in the following example.

Example 8.1. Let I = ⟨d1, d2⟩ be the ideal generated by

d1 = z1(1− z1)∂21 − z1z2∂1∂2 + (c1 − z1(a+ b1 + 1))∂1 − b1z2∂2 − ab1 (8.63)

d2 = z2(1− z2)∂22 − z1z2∂1∂2 + (c2 − z2(a+ b2 + 1))∂2 − b2z1∂1 − ab2 , (8.64)
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which annihilates Appell’s F2 function

F2(a, b1,b2, c1, c2|z1, z2) =
Γ(c1)Γ(c2)

Γ(b1)Γ(b2)Γ(c1 − b1)Γ(c2 − b2)
×∫

(0,1)2
(1− x1)c1−b1−1(1− x2)c2−b2−1(1− z1x1 − z2x2)−axb11 x

b2
2

dx

x
. (8.65)

This function appears often in the FI calculus [167, 168].
The following asir script computes the holomorphic restriction to Y ′ = {z1 = 0}.

import ("mt_mm.rr")$

Vars = [z1 , z2]$
DVars = [dz1 , dz2]$

D1 = z1*(1-z1)*dz1^2 - z1*z2*dz1*dz2 + (c1-z1*(a+b1+1))* dz1 - b1*z2*dz2 - a*b1;
D2 = z2*(1-z2)*dz2^2 - z1*z2*dz1*dz2 + (c2-z2*(a+b2+1))* dz2 - b2*z1*dz1 - a*b2;
Ideal = [D1 , D2];

NumericRule = [[z2,z2+1/3], [a,1/2], [b1 ,1/3] , [b2 ,1/5], [c1 ,1/7], [c2 ,1/11]];
IdealNumeric = base_replace(Ideal , NumericRule );

RStd = mt_mm.restriction_to_pt_(IdealNumeric , Gamma = 2, KK = 4, Vars | p = 10^8);
RStd = reverse(map(dp_ptod , RStd[0], DVars ));

Ideal = map(dp_ptod , Ideal , DVars);
MMData = mt_mm.find_macaulay(Ideal , RStd , Vars | restriction_var = [z1]);

Q2 = mt_mm.find_pfaffian(MMData , Vars , 2 | use_orig = 1);

The inputs of mt_mm.restriction_to_pt_() merit explanation. The list IdealNumeric
contains generators with z2 and exponent parameters fixed to generic numbers. The
integers Gamma and KK refer to the γ and k of the basis search algorithm [83, Algorithm
4.7]. The value p = 10^8 means that the function is executed over a finite field of order
p = 100000007, which is more efficient than a symbolic calculation.

The result of this script is the Pfaffian system

∂2RStd = Q2 · RStd (8.66)

given by

∂2

[
1

∂2

]
=

[
0 1

−ab2
z2(z2−1)

c2−(a+b2+1)
z2(z2−1)

]
·
[

1

∂2

]
. (8.67)

■



8.3 Restriction at the level of Macaulay matrices 125

8.3.2 Restriction to a hypersurface

This chapter has, up until now, only dealt with restrictions onto hyperplanes. Namely,
we have assumed that Y ′ = {z1 = . . . = zN ′ = 0} is defined by an affine linear coordinate
change. To date, there is no known algorithm for restrictions of D-modules onto general
hypersurfaces. Surprisingly, the Macaulay matrix restriction can be generalized to this
scenario.

Suppose that Y ′ = {f = 0} is the vanishing locus of an irreducible polynomial
f = f(z) ∈ C[z1, . . . , zN ]. The idea is, essentially, just to solve the Macaulay matrix
equation (5.13) for C(i) modulo f :

C
(i)
Ext − C(i) ·MExt ≡ 0 mod f . (8.68)

We give one example below to illustrate this procedure. See [169] for further results on re-
strictions onto hypersurface singularities of Horn’s hypergeometric functions {H1, . . . ,H7}.

Example 8.2. We compute the restriction of Appell’s F4 function

F4(a, b, c1, c2|z1, z2) =
Γ(c1)Γ(c2)

Γ(a)Γ(b)Γ(c1 − a)Γ(c2 − b)
×∫

(0,1)2
(1− x1)c1−a−1(1− x2)c2−b−1(1− z1x1)a−c1−c2+1 × (8.69)

(1− z2x2)b−c1−c2+1(1− z1x1 − z2x1)c1+c2−a−b−1xa1x
b
2

dx

x

onto its singular locus defined by

L = z1z2f = 0 with f = (z1 − z2)2 − 2(z1 + z2) + 1 . (8.70)

In terms of Euler operators θi = zi ∂i, the annihilating ideal I = ⟨d1, d2⟩ is generated by

d1 = θ1(θ1 + c1 − 1)− z1(θ1 + θ2 + a)(θ1 + θ2 + b) (8.71)

d2 = θ2(θ2 + c2 − 1)− z2(θ1 + θ2 + a)(θ1 + θ2 + b) . (8.72)

The holonomic rank outside the singular locus is R = 4. On Y ′ = {f = 0}, the rank
drops to R′ = 3. Both of these ranks assume that the exponent parameters (a, b, c1, c2)

are generic.
We search for a restricted basis by executing Algorithm (5) with different guesses for

RStd until it succeeds. The parameters are set to generic numbers in this search. The
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result is

RStd =
[
1, ∂1, ∂2

]T
. (8.73)

Next we build a 6× 10 Macaulay matrix M1 =
[
MExt

∣∣MRStd

]
of degree 1. The left block

contains 7 columns labeled by Ext =
[
∂31 , ∂

2
1∂2, ∂1∂

2
2 , ∂

3
2 , ∂

2
1 , ∂1 ∂2, ∂

2
2

]T
.

The goal is now to solve (8.68) modulo f . Since f is quadratic in z1, we can eliminate
all instances of zp1 for p ≥ 2 via polynomial division by f . It is therefore enough to
consider the ansatz

C(i) = C
(i)
0 + C

(i)
1 z1 , (8.74)

where C(i)
1,2 are independent of z1. The reduction modulo f can be performed via a

sequence of replacements zp1 → gp(z2) + hp(z2)z1. For instance, f = 0 immediately gives

z21 → (−1 + 2z2 − z22) + 2(1 + z2)z1 . (8.75)

Inserting this into z1f = 0, we further have

z31 → 2(−1 + z2 + z22 − z32) + (3 + 10z2 + 3z22)z1 , (8.76)

and so forth.
After solving for C(i)

1,2, the Pfaffian matrices are computed as usual by

Qi = C
(i)
RStd − C(i) ·MRStd . (8.77)

Setting (a, b, c1, c2) = (−2/3, 1/3, 1/3, 1/3) to simplify the output, we finally get

Q1 =


0 1 0

−5(3z1z2+z1−5z2(z2+2)−1)
162(z2−1)3z2

z1(41z2−5)−z2(87z2+62)+5
108(z2−1)2z2

5(3z1z2+z1−5z2(z2+2)−1)
108(z2−1)3

4(−z1+2z2+2)
81(z2−1)2z2

− 2
27z2

2(z1−2(z2+1))
27(z2−1)2



Q2 =


0 0 1

4(−z1+2z2+2)
81(z2−1)2z2

− 2
27z2

2(z1−2(z2+1))
27(z2−1)2

5(−z1+3z2+1)
162(z2−1)z22

−5(z1+z2−1)
108z22

5z1−51z2+31
108(z2−1)z2

 (8.78)

See the script [169, 2023-01-26-F4-on-sing.py] for comparisons of known analytic
results with numerical solutions to this Pfaffian system. ■



Chapter 9

Restriction Examples

This chapter gives examples of how to compute Pfaffian systems for restriction modules
related to FIs. Sections (9.2) and (9.3) also include partial results for logarithmic series
expansions related to 1- and 2-loop Bhabha scattering.

Section 9.1

Holomorphic restriction: 2-loop N-box

This is a continuation of Example (8.1). The goal is to apply the holomorphic restriction
protocol of Section (8.2.3) to that GKZ system. Schematically, we restrict

A =



1 1 1 1 1 1 1 1 1 1

1 1 1 · · · · · 1 ·

1 · · 1 1 1 · · 1 1

· · · 1 · · 1 1 · 1

· 1 · · 1 · 1 · 1 ·

· · 1 · · 1 · 1 · 1


zi=1−−−→
i ̸=10

p1

p2

p4

p3

. (9.1)

We begin with a rank R = 9 Pfaffian system, obtained via the Macaulay matrix
method, in terms of variables z ∈ Y = A10. After a coordinate shift (z1, . . . , z9, z10) →
(z1, . . . , z9, z10) + (1, . . . , 1, 0), the restriction surface is Y ′ = {z1 = . . . = z9 = 0}.
Six variables can immediately be restricted using homogeneity (cf. Section (6.5)), say
{z1, z2, z3, z4, z5, z9}. So the restriction protocol need only be applied to {z6, z7, z8}. By
calculating the Euler characteristic on Y ′, we expect a rank R′ = 3 Pfaffian system in the
end.

127
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9.1.1 Basis

The method of [118] (implemented in the asir command mt_gkz.cbase_by_euler(A))
gives a basis of 9 standard monomials

Std =



∂28
∂6∂10

∂7∂10

∂210
∂6

∂7

∂8

∂10

1


. (9.2)

The Macaulay matrix method then outputs a Pfaffian system

∂i Std = Pi · Std for i = 6, 7, 8, 10 . (9.3)

For the sake of verifying our results, an independent IBP calculation is performed for the
following MIs in D = 4− 2ϵ dimensions: I02202

I22020

I11111

 = G0 · e(I) . (9.4)

The subscripts on the integrals label powers of the inverse propagators

D1 = ℓ21 , D2 = ℓ22 , D3 = (p1 − ℓ1)2 , D4 = (p12 − ℓ12)2 , D5 = (−p123 + ℓ12)
2 , (9.5)

and G0 is a matrix containing powers of s = 2p1 · p2 that render e(I) dimensionless.
We would like to land on the basis (9.4) after computing the restriction of (9.3), in

order to compare our Pfaffian matrices with those coming from IBPs. By the formulas of
Section (6.3.3), we therefore translate the integrals (9.3) into D-module elements:

e(I) → e(D) = c ·

 ∂210
ϵ(2 + 5δ)(1 + 2ϵ+ 5ϵδ) + 2z10(1 + 2ϵ+ 5ϵδ)∂10 + z210∂10

(1 + ϵ+ 2ϵδ)∂10 + z10∂
2
10 − z7∂7∂10 + z6∂6∂10

 . (9.6)
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The 3× 3 diagonal matrix c contains prefactors depending on {ϵ, δ, s}. Thus, there is a
3× 9 B-matrix (8.27) with rows and columns labeled by e(D) and Std respectively:

B =


· · · 1 · · · · ·

· · · z210 · · · 2z10(1 + 2ϵ+ 5ϵδ) ϵ(2 + 5δ)(1 + 2ϵ+ 5ϵδ)

· z6 −z7 z10 · · · 1 + ϵ+ 2ϵδ ·

 . (9.7)

This matrix satisfies1 e(D) = c · B · Std.

9.1.2 Normal form

The Pfaffian system (9.3) must be brought to normal form before the restriction procedure
can be applied (cf. Section (8.1.3)). The system turns out to be in normal form w.r.t. the
variables z6 and z7, but P8 has a second-order pole in z8:

P8

∣∣
z6, z7→1

= (z8 − 1)2 P8,−2

∣∣
z6, z7→1

+ . . . . (9.8)

The second-order pole can be cured by Moser reduction, namely a gauge transformation
by

G1 = Diagonal
[
(z8 − 1)−1, 1, . . . , 1

]
. (9.9)

The notation

G[Pi] = G−1 · (Pi ·G− ∂i •G) (9.10)

is used throughout this chapter to denote gauge transformations. In addition to curing the
second-order pole, the new residue matrices G[Pi]−1, i ∈ {6, 7, 8}, also obtain non-resonant
spectra. Consequently, the system is in normal form. To simplify notation, let us

replace G1[Pi] → Pi in the rest of this example. (9.11)
1One may employ (A.10) in cases where e(D) contains some monomials that are not contained in Std.
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9.1.3 Restriction

The Pfaffian-level restriction protocol implores us to build the matrix

M =

[
B

R

]
(9.12)

coming from (8.30). The B-matrix was already found in (9.7). The R-matrix is constructed
from the independent rows of all the (gauged transformed) residue matrices:

R = RowReduce

 P6,−1

P7,−1

P8,−1

 . (9.13)

We remind that the RowReduce[...] operation includes the deletion of zero-rows.
The M-matrix can now be inserted into (8.31), giving

(
∂10 •M+M · P10,0

)
·M−1 =

[
Q10 ⋆

06×3 ⋆

]
, (9.14)

where

P10,0 = P10

∣∣
z6, z7, z8→0

, (9.15)

which is well-defined because the system is in normal form. Sending the regulator δ → 0

in Q10, the final result is

Q10 =

 −2(1+ϵ)
z10

· ·

· · ·

− z10ϵ
6(1+z10)

ϵ
6z10(1+z10)

− z10+2ϵ
z10(1+z10)

 . (9.16)

This Pfaffian matrix agrees with an independent IBP calculation for the basis e(I) in
(9.4), where z10 = t/s is a ratio of Mandelstam variables.

In conclusion, the D-module associated to the massless 2-loop N-box diagram is
isomorphic to the rational restriction of a GKZ system.
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Section 9.2

Logarithmic restriction: 1-loop Bhabha scattering

This example uses Algorithm (4) to compute a logarithmic restriction. Our goal is the
small-mass expansion of the 1-loop box topology for Bhabha scattering:

p1

p2

p4

p3
m

m

m→0−−−→

p1

p2

p4

p3

.

The momentum space integral family in D = 4− 2ϵ dimensions is

Iν1...ν5(m) =

∫
dDℓ[

ℓ2 −m2]ν1
[
(ℓ+ p1)2]ν2

[
(ℓ+ p12)2 −m2]ν3

[
(ℓ+ p123)2]ν4

, (9.17)

and the kinematic variables are

p21 = p22 = p23 = p24 = m2, s = p212 , t = p223 . (9.18)

IBP reduction reveals a basis of 5 MIs:
I0010(m)

I0101(m)

I1010(m)

I0111(m)

I1111(m)

 = G0 · I⃗ , G0 = (−s)−ϵ Diagonal
[
(−s), 1, 1, (−s)−1, (−s)−2

]
. (9.19)

The purpose of G0 is to factor out the mass dimension of the integrals. Using IBPs, the
MIs I⃗ are found to obey a Pfaffian system

∂i • I⃗ = Pi · I⃗ with z1 =
m2

−s and z2 =
t

s
. (9.20)

Using the method of Section (8.2.4), we now compute the logarithmic restriction of
solutions onto Y ′ = {z1 = 0}, i.e. for m ∼ 0.
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9.2.1 Normal form

The matrices P1,2 in (9.20) are not in normal form w.r.t. Y ′. In particular, P1 has a
second-order pole there, and P2 a first-order pole. This is cured via Moser reduction:

I⃗ → G1 · I⃗ with G1 = Diagonal[z1, 1, 1, 1, 1] . (9.21)

To simplify notation, we

replace G1[Pi] → Pi in this example. (9.22)

The gauge transformed Pfaffian matrices now have the desired pole structure:

P1 = z−1
1 × P1,0(z2) + O(z01)

P2 = z01 × P2,0(z2) + O(z1) .
(9.23)

In addition, the spectrum of the residue matrix P1,−1 is non-resonant, meaning that the
system is now in normal form.

From

JordanDecomposition[P1,−1] =


0 · · · ·

· 0 · · ·

· · 0 · ·

· · · −ϵ 1

· · · · −ϵ

 (9.24)

we read off the data

{λ1, λ2} = {0, −ϵ}
{Λ1, Λ2} = {3, 2}
{Mλ1 , Mλ2} = {0, 1} ,

(9.25)

in the notation of step 1. of Algorithm (4). The ansatz for the logarithmic expansion
(8.44) thus takes the form

I⃗ = zλ1
1

∞∑
n=0

I⃗ (λ1,n)(z2)z
n
1 (9.26)

+ zλ2
1

∞∑
n=0

[
I⃗ (λ2,n,0)(z2) + I⃗ (λ2,n,1)(z2)× log(z1)

]
zn1 .
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The logarithm appears due to the "1" in the λ2-eigenvalue block of (9.24). Recall that
the vector I⃗ (λ2,0,1) is immediately obtained from I⃗ (λ2,0,0) via the recursion relation (A).
Higher-order terms in zn1 are obtained from the recursions (B) and (C). If what follows,
we determine I⃗ (λ1,0) from the solution to a Pfaffian system of rank Λ1 = 3, and I⃗ (λ2,0,0)

from the solution to a system of rank Λ2 = 2. Both systems are univariate.

9.2.2 Eigenvalue λ1 = 0

There is no logarithm for the eigenvalue λ1, so this case can in fact be treated with the
holomorphic restriction of Section (8.2.3).

Rank jump

Recall the constraint from the second equation of (8.34):

R(λ1) · I⃗ (λ1,0) = RowReduce[P1,−1] · I⃗ (λ1,0) (9.27)

=

[
1 · · · ·

· 1 · z2ϵ
1−2ϵ ·

]
· I⃗ (λ1,0) (9.28)

= 0 . (9.29)

Two constraints are here imposed on the entries of the 5-dimensional vector I⃗ (λ1,0). This
is the reason why the rank drops to 5− 2 = 3.

The entries of I⃗ (λ1,0) apparently correspond to the MIs (9.19) with the limit z1 → 0

taken at the integrand level2, i.e. setting m2 = 0 inside the propagators of (9.17). The
interpretation of the two constraints from (9.28) is now clear:

1. The first constraint I(λ1,0)
1 = 0 means that the massless tadpole I0010(m = 0) should

vanish, which is indeed true in DR.

2. The second constraint I(λ1,0)
2 + z2ϵ

1−2ϵI
(λ1,0)
4 = 0 is an IBP relation between the

massless t-channel bubble I0101(m = 0) and the massless triangle I0111(m = 0). We
have verified this relation using LiteRed.

Basis

Following step 2. of Algorithm (3), a basis for the restricted Pfaffian system can be found
by simply eliminating linearly dependent entries of I⃗ (λ1,0). We should eliminate two

2This is called the hard region in the method of regions [159, 160].
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integrals according to the above discussion, so we have3

J⃗ (λ1) =

 I
(λ1,0)
2

I
(λ1,0)
3

I
(λ1,0)
5

 = (−s)ϵ
 I0101(0)

I1010(0)

(−s)2I1111(0)

 . (9.30)

The factors of (−s) stem from the matrix G0 in (9.19). The B-matrix (8.27) is therefore

B(λ1) =

 · 1 · · ·

· · 1 · ·

· · · · 1

 such that J⃗ (λ1) = B(λ1) · I⃗ (λ1,0) . (9.31)

Restriction

The R- and B-matrices from (9.28) and (9.31) combine to

M(λ1) =

[
B(λ1)

R(λ1)

]
such that M(λ1) · I⃗ (λ1,0) =

 J⃗ (λ1)

0

0

 . (9.32)

The 3× 3 Pfaffian matrix Q(λ1)
2 associated to J⃗ (λ1) is now computed with (8.31). Namely,

by gauge transforming P2,0 from (9.23) with
(
M(λ1)

)−1
, we get

(
∂2 •M(λ1) +M(λ1) · P2,0

)
·
(
M(λ1)

)−1
=

[
Q

(λ1)
2 ⋆

02×3 ⋆

]
. (9.33)

Explicitly, we have derived the Pfaffian system

∂2 • J⃗ (λ1) = Q
(λ1)
2 · J⃗ (λ1) with Q

(λ1)
2 =


− ϵ

z2
· ·

· · ·
2(1−2ϵ)
z22(z2+1)

2(2ϵ−1)
z2(z2+1)

−z2−ϵ−1
z2(z2+1)

 . (9.34)

This system agrees with an independent IBP calculation performed directly on the basis
of massless integrals (9.30). See [146] for a pedagogical exposition on how to solve these
equations by passing to a canonical basis.

3We choose the bubble instead of the triangle for the first basis element since it is preferred to have
basis elements with the fewest number of distinct propagators.
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9.2.3 Eigenvalue λ2 = −ϵ

The Pfaffian system associated to the eigenvalue λ2 = −ϵ turns out to be even simpler
than the one for λ1 = 0. Let’s build it.

Rank jump

The rank jump constraint from (8.47) given Mλ2 = 1 reads

R(λ2) · I⃗ (λ2,0,0) = RowReduce
[
(P1,−1 − λ21)2

]
· I⃗ (λ2,0,0) (9.35)

=

 1 · · z2ϵ
1−ϵ

z2ϵ
2(1−ϵ)

· 1 · · ·

· · 1 · ·

 · I⃗ (λ2,0,0) (9.36)

= 0 . (9.37)

There are 3 equations imposed on the entries of the 5-dimensional vector I⃗ (λ2,0,0), wherefore
the rank drops to 2.

In this case, it is less clear what the relations (9.36) mean! The present author does
not know what the momentum space representations looks like for other eigenvalues
besides λ = 0. This is worth clarifying, since it would help with the determination of
boundary constants via direct integration.

Basis

The constraints (9.36) fix I(λ2,0,0)
2 = I

(λ2,0,0)
3 = 0, and I(λ2,0,0)

5 becomes a linear combina-
tion of I(λ2,0,0)

1 and I(λ2,0,0)
4 . So

J⃗ (λ2) =

[
I
(λ2,0,0)
1

I
(λ2,0,0)
4

]
(9.38)

is a linearly independent basis. The B-matrix is therefore given by

B(λ2) =

[
1 · · · ·

· · · 1 ·

]
such that J⃗ (λ2) = B(λ2) · I⃗ (λ2,0,0) . (9.39)
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Restriction

Stacking the R- and B-matrices from (9.36) and (9.39) on top of each other, we get

M(λ2) =

[
B(λ2)

R(λ2)

]
such that M(λ2) · I⃗ (λ2,0,0) =


J⃗ (λ2)

0

0

0

 . (9.40)

The Pfaffian system for J⃗ (λ2) now follows from (8.31):

(
∂2 •M(λ2) +M(λ2) · P2,0

)
·
(
M(λ2)

)−1
=

[
Q

(λ2)
2 ⋆

03×2 ⋆

]
. (9.41)

Explicitly, we have that

∂2 • J⃗ (λ2) = Q
(λ2)
2 · J⃗ (λ2) with Q

(λ2)
2 =

[
0 0

ϵ−1
z22

−1
z2

]
. (9.42)

The general solution is swiftly found to be

J⃗ (λ2) =

[
c1(ϵ)

c1(ϵ)(1−ϵ) log(z2)
z2

+ c2(ϵ)
z2

]
, (9.43)

where c1,2(ϵ) are two boundary constants.

9.2.4 Result for the logarithmic series

The solution vectors in (9.26) at 0th order in z1 take the form

I⃗ (λ1,0) =
(
M(λ1)

)−1
·

 J⃗ (λ1)

0

0

 (9.44)

I⃗ (λ2,0,0) =
(
M(λ2)

)−1
·


J⃗ (λ2)

0

0

0

 (9.45)

I⃗ (λ2,0,1) = (P1,−1 − λ21) · I⃗ (λ2,0,0) , (9.46)
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where the last equation comes from the recursion (A). The vector J⃗ (λ1) comes from
solving the massless 1-loop box system (9.34), and J⃗ (λ2) was given in (9.43). We do not
include higher-order terms in zn1 (coming from the recursions (B) and (C)) in order to
show a compact, final result.

Inserting the solution vectors above into (9.26) we get4



I0010(m)

I0101(m)

I1010(m)

I0111(m)

I1111(m)


m→0
=



0

(−s)−ϵI0101(0)

(−s)−ϵI1010(0)

(−s)1−ϵ(1−2ϵ)
tϵ I0101(0)

(−s)−2−ϵI1111(0)


+



c1
ϵ−1(m

2)1−ϵ

0

0

−(m2)−ϵ

t

[
c1 log(−t/m2) + c2

]
−2(m2)−ϵ

stϵ

[
c1(ϵ log(−t/m2)− 1) + ϵc2

]


(9.47)

The first and second terms on the LHS come from λ1 and λ2 respectively. Here we
reinstated all prefactors, wrote z1 = m2/(−s) and z2 = t/s, and lastly rescaled c1 → c1

ϵ−1

to simplify the expression. Note that only the triangle and the box integrals receive
logarithmic corrections. The bubbles would naturally receive power corrections in z1,
which we are neglecting.

The two boundary constants are determined as follows.

• c1 is fixed by comparing with the exact expression I0010(m) = −Γ(1 − ϵ)(m2)1−ϵ

for the tadpole on the LHS. This gives c1 = (1− ϵ)Γ(ϵ− 1).

• c2 = c2(ϵ) can be fixed order-by-order in ϵ by numerically matching with an integral
on the LHS, say the 5th element I1111(m). On the LHS we insert the ansatz
c2 =

∑2
i=−2 c

(i)
2 ϵi, which starts at i = −2 because the massless box I1111(0) has

a double pole in ϵ. On the RHS we numerically evaluate I1111(m) at the point
(s, t,m2) = (−1,−9, 10−3) with AMFlow [34]. By comparing the LHS and RHS
we get[

c
(−2)
2 , c

(−1)
2 , c

(0)
2 , c

(1)
2 , c

(2)
2

]
=
[
1,−0.588997,−7.12155,−4.69031,−20.4068

]
.

AMFlow is easily able to compute O(102) digits for this topology. Analytical
expressions for these constants could therefore, if needed, be found with PSLQ [77].

Evaluating at other phase space points with small m2, we find that the LHS of (9.47)
is a fair approximation to the ϵ-expansions of I0111(m) and I1111(m) up to O(ϵ3). For

4We are neglecting the DR scale µ in factors such as (−s/µ2)−ϵ.
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instance, at (s, t,m2) = (−1,−8, 10−3) we find agreement within 0.01% accuracy for the
triangle, and within 0.001% accuracy for the box. The non-leading terms in ϵ for the
bubbles I0101(m) and I1010(m) give errors between 5− 20% because we have neglected
power corrections.

Section 9.3

Logarithmic restriction: 2-loop Bhabha scattering

This is another example of logarithmic restriction using Algorithm (4). We provide
partial results on the small-mass logarithmic expansion of the 2-loop Bhabha double-box
topology:

p1

p2

p4

p3
m

m

m→0−−−→

p1

p2

p4

p3

. (9.48)

The momentum space integral family in D = 4− 2ϵ dimensions reads

Iν1...ν9(m) =

∫
dDℓ1d

Dℓ2
Dν1

1 · · ·Dν9
9

, (9.49)

with

D1 = ℓ21 −m2 D2 = (ℓ1 + p1 + p2)
2 −m2 D3 = ℓ22 −m2

D4 = (ℓ2 + p1 + p2)
2 −m2 D5 = (ℓ1 + p1)

2 D6 = (ℓ1 − ℓ2)2
D7 = (ℓ2 − p3)2 D8 = (ℓ2 + p1)

2 D9 = (ℓ1 − p3)2 ,

where D8 and D9 denote ISPs. Solutions for this integral family were found in [170] (see
also [171]).

Inspired by [170], we choose the following basis for the unrestricted Pfaffian system:

G0 · I⃗ =
[

I202000000, I000022100, I001022000, I122000000, I012002000, I022001000,

I001112000, I012011000, I100011200, I121200000, I011011100, I011012100,

I021011100, I022011100, I101111000, I101211000, I102011100, I101011200,

I110011200, I111011100, I1110111−10, I111111100, I1111111−10

]T
.

(9.50)

The 23×23 diagonal matrix G0 factors out the mass dimension of each integral via powers
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of (−s). IBP reduction with kira [10] then provides a Pfaffian system ∂i • I⃗ = Pi · I⃗ in
terms of the kinematic variables

z1 =
m2

−s and z2 =
t

s
. (9.51)

Our goal is to restrict onto the surface Y ′ = {z1 = 0}.

9.3.1 Normal form

The Pfaffian system associated to the basis (9.50) is not in normal form. The first issue
to resolve is the higher-order singularities on Y ′:

P1 = z−3
1 × P1,−3(z2) + O(z−2

1 )

P2 = z−2
1 × P2,−2(z2) + O(z−1

1 ) .
(9.52)

Moser reduction suggests to gauge transform with

G1 = Diagonal
[
z1, . . . , z1︸ ︷︷ ︸

8 times

, 1, . . . , 1
]

and G2 = Diagonal
[
z1, . . . , z1︸ ︷︷ ︸
12 times

, 1, . . . , 1
]
.

Introducing the shorthand notation Gi...j = Gi · . . . · Gj , then the new pole structure
becomes

G21[P1] = z−1
1 × G21[P1]−1 + O(z01)

G21[P2] = z−1
1 × G21[P2]−1 + O(z01) .

(9.53)

So we have cured the higher-order poles in P1. But P2 is still not finite on Y ′ because the
residue matrix G21[P1]−1 has a resonant spectrum5. In [83, Appendix B], it is shown how
to construct a sequence of gauge transformations (involving the Jordan decomposition of
the residue matrix) to cure the spectrum6. It takes a matter of seconds on a laptop to
compute these gauge transformations, even without fixing z-variables to generic numbers
(recall that the Jordan decomposition is independent of z). Writing G3 for the product of
said gauge matrices, we get

G321[P2] = G321[P2]0 +O(z1) , (9.54)

5See [83, Appendix B] for a proof of why non-resonance of the residue matrix P1,−1 implies finiteness
of the remaining Pfaffian matrices {P2, . . . PN} on {z1 = 0}.

6The Mathematica scripts in [169] contain the gauge transformations for this particular example.
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wherefore the system is now in normal form. For brevity, we

replace G321[Pi] → Pi in the rest of this example. (9.55)

P1,−1 denotes the residue matrix in this newfound basis. Its Jordan form enjoys an
eigenvalue decomposition

JordanDecomposition[P1,−1] = J(λ1) ⊕ J(λ2) ⊕ J(λ3) ⊕ J(λ4) (9.56)

in terms of block matrices

J(λ1) = 08×8 , J(λ2) =
[
λ2

]

J(λ3) =



λ3 · · · · · ·

· λ3 · · · · ·

· · λ3 1 · · ·

· · · λ3 · · ·

· · · · λ3 1 ·

· · · · · λ3 ·

· · · · · · λ3


(9.57)

J(λ4) =



λ4 · · · · · ·

· λ4 · · · · ·

· · λ4 · · · ·

· · · λ4 · · ·

· · · · λ4 1 ·

· · · · · λ4 1

· · · · · · λ4


,

where the eigenvalues are

{λ1, λ2, λ3, λ4} =
{
0, 2(D− 5) ,

D− 4

2
, D− 4

}
. (9.58)

Their associated multiplicities

{Λ1, Λ2, Λ3, Λ4} = {8, 1, 7, 7} (9.59)

count the sizes of the four different Pfaffian systems that will be obtained via logarithmic
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restriction. The Jordan blocks above specify the maximum logarithm powers

{Mλ1 , Mλ2 , Mλ3 , Mλ3} = {0, 0, 1, 2} (9.60)

for the series ansatz (8.44). The vector of MIs I⃗ can therefore be represented as

G321 · I⃗(z) = zλ1
1 I⃗ (λ1,0)(z) + zλ2

1 I⃗ (λ2,0)(z)

+ zλ3
1

[
I⃗ (λ3,0)(z) + I⃗ (λ3,1)(z) log(z1)

]
+ zλ4

1

[
I⃗ (λ4,0)(z) + I⃗ (λ4,1)(z) log(z1) + I⃗ (λ4,2)(z) log2(z1)

]
,

(9.61)

where z = (z1, z2). The logarithm-free terms above all have holomorphic expansions in z1
of the form

I⃗ (λ,0)(z) =

∞∑
n=0

I⃗ (λ,n,0)(z2) z
n
1 . (9.62)

Recall that all higher-order terms I⃗ (λ,n,m) in zn1 logm(z1) are uniquely specified given
I⃗ (λ,0,0) as input via the recursion relations (A), (B) and (C).

9.3.2 Restriction

We proceed to compute the Λ× Λ Pfaffian matrices Q(λ)
2 (z2) associated to each I⃗ (λ,0,0).

The full expression (9.61) has not yet been mounted because the boundary constants are
missing, so this step is left for future study.

Eigenvalue λ1

The R-matrix for λ1 = 0 splits into a 0-block and an identity matrix block:

R(λ1) = RowReduce[P1,−1] =
[
015×8 115

]
. (9.63)

Since R(λ1) · I⃗ (λ1,0,0) = 0, this means that I(λ1,0,0)
9 = . . . = I

(λ1,0,0)
23 = 0. The 8 remaining

entries of I⃗ (λ1,0,0) thus make up a basis for the restricted Pfaffian system:

J⃗ (λ1) =


I
(λ1,0,0)
1

...
I
(λ1,0,0)
8

 . (9.64)
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This corresponds to the B-matrix

B(λ1) =
[

18 08×15

]
such that J⃗ (λ1) = B(λ1) · I⃗ (λ1,0,0) , (9.65)

where 18 represents the "reversed identity matrix", i.e. the 8× 8 matrix with 1’s on the
anti-diagonal. Setting

M(λ1) =

[
B(λ1)

R(λ1)

]
, (9.66)

then the Pfaffian matrix associated to J⃗ (λ1) is

(
∂2 •M(λ1) +M(λ1) · P2,0

)
·
(
M(λ1)

)−1
=

[
Q

(λ1)
2 ⋆

015×8 ⋆

]
. (9.67)

We find that

∂2 • J⃗ (λ1) = Q
(λ1)
2 · J⃗ (λ1) (9.68)

is indeed a Pfaffian system for the massless double-box topology, as verified by an
independent IBP computation. Each entry of J⃗ (λ1) is a linear combination7 of integrals
in the family (9.49) with m2 = 0 at the integrand level. The matrix Q(λ1)

2 has the form
Qa(ϵ)
z21

+ Qb(ϵ)
z1

+ Qc(ϵ)
z1+1 where Qa,b,c(ϵ) contain rational functions in ϵ with maximal degree ϵ2.

Using the software canonica [172], a canonical form for Q(λ1)
2 is found within seconds.

Eigenvalue λ2

The system for the eigenvalue λ2 = 2(D − 5) = −2 − 4ϵ is peculiar. The rank jump
constraint

R(λ2) · I⃗ (λ2,0,0) = RowReduce[P1,−1 − λ21] · I⃗ (λ2,0,0) = 0 (9.69)

sets every entry of I⃗ (λ2,0,0) to zero except for the 15th entry J (λ2) = I
(λ2,0,0)
15 . The Pfaffian

system for this single, non-trivial function works out to

∂2 • J (λ2) = −J
(λ2)

z2
=⇒ J (λ2) =

c(λ2)(ϵ)

z2
. (9.70)

7It is a linear combination because the gauge transformation matrix G3 from (9.54) is non-diagonal.
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Eigenvalue λ3

The system associated to eigenvalue λ3 = D−4
2 = −ϵ has rank Λ3 = 7. Working out the

R- and B-matrices as usual, one finds a basis

J⃗ (l3) =


I
(λ3,0,0)
16

...

I
(λ3,0,0)
22

 . (9.71)

The associated Pfaffian matrix Q(λ3)
2 has the form Qa(ϵ)

z22
+ Qb(ϵ)

z2
+ Qc(ϵ)

(z2+1)2
+ Qd(ϵ)

z2−1 , where
Qa,b,c,d(ϵ) contain rational functions in ϵ of maximal degree ϵ3. This system is swiftly
ϵ-factorized with canonica.

Eigenvalue λ4

The last eigenvalue λ4 = D− 4 = −2ϵ also has rank Λ4 = 7. Its associated rank jump
constraint R(λ4) · I⃗ (λ4,0,0) = 0 contains linear relations with rather complicated coefficients.
This is in contrast to the rank jump constraints for the other eigenvalues, which were all
of the form I

(λ,0,0)
i = 0. We do not know why this is the case.

Regardless, we are easily able to calculate the Pfaffian system associated to the basis

J⃗ (λ4) =



I
(λ4,0,0)
5

I
(λ4,0,0)
17

I
(λ4,0,0)
19

I
(λ4,0,0)
20

I
(λ4,0,0)
21

I
(λ4,0,0)
22

I
(λ4,0,0)
23


. (9.72)

The Pfaffian matrix has the singularity structure Q(λ3)
2 = Qa(ϵ)

z22
+ Qb(ϵ)

z2
+ Qc(ϵ)

(z2+1)2
+ Qd(ϵ)

z2−1 ,

where Qa,b,c,d(ϵ) have maximal degree ϵ3. Canonica brings this system into canonical
form with ease.
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9.3.3 Discussion

General solutions to the Pfaffian systems above are easily obtained in terms of HPLs in
the variable z2 = t/s. What is more, every step in the construction of those systems can
be automatized.

It is worth comparing the present method with previous studies. The seminal cal-
culation carried out in [170] was complicated by an unrationalizable square root. For
another 2-loop Bhabha scattering topology [171], the authors had to deal with elliptic
functions. Because our restriction protocol involves smaller, univariate Pfaffian systems,
such complications are more easily avoided. The cost is that a smaller part of phase
space is covered, since m2 is assumed to be small (it could e.g. be the electron mass
me ∼ 0.511 MeV).

As mentioned, the final expression for the logarithmic series (9.61) still lacks the
determination of boundary constants. These could be fixed by matching with the full
set of two-variable MIs I⃗ from (9.50) after imposing physically motivated constraints.
For instance, one could impose real-valuedness in the Euclidean region, or regularity at
certain points in phase space. Another way is just to numerically evaluate the two-variable
integrals I⃗ and match this with the logarithmic series. Both of these approaches are,
however, unsatisfactory from the point of view of the restriction protocol. It would be
preferable to somehow fix the boundary constants solely within each univariate system
∂2 • J⃗ (λ) = Q

(λ)
2 · J⃗ (λ), rather than comparing with the two-variate integrals. This is

indeed possible for the eigenvalue λ = 0, since in this case we know the momentum space
representation of J⃗ (λ). A speculative suggestion is to perform an additional restriction on
these univariate systems, in which case the rank jump constraints might provide relations
among boundary constants.

Section 9.4

Macaulay-level restriction: 2-loop diagonal box

This example concerns the rational restriction of the GKZ system associated to a 2-loop
massless diagonal-box diagram. We employ Algorithm (5), which is based on the Macaulay
matrix.
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9.4.1 Setup

The LP monomials are given by

G(z|x) = z1x1x4 + z2x1x5 + z3x1x6 + z4x2x4 + z5x2x5 + z6x2x6+

z7x3x4 + z8x3x5 + z9x3x6 + z10x4x5 + z11x4x6 + z12x4x7+

z13x5x7 + z14x6x7 + z15x1x3x4 + z16x1x3x5 + z17x1x3x6+ (9.73)

z18x1x4x5 + z19x2x4x6 + z20x2x4x7 + z21x2x5x7 + z22x2x6x7 .

Recall that this enters the integrand of the GFI (7.7). G(z|x) gives rise to to a GKZ
system with A-matrix

A =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 · · · · · · · · · · · 1 1 1 1 · · · ·

· · · 1 1 1 · · · · · · · · · · · · 1 1 1 1

· · · · · · 1 1 1 · · · · · 1 1 1 · · · · ·

1 · · 1 · · 1 · · 1 1 1 · · 1 · · 1 1 1 · ·

· 1 · · 1 · · 1 · 1 · · 1 · · 1 · 1 · · 1 ·

· · 1 · · 1 · · 1 · 1 · · 1 · · 1 · 1 · · 1

· · · · · · · · · · · 1 1 1 · · · · · 1 1 1


.

The restriction we compute is

A
zi=1 and zj=t/s−−−−−−−−−−−−−−−→

1≤i≤ 18 and 19≤ j≤ 22

p1

p2

p4

p3

, (9.74)

where s and t stand for Mandelstam variables. To be clear, after a linear shift of
coordinates, this is a restriction onto the affine hyperplane

Y ′ =
{
(z1, . . . , z22) ∈ A22

∣∣ z1 = . . . = z18 = 0 and z19 = z20 = z21 = z22 = z is generic
}
.

Using homogeneity (cf. Section (6.5)) we can immediately restrict zi = 0 for i ∈
{1, 2, 5, 7, 9, 11, 13, 18}. This means that Algorithm (5) should be applied to restrict
zi = 0 for i ∈ {3, 4, 6, 8, 10, 12, 14, 15, 16, 17} and zi = z = t/s for i ∈ {19, 20, 21, 22}.
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9.4.2 Restriction

For generic values of the analytic regulators ϵ and δ, the GKZ system is of rank R = 115.
Computing the Euler characteristic by counting the number of critical points of (6.36) on
Y ′, we find a rank drop to R′ = 7. This number is verified by counting the number of
MIs using IBPs.

We must find a basis of the restriction module before calling Algorithm (5). Executing
[83, Algorithm 4.7] as in Example (8.1) with parameters γ = 3, k = 3, p = 100000007

and z = 1/7, we obtain the 7-dimensional basis8

RStd =



∂21∂22

∂222
∂6

∂17

∂21

∂22

1


. (9.75)

A valid Macaulay matrix M1 =
[
MExt MRStd

]
is then found9 for degree Q = 1,

meaning that the equation (5.13) given by CExt − C ·MExt = 0 has a solution for the
matrix C. The matrix MExt has dimension 1305 × 2763, so there are 2763 exterior
monomials Ext. The 1305 rows are not all independent; by row reducing MExt with
(ϵ, δ, z) fixed to generic numbers, we identify 912 linearly independent equations. It then
takes less than 3 minutes on a laptop to determine C via FiniteFlow. The 7×7 Pfaffian
matrix Pz finally results from Pz = CRStd − C ·MRStd. This becomes a Pfaffian matrix
for the proper 2-loop diagonal-box topology after multiplying by the LP prefactors from
(7.7) and sending δ → 0.

As an aside, note how large the discrepancy is between the ranks R = 115 and R′ = 7

for the GKZ system and the proper FI. So even though we benefit from being able
to immediately write down an annihilating ideal and a basis in the GKZ setting, the
additional complexity brought about by unspecified z-variables may quickly become too
much to handle.

8This took 40.56s on a machine with the following specs: Intel(R) Core(TM) i7-10700K CPU @
3.80GHz, 8G memory.

9It took 65.76s on the same machine to compute this Macaulay matrix.
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Chapter 10

Tropical Integration

This thesis has, so far, predominantly been an analytic study of Euler and Feynman
integrals. In particular, we have focused on the DEQs obeyed by said integrals. The
ideal situation is that 1) these DEQs can be built with reasonable computer resources,
and 2) they can be solved symbolically in terms of special functions. For sufficiently
difficult problems - e.g. the evaluation of 2- or 3-loop diagrams with several kinematic
scales - either or both of these steps become insurmountable with the presently available
analytical methods. These difficulties are in many cases unavoidable if the accuracy of
theoretical predictions is made to compete with the experimental precision at the LHC.
For instance, the slow convergence rate of the QCD perturbative series (stemming from the
coupling constant being αs(MZ) ∼ 0.1 near the weak scale) often requires 3-loop results
to get cross sections at %-level accuracy. Furthermore, the study of Higgs phenomenology
typically requires the calculation of diagrams with many internal masses that do not
evaluate to GPLs, which complicates the determination of canonical bases in the method
of DEQs for FIs.

In cases where analytical methods fall short, numerical methods may instead offer
a way forward. The past few years have indeed seen a surge in the development of
public codes tailored to the numerical evaluation of FIs. Using series of expansions
of Pfaffian systems, the codes AMFlow [34], DiffExp [173, 174] and SeaSyde [175]
are able to to achieve phenomenal accuracy. They derive Pfaffian systems by fixing
parameters to numbers before solving the IBPs, which yields a significant speed boost.
The pySecDec codebase [176], employing Monte Carlo integration in combination with
sector decomposition, has been a staple of high-energy physics calculations for many
years, and was recently upgraded in [177]. Sophisticated manipulations of momentum
space integrals via the Loop-tree duality led to efficient and stable numerical integration
schemes in [178, 179]. The authors of [180] presented a high-precision numerical algorithm
by interpreting FIs as period integrals. Further promising studies were carried out in

148
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[181, 182, 183], though so far without publicly available codes.
Part III of this thesis is a contribution to this flourishing research program. The

present chapter describes a Monte Carlo integration scheme called tropical integration.
It was established by Borinsky in [40] (see also [184]), and subsequently generalized by
Borinsky, Tellander and the present author in [185]. A public code named Feyntrop was
developed alongside the aforementioned article. Feyntrop is able to swiftly numerically
evaluate FIs at high loop-order with many mass scales at ‰-level accuracy given modest
computer resources. The next chapter gives a tutorial on how to use the code, and
showcases several state-of-the-art examples. The present chapter explicates the theoretical
background.

Section 10.1

Tropical Monte Carlo sampling, in brief

Tropical integration is a special instance of Monte Carlo (MC) integration. MC methods
deal with integrals of the form

If =

∫
Γ
f(x)µ , (10.1)

where f(x) is a square-integrable function integrated over an n-dimensional domain Γ,
and µ is a probability measure that is positive on Γ and normalized to unity,

∫
Γ µ = 1.

By sampling many independent random points {x(1), . . . , x(N)} from µ, it follows from
the central limit theorem that

If ≃ I(N)
f where I

(N)
f =

1

N

N∑
i=1

f
(
x(i)
)
. (10.2)

Here I(N)
f is simply the average of the integrand f evaluated at the random points x(i).

For sufficiently large N , the expected error of this approximation is

σf =

√
If2 − I2f
N

where If2 =

∫
Γ
f(x)2µ . (10.3)

This error can itself be estimated by

σf ≃ σ(N)
f where σ

(N)
f =

√√√√I
(N)
f2 −

[
I
(N)
f

]2
N − 1

and I
(N)
f2 =

1

N

N∑
i=1

f
(
x(i)
)2
. (10.4)
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A common choice for µ is just the uniform measure µ = dnx on the n-dimensional
unit cube Γ = [0, 1]n. Tropical integration, instead, makes use of polytopal and tropical
geometry (see [35, 186] for seminal textbooks on these topics) to build a more sophisticated
tropical measure µtr. This measure is tailored to estimating integrals of functions f(x) =
g(x)a

h(x)b
given by homogeneous polynomials g, h ∈ C[x] and rational numbers a, b ∈ Q. A

good example hereof is the evaluation of the integral
∫ 1
0

∫ 1
0

dx∧dy
x+y = 2 log 2. "Ordinary"

MC fails because the variance of 1
x+y is infinite w.r.t. the uniform measure. It is, however,

easily evaluated with the tropical measure. See [187, Section 3.1.1] for a detailed discussion.

10.1.1 Tropical approximation

As we are ultimately interested in integrating homogeneous polynomials, let us now define
the notion of real projective space RPn−1; this which will serve as an integration domain1

later on. RPn−1 is defined by the set of points in Rn \{0} modulo the equivalence relation

(x0, . . . , xn−1) ∼ (y0, . . . , yn−1)

⇕
∃λ ∈ R \ {0} : (x0, . . . , xn−1) = (λy0, . . . , λyn−1) .

(10.5)

We denote the coordinates on RPn−1 by [x0 : . . . : xn−1]. Two points such as [1 : 0 : 2] and
[12 : 0 : 1] would be equivalent in RP2 because they are related by (1, 0, 2) = (2· 12 , 2·0, 2·1).
Positive projective space is further given by

Pn−1
+ = {x = [x0 : · · · : xn−1] ∈ RPn−1 |xi > 0} . (10.6)

Above we made the unusual choice of starting the index at 0 rather than 1. This
convention allows for seamless interoperability with the python programming language,
to be used in the next chapter.

Let p be a homogeneous polynomial. In multi-index notation,

p(x) =
∑

k∈supp(p)
ck x

k , (10.7)

where xk = xk00 · · ·x
kn−1

n−1 and |k| = k0 + . . .+ kn−1 is equal for all multi-indices k. The
tropical approximation [39] to p is the central concept in tropical integration:

ptr(x) = max
k∈supp(p)

xk . (10.8)

1In practice, this domain can be parametrized as a simplex polytope.
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If, for instance, p(x) = x0x1x
2
2 − 2x41 + 42ix20x

2
1, then ptr(x) = max

{
x0x1x

2
2, x

4
1, x

2
0x

2
1

}
.

In other words, the tropical approximation neglects the monomial coefficients, and only
cares about the largest monomial. The set of monomial exponents supp (p) is hence the
essential data for ptr. Interpreting each multi-index in supp (p) as a vector in Zn

≥0 and
taking the convex hull, we see that ptr is simply a function avatar of the Newton polytope
N[p] from (6.51).

Suppose that N[p] lives in Rn as parametrized by x. By virtue of being a polytope,
N[p] is given by a finite intersection of half-spaces, each of the form {v ∈ Rn | v · x ≤ c}
for some scalar c ∈ R. A subset F ⊂ N[p] is called a face of N[p] iff

1. There exist v ∈ Rn and c ∈ R such that N[p] is contained in {v ∈ Rn | v · x ≤ c}.

2. F is the intersection of N[p] with {v ∈ Rn | v · x = c}.
The polynomial p truncated to a face F is given by

pF (x) =
∑

k∈F ∩ supp(p)

ck x
k . (10.9)

p is called completely non-vanishing on a domain X if for each face F of the Newton
polytope we have pF (x) ̸= 0, x ∈ X.
Example 10.1. Consider the polynomial

p(x) = x0 + x1 + 2x20 + x21 + 3x0x1 + 2x20x1 + x0x
2
1 + x30 . (10.10)

It is non-homogeneous, but that is inconsequential for the purpose of this example.
Its associated Newton polytope N[p] is shown in Figure (10.1). As an intersection of
half-spaces, the Newton polytope is represented by

N[p] =
{
x0 ≥ 0

}
∩
{
x1 ≥ 0

}
∩
{
x1 ≤ 2

}
∩
{
x0 + x1 ≥ 1

}
∩
{
x0 + x1 ≤ 3

}
. (10.11)

Consider a face F of N[p], for example the bottom line segment touching the x0-
axis given by F = {(x0, x1) | 1 ≤ x0 ≤ 3 and x1 = 0}. F is indeed a face since 1)
N[p] is contained in the half-space {x1 ≥ 0}, and 2) F is given by an intersection
F = N[p] ∩ {x1 = 0}. The polynomial truncated to this face is given by

pF (x) = x0 + 2x20 + x30 . (10.12)

Because each monomial coefficient of p is positive, we have that p is completely
non-vanishing on, say, X = R2

>0. ■
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(1,1)

(1,0) (2,0) (3,0)

(0,1)

(0,2) (1,2)

(2,1)

Figure 10.1: Newton polytope for the polynomial p(x) in (10.10). The black dots
represent the monomial exponents of p(x), and the pink area is their convex hull in R2 as
parametrized by (x0, x1).

Borinsky proved that there is really a sense in which ptr(x) approximates the values of
p(x); this is the backbone behind tropical integration. Take a homogeneous polynomial
p ∈ C[x] that is completely non-vanishing on positive projective space Pn−1

+ . Then there
exist two constants C1, C2 > 0 such that [40, Theorem 8]

C1 ≤
|p(x)|
ptr(x)

≤ C2 for all x ∈ Pn−1
+ . (10.13)

In other words, the tropical approximation of p bounds the original polynomial from
above and from below.

We can now describe the intuition behind tropical integration (a precise algorithm is
given in Section (10.3.2)). Consider a convergent integral

I =

∫
Pn−1
+

g(x)a

h(x)b
Ω (10.14)

given by two homogeneous polynomials g and h that are completely non-vanishing on the
integration domain, and a, b ∈ Q. We insert a clever way of writing the number "1" into
the integrand:

I =

∫
Pn−1
+

g(x)a

h(x)b
Ω ×

(
gtr(x)

gtr(x)

)a(
htr(x)

htr(x)

)b

=

∫
Pn−1
+

gtr(x)a

htr(x)b
Ω︸ ︷︷ ︸

∝ tropical measure µtr

×
(
g(x)

gtr(x)

)a(htr(x)
h(x)

)b

︸ ︷︷ ︸
bounded due to (10.13)

.
(10.15)
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The integrand has been factored into something resembling a probability measure (after
being suitably normalized) multiplied by a function that is square-integrable as a conse-
quence of being bounded. This is now a suitable setup for MC integration: we sample a
large number of random points x(i) from µtr, and then take the average of the function
(g/gtr)a (htr/h)b evaluated at these points.

Section 10.2

Projective Feynman integrals

As we will present a numerical code later on, let us be explicit about our conventions
for FIs. Take G to be a one-particle irreducible Feynman diagram with edge set E
and vertex set V . With our index convention, we have E = {0, 1, . . . , |E| − 1} and
V = {0, 1, . . . , |V |− 1}. Every edge e ∈ E is equipped with a mass me and an edge weight
νe. Every vertex v ∈ V comes with an incoming momentum vector pv. Internal vertices
are distinguished by having vanishing incoming momenta; i.e., writing V = Vext ⊔ Vint,

then pv = 0 if v ∈ Vint.
The incidence matrix E of G is defined by choosing an arbitrary orientation for the

edges, and setting Ev,e = ±1 if edge e points to/from vertex v and Ev,e = 0 if e is not
incident to v.

In terms of this data, we write the FI associated to G as

IG =

∫ ∏
e∈E

dDℓe

iπD/2

( −1
ℓ2e −m2

e + iε

)νe ∏
v∈V \{v0}

iπD/2δ(D)
(
pv +

∑
e∈E
Ev,e ℓe

)
. (10.16)

The loop momenta ℓe are integrated over D-dimensional Minkowski space with mostly-
minus signature, ℓ2e =

(
ℓ0e
)2 − (ℓ1e)2 − (ℓ2e)2 − . . . , and an overall momentum-conserving

δ-function δ(pv0 + . . .+ pv|V |−1
) has been extracted by removing a vertex v0 ∈ V .

To evaluate IG numerically, we use an equivalent parametric representation (see [44,
Section 2.5] for a derivation starting from momentum space):

IG = Γ(ω)

∫
P|E|−1
+

ϕ with (10.17)

ϕ =

(∏
e∈E

xνee
Γ(νe)

)
1

U(x)D/2

(
1

V(x)− iε∑e∈E xe

)ω

Ω .

This is an integral over positive projective space P|E|−1
+ , defined in (10.6), w.r.t. the
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volume form

Ω =

|E|−1∑
e=0

(−1)|E|−e−1 dx0 ∧ · · · ∧ d̂xe ∧ · · · ∧ dx|E|−1

x1 · · · x̂e · · ·x|E|−1
, (10.18)

where hats denote omission. The superficial degree of divergence of the graph G is given
by ω =

∑
e∈E νe −D · L/2 where L = |E| − |V |+ 1 is the number of loops.

U(x) is the first Symanzik polynomial, previously defined in (7.1). Recalling also the
second Symanzik polynomial F(x) from (7.2), we set

V(x) = F(x)U(x) . (10.19)

Since U(λx) = λLU(x) and F(λx) = λL+1F(x), one can quickly verify that the integrand
ϕ is invariant under the coordinate rescaling x→ λx, wherefore it is appropriate to call
(10.17) a projective integral representation.

The graph-theoretic formulas (7.1) and (7.2) for U and F are in fact not so efficient
for numerically evaluating millions of points during MC integration. The reason is that
the number of monomials grows quickly as a function of |E| and L, making it slow to
add up all terms during each numerical evaluation. Let us therefore present more efficient
formulas in terms of matrices that scale linearly with the complexity of G. To start, define
the (|V | − 1)× (|V | − 1) reduced Laplacian matrix component-wise by

Luv =
∑
e∈E

Eu,e Ev,e
xe

for u, v ∈ V \ {v0} . (10.20)

As this matrix is symmetric, it is only necessary to explicitly calculate the diagonal and
the upper triangular block. The lower triangular block can then be copied from the upper
one. It turns out that L is positive definite.

Let Puv = pu · pv be the (|V | − 1) × (|V | − 1) matrix containing Minkowski scalar
products between all independent momenta.

We then have the identities

U(x) = det
[
L(x)

] ∏
e∈E

xe (10.21)

F(x) = U(x)

− ∑
u,v ∈V \{v0}

(
L−1(x)

)
uv
Puv +

∑
e∈E

m2
e xe

 . (10.22)
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Note that the first sum in F can be expressed as tr
[
L−1 · P

]
. Determinants and traces

are computationally cheap, but the matrix inverse L−1 appears to be expensive at first
glance. However, notice that we are only interested in the combination X = L−1 · P, not
L−1 itself. Owing to the fact that L is positive definite, then X can be swiftly evaluated
using Cholesky decomposition. More precisely, in O(|V |3) time, it is possible to decompose
L = L ·D ·LT in terms of a lower triangular matrix L and a diagonal matrix D. Afterwards,
the solution X to the linear system L · X = P is immediately obtained by solving

L · Y1 = P , D · Y2 = Y1 , LT · X = Y2 (10.23)

in cascade.
Later on, we will actually require L to take on complex values rather than real ones.

Then L is no longer Hermitian, wherefore Cholesky decomposition fails. In this case, one
must use the less efficient LU (lower-upper) decomposition.

10.2.1 iε-prescription via contour deformation

For the purposes of this thesis, say that a FI computation is in the Euclidean regime if
F(x) ≥ 0 for all x ∈ P|E|−1

+ (a more refined notion of the Euclidean regime is given in
[185, Section 2.2]). Then it is only the case that F(x) = 0 on the boundary x→ 0 of the
integration domain, which is assumed to be an integrable singularity. In our convention,
being in the Euclidean regime is analogous to having a FI with scalar products computed
in the Euclidean all-minus metric. Life is simple in the Euclidean regime because one
avoids the singularities in (10.16) coming from setting the time-components equal to
ℓ0 = ±

√
ℓ⃗ · ℓ⃗+m2 in the propagators. Consequently, Feynman’s iε-prescription can be

dropped, and the resulting FI will be purely real.
Alas, life is not so simple in Minkowski space. Let us say that we are in the Minkowski

regime when we are not in the Euclidean regime. In this case, the monomial coefficients
of F(x) can be both positive and negative. The iε regulates singularities coming from
having F(x) = 0 inside the integration domain. In momentum space, the iε regulates
the ℓ0-singularities by pushing them slightly away from the real axis. An alternative
description is to deform the integration contour given by ℓ0 ∈ (−∞,∞) to one that goes
around the poles2.

2With two poles there are four possible choices for how to go around them, but only one is consistent
with the notion of causality. This contour corresponds to a propagator ℓ2 −m2 + iε. Two non-casual
examples are (ℓ0 + iε)2 − ℓ⃗ · ℓ⃗−m2 and ℓ2 −m2 − iε. The correct contour goes below the singularity at

−
√

ℓ⃗ · ℓ⃗+m2 and above the one at +
√

ℓ⃗ · ℓ⃗+m2. I.e. in the complex ℓ0-plane.
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The iε-prescription only dictates on which side of the poles we integrate. But for
the purpose of numerical integration we must make an explicit choice for the contour,
preferably with decent numerical stability. Moreover, the deformation ought to preserve
the projective symmetry of the integral in order to play well with tropical MC sampling.
We find that the following deformation into the complex plane proposed in [188, 189]
fulfils both of these criteria:

Xe(x) = xe exp

[
−iλ∂V(x)

∂xe

]
for λ ∈ R>0 . (10.24)

Because U and F are homogeneous polynomials of degrees L and L+ 1 respectively, then
V = F/U is a rational function of degree 1, wherefore ∂eV = ∂V(x)/∂xe has homogeneous
degree 0. Thus, (10.24) preserves projective symmetry.

The value of parameter λ is finite but small. This is in contrast to the infinitesimal ε
of the iε-prescription. As long as λ is is small enough that no poles of the integrand ϕ are
hit, then Cauchy’s theorem guarantees that the deformation is valid. Note that λ must
have a mass dimension in order to cancel that of ∂eV in the exponential. In practice, we
shall choose λ to be of order O(1/Λ2), where Λ2 is the largest kinematic scale in V.

To see why (10.24) is consistent with the iε-prescription, let us consider the Schwinger
representation of a FI [44, Section 2.5.2]:

I =

∫ ∞

0
. . . exp

[
i

(
−V(x) + iε

∑
e∈E

xe

)]
. (10.25)

Here we ignored factors in the integrand which are irrelevant for the present argument.
Observe that the iε term cures the divergence at xe → ∞ by gifting an exponential
damping ∼ exp [−εxe] . Notice that a similar damping is achieved by adding a positive
imaginary part to the first term −V(x). In that case the iε could be dropped. Indeed,
changing coordinates according to (10.24), then a Taylor expansion in λ shows that

−V(X) = −V(x) + iλ
∑
e∈E

xe

[
∂V(x)
∂xe

]2
+O(λ2) . (10.26)

Assuming that 1) there are no solutions to the Landau equations

xe
∂V(x)
∂xe

= 0 for each e ∈ E and for any x ∈ P|E|−1
+ , (10.27)

and 2) λ is small enough such that the O(λ2) terms to not change the sign of the O(λ)
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term, then (10.26) has a positive imaginary part, as desired. For the remaining part of
this thesis, it is assumed that the Landau equations have no solutions.

A short calculation shows that the |E| × |E| Jacobian matrix associated to (10.24) is

(Jλ(x))eh = δeh − iλxe
∂2V(x)
∂xe∂xh

for e, h ∈ E . (10.28)

Coming back to the projective FI (10.17), its deformed version now reads

IG = Γ(ω)

∫
P|E|−1
+

(∏
e∈E

Xνe
e

Γ(νe)

)
detJλ(x)

U(X)D/2 × V(X)ω
Ω , (10.29)

where X = (X0, . . . , X|E|−1) with Xe given by (10.24).

10.2.2 ϵ-expansion for quasi-finite integrals

We have so far not made any assumptions regarding the finiteness of the FI (10.29)
as the DR parameter ϵ tends to zero. Recall that ϵ appears inside D = D0 − 2ϵ and
ω =

∑
e∈E νe −DL/2 in this representation.

We shall restrict our attention to the category of integrals dubbed as quasi-finite in
[190]. This means that IG in (10.29) can have overall ϵ-poles coming from the prefactor
Γ(ω), but the integral

∫
P|E|−1
+

(. . .) is itself finite as ϵ→ 0. Note that this is less restrictive
than requiring the whole FI to be finite.

Given this, the ϵ-expansion of IG is derived by merely Taylor expanding the integrand.
Writing ω0 =

∑
e∈E νe −D0L/2, the expansion becomes

IG = Γ(ω0 + ϵL)
∞∑
k=0

ϵk

k!
× (10.30)

∫
P|E|−1
+

(∏
e∈E

Xνe
e

Γ(νe)

)
detJλ(x)

U(X)D0/2 × V(X)ω0
logk

[ U(X)

V(X)L

]
Ω .

If the integral is finite for k = 0, then the logk factors cannot spoil the convergence for
higher orders in k.

Our ultimate goal is to numerically evaluate the integrals appearing in the ϵ-expansion
above. To this end, it is important that the tropical approximation property (10.13) holds
true, but this is now complicated by the fact that X depends on λ. So we make the
following assumption: there exist λ-dependent constants C1(λ), C2(λ) > 0 such that for
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small enough λ > 0,

C1(λ) ≤
∣∣∣∣∣
(U tr(x)

U(X)

)D0/2(Vtr(x)
V(X)

)ω0
∣∣∣∣∣ ≤ C2(λ) for all x ∈ P|E|−1

+ . (10.31)

We have checked this assumption through extensive numerical testing, but lack a mathe-
matical argument for its validity.

The statement (10.31) suggest an optimal value of λ: choose it such that the bounds
are as tight as possible. This is an interesting research direction, as it would constitute
the first canonical contour deformation without any free parameters.

10.2.3 Convergence of Euler integrals

It was proven by Berkesch, Forsgård and Passare that a quasi-finite representation can
always be found [191, Theorem 2.4]. The proof of this theorem gives a concrete prescription
for factoring out ϵ-poles in front of finite integrals, but we have not yet implemented this
protocol3.

Assuming a quasi-finite basis of MIs is known, one can alternatively employ a com-
bination of dimensional recurrence relations and IBPs as in [190] to write a given FI as
linear combination of said basis.

To find a quasi-finite basis, one ought to have test for finiteness of Euler integrals (in
contrast to the GKZ setting studied earlier in this thesis, we are now allowing the monomial
coefficients of the Euler integrands to be fixed to special values). Convergence theorems for
Euler integrals were first discovered in the mathematics literature by Berkesch, Forsgård,
Nilsson and Passare [192, Theorem 1] [191, Theorem 2.2]. In the physics literature,
convergence criteria were later established by Panzer, Schabinger and von Manteuffel in
[190], followed by works of Arkani-Hamed et al. [193, Claim 1] and Borinsky [40, Theorem
3].

The most general, proven statement is roughly as follows. Suppose {f1(x), . . . , fl(x)}
are completely non-vanishing polynomials on Rn

>0 (an equivalent statement can be
formulated in projective space). Let s = (s1, . . . , sl) ∈ Cl and ν = (ν1, . . . , νn) ∈ Cn be

3Their method requires expanding out derivatives of U and V, which can lead to a huge proliferation of
terms if done symbolically. This problem is naturally avoided in the setting of numerical MC integration.
Indeed, we shall provide efficient formulas in Section (10.3.3) for derivatives of U and V that could be
used in a future implementation.
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complex parameters. Assume Re(si) > 0. The integral

I =

∫
Rn
>0

xν11 · · ·xνnn
fs11 · · · fsll

dx

x
(10.32)

is convergent iff4


Re(ν1)

...
Re(νn)

 ∈ int(N(s)) where (10.33)

N(s) = Re(s1) ·N[f1] + · · ·+Re(sl) ·N[fl] .

• The notation s ·N[f ] means that the Newton polytope associated to f is rescaled
by a constant s ∈ R≥0. When N[f ] is determined by a collection half-spaces
{vi · x ≤ ci}, then s ·N[f ] has the effect of rescaling the c’s, that is {vi · x ≤ s ci}.

• The Minkowski sum of two polytopes N[fA] and N[fB ] is given by N[fA]+N[fB] ={
a+ b

∣∣ a ∈ N[fA] and b ∈ N[fB]
}
.

• A point x is in the interior of N(s), x ∈ int(N(s)), if there exists a small ball
(w.r.t. the Euclidean metric) centered at x that is completely contained in N(s).

The condition (10.33) can be checked in practice as follows. First compute the half-space
representation of N(s) (for example with sage or polymake). This gives a set of
inequalities of the form {v · x ≤ c} for the hyperplanes that cut out N(s). For FIs we
have s1 = D/2 and s2 = ω, so these inequalities would depend parametrically on the DR
parameter ϵ. A vector v = [Re(ν1), . . . ,Re(νn)]

T is then in the interior of N(s) if the
inequalities are strict, namely {v · x < c}.

This suggests the following heuristic algorithm for determining a quasi-finite basis:
check whether the criterion (10.33) is fulfilled during a bottom-up search in the space
(ν,D) of propagator powers and spacetime dimensions5.

We remark that the alternative quasi-finite basis search algorithm from [190] has been
automated in Reduze2 [12] via the command find_finite_masters.

4An additional, weak assumption is that the Minkowski sum of Newton polytopes N[f1] + . . .+N[fl]
should have dimension n.

5The search space for ν is cut down drastically in case any other basis is known, so as to pinpoint a
list of relevant integral sectors.
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Section 10.3

Tropical Monte Carlo sampling, in detail

We have already briefly explained the idea behind tropical MC sampling in Section (10.1).
This algorithm is here described in detail. The goal is to tropically integrate the terms in
the ϵ-expansion (10.30), so let us factorize the integrals in a way analogous to (10.15):

IG = Itr
Γ(ω0 + ϵL)∏

e∈E Γ(νe)

∞∑
k=0

ϵk

k!
I(k) , (10.34)

where the kth order integral reads as

I(k) =

∫
P|E|−1
+

detJλ(x) ×
∏

e∈E(Xe/xe)
νe(

U(X)/U tr(x)
)D0/2 ×

(
V(X)/Vtr(x)

)ω0
logk

[ U(X)

V(X)L

]
× µtr , (10.35)

and the tropical probability measure is

µtr =
1

Itr

∏
e∈E x

νe
e

U tr(x)D0/2 × Vtr(x)ω0
Ω . (10.36)

The normalization factor Itr ensures that
∫
P|E|−1
+

µtr = 1 (a formula for Itr is given further

down in (10.46)).
The idea of tropical MC is to sample N points {x(1), . . . , x(N)} from the measure µtr,

then evaluate the integrand of (10.35) at those points, and finally take the average of
these evaluations. Borinsky introduced two different algorithms that sample from µtr in
[40]. The first algorithm [40, Section 5] works for any projective integral over rational
functions. A key step in the algorithm requires the triangulation of a certain normal fans6

associated to the Newton polytopes of U and F . The computation of such triangulations
unfortunately becomes a bottleneck when a Feynman diagram has many edges.

The second algorithm [40, Section 6] takes special features of U and F into account,
thereby avoiding the triangulation step. Namely, the Newton polytope of U is always a
so-called generalized permutahedron, and the same holds true for the Newton polytope of
F given sufficiently generic kinematics. The triangulation step of the previous algorithm
gets traded for a much simpler preprocessing step, involving the calculation of a certain
recursive function called J(γ) below.

6A normal fan is essentially a collection of cones that can be associated to the normal directions of
each face of a given polytope [186].
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10.3.1 Generalized permutahedra

Let E be any finite set. Consider a function7 z : 2E → R that assigns a number to each
subset γ of E. Given such a z, the base polytope P[z] ⊂ R|E| is defined by the set of
points (a0, . . . , a|E|−1) ∈ R|E| satisfying∑

e∈E
ae = z(E) and (10.37)∑

e∈γ
ae ≥ z(γ) for all γ ⊊ E .

The function z is called supermodular if it satisfies the inequalities

z(γ) + z(δ) ≤ z(γ ∩ δ) + z(γ ∪ δ) for all pairs of subsets γ, δ ⊂ E . (10.38)

Given a supermodular function z, Aguiar and Ardila proved that the base polytope P[z]

is always a generalized permutahedron (GP) [194, Theorem 12.3] (as a shorthand, we shall
often say that a polytope "has the GP property", or simply "is GP"). This is a wonderful
class of polytopes defined by Postnikov in [195]. For the purposes of this discussion, we
shall simply define a GP to a supermodular base polytope. To build some intuition for
these polytopes, let us nevertheless give a geometric description of Postnikov’s original
construction. To start, define the standard permutahedron by

Πn = ConvexHull[permutations of (1, . . . , n)] ⊂ Rn . (10.39)

In words, we take the convex hull in Rn of the vector v = (1, . . . , n) and all its n!
permutations vσ = (σ(1), . . . , σ(n)). Equivalently, each permutation of v corresponds to a
vertex. The dimension of Πn is n− 1 rather than n because its points are all constrained
to lie on the hyperplane 1 + 2 + . . .+ n = n(n+ 1)/2. Postnikov then defines a GP as
a special deformation of a standard permutahedron: one is allowed to move any facet
along its normal ray as long as it does not pass through any vertices. Equivalently, one
can move any vertex as long as the directions are preserved. Examples of generalized
permutahedra are shown in Figure (10.2).

GP property of U

Let us now see how this connects to FIs. Take the set E to be the edge set of a Feynman
graph G. A subset of E corresponds to a subgraph γ of G, so z can be thought of as

7The notation 2E stands for the power set of E.
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Figure 10.2: (I) The standard permutahedron Π3. Each vertex is labeled by a permutation
of (1, 2, 3). Since the vector components (x1, x2, x3) of each vertex satisfies x1+x2+x3 = 6,
the dimension of the polytope drops from 3 to 2. (II) Deforming the two red vertices
while preserving edge direction gives a GP. (III) Continuing to deform the vertices creates
another GP. A facet has now degenerated to a point.

a collection of numbers for each subgraph of G. The integer Lγ denotes the number of
loops of γ. It was shown by Schultka [196] that the function

zU (γ) = Lγ (10.40)

is supermodular, and Newton polytope N[U ] of the U -polynomial equals the base polytope
P[zU ]. According to the theorem by Aguiar and Ardila, this means that N[U ] is GP.

GP property of F

The situation is much more complicated for the F-polynomial. Following Brown [197],
call a subgraph γ ⊂ E mass-momentum spanning if the F-polynomial restricted to the
cograph G \ γ vanishes identically, FG\γ = 0. Since the F-polynomial contains all the
kinematic scales (s, t,m2 etc.) of a given FI, an equivalent definition is to say that FG\γ
is scaleless.

We further define the notion of generic kinematics. Consider the F-polynomial of a
1-loop bubble graph with two different internal masses: Fbubble(x) = (p2−m2

0−m2
1)x0x1+

m2
0x

2
0 +m2

1x
2
1. Notice that if the kinematics are tuned to enforce p2 −m2

0 −m2
1 = 0, then

the first monomial drops out. Special choices of kinematics can therefore change the
Newton polytope N[F ], as its vertices stem from the monomial exponents of F . The
question is now how to avoid this degeneration of N[F ] by setting a criterion which
prevents cancellation among momentum and mass terms in F . To this end, begin by
recalling the scalar product matrix Puv = pu · pv, where u, v ∈ V are vertices of G. Call a
vertex v internal if Puv = 0 for all u ∈ V and external otherwise. We then say that a
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kinematic configuration is generic if∑
u,v ∈V ′

Puv ̸=
∑
e∈E′

m2
e (10.41)

for each proper subset of external vertices V ′ ⊊ Vext and each non-empty subset of edges
E′ ⊂ E. When the kinematics are not generic, they are called exceptional. For example,
kinematics are always generic in the Euclidean regime if 1) me > 0 for all e ∈ E, or 2)∑

u,v ∈V ′ Puv < 0 for all V ′ ⊊ Vext. See [185, Section 2.2] for additional details.
Now, assuming generic kinematics, it was shown by Schultka [196]8 that the function

zF =

Lγ + 1 if γ is mass-momentum spanning

Lγ else .
(10.42)

is supermodular, and the Newton polytope N[F ] equals the base polytope P[zF ]. There-
fore, for generic kinematics, the Newton polytope N[F ] is GP. There are reasons to
expect that N[F ] is also GP even for exceptional kinematics in the Euclidean regime [185,
Conjecture 3.7].

It should be emphasized that N[F ] is generally not GP outside of the Euclidean
regime. Indeed, the polytopes for three box diagrams in Figures (10.3a), (10.3b) and
(10.3c) are not GP. The GP property is fulfilled for the polytope associated to the diagram
(10.3d) though.

The story is further complicated by an interesting observation of Arkani-Hamed,
Hillman and Mizera [36, Section IV]: even for exceptional kinematics, the Newton polytope
of F is often equal to the base polytope P[zF ] with zF given by (10.42)! In fact, for
all four examples in Figure (10.3) we have that N[F ] = P[zF ]. This is expected for the
polytope of the last graph (10.3d) since it is GP, but how is this consistent with the fact
that the first three cases (10.3a), (10.3b) and (10.3c) are not GP? The answer is that zF
is not supermodular for those graphs. So the function zF does not fulfil the inequalities
(10.38) for the first three boxes, but it does so for the last box.

While N[F ] = P[zF ] for generic kinematics, we are not aware of a set of necessary
and sufficient conditions that specify when N[F ] equals P[zF ] for exceptional kinematics.
It is at least the case that N[F ] ⊂ P[zF ], because we can only lose monomials in the

8Schultka technically proved this theorem with kinematics in the Euclidean regime. The same result
also holds in the Minkowski regime because the Newton polytopes coincide in both regimes given the
genericity assumption.
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(a) On-shell box.
Not GP.

(b) One off-shell leg.
Not GP.

(c) Two off-shell legs
(adjacent). Not GP.

(d) Two off-shell legs
(crossed). Is GP.

Figure 10.3: 1-loop box diagrams with massless internal propagators and different combi-
nations of on- or off-shell external legs. On-shell (p2 = 0) legs are depicted by dashed lines,
and off-shell (p2 ̸= 0) legs are drawn as solid lines. In all four cases we have N[F ] = P[zF ],
but only (10.3d) is GP.

exceptional case. A counter example9 to equality is given by the following 1-loop triangle:

Ftriangle = F
( )

= m2(x20 + x21) + (2m2 − p2)x0x1 . (10.43)

The dashed line is massless, the double line has off-shell momentum p2 ̸= 0, and every
single solid line has mass m. This is an exceptional kinematic configuration. The Newton
polytope of Ftriangle is the convex hull of the points (2, 0), (0, 2) and (1, 1). Since they
all lie on a line, the dimension of N[Ftriangle] equals 1. However, the base polytope
P[zFtriangle ] can be shown to have dimension 2. Hence P[zFtriangle ] ̸= N[Ftriangle].

Why is this discussion relevant for tropical MC sampling? The answer is that the
sampling algorithm of Feyntrop assumes that N[F ] is GP. Curiously, although we
have highlighted the complications with this assumption above, it appears not to matter
that much in practice. Indeed, by evaluating the examples from this section with
Feyntrop (i.e. quasi-finite versions of the four boxes in Figure (10.3) and the triangle
from (10.43)), we find agreement with other numerical codes in all cases. The catch is that
numerical convergence for Feyntrop becomes slower in the non-GP cases. We suspect
that Feyntrop will fail for more complicated diagrams with exceptional kinematics, but
we did not yet find such an example.

9We thank Erik Panzer for sharing this example with us.
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Euclidean Minkowski

Generic no deformation / always GP deformation / always GP
Exceptional no deformation / always GP deformation / not always GP

Table 10.1: Summary of whether contour deformation is required and whether the GP
property of N[F ] is fulfilled for each kinematic regime.

10.3.2 Tropical sampling algorithm

Feyntrop employs a modification of [40, Algorithm 4] to sample from the tropical
measure µtr given in (10.36), under the assumption that N[F ] is GP. The algorithm
includes a preprocessing step, to be performed once, followed by a sampling step. The
preprocessing step scales as O(n2n), where n = |E| is the number of edges in a Feynman
diagram. This scaling is determined from the preparation of a certain table of rational
numbers J(γ) for each subgraph γ ⊂ E. The sampling step scales as O

(
n2δ−2

)
, where δ

is the demanded relative accuracy of the result. This is just ordinary MC scaling.
Because of the preprocessing step, the time complexity of this algorithm is not fully

polynomial. It is a very interesting question whether a polynomial time algorithm exists
for the numerical evaluation of FIs.

Preprocessing

The first task is to determine the kinematic regime, namely Euclidean vs. Minkowski and
generic vs. exceptional.

The regime is Euclidean if the scalar product matrix Puv is negative semi-definite,
and Minkowski otherwise. If the kinematics are in the Minkowski regime, then contour
deformation needs to be switched on.

If the kinematic point is exceptional and Minkowski, then N[F ] might not be GP,
and it might not even be equal to P[zF ]. In this case, Feyntrop prints a warning
saying that the integration might give the wrong result (though, as mentioned, we have
not yet witnessed erroneous numerics). The program then bravely continues under the
assumption that N[F ] = P[zF ]. For generic kinematics, regardless of whether we are in
the Euclidean or Minkowski regimes, the sampling algorithm is guaranteed to converge to
the correct result [40, Proposition 31].

A summary of the preceding paragraphs is given in Table (10.1). For brevity, we
have left out a technicality in that table regarding the Euclidean regime: there is in fact
a larger regime, containing the Euclidean one, called the pseudo-Euclidean regime; it
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does not require contour deformation, but might witness a failure of the GP property for
exceptional kinematics. See [185, Section 2.2] for details.

The next task is to prepare data associated to each of the 2|E| subgraphs γ ⊂ E:

1. We calculate the loop number Lγ = |γ| − |Vγ | + 1, where Vγ is the vertex set
associated to γ.

2. We check whether or not γ is mass-momentum spanning, i.e. whether FG\γ = 0. By
definition, δm.m

γ = 1 if γ is mass-momentum spanning and δm.m
γ = 0 otherwise.

3. We calculate the generalized degree of divergence [40, Section 7.2]

ω(γ) =
∑
e∈γ

νe −D0Lγ/2− ω0 δ
m.m
γ , (10.44)

where D0 is the integer part of the spacetime dimension and ω0 =
∑

e∈E νe−D0L/2.

If ω(γ) ≤ 0 for any proper subgraph (i.e. not the whole graph γ = E), then G has
a subdivergence. It implies that every term of the ϵ-expansion (10.30) is divergent,
wherefore Feyntrop prints an error and terminates. In this case, one has to shift
the integrand exponents (ν,D) to obtain a quasi-finite integral (cf. Section (10.2.3)).

4. If ω(γ) > 0 for all γ ⊂ E, then we recursively compute a table of numbers J(γ) via
the formulas

J(∅) = ω(∅) = 1

J(γ) =
∑
e∈γ

J(γ \ e)
ω(γ \ e) for all γ ⊂ E , (10.45)

where γ \ e means that we delete the edge e from γ. The last step of the recursion
is for γ = E. In [40, Proposition 29], Borinsky proved the surprising identity

J(E) = Itr , (10.46)

where Itr is the tropical normalization factor from (10.36). The rational numbers
J(γ) are intimately related to the values zF (γ) [40, Section 6.1]. Indeed, this is the
step during preprocessing wherein the GP assumption is employed.

The data (Lγ , δ
m.m
γ ) feeds into the computation of zF (γ) via (10.42). For an exceptional

kinematic point in the Minkowski regime, Feyntrop checks whether zF is supermodular
by testing a (more efficient) variant of the inequalities (10.38), see [185, Equation (26)].
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Feyntrop prints a message if the inequalities are satisfied to notify that P[zF ] is GP,
and a warning otherwise.

The output of this preprocessing is the data
⋃

γ⊂E

{
Lγ , δ

m.m
γ , ω(γ), J(γ)

}⋃{
Itr
}
,

which is stored in computer memory.

MC sampling

The validity of this tropical sampling algorithm was proven in [40, Proposition 31].

Algorithm 6 Generating a sample x distributed as µtr from (10.36)

Initialize the variables γ = E and κ = U = 1.

1: while γ ̸= ∅ do
2: Pick a random edge e ∈ γ with probability

pγe =
1

J(γ)

J(γ \ e)
ω(γ \ e) .

3: Set xe = κ.
4: If γ is mass-momentum spanning but γ \ e is not, set V = xe.
5: If Lγ\e < Lγ , multiply U with xe and store the result in U , i.e. set U ← xe · U .
6: Remove the edge e from γ, i.e. set γ ← γ \ e.
7: Pick a uniformly distributed random number ξ ∈ [0, 1].
8: Multiply κ with ξ1/ω(γ) and store the result in κ, i.e. set κ← κ ξ1/ω(γ).
9: end while

return x = [x0, . . . , x|E|−1] ∈ P|E|−1
+ , U tr(x) = U and Vtr(x) = V .

The main idea of this algorithm is to interpret pγe as a probability distribution over the
edges e of a given subgraph γ. Indeed, it follows from the definition of J(γ) in (10.45)
that pγe ≥ 0 and

∑
e∈γ p

γ
e = 1. Starting from γ = E, the algorithm proceeds to cut an

edge e of the graph G with probability pγe . This yields a new graph γ \ e with the edge
removed. The cutting process repeats until all edges are gone.

We refer to [40, Section 6.1] for explanations on why Algorithm (6) yields correct
values for the triple

{
x, U tr(x), Vtr(x)

}
.
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10.3.3 Evaluating deformed Feynman integrands

Algorithm (6) explains how to efficiently sample points x from µtr, but it does not
take care of all the extra factors in the integrand of (10.30) that arose due to con-
tour deformation. In particular, we would like to efficiently evaluate the factors Xe =

xe exp [−iλ∂eV(x)] , U(X), V(X) and Jλ(x) for any x ∈ P|E|−1
+ .

The non-trivial step in evaluating Xe is the derivative ∂eV(x). Moreover, the Jacobian
Jλ(x) includes the second-order derivative ∂e∂hV(x) according to (10.28). For the sake
of efficiency, it would be nice to have formulas for these derivatives based only on linear
algebra. To this end, begin by defining the (|V | − 1)× (|V | − 1) matrix

M(x) = L−1(x) · P · L−1(x) , (10.47)

where the Laplacian matrix L(x) and the scalar product matrix P come from (10.22). To
avoid confusion, we clarify that L−1

uv means the (u, v)th component of the inverse matrix
L−1. Let e and h be two edges that respectively connect the vertices (ue, ve) and (uh, vh).

Furthermore, define two matrices component-wise by

Aeh(x) =
1

xexh

[
Mue uh

(x) + Mve vh(x) − Mue vh(x) − Mve uh
(x)
]

Beh(x) =
1

xexh

[
L−1
ue uh

(x) + L−1
ve vh

(x) − L−1
ue vh

(x) − L−1
ve uh

(x)
]
,

with the convention that L−1
uv (x) =Muv(x) = 0 if either u or v equal the vertex v0 that

was removed in the FI (10.16) by momentum conservation. Using the identity

∂

∂xe
L−1
uv (x) =

(
L−1(x) · ∂L(x)

∂xe
· L−1(x)

)
uv

, (10.48)

a tedious but straightforward calculation gives the sought after derivative formulas

∂V(x)
∂xe

= −Aee(x) +m2
e (10.49)

∂2V(x)
∂xe∂xh

=
2δehAee(x)

xe
− 2
(
A(x) ◦ B(x)

)
eh
, (10.50)

where the last term denotes the element-wise matrix product (also called the Hadamard
product):

(
A(x) ◦ B(x)

)
eh

= A(x)eh × B(x)eh.
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Summary

Let us summarize all the non-trivial steps that must be carried out to evaluate the
integrand of (10.30) at a single point. Cholesky decomposition is used to evaluate
determinants and inverses whenever possible, that is when the matrix in question is
Hermitian and positive semi-definite (see the discussion around equation (10.23)). When
those two conditions are invalid, the less efficient LU decomposition is opted for instead.

1. Use Algorithm (6) to output the triple
{
x, U tr(x), Vtr(x)

}
.

2. Compute the Laplacian matrix L(x) via (10.20).

3. Compute the inverse L−1(x) via Cholesky decomposition.

4. Use L(x) and L−1(x) to evaluate derivatives of V(x) using (10.49) and (10.50).

5. Compute the deformed X parameters by Xe = xe exp [−iλ∂eV(x)] .

6. Compute the Jacobian Jλ(x) using (10.28).

7. Evaluate det[Jλ(x)] using LU decomposition.

8. Compute the deformed Laplacian L(X).

9. Compute L−1(X) and det[L(X)] using LU decomposition.

10. Employ the formulas (10.22) to evaluate U(X), F(X) and V(X) = F(X)/U(X).

For a kinematic point in the Euclidean regime we are allowed to set λ = 0 implying
X = x, in which case Feyntrop only executes step 1.



Chapter 11

The Program feyntrop

We have implemented the contour-deformed tropical integration algorithm described in
the previous chapter in a C++ module named Feyntrop. The module is equipped
with a python interface. The C++ codebase is an upgrade to the one developed by
Borinsky in [40]. Feyntrop relies on Eigen3 [198] for optimized linear algebra routines,
on OpenMP [199] for parallelization of MC sampling, and on xoshiro256+ [200] for
pseudorandom number generation.

Feyntrop has been verified against AMFlow [34] and pySecDec [176] for roughly
15 different 2- to 5-point Feynman diagrams between 1 and 3 loops at varying kinematic
points, both in the Euclidean and Minkowski regimes. Numerical agreement was found
in all cases within the given uncertainty bounds. In the Euclidean regime, the code was
checked up to O(10) loop-orders in [40] against analytic results for conformal 4-point
functions from φ4-theory.

In this chapter we explain how to use the code, and thereafter present state-of-the-art
examples of numerical evaluations of FIs.

Section 11.1

Basic usage of Feyntrop

Source code for Feyntrop is available in the github repository

https://github.com/michibo/feyntrop .

To download and install it, the following commands can be run in a Linux terminal:

git clone https :// github.com/michibo/feyntrop.git
cd feyntrop
make clean && make

170
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(It should also work in a macOS environment, although C++ compiler issues may ensue.
See the README.txt document on github).

Feyntrop is loaded in a python environment by importing the file py_feyntrop.py

located in the top directory. To test whether the installation was successful, the commands

cd tests
python test_suite.py

will compute six examples with 1-2 loops and 2-5 legs and compare the results with
precomputed values.

The python interface serves three purposes:

1. It simplifies the specification of vertices V and edges E of a Feynman diagram, in
comparison with the more verbose data structures of C++.

2. It allows for self-chosen momentum variables given by a list of replacement rules,
rather than having to manually input the full matrix of scalar products Puv from
(10.22).

3. The numerical results for the ϵ-expansion are printed in an easily readable format.

It is also possible to directly interface with the C++ module via .json files. See the
README.txt document in the github repository for more details on this.

11.1.1 Tutorial

The basic workflow of Feyntrop is illustrated here by means of an example. The code
can be inspected with jupyter [201] by calling

jupyter notebook tutorial_2L_3pt.ipynb

in the top directory of the Feyntrop package. We will evaluate the 2-loop 3-point
function shown in Figure (11.1) in D = 2− 2ϵ dimensions. The dashed lines represent
massless on-shell external momenta: p20 = p21 = 0. The solid, internal lines each have mass
m. The double line denotes an off-shell external momentum p22 ̸= 0. The four vertices
V = Vext⊔Vint = {0, 1, 2}⊔{3} and four edges E = {0, 1, 2, 3} have been explicitly labeled.
The convention of Feyntrop requires one to label external vertices before internal ones.

By the conventions of (10.16), we have the following momentum space representation
with edge weights ν0 = . . . = ν4 = 1:

π−2+2ϵ

∫
d2−2ϵℓ0 d

2−2ϵℓ1
(q20 −m2 + iε)(q21 −m2 + iε)(q22 −m2 + iε)(q23 −m2 + iε)(q24 −m2 + iε)

,
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Figure 11.1: 2-loop 3-point function in the Feyntrop tutorial.

where the δ(D)-functions of (10.16) have been integrated out by setting

q0 = ℓ0 , q1 = ℓ0 + p1 , q2 = ℓ0 + ℓ1 + p1 , q3 = p0 − ℓ0 − ℓ1 , q4 = ℓ1 . (11.1)

We evaluate the integral at the phase space point

m2 = 0.2 , p20 = p21 = 0 , p22 = 1 , (11.2)

which is in the Minkowski regime given that p22 > 0.
The Feyntrop computation begins by importing py_feyntrop.py in a python

environment:

from py_feyntrop import *

Here it is assumed that the files feyntrop.so and py_feyntrop.py are both in the
working directory. The graph in Figure (11.1) is defined by providing a list of edges, edge
weights νe and squared masses m2

e in the format[((
u0, v0

)
, ν0 , m

2
0

)
, . . . ,

((
u|E|−1, v|E|−1

)
, ν|E|−1 , m

2
|E|−1

)]
. (11.3)

The notation (ue, ve) means that there is an edge e connecting the vertices ue and ve.
The vertex ordering (ue, ve) is insignificant. For the example at hand, we thus write

edges = [((0,1), 1, ’mm ’), ((1,3), 1, ’mm ’), ((2,3), 1, ’mm ’),
((2,0), 1, ’mm ’), ((0,3), 1, ’mm ’)]
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The edge weights were here set to νe = 1 for all e. The chosen symbol mm stands for m2,
and will be replaced by its value 0.2 later on1.

The next step is to fix the momentum variables. By the zero-indexing convention, we
have external momenta

{
p0, . . . , p|Vext|−1

}
. But the last momentum p|Vext|−1 is automati-

cally inferred by Feyntrop using momentum conservation, leaving
{
p0, . . . , p|Vext|−2

}
to be fixed by the user. A momentum configuration is then specified by providing a
collection of scalar products

pu · pv for all 0 ≤ u ≤ v ≤ |Vext| − 2 . (11.4)

In the code, we must give a replacement rule for each scalar product in terms of some
variables of choice. In the present example there are |Vext| = 3 external vertices, so we
ought to provide replacement rules for {p20, p21, p0 · p1}. We have p20 = p21 = 0, and by
momentum conservation,

p22 = (−p0 − p1)2 = 2p0 · p1 =⇒ p0 · p1 = p22/2 . (11.5)

In the syntax of Feyntrop we then write

replacement_rules = [(sp[0,0], ’0’), (sp[1,1], ’0’), (sp[0,1], ’pp2/2’)]

The scalar product between pu and pv is represented by the symbol sp[u,v], and pp2

corresponds to p22. Since we will eventually substitute values for the two parameters pp2
and mm, we further define

phase_space_point = [(’mm’, 0.2), (’pp2 ’, 1)]

which fixes m2 = 0.2 and p22 = 1.
The final data to be provided are

D0 = 2
eps_order = 5
Lambda = 7.6
N = int(1e7)

D0 is the integer part of D = D0 − 2ϵ. We expand up to, but not including, eps_order.
Lambda is the contour deformation parameter in (10.24). N denotes the number of MC
sampling points, so increasing this value will yield better numerical accuracy (the error
on MC sampling scales as O(1/

√
N) according to (10.4)).

Tropical Monte Carlo integration is finally performed by calling
1It is also allowed to input numerical values for the masses already in the edges list. The first entry,

for instance, would then be ((0,1), 1, ’0.2’).
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trop_res , Itr = tropical_integration(
N,
D0,
Lambda ,
eps_order ,
edges ,
replacement_rules ,
phase_space_point)

If no error is printed, then trop_res will contain the ϵ-expansion (10.30) without the pref-
actor Γ(ω)/

(
Γ(ν0) · · ·Γ(ν|E|−1)

)
= Γ(2ϵ+3). Itr is the value of the tropical normalization

factor from (10.46). Running this code on a laptop gives the output

Prefactor: gamma (2*eps + 3).
(Effective) kinematic regime: Minkowski (generic ).
Generalized permutahedron property: fulfilled.
Analytic continuation: activated. Lambda = 7.6
Started integrating using 8 threads and N = 1e+07 points.
Finished in 6.00369 seconds = 0.00166769 hours.

-- eps^0: [ -46.59 +/- 0.13] + i * [ 87.19 +/- 0.12]
-- eps^1: [ -274.46 +/- 0.55] + i * [111.26 +/- 0.55]
-- eps^2: [ -435.06 +/- 1.30] + i * [ -174.47 +/- 1.33]
-- eps^3: [ -191.72 +/- 2.15] + i * [ -494.69 +/- 2.14]
-- eps^4: [219.15 +/- 2.68] + i * [ -431.96 +/- 2.67]

trop_res contains the printed ϵ-expansion coefficients in the format

[ (
(re0, σ

re
0 ) ,

(
im0, σ

im
0

))
, . . . ,

(
(re4, σ

re
4 ) ,

(
im4, σ

im
4

)) ]
,

where re0 ± σre0 is the real part of the 0th order term, and so forth. To obtain the
ϵ-expansion of the integral with the prefactor included, one may call

eps_expansion(trop_res , edges , D0)

which gives

174.3842115*i - 93.17486662 + eps *( -720.8731714 + 544.3677186*i) +
eps **2*( -2115.45025 + 496.490128*i) + eps **3*( -3571.990969 - 677.5254794*i) +
eps **4*( -3872.475723 - 2726.965026*i) + O(eps **5)

On the choice of λ

A few comments are in order regarding the choice of the deformation parameter λ
(what was called Lambda in the code). The analytic expression for the integral (10.29) is
independent of λ (so long as the deformed contour doesn’t hit any poles), but the numerical
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error coming from MC sampling depends rather sensitively on its value. Moreover, the
optimal value for λ will generally vary depending on the phase space point. It is currently
up to the user to find a suitable value by trial and error, e.g. by performing several
integrations with low sampling numbers N . A heuristic starting value is O(1/Λ2), where
Λ2 is the largest kinematic scale in the F-polynomial (for instance some mass m2).

In the future, it would be beneficial to automate the choice of λ either by 1) minimizing
the sampling variance σf , given in (10.4), by solving for λ in

∂λσf = 0 , (11.6)

or 2) by tightening the tropical approximation bounds in (10.31).

Section 11.2

Examples of Feynman integral evaluations

In this section, we use Feyntrop to numerically evaluate many FIs of interest. Each
script is available in the /examples folder in the gitub repository. When possible, the
results have been verified against AMFlow and/or pySecDec2. The exception is the
example from Section (11.2.1), as we were not been able to re-compute these values with
any other software in reasonable time - though it might be possible now with the new
release of pySecDec [177].

Each example can be computed on a laptop within a few minutes. Though to properly
showcase the potential of Feyntrop , we shall only include results obtained from a
high-performance machine: a single AMD EPYC 7H12 64-core processor using all cores.
With N = 108 MC sampling points each example only took a few seconds to finish. The
relative accuracies of the results fall between 10−2 to 10−4.

The phase space points are chosen to be away from any kinematic thresholds to
ensure numerical convergence. In all but the last example, the ϵ-expansion goes up to
and including O(ϵ2L).

2We thank Vitaly Magerya for help with verifying results using pySecDec.
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11.2.1 5-loop 2-point zigzag diagram

Here we evaluate a 5-loop 2-point function with all masses different in D = 3 − 2ϵ

dimensions:

0 1

6

5

4

3

2

The edge set is

edges = [((0,6), 1, ’1’) , ((0,5), 1, ’2’), ((5,6), 1, ’3’),
((6,4), 1, ’4’) , ((5,3), 1, ’5’), ((5,4), 1, ’6’),
((4,3), 1, ’7’) , ((4,2), 1, ’8’), ((3,2), 1, ’9’),
((3,1), 1, ’10’), ((2,1), 1, ’11’)]

Above we already input the chosen mass values

m2
0 = 1 , m2

1 = 2 , . . . , m2
10 = 11 . (11.7)

The remaining kinematic variable to be specified is the incoming momentum. We set
p20 = 100 in Feyntrop by writing

replacement_rules = [(sp[0,0], ’pp0 ’)]
phase_space_point = [(’pp0 ’, 100)]

The value λ = 0.02 turns out to yield small errors. This is of order O(1/p20), in accordance
with the heuristic described near the end of the previous section. With N = 108 MC
sampling points, the command tropical_integration in Feyntrop gives

Prefactor: gamma (5*eps + 7/2).
(Effective) kinematic regime: Minkowski (generic ).
Finished in 9.62 seconds.
-- eps^0: [0.0001976 +/- 0.0000016] + i * [0.0001415 +/- 0.0000018]
-- eps^1: [ -0.004961 +/- 0.000023 ] + i * [ -0.000802 +/- 0.000024 ]
-- eps^2: [ 0.04943 +/- 0.00017 ] + i * [ -0.01552 +/- 0.00017 ]
-- eps^3: [ -0.25468 +/- 0.00083 ] + i * [ 0.24778 +/- 0.00093 ]
-- eps^4: [ 0.5909 +/- 0.0033 ] + i * [ -1.7261 +/- 0.0038 ]
-- eps^5: [ 1.048 +/- 0.012 ] + i * [ 7.410 +/- 0.013 ]
-- eps^6: [ -14.652 +/- 0.037 ] + i * [ -20.933 +/- 0.038 ]
-- eps^7: [ 65.87 +/- 0.10 ] + i * [ 35.25 +/- 0.11 ]
-- eps^8: [ -190.90 +/- 0.27 ] + i * [ -4.91 +/- 0.26 ]
-- eps^9: [ 393.08 +/- 0.70 ] + i * [ -182.56 +/- 0.59 ]
-- eps ^10:[ -558.01 +/- 1.64 ] + i * [ 685.62 +/- 1.29 ]

For fun, the same computation with N = 1012 samples results in
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Finished in 20 hours.
-- eps^0: [0.000196885 +/- 0.000000032] + i * [0.000140824 +/- 0.000000034]
-- eps^1: [ -0.00493791 +/- 0.00000040 ] + i * [ -0.00079691 +/- 0.00000038 ]
-- eps^2: [ 0.0491933 +/- 0.0000025 ] + i * [ -0.0154647 +/- 0.0000025 ]
-- eps^3: [ -0.253458 +/- 0.000012 ] + i * [ 0.246827 +/- 0.000012 ]
-- eps^4: [ 0.587258 +/- 0.000046 ] + i * [ -1.720213 +/- 0.000046 ]
-- eps^5: [ 1.05452 +/- 0.00015 ] + i * [ 7.38725 +/- 0.00015 ]
-- eps^6: [ -14.66144 +/- 0.00047 ] + i * [ -20.86779 +/- 0.00046 ]
-- eps^7: [ 65.8924 +/- 0.0013 ] + i * [ 35.0793 +/- 0.0013 ]
-- eps^8: [ -190.9702 +/- 0.0036 ] + i * [ -4.4620 +/- 0.0034 ]
-- eps^9: [ 393.2522 +/- 0.0092 ] + i * [ -183.7431 +/- 0.0087 ]
-- eps ^10:[ -558.202 +/- 0.023 ] + i * [ 688.556 +/- 0.021 ]

11.2.2 3-loop 4-point envelope diagram

This example is a non-planar, 3-loop 4-point diagram in D = 4− 2ϵ dimensions:

21

0 3

The dots on the crossed lines represent squared propagators rather than vertices; this
choice of edge weights makes the diagram quasi-finite. The edge data are

edges = [((0,1), 1, ’mm0 ’), ((1,2), 1, ’mm1 ’), ((2,3), 1, ’mm2 ’),
((3,0), 1, ’mm3 ’), ((0,2), 2, ’mm4 ’), ((1,3), 2, ’mm5 ’)]

Note that the edge weights ν4 and ν5 equal 2.
We define two-index Mandelstam variables by sij = (pi + pj)

2. They are input into
replacement rules for Feyntrop by writing (sp[i,j], ’(sij - ppi - ppj)/2’) with
0 ≤ i ≤ j ≤ 2. The chosen phase space point is

p20 = 1.1 , p21 = 1.2 , p22 = 1.3 ,

s01 = 2.1 , s02 = 2.2 , s12 = 2.3 ,

m2
0 = 0.05 , m2

1 = 0.06 , m2
2 = 0.07 ,

m2
3 = 0.08 , m2

4 = 0.09 , m2
5 = 0.1 .

(11.8)

Setting λ = 1.24 and N = 108, we get the result
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Prefactor: gamma (3*eps + 2).
(Effective) kinematic regime: Minkowski (generic ).
Finished in 5.12 seconds.
-- eps^0: [ -10.8335 +/- 0.0084] + i * [ -12.7145 +/- 0.0083]
-- eps^1: [ 47.971 +/- 0.059 ] + i * [ -105.057 +/- 0.059 ]
-- eps^2: [ 413.05 +/- 0.23 ] + i * [ 7.29 +/- 0.23 ]
-- eps^3: [ 372.07 +/- 0.65 ] + i * [ 947.82 +/- 0.65 ]
-- eps^4: [ -1412.36 +/- 1.45 ] + i * [1325.74 +/- 1.45 ]
-- eps^5: [ -2726.00 +/- 2.67 ] + i * [ -1295.36 +/- 2.69 ]
-- eps^6: [ 287.25 +/- 4.28 ] + i * [ -3982.04 +/- 4.30 ]

11.2.3 2-loop 4-point µe-scattering diagram

We evaluate a non-planar, 2-loop 4-point diagram that contributes to muon-electron
scattering. It is quasi-finite in D = 6− 2ϵ dimensions. The diagram was evaluated for
vanishing electron mass in [202], but here we keep the electron massive.

25
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0

The dashed lines represent photons. The solid lines are electrons with mass m. The
double lines denote muons with mass M ∼ 200m. The set of edges is

edges = [((0,1), 1, ’0’), ((0,4), 1, ’MM ’), ((1,5), 1, ’mm ’), ((5,2), 1, ’mm ’),
((5,3), 1, ’0’), ((4,3), 1, ’MM ’), ((4,2), 1, ’0’)]

where mm and MM stand for m2 and M2 respectively. We choose a phase space point similar
to that of [202, Section 4.1.2]:

p20 =M2 = 1 , p21 = p22 = m2 = 1/200 , s01 = −1/7 , s12 = −1/3 . (11.9)

By momentum conservation, this fixes

s02 = 2M2 − 2m2 − s01 − s12 = 2.49 . (11.10)

With additional settings λ = 1.29 and N = 108, the result comes out to
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Prefactor: gamma (2*eps + 1).
(Effective) kinematic regime: Minkowski (exceptional ).
Finished in 6.53 seconds.
-- eps^0: [1.16483 +/- 0.00083] + i * [0.24155 +/- 0.00074]
-- eps^1: [5.5387 +/- 0.0086 ] + i * [2.2818 +/- 0.0093 ]
-- eps^2: [15.171 +/- 0.058 ] + i * [10.079 +/- 0.064 ]
-- eps^3: [ 28.02 +/- 0.32 ] + i * [ 28.17 +/- 0.28 ]
-- eps^4: [ 38.20 +/- 1.42 ] + i * [ 56.94 +/- 0.85 ]

Because the momentum configuration is exceptional, we cannot be sure that the GP
property holds (cf. Section (10.3.1)). In spite of that, we are able to confirm the values
above with both AMFlow and pySecDec.

The leading-order term in ϵ differs from [202, Equation (4.20)] by roughly 10% because
we have included the electron mass. If we set m2 = 0 in Feyntrop, then we are able to
reproduce the value from that reference (even though this is an even more exceptional
configuration!).

11.2.4 2-loop 5-point QCD-like diagram

Here we evaluate a QCD-like, (6− 2ϵ)-dimensional graph with 2 loops and 5 legs:
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The dashed lines represent on-shell gluons. The solid lines are quarks each having mass
m. The double line denotes some off-shell leg p24 ̸= 0 fixed by momentum conservation.

The edge list is
edges = [((0,1), 1, ’0’), ((1,2), 1, ’mm ’), ((2,6), 1, ’0’), ((6,3), 1, ’mm ’),

((3,4), 1, ’0’), ((4,5), 1, ’mm ’), ((5,0), 1, ’0’), ((5,6), 1, ’mm ’)]

where mm is the symbol standing for m2. Our chosen phase space point is

s01 = 2.2 , s02 = 2.3 , s03 = 2.4 , s12 = 2.5 ,

s13 = 2.6 , s23 = 2.7 , p20 = 0 , p21 = p22 = p23 = m2 = 1/2 ,
(11.11)

with sij = (pi + pj)
2 as before. With settings λ = 0.28 and N = 108, Feyntrop gives

the result
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Prefactor: gamma (2*eps + 2).
(Effective) kinematic regime: Minkowski (exceptional ).
Finished in 8.20 seconds.
-- eps^0: [0.06480 +/- 0.00078] + i * [ -0.08150 +/- 0.00098]
-- eps^1: [0.4036 +/- 0.0045 ] + i * [ 0.3257 +/- 0.0035 ]
-- eps^2: [ -0.7889 +/- 0.0060 ] + i * [ 0.957 +/- 0.016 ]
-- eps^3: [ -1.373 +/- 0.030 ] + i * [ -1.181 +/- 0.034 ]
-- eps^4: [ 1.258 +/- 0.088 ] + i * [ -1.205 +/- 0.036 ]

The kinematic configuration is once again exceptional. The result is nevertheless verified
with pySecDec.

11.2.5 2-loop 5-point Higgs production diagram

This example contributes to triple Higgs production via gluon fusion, gg → HHH, in
D = 4− 2ϵ dimensions:

1 6

50

2

4

3

The dashed lines represent massless, on-shell gluons. The single solid lines are propagators
containing the top quark mass. The three external double lines are put on-shell to the
Higgs mass.

The edge data are

edges = [((0,1), 1, ’mm_top ’), ((1,6), 1, ’mm_top ’), ((5,6), 1, ’0’),
((6,2), 1, ’mm_top ’), ((2,3), 1, ’mm_top ’), ((3,4), 1, ’mm_top ’),
((4,5), 1, ’mm_top ’), ((5,0), 1, ’mm_top ’)]

with mm_top standing for the square of top quark mass, m2
t . The kinematic setup is given

by

p20 = p21 = 0 , p22 = p23 = p24 = m2
H , (11.12)

s01 = 5m2
H − s02 − s03 − s12 − s13 − s23 ,

with the last relation being a consequence of momentum conservation. So the space
of kinematic variables is parametrized by (s02, s03, s12, s23,m

2
t ,m

2
H), and we choose the
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point

m2
t = 1.8995 , m2

H = 1 , s02 = −4.4 , s03 = −0.5 ,
s12 = −0.6 , s13 = −0.7 , s23 = 1.8 .

(11.13)

This point lies in the physical region, and it contains the physically relevant mass ratio
m2

t /m
2
H = 1.8995. For λ = 0.64 and N = 108, the FI then evaluates to

Prefactor: gamma (2*eps + 4).
(Effective) kinematic regime: Minkowski (generic ).
Finished in 8.12 seconds.
-- eps^0: [ -0.0114757 +/- 0.0000082] + i * [0.0035991 +/- 0.0000068]
-- eps^1: [ 0.003250 +/- 0.000031 ] + i * [ -0.035808 +/- 0.000041 ]
-- eps^2: [ 0.046575 +/- 0.000098 ] + i * [0.016143 +/- 0.000088 ]
-- eps^3: [ -0.01637 +/- 0.00017 ] + i * [ 0.03969 +/- 0.00016 ]
-- eps^4: [ -0.02831 +/- 0.00023 ] + i * [ -0.00823 +/- 0.00024 ]

11.2.6 4-loop 0-point QED-like diagram

Next we evaluate a QED-like, 4-loop vacuum diagram in D = 4− 2ϵ dimensions:

4

5 3

1

0 2

The dashed lines are photons, and the solid lines are fermions with mass m. Since
this diagram has no external momenta, it is not necessary to perform any contour
deformation. This means that we can set λ = 0, and result is expected to be purely real.
In the Feyntrop script, we write replacement_rules = [] to specify that no external
momenta are present.

The edge set is given by

edges = [((0,1), 1, ’mm ’), ((1,2), 1, ’mm ’), ((2,0), 1, ’mm ’),
((0,5), 1, ’0’ ), ((1,4), 1, ’0’ ), ((2,3), 1, ’0’ ),
((3,4), 1, ’mm ’), ((4,5), 1, ’mm ’), ((5,3), 1, ’mm ’)]

with mm standing for m2. Setting this mass to unity by

phase_space_point = [(’mm’, 1)]

the result for N = 108 sampling points becomes
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Prefactor: gamma (4*eps + 1).
(Effective) kinematic regime: Euclidean (generic ).
Finished in 3.58 seconds.
-- eps^0: [3.01913 +/- 0.00047] + i * [0.0 +/- 0.0]
-- eps^1: [ -7.0679 +/- 0.0021 ] + i * [0.0 +/- 0.0]
-- eps^2: [20.5399 +/- 0.0074 ] + i * [0.0 +/- 0.0]
-- eps^3: [ -27.895 +/- 0.024 ] + i * [0.0 +/- 0.0]
-- eps^4: [62.043 +/- 0.074 ] + i * [0.0 +/- 0.0]
-- eps^5: [ -59.46 +/- 0.23 ] + i * [0.0 +/- 0.0]
-- eps^6: [155.27 +/- 0.73 ] + i * [0.0 +/- 0.0]
-- eps^7: [ -90.81 +/- 2.26 ] + i * [0.0 +/- 0.0]
-- eps^8: [403.78 +/- 6.71 ] + i * [0.0 +/- 0.0]

11.2.7 An elliptic, conformal, 4-point integral

The final example is a 1-loop 4-point conformally invariant integral [203]. The analytic
result for this diagram with edge weights ν0 = ν1 = ν2 = ν3 = 1/2 and dimension D = 2

was calculated in [204, Section 7.2]:

x0

x3

x2

x1
=

4√
−p22

[
K(z)K(1− z̄) +K(z̄)K(1− z)

]
. (11.14)

This result features the elliptic integral K given by

K(z) =

∫ 1

0

dx√
(1− x2)(1− z2x2)

(11.15)

and kinematic variables

zz̄ =
p20
p22
, (1− z)(1− z̄) = p21

p22
. (11.16)

The denominator of (11.14) differs from [204, Equation (7.6)] because we have used
conformal symmetry to send x3 →∞, where x3 is a dual momentum variable (defined by
pi = xi − xi+1). This reduces the kinematic space to that of a 3-point function.

In Feyntrop we thus specify an edge list for a 1-loop graph with 3 external legs:
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edges = [((0,1), 1/2, ’0’), ((1,2), 1/2, ’0’), ((2,0), 1/2, ’0’)]

All internal masses are set to zero, otherwise conformal symmetry would be broken, and
every edge weight has been set to 1/2. It is most natural to study conformal integrals in
the Euclidean regime, so let us pick

p20 = −2 , p21 = −3 , p22 = −5 . (11.17)

With N = 108 sampling points, we obtain

(Effective) kinematic regime: Euclidean (generic ).
Finished in 1.34 seconds.
-- eps^0: [9.97192 +/- 0.00027] + i * [0.0 +/- 0.0]

This result agrees with the analytic formula (11.14). We hope that our code can furnish
further study into conformal integrals, as they are important for N = 4 SYM and the
cosmological bootstrap.



Chapter 12

Conclusion and Outlook

Conclusion

This thesis has been an investigation into the mathematical structure of Feynman integrals.
Its overarching goal has been to develop novel techniques for evaluating these integrals.

In Part I of this thesis, we studied integration-by-parts identities and the method
of Pfaffian DEQs for evaluating Feynman integrals. When the Feynman integrals in
question admit a solution in terms of multiple polylogarithms, we showed how the Magnus
expansion can bring the Pfaffian system into canonical form, whose solution is readily
obtained via the path-ordered exponential.

These techniques were used to compute form factors for a leptophillic dark matter
model. The calculation involved a class of 2-loop 3-point Feynman integrals with massive
internal propagators, which were solved for in terms of multiple polylogarithms.

In Part II, we delved deeper into the mathematics of DEQs by formalizing the notion
of a D-module. A D-module encapsulates the algebraic properties of differential operators
that annihilate a given function such as a Feynman integral.

We studied a broad class of functions called Euler integrals containing Feynman
integrals as a special case. Euler integrals are annihilated by a known collection of
higher-order differential operators called the GKZ system. We showed how to connect the
GKZ system to the more manageable first-order Pfaffian system through the Macaulay
matrix.

In some cases, the Euler integral matched exactly with a Feynman integral. In other
cases, the Euler integral had too many unfixed parameters. The latter case was treated
by developing two new D-module restriction methods. One of those methods drove us to
establish an algorithm for obtaining logarithmic series solutions to Pfaffian systems.
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In Part III, we formulated a numerical integration scheme for the evaluation of
Feynman integrals which combined Monte Carlo integration with tropical geometry.
The algorithm relied on the assumption that the Newton polytope of the F Symanzik
polynomial is a generalized permutahedron, and we gave a detailed discussion of when
this can be expected to hold. The iε-prescription was incorporated into the algorithm via
contour deformation, which allowed us to evaluate Feynman integrals in physical regions
of kinematic space. The algorithm was implemented in a publicly available program
named feyntrop, whose validity was verified against existing numerical codes. We used
Feyntrop to numerically evaluate Feynman integrals between 1-5 loops and 0-5 legs.

Outlook

There are several avenues of research to pursue based on the results of this thesis.

Applying the Macaulay matrix to other ideals. Algorithm (1) takes a holonomic
ideal I together with a D-module basis as input, feeds it through the Macaulay matrix,
and outputs a Pfaffian system. In all examples of this thesis, we worked with the GKZ
system I = HA(β) simply because HA(β) and a basis of standard monomials are easily
determined given an Euler integral. However, there might very well be other situations
where an annihilating ideal is known. If a basis is not known, it could be guessed by
executing Algorithm (1) (with parameters set to numbers) for different choices of standard
monomials until it succeeds.

A non-GKZ example is for instance the conformally invariant, massless, 1-loop 3-point
function studied in [139]. An annihilating ideal was there determined from the generators
of conformal symmetry. It would be interesting to study these operators with the Macaulay
matrix, as well as those coming from the larger Yangian symmetry group [205].

Another route would be to employ the algorithms from [180, 206, 207] to compute
Picard-Fuchs ideals for Feynman integrals; these algorithms were effective for rather
complicated diagrams, e.g. at 2 loops and 7 points. As an aside, it would be interesting
to see whether a canonical Feynman integral has any nice structure when it is represented
as an operator inside the D-module D/I, where I is the Picard-Fuchs ideal.

More complicated examples of logarithmic restriction. An algorithm for the
calculation of logarithmic series solutions to Pfaffian systems was presented in Section
(8.2.4). We gave results for 1-loop Bhabha scattering in Section (9.2), and partial results
for the 2-loop Bhabha double-box in Section (9.3). It would be instructive to first complete
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the 2-loop calculation; this involves the determination of boundary constants and power
corrections (m2/s)n.

Afterwards, it would be interesting to see how far this approach can go. The complexity
of the restricted Pfaffian systems for the 2-loop Bhabha double-box was miniscule compared
to today’s standards, indicating that more complicated diagrams could potentially be
evaluated with this method.

Expansion around singular locus. Recall the form of the logarithmic expansion
ansatz (8.44). There we chose a distinguished singularity z1 = 0 to expand around.
It would be interesting to reformulate the logarithmic restriction procedure to instead
expand around the entire singular locus L(z) of a Pfaffian system, where L(z) is a product
of irreducible hypersurfaces. For instance, the singular locus for Appell’s F4 function is
L(z) = z1z2[(z1 − z2)2 − 2(z1 + z2) + 1]. For Feynman integrals, L(z) would correspond
to the Landau variety [188].

The series ansatz is now roughly represented as (see [157, Equation (12.15)] for details)

I⃗(z) ∼ L(z)λ ×
∞∑
n=0

M∑
m=0

I⃗ (n,m)(z)× L(z)n × log[L(z)]m , (12.1)

where λ ∈ R and M ∈ Z≥0. Analytical solutions to Feynman integrals are often hard
to numerically evaluate near Landau singularities, but a solution written in this fashion
could potentially have better numerical stability.

Applications in algebraic statistics. Looking beyond physics, one finds that GKZ
systems and Euler integrals also frequently appear in the course of Bayesian inference in
algebraic statistics [208, Section 3].

The article [209] gave an initial application of the Macaulay matrix in this context;
it is natural to expect that this research direction can be pushed even further with the
more sophisticated Macaulay matrix method developed here. Further, it appears that the
Pfaffian-level restriction protocol from Section (8.2) can be used to study contingency
tables1 in statistics [210].

Numerators and ϵ-divergent integrals in Feyntrop. The program Feyntrop pre-
sented in Chapter (11) has two main shortcomings which would be beneficial to eliminate
in future versions:

1These tables are a standard tool in statistics to record interrelations between random variables.
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1. It only works for scalar Feynman integrals. But in gauge theories such as QED and
QCD, one encounters numerators in momentum space representation of the form
(p · ℓ)ν , where p and ℓ are external and loop momenta respectively.

2. It assumes a quasi-finite integral representation (cf. Section (10.2.2)).

By the formulas of [189, Appendix A], numerators can be written in the Symanzik
representation by including an extra (homogeneous) polynomial N inside the integrand.
There is no reason to expect that this polynomial would enjoy the generalized permu-
tahedron property though, so it might not be straightforward to include it in the MC
sampling of Algorithm (6).

The quasi-finite condition can be lifted by following the protocol in [191, Page 5],
where explicit formulas are given for factoring out ϵ-poles in front of finite integrals.
These formulas would involve derivatives of the U and F Symanzik polynomials, and we
fortunately have efficient expressions for those (cf. Section (10.3.3)).

With these two additions, we envision that Feyntrop could be used in a wide range
of phenomenological calculations. Especially pertaining to scattering amplitudes involving
many mass scales, which are the hardest ones to treat analytically with DEQs due to the
proliferation of functions beyond the class of multiple polylogarithms2.

A canonical contour deformation. In Section (10.2.1), we implemented the iε-
prescription via a contour deformation of the Schwinger parameters xe → xe exp [−iλ∂eV] .
The small, but finite, number λ ∈ R>0 is a free parameter. An explicit value has to
be specified by the user in Feyntrop, and the accuracy of the result depends quite
sensitively on this choice.

It would be a significant development to determine a canonical choice for λ, depending
on the data of the Feynman integral in question as well as the given phase space point.
This would not only improve the user experience in Feyntrop, but also constitute the
first example of a contour deformation for Feynman integrals without any free parameters.

2Feyntrop has already been used to check results for a non-planar 3-loop calculation related to
Higgs+jet production [211].



Appendix A

Details on D-modules

Here we collect some additional details on D-modules that are referred to in the main
text.

Section A.1

Basis change in a holonomic D-module

The goal in this section is to construct the Pfaffian system for the basis e

∂ie = P
(e)
i · e (A.1)

given a known system in the standard monomial basis

∂iStd = P
(Std)
i · Std . (A.2)

e ∈ (R/I)R is here an R-dimensional vector of (equivalence classes of) differential
operators.

Observe that, if we could find a matrix G relating the two bases by

e = G · Std , (A.3)

then the problem would be solved by a gauge transformation1

P
(e)
i =

[
∂i •G + G · P (Std)

i

]
·G−1 . (A.4)

1Note that G is invertible under the assumption that e and Std are both bases.
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To construct G, we begin by writing the decomposition

e =
∑
q

G(1)
q · (∂q Std) , (A.5)

where G(1)
q ∈ C(z)R×R. In other words, we write each element of e as a sum of rational

functions times derivatives ∂q that act on Std. The idea is now to transform the expression
∂q Std into the form G

(2)
q ·Std, for some G(2)

q ∈ C(z)R×R, by repeated application of (A.2).
This is best illustrated by means of an example.

Example A.1. Let q = {1, 1, 0, 0, . . . , 0}. Then ∂q = ∂1∂2. Applying (A.2) twice, the
expression ∂q Std becomes

∂1∂2 Std = ∂1

[
P

(Std)
2 · Std

]
(A.6)

=
[
∂1 • P (Std)

2

]
· Std + P

(Std)
2 · [∂1 Std] (A.7)

=
[
∂1 • P (Std)

2

]
· Std + P

(Std)
2 · P (Std)

1 · Std . (A.8)

The matrix

G(2)
q = ∂1 • P (Std)

2 + P
(Std)
2 · P (Std)

1 , (A.9)

hence satisfies the sought after relation ∂q Std = G
(2)
q · Std . ■

We conclude that the gauge transformation matrix G in (A.3) takes the form

G =
∑
q

G(1)
q ·G(2)

q (A.10)

where G(2)
q is built from matrix products between Pfaffian matrices P (Std)

i and derivatives
thereof.

Section A.2

Basis change without derivatives

We concluded above that the gauge transformation matrix (A.10) is constructable from
derivatives of Pfaffian matrices Pi(z). In the GKZ setting we might, however, like to
fix some of the z-variables to numbers. Then we no longer have the luxury of taking
derivatives. As a remedy to this, let us derive a formula for ∂i • Pj which is based solely
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on matrix multiplication.
Using the same setup as in Section (6.6), we set

f(β) =
1

Γ(β0 + 1)

∫
Γ
g(z|x)β0x−β′ dx

x
and F (β) =


Std1 • f(β)

...
StdR • f(β)

 . (A.11)

As described in Section (6.6), there are two ways of expressing the derivative of F (β):

∂j • F (β) = Pj(β) · F (β) (A.12)

∂j • F (β) = F (β − aj) . (A.13)

Differentiating (A.12) w.r.t. zi, we have

∂i ∂j • F (β) = (∂j • Pi) · F + Pj · (∂i • F ) (A.14)

= (∂j • Pi) · F + Pj · Pi · F , (A.15)

where we omitted the β-dependence for clarity. On the other hand, differentiating (A.13)
yields

∂i ∂j • F (β) = ∂i • F (β − aj) (A.16)

= F (β − aj − ai) (A.17)

= Pj(β − ai) · Pi(β) · F (β) , (A.18)

where the identity Pk(β) ·F (β) = F (β− ak) was applied twice in the final step. Equating
(A.15) with (A.18) and isolating (∂i • Pj), we conclude that

(∂i • Pj)(β) =
[
Pj(β − ai)− Pj(β)

]
· Pi(β) . (A.19)

The RHS of this equation can then be inserted into the G-matrix of (A.10).

Section A.3

General formula for homogeneity rescaling

We gave an example in Section (6.5) of how to rescale the GKZ variables z = (z1, . . . , zN )

so as to fix n+ 1 of them to unity (cf. equation (6.61)). This section presents a general
formula.
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To start, given an (n+1)×N matrix A =
[
a1 | . . . | aN

]
and a list of n+1 rescaling

parameters t = {t1, . . . , tn+1}, we construct a list of N exponentials

tA := {ta1 , . . . , taN } where tai :=
n+1∏
j=1

t
(ai)j
j . (A.20)

This matrix exponentiation notation obeys the rule (tA)B = tA·B. For two sets r and s,
both of length N , the product r × s is defined to be

r × s := {r1s1, . . . , rNsN} . (A.21)

In this language, the homogeneity property (6.57) reads

fβ(t
A × z) = tβfβ(z) . (A.22)

Now fix two subsets

σ ⊂ {1, . . . , N} and η = {1, . . . , N} \ σ , (A.23)

where σ has size |σ| = n+ 1, and η is its complement. Let Aσ denote the submatrix of A
whose columns are labeled by σ. We assume that σ is chosen such that Aσ is invertible,
i.e. det(Aσ) ̸= 0.

Returning to (A.22), a judicial choice for t turns out to be

t = z−A−1
σ

σ , (A.24)

where zσ picks out the variables of z = {z1, . . . , zN} labeled by σ. The homogeneity
relation then becomes

fβ
(
z−A−1

σ ·A
σ × z

)
= z−A−1

σ ·β
σ fβ(z) . (A.25)

For this choice of t, all the arguments on the LHS labeled by σ are set to unity:

{
z−A−1

σ ·A
σ × z

}
i
=

1 , i ∈ σ
z−A−1

σ · ai
σ zi , i ∈ η .

(A.26)
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As desired, the function on the RHS of (A.25)

gβ(w) := z−A−1
σ ·β

σ fβ(z) (A.27)

now effectively only depends on N − (n+ 1) cross ratios

w := {w1, . . . , wN−(n+1)} := z
−A−1

σ ·Aη
σ × zη . (A.28)

What’s left is to rewrite the GKZ system in terms of the w-variables. To this end,
we summarize a result which is proved in [82, Appendix A]. Given two positive integers
a, b ∈ Z>0, we first define the rising and falling factorials by

(a)b := a(a+ 1)(a+ 2) · · · (a+ b+ 1) (A.29)

[a]b := a(a− 1)(a− 2) · · · (a− b+ 1) . (A.30)

Given an N -dimensional vector u and an integer vector v ∈ ZN
≥0, we extend these

definitions to

(u)v := (u1)v1 · · · (uN )vN (A.31)

[u]v := [u1]v1 · · · [uN ]vN . (A.32)

In what follows, we shall set

u = θw =
[
θw1 , . . . , θwN−(n+1)

]T
, (A.33)

where θi = zi∂i.
To rewrite the GKZ system in terms of w, it suffices to find a relation between

∂vz • fβ(z) and gβ(w) for v ∈ ZN
≥0, The master formula works out to

∂vz • fβ(z) = (A.34)

(−1)|vσ |z−A−1
σ ·
(
β+A·v

)
σ

{
w−vη

(
A−1

σ · β +A−1
σ ·Aη · θw

)
vσ

[θw]vη • gβ(w)
} ∣∣∣

w=(A.28)
,

where |vσ| =
∑

i∈σ vi. Although this expression looks somewhat daunting, it has fortu-
nately been implemented in the asir package mt_gkz.

Example A.1. For the 2F1 case of Example (6.1), the following script will output a
GKZ system in rescaled variables:
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A = [
[1,1,1,1],
[0,1,0,1],
[0,0,1,1]

];
Beta = [b1 ,b2 ,b3];
Sigma = [1,2,3];
Ideal = mt_gkz.gkz_b(A, Beta , Sigma | partial = 1);

The choice of Sigma means that we choose to rescale z1 = z2 = z3 = 1. The option
partial = 1 indicates that the ideal is to be written in terms of ∂i rather than θi symbols.
The list Ideal will contain the single operator (6.65) (albeit in variables xi rather than
zi, as this is the convention for GKZ variables in asir). ■

The formula (6.44) for the operator dq, which maps a differential form [ωq] to its
corresponding D-module element, has also been implemented with rescaled variables via
the command mt_gkz.rvec_red2(...).

Section A.4

GKZ systems are isomorphic to twisted cohomology groups

Section (6.3.2) mentioned an isomorphism between the GKZ system DN/HA(β) and the
twisted de Rham cohomology group Hk

A(β). This section provides a very rough sketch
of the proof behind this theorem. Heavy machinery from category theory is required to
prove this in detail, which is outside the scope of this thesis, so we will content ourselves
with summarizing the key steps. The idea is to show that the GKZ system and the
twisted cohomology group are both isomorphic to another D-module

∫
π L, to be described

shortly, wherefore D/HA(β) and Hk
A(β) must also be isomorphic.

Begin by recalling the space O(X) from (6.32). It is equipped with the structure of
an abelian group under the addition of functions. As mentioned in Section (4.1), we can
turn an abelian group into a D-module by specifying an action of the Weyl algebra D.
Given a function h ∈ O(X), the action is here

∂zi • h =
∂h

∂zi
+

β0
g(z|x)

∂g(z|x)
∂zi

h (A.35)

∂xi • h =
∂h

∂xi
+

β0
g(z|x)

∂g(z|x)
∂xi

h− βi
xi
h . (A.36)

The resulting D-module is denoted by the symbol L instead of O(X).
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Let π : (z, x) → z be a projection map. The direct image D-module
∫
π L, has an

abstract categorical definition2, but for the case of a projection it can be concretely
realized as a quotient space that we proceed to build. Write

DN+n = C⟨z1, . . . , zN , x1, . . . , xn, ∂z1 , . . . , ∂zN , ∂x1 , . . . , ∂xn⟩ (A.37)

for the ring of differential operators in N+n variables. The subring DN contains operators
in the z-variables only. It is possible to write L = DN+n/I, where I is the annihilating
ideal of the Euler integrand

U = g(z|x)β0xβ
′
. (A.38)

By differentiating U w.r.t. (z, x) and recalling the expression for g = g(z|x) from (6.2), a
short calculation shows that I is generated by

I =
N∑
i=1

D
[
g ∂zi − β0 xαi

]
+

n∑
i=1

D
[
xi g ∂xi − β0

N∑
j=1

(αj)i zj x
αj + βi g

]
, (A.39)

where (αj)i denotes the ith component of the multi-index αj ∈ Zn. The direct image
D-module then turns out to be represented by the quotient∫

π
L =

DN+n

I +∑n
i=1 ∂xiDN+n

. (A.40)

This is now a DN -module, as the x-variables have been "projected out" by the map
π. The RHS of (A.40) is also called the integration module [86, Chapter 6]3. It is an
algebraic counterpart to the familiar integration operation in calculus for the following
reason: writing ∫

π
L = DN/J (A.41)

for some J , then the generators of J can be shown to annihilate the Euler integral itself
[85, Chapter 5]. It is rather surprising that the integration of a function, which is generally
a highly transcendental operation, can be captured in purely algebraic terms!

2In categorical terms, given a morphism f : X → Y between two complex manifolds X and Y , the
direct image

∫
f

is a functor depending on f . Loosely speaking, it acts as a certain pushforward from
sheaves on X to sheaves on Y . See [23, Section 1.3] for details.

3There are several asir packages for computing annihilation ideals of Euler integrands [212]. An
algorithm for computing integration modules has been implemented in the package nk_restriction
[149].
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Now, it is a classical result that the twisted cohomology group Hk
A(β) is isomorphic

to the direct image
∫
π L as a D-module [23, Chapter 4] [213]. The addition of differential

forms an abelian group, and Hk
A(β) indeed becomes a D-module under the action

∂zi • [ω(z)] =
[
∂ω(z)

∂zi
+ β0

xαi

g(z|x)ω(z)
]
, (A.42)

where [ω(z)] ∈ Hk
A(β) denotes an equivalence class of differential forms. What is more,

Gel’fand, Kapranov and Zelevinsky proved that the annihilating ideal J defined above
precisely equals HA(β) [42]. In other words,

∫
π L is isomorphic to the GKZ system.

Since
∫
π L is isomorphic to both the GKZ system and the twisted cohomology group,

we finally infer that

DN/HA(β) ∼= Hk
A(β) . (A.43)

We emphasize that this isomorphism only holds true when the z-variables are indeterminate
and the β-parameters are non-resonant.
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