
Forum Math. 12 (2000), 397±419 Forum
Mathematicum

( de Gruyter 2000

Divisorial domains

Silvana Bazzoni

(Communicated by RuÈdiger GoÈbel)

Abstract. Let R be a domain with quotient ®eld Q. R is divisorial if R : �R : I� � I for every
nonzero fractional ideal I of R. We prove that a local domain R, not a ®eld, is divisorial if and
only if Q=R has simple essential socle and R=rR is AB-5* for every nonzero r A R. We give
examples of non-divisorial and of non-®nitely divisorial local domains such that Q=R has
simple essential socle. If A is any R-submodule of Q with endomorphism ring R, we say that
R is A-divisorial if A : �A : X� � X for every nonzero submodule X of A. We prove that if a
local noetherian domain R is A-divisorial for some A, then R is one-dimensional and A is
®nitely generated, i.e. A is isomorphic to a canonical ideal of R. If A is a fractional ideal of
R we generalize the characterization of divisorial domains, namely we prove that R is A-
divisorial if and only if Q=A has simple essential socle and R=rR is AB-5* for every nonzero
r A R.

1991 Mathematics Subject Classi®cation: 13G05, 13C13; 13A15, 13B22.

Introduction

Throughout this paper, R will denote an integral domain, not a ®eld, and Q will be its
®eld of quotients.

The notion of divisorial fractional ideal is a classical one and was introduced in the
thirties: if F is a fractional ideal of R, we denote by Fÿ1 the inverse of F, namely

Fÿ1 � R : F � fq A Q j qF URg:

F is said to be divisorial if it coincides with its double inverse. Note that, since R : F

is canonically isomorphic to HomR�F ;R�, F ÿ1 can be viewed as the R-dual of F.
Thus we can say that F is divisorial if and only if it is R-re¯exive. A domain R is said
to be divisorial if every nonzero ideal I of R (equivalently, every nonzero fractional
ideal) is divisorial. Divisorial domains have been studied by H. Bass, W. Heinzer and
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E. Matlis in the classical cases. More precisely, Bass in [4] and Matlis in [18] gave
a characterization of the noetherian case, while Heinzer in [12] characterized the
integrally closed divisorial domains.

In this paper we consider the general case and we give necessary and su½cient
conditions for a domain to be divisorial. A ®rst result in this direction appears in a
paper by L. Salce and the author [6], where it is proved that a domain is divisorial if
and only if it is h-local and every localization at a maximal ideal is divisorial. The
necessity of this condition was already proved by Heinzer and Matlis, independently.
This characterization is very useful, since it allows to reduce the problem to the local
case. Another interesting result proved by Heinzer and Matlis states that, if a domain
R is divisorial, then the R-module Q=R has essential socle. We note that, if a local
domain R is either noetherian or integrally closed, then R is divisorial if and only if
Q=R has simple essential socle or, di¨erently stated, if and only if Q=R is cocyclic.

In Section 2 we show that the above characterization is valid also for other classes
of local domains, but not always: we give an example of a local domain R such that
Q=R has simple essential socle and nevertheless R is not divisorial (Example 2.11).
Thus the problem is to ®nd which condition has to be added to Q=R being cocyclic in
order to obtain a characterization of local divisorial domains. The appropriate con-
dition is the notion AB-5*, which is the dual of the Grothendieck condition AB-5 for
abelian categories: we prove that a local domain R is divisorial if and only if Q=R is
cocyclic and R=I is AB-5* for every nonzero ideal I of R (or, equivalently, for every
I � rR, 00 r A R). A consequence of the AB-5* condition on every proper homo-
morphic image of R is that the module I=mI (m the maximal ideal of R), is ®nitely
generated, for every ideal I of R. But we exhibit an example showing that this more
manageable condition (together with the condition Q=R cocyclic) is not su½cient to
conclude that R is divisorial. A question raised by Heinzer was to decide whether the
condition Q=R cocyclic is su½cient to guarantee that at least the ®nitely generated
ideals of R are divisorial. We answer to the question negatively by exhibiting a
counterexample (see Proposition 4.4, Section 4). This counterexample is constructed
by making use of the notion of A-divisoriality, introduced in [6], which we now
illustrate. If A is any R-submodule of Q and S is its endomorphism ring, then the
A-inverse of any S-submodule X of Q is de®ned by

A : X � fq A Q j qX UAg:

Thus the A-inverse of X is canonically isomorphic to the A-dual HomS�X ;A� of X.
A domain R is said to be A-divisorial if every nonzero S-submodule of A coincides
with its A-double inverse, i.e. it is A-re¯exive. As in the case of divisorial domains,
the notion of A-divisoriality is a local one. In fact, in [6] it is shown that a domain R

is A-divisorial for a proper nonzero submodule A of Q if and only if the endomor-
phism ring S of A is h-local and every localization at a maximal ideal m of S is Am-
divisorial.

In Section 3 we characterize the local noetherian A-divisorial domains generalizing
well known results on noetherian divisorial domains. More precisely, we consider a
local noetherian domain R and an R-submodule A of Q with endomorphism ring R
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and we show that, in case A is a fractional ideal of R (i.e. ®nitely generated), every
characterization obtained by Bass and Matlis carries over simply by changing R with
A. For instance, we prove that R is A-divisorial if and only if R has Krull dimension
one and Q=A has simple socle, or equivalently, if and only if Q=A has simple essential
socle. Moreover we show that, if a local noetherian domain R is A-divisorial, then A

must be ®nitely generated and thus the above characterization applies. It is interest-
ing to note that, if A is not ®nitely generated, then the condition on Q=A being co-
cyclic or even injective is not su½cient to conclude that R is A-divisorial.

At this point we have to remark that, after writing this paper, we happened to read
a manuscript by W. Heinzer, J. Huckaba and I. Papick [13] which has a terminology
similar to ours. They study domains R admitting an m-canonical ideal which means,
in our terminology, domains R which are A-divisorial for a fractional ideal A of R

with endomorphism ring R. For instance in Proposition 4.3 they prove the same
result we state in Theorem 3.2 (4), but with a di¨erent approach.

The investigation on A-divisorial noetherian domains, besides its intrinsic interest,
is very useful in producing examples of local domains R such that Q=R is cocyclic:
these are obtained in Section 4, by means of a generalization of the classical D�m
construction introduced by Krull. More precisely, if R0 is a local domain and A is an
R0-submodule of Q such that the endomorphism ring of A is R0 and Q=A is cocyclic,
then we consider the domain R de®ned by R � R0 � Ax� x2Q��x��, where x is an
indeterminate. If Q�R� is the quotient ®eld of R, then Q�R�=R is cocyclic, but de-
pending on the choice of R0 and A, we can make R to be divisorial or not. For in-
stance, using a particular notion of independence for elements of the completion of a
local noetherian domain considered in [15], we are able to choose a noetherian local
domain R0 and an A with endomorphism ring R0, such that Q=A is cocyclic but not
injective. This implies that the local domain R described above has non-divisorial
®nitely generated ideals, hence it answers negatively Heinzer's question mentioned
at the beginning.

The problem of characterizing integrally closed A-divisorial domains is not com-
pletely solved. A question arising in this context is the following: assume that R is a
local integrally closed A-divisorial domain for a fractional ideal A of R with endo-
morphism ring R. Does it follow that R is a valuation domain? (The same question is
posed also in [13].) The above question is closely related to a di½cult open problem
posed by Heinzer in 1968, namely to decide whether the integral closure of a diviso-
rial domain is a PruÈfer domain.

In Section 5 we are able to give a generalization of our characterization of local
divisorial domains. Namely we prove that a domain R is A-divisorial, for a fractional
ideal A of R with endomorphism ring R, if and only if Q=A is cocyclic and R=rR is
AB-5* for every nonzero element r A R.

1 Preliminaries and notations

Throughout R will denote a commutative domain with identity and with quotient
®eld Q. By an overring of R we will mean any ring between R and Q. A local domain
is a domain with exactly one maximal ideal and it is not necessarily noetherian. A
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domain is h-local if every nonzero prime ideal is contained in a unique maximal ideal
and every nonzero ideal is contained in ®nitely many maximal ideals.

If X and Y are R-submodules of Q, then X : Y denotes the R-submodule of Q

consisting of the elements q A Q such that qY UX . It is obvious that X : Y is can-
onically isomorphic to HomR�Y ;X�.

We recall the notions of A-divisorial and A-re¯exive modules as introduced in [6].
Given a ®xed R-submodule A of Q, an R-module N is said to be A-re¯exive (respec-
tively A-torsionless) if the canonical homomorphism

oN : N ! HomR�HomR�N;A�;A�

de®ned by: oN�x�� f � � f �x� �x A N; f A HomR�N;A��, is an isomorphism (respec-
tively a monomorphism). Obviously A-re¯exive modules are A-torsionless and A-
torsionless modules are torsionfree. Recall that a fractional ideal I of the domain R is
divisorial if I � R : �R : I �; thus, in our terminology, the divisorial fractional ideals
are exactly the R-re¯exive fractional ideals of R. If A is a ®xed R-submodule of Q, we
say that the domain R is A-divisorial (respectively A-re¯exive), if every A-torsionless
EndR�A�-module of rank one (resp. of ®nite rank) is A-re¯exive. Hence R is A-
divisorial if and only if A : �A : X� � X for every nonzero EndR�A�-submodule X of
A. To avoid trivial cases, we will always assume 00A0Q. Following the termi-
nology used in the literature, R-re¯exive and R-divisorial domains will be simply
called ``re¯exive'' and ``divisorial'' respectively.

In Section 3, we will frequently use well known results on injective modules over
noetherian rings; for instance, we will assume familiarity with the structure of in-
decomposable injective modules over such rings, with their endomorphism rings and
also with Matlis duality on a complete local noetherian ring. For terminology and
results on the subject, we refer to [16] or [23].

2 Local divisorial domains

As recalled in the Introduction, the investigation of divisorial domains can be re-
duced to the local case, since Proposition 5.4 in [6] states that a domain is divisorial if
and only if it is h-local and every localization at a maximal ideal is divisorial. We ®rst
recall the characterization of divisorial local noetherian domains.

Theorem A (H. Bass Theorem 6.2, 6.3 [4]; E. Matlis, Theorem 3.8, [18]). Let R be a

local noetherian domain with maximal ideal m. The following are equivalent:

1. R is divisorial.

2. Q=R is the injective envelope of the simple module R=m.

3. Q=R is injective.

4. R has Krull dimension one and �R : m�=R is simple.

5. R is re¯exive.
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De®nition 1. An R-module is said to be cocyclic if it has simple essential socle.

It is well known that, if a local domain R is divisorial, then Q=R is cocyclic. (See [18]
or [12]). We can add the following characterization.

Theorem 2.1. Let R be a local noetherian domain with maximal ideal m. Then R is

divisorial if and only if Q=R is cocyclic.

Proof. The socle of Q=R is �R : m�=R, hence it is enough to show that if Q=R is
cocyclic, then R has Krull dimension one. Assume that P is a nonzero prime ideal of
R and let 00 r A P. The annihilator of the element rÿ1 � R A Q=R is rR and by hy-
pothesis, Q=R is embeddable in the injective envelope E of the simple R-module
R=m. Hence, using well known properties of E, a suitable power mn of m is con-
tained in rRJP and thus P is the maximal ideal of R. r

The characterization of the integrally closed case given by Heinzer is the following.

Theorem B (W. Heinzer, Theorem 5.1, [12]). Let R be a local integrally closed domain
with maximal ideal m. The following are equivalent:

1. R is divisorial.

2. R is a valuation domain with principal maximal ideal.

As in the noetherian case, we show that the condition Q=R cocyclic is equivalent to
the divisoriality. First we recall a Lemma.

Lemma 2.2 (Lemma 5.5, [6]). Let R be a local domain with maximal ideal m such that
Q=R is cocyclic. Then:

1. m is invertible if and only if R is a valuation divisorial domain.

2. If R is integrally closed, then R is a valuation divisorial domain.

As a corollary of the preceding Lemma we obtain.

Theorem 2.3. Let R be a local integrally closed domain with maximal ideal m. Then R
is divisorial if and only if Q=R is cocyclic.

Remark 1. A consequence of Lemma 2.2 (1) is that, if R is a local domain with
principal maximal ideal, then R is divisorial if and only if Q=R is cocyclic.

If R is a local domain with non-principal maximal ideal, then R : m coincides with
m : m, hence it is the endomorphism ring of m. Let us denote m : m by R1. Assume
moreover that Q=R is cocyclic; then R1 is two-generated over R and, in the termi-
nology used in [9], R1 is a unique minimal overring of R. The following Proposition,
which illustrates the properties of R1, is essentially Theorem. 5.7 in [6], but here we
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state it under weaker hypotheses. It is easy to see that the same proof applies with the
obvious changes.

Proposition 2.4. Let R be a local domain with non-principal maximal ideal m and such

that Q=R is cocyclic. Let R1 � m : m; then one and only one of the following cases can

occur:

1. R1 is local with maximal ideal m1 properly containing m.

In this case m1=m is simple both as an R-module and as an R1-module; moreover

m2
1 Jm and R : m1 �m1.

2. R1 has exactly two maximal ideals m1 and m2.
In this case m � m1 Xm2, mi=m is simple both as an R-module and as an

R1-module, for i � 1; 2; R : mi � mj , for i 0 j. Moreover R1 is a PruÈfer domain,

intersection of two valuation domains V1 and V2 whose maximal ideals n1 and n2

satisfy m � n1 Xn2.

3. R1 is local with maximal ideal m.

In this case R1 is a valuation domain.

The preceding Proposition allows us to consider only three di¨erent possibilities. We
will give a complete description of the situation arising in case (2) and (3), while case
(1) is more di½cult, but also more interesting. The next two Lemmas are easy, but
very useful.

Lemma 2.5. Let R be a local domain with non-principal maximal ideal m and such that

Q=R is cocyclic. Let R1 � m : m; then an ideal I of R is an R1-ideal if and only if I is

not a principal ideal of R.

Proof. Let I be a non-principal ideal of R and let 00 c A I . There exists d A I such
that d B cR. Consider q � d

c
, then qR� R properly contains R hence, by hypothesis,

qR� RKR1. Now for every a A R1 we have a � qr� s for some r; s A R; hence ca �
dr� sc A cR� dRJ I and thus R1I J I . Conversely, it is clear that if I � cR, then
ca B I for every a A R1nR. r

Lemma 2.6 (Proposition 7.5, [6]). Let V be a valuation domain with maximal ideal m.

Then V is m-divisorial, i.e. m : �m : I � � I for every nonzero ideal I of V.

We settle now the case of a domain satisfying Proposition 2.4 (3).

Proposition 2.7. Let R be a local domain with non-principal maximal ideal m such that

R1 � m : m is local with maximal ideal m. Then R is divisorial if and only if Q=R is
cocyclic.

Proof. As already observed, we have to prove only the su½ciency. Assume that I

is an ideal of R which is principal or isomorphic to m; then I is clearly divisorial.
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Otherwise, by Lemma 2.5, I is an R1 ideal and R1 is a valuation domain by Propo-
sition 2.4. Now if I is principal over R1, say I � bR1, then R : �R : I� � bR : m � I .
In the remaining case we have R : I � m : I � R1 : I , since I is non-principal neither
over R nor over R1. By Lemma 2.6, m : I cannot be principal over R, since otherwise
I Gm. Thus R : �m : I � � m : �m : I� � I and R is divisorial. r

Example 2.8. Let V be a valuation domain of the form K �m where m is the maxi-
mal ideal of V and K is a ®eld containing a sub®eld k0 such that �K : k0� � 2. Then
the local domain R � k0 �m is a divisorial domain satisfying Proposition 2.7.

We now consider case (2) of Proposition 2.4. We will use the well known fact that, if
a family of ideals of a divisorial domain has nonzero intersection, then the inverse of
the intersection is the sum of the inverses of the ideals in the family.

Proposition 2.9. Let R be a local domain with non-principal maximal ideal m such that

Q=R is cocyclic and R1 �m : m has exactly two maximal ideals m1 and m2. Then R

is divisorial if and only if R1 is an h-local domain.

Proof. Assuming that R is divisorial, we show that R1 is h-local by imitating the
proof of Lemmas 2.3 and 2.4 in [12] as follows. Let I be any nonzero ideal of R1

contained in m1 Xm2. Consider B � fBag the set of all the ideals Ba of R1 such that
I JBa Jm2, but Ba Pm1. B is not empty, since m2 A B. Let B0 �7

a
Ba, then

B0 Pm1. In fact, if B0 Jm1, then R : B0 �
P

a�R : Ba�KR : m1 � m2, by Propo-
sition 2.4. Now m2 �m � bR for every b A m2nm; thus b A Bÿ1

a1
� � � � � Bÿ1

an
and,

since Bÿ1
a Km for every a, we conclude that m2 JBÿ1

a1
� � � � � Bÿ1

an
. Hence R : m2 �

m1 KBa1
X � � � XBan

, a contradiction. Now assume that the ideal I is a nonzero
prime ideal of R1; choosing b A B0nm1, we obtain I � b2R1 Pm1 and thus B0 J
I � b2R1. Now b A I � b2R1 yields the contradiction I not prime. Hence any nonzero
prime ideal of R1 is contained in only one maximal ideal, i.e. R1 is h-local. Con-
versely, let I be a nonzero ideal of R; to show that R is divisorial it is enough to
assume that I is non-principal and non isomorphic to m. Hence R : I �m : I and, by
Lemma 2.5, I is an R1 ideal. Moreover, since m : I is a fractional R1-ideal, it cannot
be principal over R, hence R : �R : I � � m : �m : I�. In the notations of Proposition
2.4 (2), R1 � V1 XV2, where V1 and V2 are two valuation domains with maximal
ideals n1 and n2 respectively; moreover �R1�mi

� Vi, for i � 1; 2. Now, by hypothesis
R1 is h-local and using Lemma 2.3 [6] (which shows that over an h-local domain the
operation'':'' commutes with localizations at maximal ideals), it is easy to see that
m : �m : I � � �n1 : �n1 : IV1��X �n2 : �n2 : IV2��. Thus, by Lemma 2.6, m : �m : I �
� IV1 X IV2 � I and I is divisorial. r

Example 2.10. A noetherian domain satisfying the hypotheses of Proposition 2.9 is
R � �k�X ;Y ��X ;Y �=�X 2 ÿ Y 2 ÿ X 3�� where k is a ®eld. Denoting by x; y the gen-
erators of the maximal ideal m of R we have R1 � R� ��x� y�=x�R, m1 �m�
��x� y�=x�R and m2 � m � ��xÿ y�=x�R.
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A non-noetherian example is Example 4.3 in [9].

The preceding results describe many cases in which a local domain R is divisorial if
and only if Q=R is cocyclic. We exhibit now an example showing that in general this
characterization doesn't hold; the example uses the classical D�m construction.

Example 2.11. Let R0 be a noetherian local divisorial domain with maximal ideal m0

and with quotient ®eld Q. Let V � Q��x�� be the valuation domain of the power series
ring with coe½cients in Q and denote by m the maximal ideal of V. Consider R �
R0 �m; R is local with maximal ideal m0 �m and quotient ®eld Q��x��. It is
straightforward to see that R : �m0 �m� � �R0 : m0� �m and using the fact that
Q=R0 is cocyclic as an R0-module, we can show that Q��x��=R is a cocyclic R-
module. In fact, let x �PiVÿk qix

i A Q��x��nR. Then, clearly k V 0; if k � 0, we
must have q0 B R0. Thus there exists 00 r0 A R0 such that q0r0 A �R0 : m0�nR0,
hence, xr0 A �R : �m0 �m��nR. If k V 1, then qxk A R for every q A Q; hence, if
a A �R0 : m0�nR0, we have xqÿ1

ÿkaxk A �R : �m0 �m��nR. By Corollary 4.4 in [5], R is
divisorial if and only if every proper submodule of Q containing R0 is a fractional
ideal of R0. Thus if we choose R0 with non-®nitely generated integral closure, then R

is not divisorial.

Remark 2. It is well known that a local noetherian domain of dimension one has non-
®nitely generated integral closure if and only if it is analitically rami®ed (See Theo-
rem 8 in [21] or Theorem 10.2 in [19]) and examples of analitically rami®ed local
noetherian domains of dimension one are the famous examples by Nagata ((E3.1) in
[20]). Hence the existence of a local noetherian divisorial domain with non-®nitely
generated integral closure is guaranteed for instance by Theorem 14.16 in [19].

Remark 3. It is easy to verify that the ®nitely generated ideals of the domain R con-
structed in Example 2.11 above are divisorial. We will show in Section 4 (Proposition
4.4) that the condition Q=R cocyclic is not su½cient to conclude that every ®nitely
generated ideal is divisorial.

Our purpose is to ®nd which condition has to be added to the hypothesis Q=R

cocyclic in order to guarantee the divisoriality of the local domain R. The notion
which allows us to obtain the wanted characterization is the AB-5* condition, which
is the dual of the Grothendieck condition AB-5.

De®nition 2. Let R be any ring. An R module M satis®es the AB-5* condition if

7
i

�Ni � K� � 7
i

Ni

� �
� K

for every inverse system of submodules fNigi A I of M and for every submodule K

of M.
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The class of modules satisfying the AB-5* condition contains the linearly compact
modules, hence also the artinian modules. It is clearly closed under submodules and
epimorphic images, but in general is not closed under ®nite direct sums. (See [1], [7].)

Proposition 2.12. Let R be a local divisorial domain. Then R=rR is AB-5* for every

nonzero r A R.

Proof. Let 00 r A R and let fJi=rRgi A I be an inverse system of submodules of R=rR;
then fJigi A I is a family of ideals of R with nonzero intersection. Hence �7

i
Ji�ÿ1 �

�Pi Jÿ1
i � and f�Ji�ÿ1gi A I is a direct system of fractional ideals of R. If K=rR is any

submodule of R=rR, then the AB-5 condition implies:

X
i

Jÿ1
i

 !
XKÿ1 �

X
i

�Jÿ1
i XKÿ1�:

But, by divisoriality, we also have
P

i�Jÿ1
i XKÿ1� � �7

i
�Ji � K��ÿ1, hence

7
i

�Ji � K� �
X

i

Jÿ1
i

 !
XKÿ1

" #ÿ1

� 7
i

Ji

� �
� K :

Passing to the homomorphic images in R=rR, we conclude that R=rR is AB-5*. r

We can now state the main result of this Section.

Theorem 2.13. Let R be a local domain. Then R is divisorial if and only if Q=R is

cocyclic and R=rR is AB-5* for every nonzero r A R.

Proof. In view of the preceding results we have to prove only the su½ciency. Let I be
a nonzero ideal of R and consider 00 r A I . By hypothesis, the ring R=rR is AB-5*
and cocyclic, since it is isomorphic to rÿ1R=RJQ=R. Hence, by Corollary 6 in [2],
R � R=rR is a dual ring, i.e. every ideal of R coincides with its double annihilator in
R. Let AnnR N denote the annihilator in R of the module N; we have

AnnR�I=rR� � �rR : I �XR

rR
� rR : I

rR
;

where the second equality holds since r A I implies r�R : I�JR. We also have

AnnR

rR : I

rR

� �
� �rR : �rR : I��XR

rR
� R : �R : I�

rR
;

and again the second equality holds, since rR : �rR : I� � R : �R : I�JR. Hence we
conclude that I is divisorial. r
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Remark 4. Note that in the classical cases the AB-5* condition on every epimorphic
image R=rR is automatically satis®ed. In fact, in the noetherian case R has Krull
dimension one, hence, for every nonzero element r A R, R=rR is artinian and thus
AB-5*. In the integrally closed case R is a valuation domain, hence R itself is AB-5*.

If Q=R is AB-5*, then clearly R=rR is AB-5*, for every nonzero r A R. We don't
know whether Q=R is necessarily AB-5* in case R is a divisorial domain. We will
state this problem as Question 5.6 in a more general context.

We show that it is not possible to weaken the AB-5* condition.

Proposition 2.14. Let R be local divisorial domain. Then Q=R is cocyclic and for every

nonzero ideal I of R, I=mI is ®nitely generated.

Proof. Let I be a nonzero ideal of R and take 00 r A mI . Then I=mI is an epi-
morphic image of I=rR which is an AB-5*-module, by Proposition 2.12, hence I=mI

itself is AB-5*. It is well known that the socle of an AB-5*-module over a local
(commutative) ring is ®nitely generated (see for instance Theorem 1.2 in [1]), hence
I=mI is ®nitely generated as an R-module. r

Remark 5. The converse of the statement of the preceding Proposition doesn't hold,
as the following Example shows.

Example 2.15. Let R � R0 �m be as in Example 2.11. Assume moreover that R0 is
a totally divisorial local noetherian domain, i.e. a divisorial domain all of whose
overrings are divisorial and such that the integral closure of R0 is not ®nitely gen-
erated over R0. (See Sections 6 and 7 in [6] and Example 3.5 in [14]). In Example
2.11, we have shown that, if Q�R� denotes the quotient ®eld of R, then Q�R�=R is
cocyclic, but R is not divisorial. Let n denote the maximal ideal of R. We show now
that I=nI is ®nitely generated over R, for every nonzero ideal I of R. It is well known
that every ideal of R is isomorphic to a fractional ideal of the form J �m where J

is an R0 submodule of Q, hence I=nI G J=m0J. Thus it is enough to show that
J=m0J is ®nitely generated over R0; this is obviously true if J is ®nitely generated
or if J � Q. By results in [6] Section 6, the integral closure R0 of R0 is a valuation
domain with maximal ideal aR0, where a is an element in m0. Moreover, if J is
non-®nitely generated, then it is an R0-module, hence it is isomorphic to akR0, for
some integer k A Z. This yields J=m0J GR0=aR0 which is a simple R0-module, by
Lemma 6.4, [6].

3 A-divisorial noetherian domains

Recall that, if A is any proper R-submodule of Q with endomorphism ring S, R is A-
divisorial if and only if A : �A : X � � X for every nonzero S-submodule X of A. Thus
a domain is A-divisorial if and only if the endomorphism ring of A is A-divisorial.
Hence, to study the A-divisorial domains amounts to consider domains R which are
A-divisorial for a module APQ such that A : A � R. The ®rst result to recall is that
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A-divisoriality is a local property. In fact, Theorem 4.7 in [6] states that if A is an R-
submodule of Q with A : A � R, then R is A-divisorial if and only if R is h-local and
Rm is Am-divisorial for every maximal ideal m of R. Consequently we will reduce
our investigation to the local case and thus, in this Section:

R will denote a noetherian local domain with maximal ideal m.
If N is any R-module, ER�N� will denote the R-injective envelope of N.

Lemma 3.1. Let R be a local noetherian A-divisorial domain, where A is an R-

submodule of Q with A : A � R. Then:

1. Q=A is the injective envelope of the simple module R=m.

2. For every nonzero R-submodule X of A such that A=X is cocyclic, there exists

00 q0 A Q such that X � q0AXA.

Proof. (1) By Lemma 4.3 and Proposition 4.6 in [6], Q=A is an essential extension
of its socle �A : m�=m; hence Q=A is embeddable in the injective envelope of the
simple module S � R=m. Let E � ER�S�; we prove that E � Q=A by showing that
AnnE m n � AnnQ=A m n for every n A N. Let R � R=mn; then AnnE mn � ER�S�.
Denote by Y the submodule AnnQ=A mn of ER�S�. Then Y � �A : mn�=A and it

is easy to see that AnnR Y � A : �A : mn�
mn

, since A : m n KA and A : A � R. By

hypothesis, R is A-divisorial, thus we have AnnR Y � 0. Hence, applying Matlis'
duality valid over complete local noetherian rings, we conclude that Y � AnnE m n �
AnnQ=A m n, for every n A N; consequently E � Q=A.

(2) By hypothesis X � A : �A : X�, hence X �7
XJqA

qAXA. Since A=X has

simple essential socle, there must exist q0 A Q such that X � q0AXA. r

We will ®rst assume that A is a fractional ideal of R, since in this case the character-
ization of A-divisorial noetherian domains closely resembles Theorems A and 2.1
stated in Section 2.

Theorem 3.2. Let R be a local noetherian domain. Assume that A is a fractional ideal of

R such that A : A � R. The following are equivalent:

1. R is A-divisorial.

2. Q=A is the injective envelope of the simple module R=m.

3. Q=A is injective.

4. R has Krull dimension one and �A : m�=m is simple.

5. Q=A is cocyclic.

6. R is A-re¯exive.

Proof. (1) ) (2). By Lemma 3.1.
(2) ) (3). Obvious.
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(3)) (4). Our proof is similar to the proof of Theorem 5 in [17]. Assume that Q=A
is injective and let Y be an indecomposable summand of Q=A. Then Y � ER�R=P�
for a nonzero prime ideal P of R. By results in [16], a copy of the quotient ®eld of
R=P is contained in Y XAnnQ=A P. Now AnnQ=A P � �A : P�=A is a ®nitely gen-
erated R=P-module, then the quotient ®eld of R=P is ®nitely generated over R=P and
thus P is the maximal ideal m. We conclude that Q=A is a direct sum of copies of the
module E � ER�R=m�. If P 0 is any nonzero prime ideal of R, tensoring by RP 0 the
exact sequence

0! A! Q! Q=A! 0

we get E nRP 0 0 0, since A is ®nitely generated. Thus P 0 coincides with the maximal
ideal of R, hence R has Krull dimension one. We can now apply Theorem. 15.5 in
[19], to get that �A : m�=m is simple.

(4) ) (1). By Theorem 15.5 in [19].
(2) ) (5). Obvious.
(5)) (4). Without loss of generality we can assume that A is an ideal of R and that

Q=AJE � ER�R=m�. We have to prove that R has Krull dimension one. Let P be a
nonzero prime ideal of R and let 00 r A P be such that rÿ1 B A. Then AnnR�rÿ1 � A�
� rAJP and, since rÿ1 � A A Q=AJE, there exists n A N such that mn JP, i.e. P

is maximal.
(6) ) (1). Obvious.
(1)) (6). By Theorem 3.6 in [6] it is enough to show that Ext1

R�I ;A� � 0, for every
ideal I of R. Applying the functor HomR�I ;ÿ� to the exact sequence 0! A! Q!
Q=A! 0, we obtain

0! HomR�I ;A� ! HomR�I ;Q� !f HomR�I ;Q=A� ! Ext1
R�I ;A� ! 0:

We have already proved that, if condition (1) holds, then Q=A is injective, hence
every element in HomR�I ;Q=A� is the multiplication by an element q� A A Q=A.
Thus f is surjective and Ext1

R�I ;A� � 0. r

Remark 6. The preceding Theorem is a generalization of Theorem 15.5 in [19] which
is stated in the hypothesis of Krull dimension one.

In [19], an ideal A satisfying the equivalent conditions of Theorem 3.2 is called a ca-

nonical ideal and it is proved that two canonical ideals are isomorphic.
Throughout the remaining of this Section R̂ will denote the completion of R in the

m-adic topology and Q�R̂� will denote the total ring of fractions of R̂. We recall that
every nonzero element of R is regular in R̂, hence QR̂JQ�R̂�.

Lemma 3.3. Let R be a local noetherian A-divisorial domain, where A is an R-

submodule of Q with A : A � R. If E is the injective envelope of the simple module

R=m, then:
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1. HomR�A;E�GQR̂=R̂.

2. HomR�Q;E�GQR̂.

3. Q�R̂�GQR̂.

Proof. (1). By Lemma 3.1 (1) we can identify E with Q=A. Consider f A HomR�A;E�
and let X � Ker f . By Lemma 3.1 (2), A=X is isomorphic to �qÿ1

0 A� A�=A for some
nonzero element q0 A Q. Since R is A-divisorial, we have that qÿ1

0 A� A � A : I
where I � q0RXR, hence �qÿ1

0 A� A�=A � AnnE I . Consider the situation described
by the following commutative diagram:

A ���!f E

p

???y x???g

A=X ���!G
f

AnnE I

where f � p�a� � qÿ1
0 a� A and g is induced by f. Clearly g is injective and its image

is contained in AnnE I . Since AnnE I � ER=I �R=m�, it is well known that the endo-

morphism ring of AnnE I is dR=I � R̂=IR̂, (see [23]); thus g is the multiplication by an
element h A R̂. This means that, for every a A A, f �a� � h�qÿ1

0 a� A�.
Consider now the homomorphism

c : QR̂! HomR�A;E�

de®ned by c�hrÿ1��a� � h�rÿ1a� A�, for every h A R̂, 00 r A R and a A A. c is well
de®ned and the preceding argument shows that c is surjective. Assume that hrÿ1 A
QR̂ belongs to the kernel of c; then h A AnnR̂�rÿ1A�=A. Now �rÿ1A�=A � AnnE rR

coincides with the R=rR-injective envelope of the simple module S GR=m, hence, by
Matlis' duality, Ann

�dR=rR�
�rÿ1A�=A � 0. This means that AnnR̂�rÿ1A�=A � rR̂. We

have thus proved that hrÿ1 A R̂. Conversely it is clear that R̂JKer c, thus we con-
clude that HomR�A;E�GQR̂=R̂.

(2). Applying the functor HomR�ÿ;E� to the exact sequence

0! A! Q! Q=A! 0

and recalling that we can identify E and Q=A, we get the following diagram:

0 ���! R̂ ���!a HomR�Q;Q=A� ���!s HomR�A;Q=A� ���! 0

id

x??? w

x??? c 0
x???G

0 ���! R̂ ���! QR̂ ���!p QR̂=R̂ ���! 0
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where c0 is the isomorphism de®ned in (1) and w is de®ned as w�hrÿ1��q� �
h�rÿ1q� A�. Thus the restriction of w to R̂ coincides with a and s � w � c0 � p � c,
hence HomR�Q;Q=A�GQR̂.

(3). Since E is an R̂-module, we have the natural isomorphism

HomR�Q;E�GHomR̂�QR̂;E�:

Consider the embedding of R̂-modules 0! QR̂! Q�R̂�. Applying the functor
HomR̂�ÿ;E� and using (2) above, we obtain

HomR̂�Q�R̂�;E� ! HomR̂�QR̂;E�GQR̂:

HomR̂�QR̂;E� is a divisible R̂-module (where divisibility is clearly de®ned with re-
spect to regular elements of R̂), hence the same is true for QR̂. This means that for
every regular element h A R̂, hÿ1 A QR̂, i.e. Q�R̂� � QR̂. r

We can now prove our main result on A-divisorial noetherian domains.

Theorem 3.4. Let R be a local noetherian A-divisorial domain, where A is an R-

submodule of Q with A : A � R. Then R has Krull dimension one and A is a fractional

ideal of R.

Proof. Denote by N the multiplicative system of the regular elements of R̂. Then
Q�R̂� � R̂N and by Lemma 3.3 (2) and (3), we have HomR̂�R̂N ;E�G R̂N . Since E is
an R̂-injective module, it is well known that HomR̂�R̂N ;E� is an R̂N -injective module.
This implies that the noetherian ring R̂N is self-injective. By Theorem 24.5 in [8], R̂N

is also artinian, hence it has dimension 0. Since N � R̂nZ�R̂�, where Z�R̂� denotes
the set of the zero divisors of R̂, we have that the prime ideals of R̂ associated to zero
are of height 0, hence they are minimal primes. Let fpigiUn denote the set of the
minimal primes of R̂; then fpiR̂NgiUn is the set of the maximal ideals of R̂N and it

is routine to check that, in this case, R̂N G0
iUn

R̂pi
. Thus, for every i U n, R̂pi

is a

self-injective local artinian ring, since it is a localization and a summand of the self-
injective ring R̂N . Moreover, being local, R̂pi

is indecomposable, hence it is iso-
morphic to the injective envelope of its unique simple module R̂pi

=piR̂pi
. Now

HomR̂�R̂pi
;E� is an R̂pi

-injective module which is a summand of HomR̂�R̂N ;E�G
R̂N G0

iUn
ER̂N
�Si� where Si � R̂N=piR̂N are the simple R̂N -modules. Hence

�a� HomR̂�R̂pi
;E�G R̂pi

:

Consider now the quotient ®eld Q�R̂=pi� of R̂=pi, we have

HomR̂�Q�R̂=pi�;E�GHomR̂

R̂pi

piR̂pi

;E

 !
:
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By (a), HomR̂�R̂pi
=piR̂pi

;E�GAnnR̂pi
�piR̂pi

� � Soc�R̂pi
�. As noted above, Soc�R̂pi

�
G R̂pi

=piR̂pi
; moreover we have

R̂pi

piR̂pi

GHomR̂�Q�R̂=pi�;E�GHomR̂=pi
�Q�R̂=pi�;AnnE pi�;

where AnnE pi is the R̂=pi-injective envelope of the simple module R̂=mR̂. It follows

that the local domain R 0 � R̂=pi satis®es the condition HomR 0 �Q�R 0�;E 0�GQ�R 0�,
where E 0 is the R 0-injective envelope of the R 0-simple module. Proposition 5 in [17],
implies then that R̂=pi has Krull dimension one and thus the same is true for R̂, since
pi is a minimal prime of R̂. Since R has the same dimension of its completion R̂, we
®nally conclude that R has dimension one. We can now apply Theorem 15.7 in [19].
In fact R has dimension one and, by Lemma 3.1, E � Q=A is an epimorphic image of
Q; hence R satisifes condition (6) of the above mentioned Theorem. In the proof of
the implication (4) ) (6) in that Theorem, it is shown that A has to be ®nitely gen-
erated, or equivalently, that A is a fractional ideal of R. r

Remark 7. Theorem 3.4 implies that a noetherian domain of dimension greater than
one cannot be A-divisorial for any AJQ satisfying A : A � R.

If R has Krull dimension one, then any AJQ such that A : A � R and such that
Q=A is cocyclic is necessarily ®nitely generated. In fact, using the correspondence
between divisible submodules of ER�R=m� and strongly unrami®ed extensions of R

in Q proved by Theorem 6.8 and Corollary 15.3 in [19], Q=A must coincide with
ER�R=m� and thus, arguing as in the last part of the proof of Theorem 3.4, A is
®nitely generated, hence A is isomorphic to a canonical ideal.

Remark 8. It should be pointed out that not every one-dimensional local noetherian
domain R admits a canonical ideal. In fact in Theorem 15.7 of [19] it is proved that
such an R has a canonical ideal if and only if Q�R̂� is a Gorenstein ring of dimension
0; Ferrand and Raynaud in Proposition 3.1, [10] construct an example of a one-
dimensional local noetherian domain R such that Q�R̂� is not a Gorenstein ring.

We end this Section by showing that, if A is not a fractional ideal of R, then con-
ditions (3) and (5) of Theorem 3.2 are no longer equivalent and they don't imply that
R is A-divisorial. First we show that the condition (3) in Theorem 3.2 doesn't imply
(1); namely we show that there exist noetherian domains R admitting a submodule A

of Q such that A : A � R and Q=A is injective, but R is not A-divisorial.

Example 3.5. Let R be any local complete noetherian domain with maximal ideal m.
Let A be any R-submodule of Q maximal with respect to the property 1 B A. Then
Q=A is cocyclic, hence Q=AJE, where E � ER�R=m�. Now AnnR Q=A � 0, thus,
by duality, Q=A � E. Let q A Q be an element of A : A, then the map

q : Q=A! Q=A
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de®ned by q�x� A� � qx� A, for every x A Q, is an R-homomorphism of Q=A,
hence q A R since EndR�Q=A� � R̂ � R. If R has dimension greater than 1, then by
Theorem 3.4, R is not A-divisorial.

We show now that, if AJQ satis®es A : A � R, then the condition Q=A cocyclic
does not always imply that Q=A is injective. To see this we use the notion of primarily

independence introduced in [15]. We summarize here the results of [15] which will be
needed.

��� Theor. 3.9, [15]. Let �S;m� be a countable noetherian local domain with maximal
ideal m; assume that S is excellent, normal and of dimension at least 2. (For
instance, let S � k�x; y��x;y� where k is a countable ®eld). Let Ŝ denote the m-
adic completion of S; then there exists an element t A mŜ which is primarily
independent over S.

��� Proposition 3.4, [15]. Let �S;m� be an excellent, normal local noetherian domain
of dimension at least 2. Consider R � S�t��m; t� where t A mŜ is primarily inde-
pendent over S; then Q�R�X Ŝ � R.

Proposition 3.6. There exists a noetherian local domain R admitting a submodule A of
Q with A : A � R, such that Q=A is cocyclic but not injective.

Proof. Let S � k�x; y��x;y�, k a countable ®eld and t A mŜ primarily independent over
S. Consider R � S�t��m; t� and denote by n the maximal ideal of R. Then the com-
pletion R̂ of R in the n-adic topology is isomorphic to Ŝ��t��, where t is an indeter-
minate over Ŝ. Let a be the prime ideal of R̂ generated by tÿ t; then R̂=a G Ŝ. Let
E � ER�R=n� be the injective envelope of the simple module R=n; it is well known
that E is also the R̂-injective envelope of R̂=nR̂. Consider D � AnnE a; we have that
DPER�R=n�, hence D is a non-injective cocyclic R-module. We claim that D is an
epimorphic image of Q�R�. Clearly D is the R̂=a-injective envelope of R̂=nR̂, hence it

is isomorphic, as an Ŝ-module, to EŜ�S=m�GES�S=m�. Using the representation of
ES�S=m� as a module of inverse polynomials, as described in [22], one gets that
ES�S=m� is an S-epimorphic image of a submodule of the quotient ®eld Q�S� of S

and thus, by injectivity, it is also an epimorphic image of Q�S�. Let f : Q�S� !
ES�S=m� be such an S-epimorphism; using the natural isomorphism

HomS�Q�S�;ES�S=m��Gw HomŜ�Q�S�Ŝ;ES�S=m��

one gets an Ŝ-surjection

w�f� : Q�S�Ŝ ! ES�S=m�:

Since ES�S=m� is Ŝ-injective, we also have a surjection

c : Q�Ŝ� ! ES�S=m�
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extending w�f�. Now, since Q�S�JQ�R�JQ�Ŝ�, the restriction of c to Q�R� is a
surjection and since RJ Ŝ, it is also an R-epimorphism of Q�R� onto DGES�S=m�.
Let now AJQ�R� be such that DGQ�R�=A and consider q A A : A. The multipli-
cation by q induces an endomorphism of DGES�S=m�, hence q A Ŝ XQ�R�, which
coincides with R by Proposition 3.4 in [15]. r

4 Applications and examples

In this Section we give some examples by means of a generalization of the classical
D�m construction. Our approach is inspired by the example appearing in [11]. The
setting is illustrated by the following:

4.1. Let R0 be a local domain with quotient ®eld Q and maximal ideal m0; let A be
an R0-submodule of Q such that A : A � R0. Consider V � Q��x�� and denote by m
the maximal ideal of V; we are interested in studying the local domain R de®ned as
follows:

R � R0 � Ax� x2V :

Denote by n the maximal ideal of R. Then n � m0 � Ax�m2 and the quotient ®eld
Q�R� of R is Q��x��.

Lemma 4.2. Let R0, A and R be as in 4.1. Then R : n � R0 � �A : m0�x� x2V and if

Q=A is a cocyclic R0-module, then Q�R�=R is a cocyclic R-module.

Proof. Let x �PiVÿk qix
i A Q��x��. Then x A R : n if and only if iV 0, q0m0 JR0,

q0AJA and q1m0 JA; hence x A R0 � �A : m0�x� x2V . The converse is obvious.
We have so shown that Q�R�=R has simple socle and we show now that Q�R�=R is
an essential extension of its socle. Let x �PiVÿk qix

i A Q��x��nR. If k V 1, then
qxk�1 A R for every q A Q; hence, if a A �A : m0�nA, we have that 00 qÿ1

ÿkaxk�1 A R

and for some v A V , xqÿ1
ÿkaxk�1 � ax� x2v is an element of �R : n�nR. If k � 0, then

we have either q0 B R0 or q0 A R0 and q1 B A. In the ®rst case, since A : A � R0, there
exists 00 a A A such that q0a B A. Thus, since Q=A is a cocyclic R0-module, there
exists 00 r0 A R0 such that q0ar0 A �A : m0�nA. Hence, xar0x A �R : n�nR. In the
second case there is 00 t0 A R0 such that q1t0 A �A : m0�nA. Thus xt0 A �R : n�nR. If
k U ÿ 1, since x B R it must be k � ÿ1 and q1 A QnA. Thus there exists 00 r0 A R0

such that q1r0 A �A : m0�nA, hence xr0 A �R : n�nR. r

We list now some properties of the fractional ideals of R.

Lemma 4.3. Let R0, A and R be as in 4.1.

1. Let T, T1 be R0-submodules of Q, such that T1 KTA. Then L � T � T1x�m2 is a

fractional ideal of R and we have:
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R : L � �A : T1� � �A : T�x�m2;

R : �R : L� � A : �A : T� � �A : �A : T1��x�m2:

2. Write Q��x�� �0
i AZ

Qxi (as a Q-module) and let pi be the corresponding projec-

tions onto Q.

For every nonzero fractional ideal J of R we can assume that 0 is the minimum index

such that pi�J�0 0. Hence J is either p0�J � � p1�J �x�m2, or

J �
X

a

�ia � nax�R0 �H1x�m2

where fiaga AL is a generating set for p0�J �; for every a, na A p1�J � is chosen in such a

way that ia � nax A J and H1 � fq A Q j qx A Jg.

Proof. (1). L is a fractional ideal of R since x2LJR. It is straight-forward to check
that the inverse and the double inverse of L are as formulated.

(2) Let J be any nonzero fractional ideal of R. Multiplying by a suitable power of
x, we can assume that the minimum value of the nonzero elements of J is exactly
0. This clearly amounts to p0�J�0 0 and pi�J � � 0, for every i < 0. If 00 x A J

has value 0, then xm2 � m2 J J. Thus we have J J p0�J� � p1�J�x�m2. Assume
that J P p0�J � � p1�J �x�m2 and let j A J; if p0� j� � 0, then j A H1x�m2. If
p0� j�0 0, then p0� j� �

P
a raia where the ra A R0 are almost all zero. Consider the

element j0 �
P

a ra�ia � nax�, then j0 A J and j ÿ j0 A H1x�m2; hence the claim
follows. r

We are now able to exhibit an example of a local domain R such that Q�R�=R is
cocyclic, but there exists a non-divisorial ®nitely generated ideal.

Proposition 4.4. Let R0, A and R be as in 4.1. Assume moreover that R0 is noetherian
and that Q=A is a non-injective cocyclic R0-module. (Take for instance R0 satisfying

Proposition 3.6). Then Q�R�=R is a cocyclic R-module and there exists a non-divisorial

®nitely generated ideal of R.

Proof. Q�R�=R is cocyclic by the preceding Lemma. Let E denote the injective
envelope of the simple module S � R0=m0. We show that the hypothesis Q=A non-
injective implies the existence of an element n A N such that A : �A : mn

0 �Qmn
0 . In

fact, AnnQ=A m n
0 JAnnE mn

0 and AnnE mn
0 is the R0=m n

0 -injective envelope of S.
Assume that A : �A : mn

0 � � mn
0 , for every n A N; then the annihilator in R0=m n

0 of
AnnQ=A m n

0 is zero. Now R0=m n
0 is a complete local noetherian ring, hence, by dual-

ity, AnnQ=A m n
0 coincides with the R0=mn

0 -injective envelope of S. Thus AnnQ=A mn
0

� AnnE mn
0 , for every n A N and we conclude that Q=A � E, a contradiction. Let

now I � mn
0 , where n A N is such that A : �A : m n

0 �Qmn
0 . Consider the R-ideal J

generated by I, i.e. J � I � IAx� x2V ; J is ®nitely generated. By Lemma 4.3 (1)
R : �R : J�Q J, hence J is not divisorial. r
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We illustrate some conditions under which R is divisorial.

Lemma 4.5. Let R0, A, R be as in 4.1. Assume that R0 is A-divisorial and that every

proper R0-submodule of Q is embeddable in A. If moreover Q=A is injective, then R is

divisorial.

Proof. Let J be any nonzero fractional ideal of R; assume that pi�J� � 0 for every
i < 0 and p0�J �0 0. If J � p0�J � � p1�J �x�m2 then, by Lemma 4.3 (1) and our
hypotheses on R0, we conclude that J is divisorial. Assume now that J P p0�J ��
p1�J �x�m2. Consider the representation of J as described in Lemma 4.3 (2). Using
the injectivity of Q=A, we show that

p0�R : J� � A : H1:

In fact, an element of R : J is of the form q0 � q1x�m �m A m2� with q0 and q1

satisfying: q0p0�J �JR0, q0H1 JA and q0na � q1ia A A, for every a.
Since A : A � R and H1 K p0�J�A, the ®rst inclusion follows by q0H1 JA; thus

p0�R : J �JA : H1. To prove the equality, let q0 A A : H1 and consider the elements
za � q0na � A A Q=A. Let f : p0�J� ! Q=A be the map de®ned by f�ia� � za for
every a A L. f is a well de®ned homomorphism; in fact, if

P
a raia � 0 with ra A R0,

then
P

a ra�ia � nax� A J, implies that
P

a rana A H1. Hence q0�
P

a rana� A A and
thus

P
a raza �

P
a ra�q0na� � A � 0. By the injectivity of Q=A, there exists an ele-

ment q1 A Q such that za � iaq1 � A, i.e. ÿiaq1 � q0na A A; thus q0 ÿ q1x A R : J,
hence q0 A p0�R : J �.

Finally we show that R : �R : J � � J. By Lemma 4.3 (1), R : �R : J �J p0�J ��
p1�J �x�m2. Let d A R : �R : J �nJ; then d � i0 � i1x�m, where i0 A p0�J�, i1 A
p1�J � and m A m2. We have i0 �

P
a raia, i1 �

P
a tana � h1 (ra; ta in R0 and h1 A H1).

Consider j0 �
P

a ra�ia � nax� � h1x�m; then j0 A J and d ÿ j0 �
P

a�ta ÿ ra�nax.
Hence

P
a�ta ÿ ra�na B H1, since d ÿ j0 B J. Recalling that p0�R : J� � A : H1 and

that A : �A : H1� � H1 by hypothesis, we infer that there exists an element q0 � q1x

A �R : J� such that q0�
P

a�ta ÿ ra�na� B A. Since d A R : �R : J� we must have
d�q0 � q1x� A R; we also have j0�q0 � q1x� A R. Thus, since d�q0 � q1x� �
�d ÿ j0��q0 � q1x� � j0�q0 � q1x�, we conclude that �d ÿ j0��q0 � q1x� �
q0

P
a�ta ÿ ra�nax�m 0 �m 0 A m2� is an element of R. Hence we get the contradiction

q0

P
a�ta ÿ ra�na A A. r

In the next two Propositions we assume that R0 is a noetherian or a valuation do-
main and we characterize the case in which the corresponding domain R is divisorial.

Proposition 4.6. Let R0 be a noetherian local domain, A and R be as in 4.1. Then R is a

divisorial domain if and only if R0 is analytically irreducible and A-divisorial.

Proof. Assume that R is divisorial and let T be any R0-submodule of Q. Let L �
T �m; by Lemma 4.3 (1), R : �R : L� � A : �A : T� �m. Hence R0 is A-divisorial
and by the results proved in Section 3, we conclude that A is ®nitely generated. If
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moreover T is a proper submodule of Q containing R0, then A : T 0 0 and thus, T is
®nitely generated. By Theorem 7.1 and its Remark in [19], we conclude that R0 is
analytically irreducible. For the converse it is enough to apply Lemma 3.1 (1) and the
preceding Lemma. r

Proposition 4.7. Let R0 be a valuation domain, A and R be as in 4.1. Then R is a

divisorial domain if and only if R0 is an almost maximal valuation domain and it is A-

divisorial, namely AGm0.

Proof. Let R be a divisorial domain. If T is any nonzero fractional ideal of R0, then,
by Lemma 4.3 (1), A : �A : T � � T , hence R0 is A-divisorial. Since A : A � R0, we
conclude that AGm0 (by Proposition 7.5, [6]). Moreover, by Proposition 2.12 it
follows that for every nonzero ideal J of R, R=J is an AB-5* module; hence, in par-
ticular, R=m2 is AB-5*. Now R=m2 is isomorphic to R0 � Ax has an R��x��=�x2�-
module; hence it is isomorphic, as an R-module, to the idealization R0 bA (R0 bA is
the set of all pairs �r0; a�, r0 A R0 and a A A, with operation de®ned by �r0; a��r1; a1� �
�r0r1; ar1 � r0a1�.) Thus R0 bA is AB-5* as a ring and applying Corollary 3.6 in [3],
we obtain that m0=Im0 is linearly compact discrete for every nonzero ideal I of R0. It
follows easily that also R0=sR0 is linearly compact discrete for every nonzero s A R0;
hence R0 is an almost maximal valuation domain. The converse is proved by apply-
ing Lemma 4.5, since every proper submodule of Q is clearly a fractional ideal of R0

and it is well known that if R0 is an almost maximal valuation domain, then Q=I is
injective for every nonzero ideal I of R0. r

Remark 9. Note that Propositions 4.6 and 4.7 imply that, if R is a local divisorial
domain and P is a prime ideal of R, then R=P is not necessarily divisorial. In fact, we
can consider R0 satisfying the statements of the above mentioned Propositions and
such that A is a non-principal fractional ideal of R0. Then the corresponding domain
R is divisorial, but letting P � Ax�m2, P is a prime ideal of R and R=PGR0 is not
a divisorial domain.

5 A-divisorial domains, A a fractional ideal

In this Section we give a characterization of A-divisorial local domains in case A is a
fractional ideal. In fact, in this case we are able to generalize the characterization of
divisorial domains given by Theorem 2.13. As noted in Section 3, we will consider R-
submodules A of Q with endomorphism ring R.

Proposition 5.1. Let R be a local A-divisorial domain, where A is a fractional ideal

of R such that A : A � R. Then Q=A is cocyclic and A=X is AB-5* for every nonzero

X JA.

Proof. Q=A is cocyclic by Lemma 4.3 in [6]. Let fJi=Xgi A I be an inverse system of
submodules of A=X and let K=X be a submodule of A=X . Considering A-duals and
arguing as in the proof of Proposition 2.12, we obtain
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7
i

�Ji � K� � 7
i

Ji

� �
� K

hence, passing to the images in A=X , we conclude that A=X is AB-5*. r

Lemma 5.2. Let A be a fractional ideal of the domain R. Then the following are

equivalent:

1. A=X is AB-5* for every nonzero X JA.

2. A=rA is AB-5* for every nonzero r A R.

3. R=rR is AB-5* for every nonzero r A R.

4. R=I is AB-5* for every nonzero I JR.

Proof. Clearly we can assume that A is an ideal of R.
(1) ) (2). Obvious
(2) ) (3). Let 00 r A R be non-invertible and let 00 s A rA; then srÿ1 � sA is a

nonzero element of the AB-5* module A=sA whose annihilator in R is rA. Hence
R=rA is AB-5* and thus its epimorphic image R=rR, is AB-5*, too.

(3) ) (4). Obvious, since every R=I is an epimorphic image of some R=rR.
(4) ) (1). Obvious. r

We can now generalize Theorem 2.13 as follows.

Theorem 5.3. Let R be a local domain and A a fractional ideal of R such that A : A �
R. Then R is A-divisorial if and only if Q=A is cocyclic and R=rR is AB-5* for every

nonzero r A R.

Proof. In view of the preceding results it is enough to prove the su½ciency. By
Lemma 5.2, R=rR and A=rA are AB-5* modules, for every nonzero r A R; moreover
A=rA is cocyclic, since it is isomorphic to �rÿ1A�=AJQ=A. The hypothesis A : A �
R implies that A=rA is a faithful R=rR-module; hence the R=rR-module structure of
A=rA gives rise to a non-degenerate bilinear product:

m : R=rR� A=rA! A=rA:

We can then apply Theorem 4 in [2], to conclude that there exixts an antiisomor-
phism between the lattice of submodules of R=rR and the lattice of submodules of
A=rA which is induced by the annihilation of submodules via m.

Let R � R=rR and let X=rA be a submodule of A=rA. Then

AnnR�X=rA� � �rA : X �XR

rA
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and �rA : X�XR � rA : X , since rAJX implies rA : X J rA : rA � R. If A � A=rA

and J=rR is a submodule of R=rR, we have

Ann
A
�J=rR� � �rA : J �XA

rA
:

Without loss of generality we may assume that A is an ideal of R. Let 00X JA.
Consider 00 r A X ; then rAJX . We have shown above that �rA : �rA : X��XA �
X . But X JA implies A : X KA : A � R, hence A : �A : X �JA : R � A. Thus
we conclude that A : �A : X � � X for every nonzero submodule X of A, i.e. R is A-
divisorial. r

Remark 10. In Section 3 we have characterized the (local) noetherian A-divisorial
domains. The problem of characterizing the integrally closed A-divisorial domains
seems to be much more di½cult. For instance, we don't even have enough informa-
tion about the integrally closed domains which are A-divisorial for a fractional ideal.
In particular we formulate the following question.

Question 5.4. Assume that R is a local integrally closed A-divisorial domain for a
fractional ideal A of R with endomorphism ring R. Does it follow that R is a valua-
tion domain?

The same question is also asked in [13]. We believe that this question is closely related
to a di½cult open problem posed by W. Heinzer in 1968 in [12], namely the problem
to decide whether the integral closure of a divisorial domain is a PruÈfer domain.

Note that in the case of a local noetherian domain R, we have proved that R is A-
divisorial (for a fractional ideal A of R) if and only if Q=A is cocyclic. We don't know
whether the same statement holds for integrally closed domains, i.e. we ask the fol-
lowing.

Question 5.5. Assume that R is a local integrally closed domain and A is a fractional
ideal of R with endomorphism ring R. Does the condition Q=A cocyclic imply that R

is A-divisorial?

Another question was mentioned in Section 2 for divisorial domains. We formulate it
now in the case of A-divisorial domains.

Question 5.6. Assume that R is an A-divisorial domain for a fractional ideal A of R

with endomorphism ring R. Does it follow that Q=A is an AB-5* module?
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