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Abstract

This doctoral thesis focuses on the study of opinion dynamics over social networks. The

treatment is made from a control system perspective: psychology and social sciences un-

derpin the modeling, analysis and control of complex networked systems. The common

thread of this work is the mathematical formalization of the micro-mechanisms of social

networks in order to understand how they affect the dynamics behaviour of the network

at a macro-level.

This thesis develops along three main directions: in the first part we assume the topol-

ogy to be fixed in a social equilibrium configurations and we study the effects of the weights

given to the interpersonal and personal ties on the opinion dynamics. In particular we as-

sume the network to be clustering balanced and we study, under some assumption on the

interpersonal weights, how much each individual should be convinced about its own opin-

ion so that agents’ opinion cluster conformably to the clusters in the topology, thus giving

rise to the "k-partite consensus" phenomenon.

In the second part we take into account the case of opinion varying network topologies

and we study the reaching of structural equilibria in the network. This paradigm is the most

suitable when opinions and interpersonal ties evolve on time scales that are comparable in

magnitude. We take into account two mechanisms according to which the interpersonal

ties evolve along time: the influence mechanism and the homophily mechanism. In this

context we also study two multi-dimensional extensions of one of the pioneering models

in the scientific literature related to opinion dynamics: the Hegselmann-Krause model. In

the average-based model, agents compare the average opinion that they have on different

topics while in the uniform-affinity model agents compare their opinions topic-wise. The

first model suits better for contexts in which the topics into play are related so that,

supposedly, there is not much deviation among the opinions that each agents has on the

various topic. The second variation is suitable also for contexts in which the opinions are

expressed on a wider variety of topics.

The third and last part of this thesis is related to the study of herdability, namely

the capability of a system to be driven towards the interior of the positive orthant. The

study of this property becomes of interest in contexts in which (positive) thresholds come

into play, such as in marketing advertisement, or electoral contexts. We will investigate
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under what structural properties some specific leader-follower network topologies lead to

herdable systems.
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Chapter 1

Introduction

During the 20th century social sciences witnessed a substantial change of paradigm from in-

dividualistic approaches towards social groups and their structural properties Proskurnikov

& Tempo (2017). Consequently the focus has been moved from individuals to the social

ties among them.

The pioneering work Moreno (1934) was the first in which the use of graphs was pro-

moted for the study of social relations. The works Moreno (1934, 1951) gave later rise

to a new discipline known as sociometry starting from which the Social Network Analysis

(SNA) was later developed in Scott (2000), thus giving to sociology a quantitative slant.

The development of this new discipline led to the formalization of new concepts, such as

clustering coefficients, centrality measure, cliques, etc. Proskurnikov & Tempo (2017). De-

spite the development of this discipline and the advancements in the control of complex

network systems Murray (2003), a gap between SNA and Control Theory persisted for a

long time. The reason of such gap can be explained by the lack of accurate models in the

description of social phenomena and by the lack of empirical data to validate these models.

Social dynamics are oftentimes very complex and manifest behaviours that are difficult

to predict. The reaching of consensus, when it comes to social systems, is a very rare

occurrence. Other behaviours, like persistent disagreements and clustering, are way more

likely Friedkin (2015). The design of models that are explicative enough, but still mathe-

matically tractable, is a tough goal and an active research topic for scientists from various

fields, e.g. control Altafini (2013), physics Castellano et al. (2009), computer science Seerat

& Azam (2012) etc.
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However, during the last decades, substantial progresses in filling the gap between

mathematical models and social network analysis have been done Friedkin & Bullo (2017),

Pagan et al. (2021), Acemoglu et al. (2011), Friedkin (2015). This is mainly due to the

large availability of real world data from which scientists can benefit nowadays. Conse-

quently, new disciplines such as sociodynamics Castellano et al. (2009) and sociophysics

Papanikolaou et al. (2022), arised and researchers from different fields put their effort in

order either to readjust the fundamental social quantitative models that mimic opinion

dynamics nowadays or to validate them.

Another research topic to which this doctoral thesis dedicates attention is the one known

in the literature as herdability Ruf et al. (2018), She & Kan (2020). Herdability refers to

the capability of a system to be driven towards the interior of the positive orthant. It is

strictly related to the concept of structural controllabilty, namely the study of the structural

properties a dynamical system needs to enjoy so that its dynamics can be driven towards

any point of the state space Egerstedt et al. (2012), Parlangeli & Notarstefano (2012).

The study of herdability, specifically, becomes of interest in all those contexts for which

investigating if the system state can be brought towards any point of the state space is not

of practical interest, and may lead to overly restrictive conditions on the model into play

as it happens in chemistry Bower & Bolouri (2001), biology Jacquez (1972), neuroscience

Gupta et al. (2007), etc. Herdability applies to leader-follower network systems in which

one may wonder where to locate the leaders in the network so that the system is herdable.

For example, in the context of marketing advertisement, it is of interest to devise

strategies targeting some individuals to bring the consumption level of a certain good for a

group of consumers over a certain threshold. In many electoral systems there is an election

threshold that represents the minimum share of votes which a candidate or political party

has to achieve to become entitled to any representation in a legislature. In these contexts,

it is pointless to require that the state entries may assume any real value, including the

negative ones.

It is in contexts like these, in which (positive) thresholds come into play, that the

investigation of herdability becomes of interest. For the aforementioned reasons we will

focus on the herdability of some leader-follower networks from a structural perspective.

In this manuscript we extend some of the results presented in the scientific literature
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both in the context of opinion dynamics Altafini (2013), Mei et al. (2019), Cisneros-Velarde

& Bullo (2020), Hegselmann & Krause (2002), Etesami et al. (2013) and herdability Ruf

et al. (2018, 2019), She et al. (2019) by trying to overcome some of the current limitations.

In particular, in the context of opinion dynamics we will show how the pioneristic Altafini

model Altafini (2013) con be revisited so that multi-partite consensus can be achieved. We

also study a binary version of the models proposed in Cisneros-Velarde & Bullo (2020), Mei

et al. (2019) and show that our simplified formulation leads to equally accurate results.

Both models are able to drive and initially unbalanced network towards a socially balanced

one. Finally, we look at multi-dimensional versions of the classical Hegselmann-Krause

model Hegselmann & Krause (2002), by proposing two different variants suitable to two

different contexts, and we analize their convergence and order preservation properties.

As far as herdability is concerned, we propose some algebraic conditions to reduce

the dimensionality of the problem and we study the herdabiltiy of leader-follower network

structures with special structural topologies, in doing so, beside providing new structural

conditions that guarantee herdability, we also extend some of the results already presented

in Ruf et al. (2018, 2019), She et al. (2019).

All the results presented in this manuscript have a social network interpretation.

In the sequel, Chapter 2 includes notation and technical background that are exploited

during the rest of the manuscript. Section 3 deals with the study of k-partite consensus for

clustering balanced social networks, Chapter 4 is dedicate do the study of social balance

in binary social models, Chapter 5 is related with the study of networked social system

with opinion varying topological structure, Chapter 6 pertains the study of herdability for

networked systems with special topologies, finally Chapter 7 concludes the manuscript.





Chapter 2

Notation and Technical Background

In this chapter the notation and technical background exploited in the next part of this

manuscript are introduced.

2.1 Notation

Given k, n ∈ Z, with k ≤ n, the symbol [k, n] denotes the integer set {k, k+1, . . . , n}. The

(i, j)-th entry of a matrix A is denoted by [A]i,j while the i-th entry of a vector v either by

[v]i or by vi. Given a matrix A ∈ Rn×n we use the symbols A ≥ 0 if it is nonnegative, and

A > 0 if it is positive, namely if all its entries are nonnegative and positive respectively.

The same notation holds for vectors. Given a matrix A ∈ Rn×n, we denote by Ai∗ the i-th

row of A, by A∗j its j-th column.

A symmetric matrix P ∈ Rn×n is positive (semi) definite if x⊤Px > 0 (x⊤Px ≥ 0) for

every x ∈ Rn,x ̸= 0, and when so we use the notation P ≻ 0 (P ⪰ 0).

A = A1⊕· · ·⊕An indicates a block diagonal matrix whose diagonal blocks are A1, . . . , An,

while diag(A) denotes the diagonal matrix whose diagonal entries are the diagonal entries

of A. The symbols 0n and 1n denote the vectors in Rn with all entries equal to 0 and to 1,

respectively. Similarly, 0p×m denotes the p×m matrix with all zero entries. The symbol ei

denotes the i-th canonical vector of the canonical basis of Rn. By signed canonical vectors

we will mean all canonical vectors and their opposite, i.e. the set {±ei, i ∈ [1, n]}. Every

nonzero multiple of a canonical vector is called monomial vector.

A matrix A ∈ Rn×n
+ is row stochastic if it is a nonnegative matrix and A1n = 1n.

5
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The function sign(·) : Rn×m → {−1, 0, 1}n×m is the function that maps a real matrix

into a matrix taking values in {−1, 0, 1} in accordance with the sign of its entries.

Given two vectors v and w of the same size n, the expression max{v,w} denotes the

n-dimensional vector z with zi = max{vi, wi}, i ∈ [1, n].

Given a vector v ∈ Rn, the set ZP = {i ∈ [1, n] : [v]i ̸= 0} denotes the non-zero pattern

of v Valcher & Santesso (2010). Similarly, one can define the nonzero pattern of a matrix

A. A nonzero vector v is said to be unisigned Ruf et al. (2019) if all its nonzero entries

have the same sign. If v is a unisigned vector, then by sign(v) ∈ {−1, 1} we mean the

common sign of its nonzero entries. Given a vector v ∈ Rn, we define ∥v∥1 :=
∑n

i=1 |vi|

and ∥v∥2 :=
√
v⊤v.A real square matrix A is Hurwitz if all its eigenvalues lie in the open

left complex halfplane, i.e. for every λ belonging to σ(A), the spectrum of A, we have

Re(λ) < 0. A matrix Π ∈ Rn×n is a permutation matrix if its columns are a permuted

version of the columns of the identity matrix In. A matrix A ∈ Rn×n is said irreducible if

In + |A|+ · · ·+ |A|n−1 > 0,where |A| is a matrix whose entries are the absolute values of

the entries of A. Equivalently, the matrix A can not be reduced to upper block triangular

form via permutation transformations. Every reducible square matrix A ∈ Rn×n
+ can be

brought, by means of a permutation matrix Π, to the Frobenius form:

A =


A11 0 . . . 0

A21 A22 . . . 0
...

... . . . ...

Ak1 Ak2 . . . Akk

 , (2.1)

with k diagonal blocks Aii that are either scalar or irreducible matrices. If A is an n × n

Metzler matrix, its a real dominant (not necessarily simple) eigenvalue, known as Frobenius

eigenvalue will be denoted by λF (A). This means that λF (A) > Re(λ),∀ λ ∈ σ(A), λ ̸=

λF (A). If A is Metzler and irreducible, λF (A) is necessarily simple (see Theorem 2.3,

below). Given a set S, the cardinality of S is denoted by |S|.

2.2 Graph Theory

Graphs are mathematical entities that play an important role in the study of the dynamics

of networked systems and, in particular, of social network systems.
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A directed, signed and weighted graph is a triple Mohar (1991) G = (V , E ,A), (in short

G(A)), where V = {1, . . . , N} is the set of vertices, E ⊆ V × V is the set of arcs, and

A ∈ RN×N the adjacency matrix of the weighted graph G. An arc (j, i) belongs to E if and

only if [A]i,j ̸= 0. We assume that the graph G has no self-loops, i.e., [A]i,i = 0 for every

i ∈ [1, N ],and arcs in E have either positive or negative weights, namely the (nonzero)

off-diagonal entries of A are either positive or negative. If all the nonzero weights take

values in {−1, 1}, we call the graph unweighted. We say that two vertices i and j are

friends (enemies) if there is a direct edge with positive (negative) weight connecting them.

A sequence of k consecutive arcs (j, j2), (j2, j3), . . . , (jk, i) ∈ E is a walk (or path) of

length k from j to i. A walk from j to i is said to be positive (negative) if the product

of the weights of the edges that compose the walk is positive (negative). A closed path

in which each node, except the start-end node, is distinct is called cycle, and a cycle of

unitary length is also known as self-loop.

A minimum walk from j to i is a walk of minimum length connecting the two nodes.

We define the distance d(j, i) from the node j to the node i as the length of the minimum

walk from j to i. If there is no path from j to i then d(j, i) = +∞. The distance d(j, I)

from the node j to the set of nodes I is the minimum among all the distances d(j, i), i ∈ I.

Similarly, the distance d(I, j) from the set of nodes I to the vertex j is the minimum

among all the distances d(i, j), i ∈ I.

Given a node i ∈ V , we define the out-neighbourhood of node i as the set of nodes j such that

d(i, j) = 1, namely Out(i) = {j ∈ V : (i, j) ∈ E}. We define the positive out-neighbourhood

of node i as the set of nodes j such that (i, j) is an arc of G(A) of positive weight, namely

Out+(i) = {j ∈ V : [A]j,i > 0}. The definition of negative out-neighbourhood of a node

is analogous. The out-neighbourhood can be also defined for a set of nodes I ⊂ V as

Out(I) = {j ∈ V \ I : (i, j) ∈ E ,∃ i ∈ I}. The definitions of Out+(I) and Out−(I) are

analogous.

If A is a symmetric matrix, namely A = A⊤, the graph G(A) is (signed, weighted and)

undirected, and all previous concepts (in particular, the concepts of walk and distance)

become symmetric.

The graph G is said to be complete if, for every two nodes i, j ∈ V , i ̸= j, there is an edge

connecting them, namely (i, j) ∈ E . Consider the complete undirected graph with N nodes

G = (V , E), where V = {1, 2, . . . , N} and E = (V × V) \ {(i, i) : i ∈ V}. If |E| = m, we let
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CN ∈ {−1, 0, 1}N×m denote its oriented incidence matrix Bullo (2020), defined as follows.

For every vertex h ∈ V and every edge e = (i, j) ∈ E , we have

[CN ]h,e =


1, h = i;

−1, h = j;

0, otherwise.

G has a (nontrivial) clustering Davis (1957) if it has at least one negative edge and the

set of vertices V can be partitioned into say k ≥ 2 disjoint subsets V1, . . . ,Vk such that

for every i, j ∈ Vp, p ∈ [1, k], [A]i,j ≥ 0, while for every i ∈ Vp, j ∈ Vq, p, q ∈ [1, k], p ̸= q,

[A]i,j ≤ 0.

If the adjacency matrix A is in Frobenius form (2.1), then we can partition the set of

vertices V = {1, 2, . . . , N} into k communication classes Ci, i ∈ {1, 2, . . . , k}, where Ci is the

set of nodes {(
∑i−1

h=0 nh)+1, (
∑i−1

h=0 nh)+2, . . . , (
∑i

h=0 nh)} (with n0 := 0 and ni := |Ci| for

i ∈ {1, 2, . . . , k}) corresponding to the row/column indices of the (entries of the) diagonal

block Aii. For j < i the class Ci is accessible from the class Cj (for short, Cj → Ci) if there

is a walk in G(A) from some node of Cj to some node of Ci. Clearly, Ci is accessible from

itself, while for j > i the class Ci is never accessible from Cj.

For an undirected graph, given 3 distinct vertices i, j and k ∈ V , the triad (i, j, k) is

called balanced Cisneros-Velarde & Bullo (2020) if [A]ij[A]jk[A]ki = 1 and unbalanced if

[A]ij[A]jk[A]ki = −1.

In the following we list two important notions related to graphs and their equivalent

conditions in terms of adjacency matrix.

• A directed graph G(A) is strongly connected if for every pair of vertices i, j ∈ V there

exists a walk from i to j. Equivalently, the adjacency matrix is irreducible Minc

(1988).

• A strongly connected graph G(A) is aperiodic if the greatest common divisor of the

lengths of the cycles is equal to one. Equivalently, the adjacency matrix is primitive,

namely there exists a positive integer k such that Ak > 0 Minc (1988).

• A graph G(A) is said to be structurally balanced if all its nodes can be partitioned

into two disjoint subsets V1 and V2 in a way such that ∀i, j ∈ Vp, p ∈ {1, 2}, [A]ij ≥ 0
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and ∀i ∈ Vp and ∀j ∈ Vq, p, q ∈ {1, 2}, p ̸= q, it holds that [A]ij ≤ 0. If V1 = [1,m],

while V2 = [m+ 1, n], the matrix A can be block partitioned as

A =

A11 A12

A21 A22

 ,
where A11 ∈ Rm×m and A22 ∈ R(n−m)×(n−m) are nonnegative matrices, while A12 and

A21 are nonpositive matrices (i.e., the opposite of nonnegative matrices).

• A graph G(A) is said to be clustering balanced if all its nodes can be partitioned

into more than two disjoint subsets V1, V2, . . . ,Vk in a way such that ∀i, j ∈ Vp,

p ∈ {1, 2, . . . , k}, [A]ij ≥ 0 and ∀i ∈ Vp and ∀j ∈ Vq, p, q ∈ {1, 2, . . . , k}, p ̸= q,

it holds that [A]ij ≤ 0. If V1 = [1, n1], V2 = [n1 + 1, n2], . . .Vk = [nk−1 + 1, N ] the

matrix A can be block partitioned as

A =


A11 . . . A1k

... . . . ...

Ak1 . . . Akk

 ,
where Aii ∈ Rni×ni i ∈ [1, k] are nonnegative matrices, while Aij ∈ Rni×nj , i ̸= j,

i, j ∈ [1, k] are nonpositive matrices.

Two vertices i and j are familiar if they belong to the same connected component of the

same cluster, namely i, j ∈ Vh for some h ∈ [1, k] and there exists a path (with all positive

weights) from i to j passing only through vertices of Vh.

2.3 Matrix Spectral Properties

This section refers to the spectral properties of nonnegative matrices, i.e. matrices whose

entries are nonnegative and positive matrices, namely matrices whose entries are positive.

For a real matrix A ∈ Rn×n we will denote by σ(A) its spectrum, namely the set of all its

eigenvalues, by ρ(A) its spectral radius, i.e., ρ(A) = max{|λ : λ ∈ σ(A)|} and by µ(A) its

spectral abscissa, µ(A) = max{Re[λ], λ ∈ σ(A)}.

Theorem 2.1 (Horn & Johnson (1985)). Let A ∈ Rn×n be a positive matrix, Then

(i) ρ(A) > 0 is eigenvalue of A with algebraic multiplicity 1,
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(ii) there exists an essentially unique vector v ∈ Rn such that Av = ρ(A)v, and v > 0,

(iii) there exists an essentially unique vector w ∈ Rn such that w⊤A = ρ(A)w⊤, and

w > 0,

(iv) ρ(A) > |λ|, for all λ ∈ σ(A),

(v) limk→∞(ρ(A)−1A)k = vw⊤.

Theorem 2.1 generalizes to the class of nonnegative and primitive matrices. For the

class of nonnegative irreducible matrices weaker results hold as formalized by the following

theorem.

Theorem 2.2 (Perron-Frobenius theorem Horn & Johnson (1985)). Let A ∈ Rn×n be

nonnegative and irreducible, Then

(i) ρ(A) > 0 is eigenvalue of A with algebraic multiplicity 1,

(ii) there exists a unique vector v ∈ Rn such that Av = ρ(A)v, and v > 0,

(iii) there exists a unique vector w ∈ Rn such that w⊤A = ρ(A)w⊤, and w > 0.

For Metzler matrices, namely square matrices that can be expressed A = sI − B with

s ∈ R and B ≥ 0 the Perron-Frobenius theorem generalizes as follows.

Theorem 2.3 (Horn & Johnson (1985)). Let A = B − sI ∈ Rn×n with B ≥ 0, s ∈ R be

an irreducible Metzler matrix. Then

(i) µ(A) = ρ(B)− s and it is a simple eigenvalue of A,

(ii) there is a unique vector v ∈ Rn, v > 0 such that Av = µ(A)v,

(iii) there is a unique vector w ∈ Rn, w > 0 such that w⊤A = w⊤µ(A).

Theorem 2.4 (Horn & Johnson (1985)). Let A = [Aij] ∈ Rn×n. The eigenvalues of A lay

in the union of the n Gershgorin’s disks:{
λ ∈ C : |λ− [A]ii| ≤

n∑
j=1

|[A]ij|
}
, i = 1, . . . , n. (2.2)
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2.3.1 Conditions for Positive (Semi)Definite Matrices

Consider a matrix M =M⊤ ∈ Rn×n block-partitioned as

M =

 A B

B⊤ C

 , (2.3)

where A = A⊤ ∈ Rk×k. If det(A) ̸= 0, then the matrix S = C−B⊤A−1B ∈ R(n−k)×(n−k) is

well-defined and it is said the Schur complement of A in M Boyd & Vandenberghe (2004).

Then it holds that

(i) the matrix M is positive definite, M ≻ 0, if and only if A ≻ 0 and S ≻ 0,

(ii) if A ≻ 0, the matrix M is positive semidefinite, M ⪰ 0, if and only if S ⪰ 0.

Lemma 2.5 (Berman & Plemmons (1979)). Let D ∈ Rn×n be a diagonal matrix and let

A ∈ Rn×n be a symmetric Metzler matrix, then:

i) D−A is positive definite if and only if there exists a positive vector z ∈ Rn such that

(D − A)z > 0.

ii) If condition i) holds, then (D − A)−1 ≥ 0 and is symmetric.

2.4 Stability and Controllability of Dynamical Systems

Theorem 2.6 (Ahmadi & Parrilo (2008)). Consider the discrete time dynamical system

x(k + 1) = f(x(k)) (2.4)

with k ∈ N, x ∈ Rn, f : Rn → Rn such that f(0) = 0. If there exists a scalar τ ≥ 0, and a

continuous radially unbounded function V : Rn → R, such that

V (x(t)) > 0, ∀x ̸= 0

V (0) = 0

τ(V (x(k + 2))− V (x(k))) + (V (x(k + 1))− V (x(k))) < 0

then the origin is a globally asymptotically stable equilibrium of (2.4).
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Theorem 2.7 (Kailath (1980)). Consider the discrete time linear system

x(k + 1) = Ax(k) +Bu(k) (2.5)

where x ∈ Rn is the state variable and u ∈ Rm the control input. The system (2.5) is

controllable if and only if the rank of [(A− λIn)B] is equal to n for all λ ∈ C.



Chapter 3

Consensus for Clusters of Agents with

Cooperative and Antagonistic

Relationships

In this chapter we address the consensus problem in the context of networked agents

whose communication graph can be split into a certain number of clusters in such a way

that interactions between agents in the same clusters are cooperative, while interactions

between agents belonging to different clusters are antagonistic. This problem set-up arises

in the context of social networks and opinion dynamics, where reaching consensus means

that the opinions of the agents in the same cluster converge to the same decision. Under the

assumption that agents in the same cluster have the same constant and pre-fixed amount

of trust (/distrust) to be distributed among their cooperators (/adversaries), we propose

a modified version of the Altafini model Altafini (2013) that, by simply constraining how

much agents in each group should be conservative about their own opinions, allows to

achieve a nontrivial solution by means of a distributed algorithm. The result is then

particularised to unweighted complete communication graphs, and subsequently extended

to a class of nonlinear multi-agent systems, in which the state variable is not directly

accessible.

Finally, we will relax the assumption on the amount of trust/distrust being constant

and we will study the reaching of a relaxed meaning of consensus, by requiring consensus

just over the signs of the opinions, thus leading to the notion of sign consensus. The results

13
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presented in this chapter can be found in:

• G. De Pasquale, M. E. Valcher, “Consensus for clusters of agents with cooperative

and antagonistic relationships", Automatica, Vol. 135, pp. 1-9, 2022,

https://doi.org/10.1016/j.automatica.2021.110002.

• G. De Pasquale, M. E. Valcher, “Consensus problems on clustered networks" Proc.

of the 59th IEEE Conf. Decision and Control, 2020, pp. 3675-3680, Jeju Island,

Republic of Korea, 10.1109/CDC42340.2020.9303877;

• G. De Pasquale, M. E. Valcher, “Tripartite and Sign Consensus for Clustering Bal-

anced Social Networks" Proc. of the American Control Conference (ACC) 2021, pp.

3056-3061, New Orleans,LA, USA, 10.23919/ACC50511.2021.9483355.

3.1 Introduction

Social networks provide clear evidence that mutual relationships may not always be coop-

erative, and yet the dynamics of opinion forming may exhibit stable asymptotic patterns.

In particular, Altafini (2013) has shown that in a multi-agent system with cooperative and

antagonistic relationships, bipartite consensus, namely the splitting of the agents’ opinions

into two groups that asymptotically converge to two opposite values, is possible. This is

the case if the communication network is structurally balanced, namely agents split into

two groups such that intra-group relationships are cooperative and inter-group relation-

ships are antagonistic, and agents update their opinions based on DeGroot’s control law

DeGroot (1974). This analysis has been later extended from the case of simple integrator

to the case of homogeneous agents described by an arbitrary state-space model Valcher

& Misra (2014) (see, also, Bauso et al. (2009), Easley & Kleinberg (2010)), and has been

in turn investigated by several other authors under different working conditions. See for

example Shang (2016, 2014), Han et al. (2013), Monaco & Celsi (2019). In Shang (2016)

cluster consensus in a discrete time, stochastic setting is addressed. The author provides a

combinatorial necessary and sufficient condition for a compact set of stochastic matrices to

be a cluster consensus set. In Shang (2014) group consensus for multi-agent systems with

information flow is addressed under pinning control in both fixed topology and randomly

https://doi.org/10.1016/j.automatica.2021.110002
 10.1109/CDC42340.2020.9303877
10.23919/ACC50511.2021.9483355
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switching topology driven by a continuous-time homogeneous Markov process. In Y. Han

& Chen (2015), the authors study consensus cluster of continuous time multi-agent systems

with time-varying topologies to which non-identical inter-cluster inputs are applies. Simi-

larly to what we address in this chapter, also in this case consensus is related both to the

intra-cluster synchronization and inter-cluster separation. The first one is ensured through

structural constraints on the network, the latter one is insured by imposing adaptive inputs

that are identical within the same cluster and different between different clusters. Also, in

Monaco & Celsi (2019) the authors deal with the concept of multi-consensus in a multi-

agent setting. The distinct achieved consensuses are as many as the number of groups of

agents. It is shown that multi-consensus is achieved when the underlying digraph admits

a suitable almost equitable partition.

In social contexts, structural balance characterizes networks whose individuals adhere

to the four Heider’s rules Heider (1944): 1) the friend of my friend is my friend, 2) the

enemy of my friend is my enemy, 3) the friend of my enemy is my enemy, 4) the enemy

of my enemy is my friend. On the other hand, the case may occur that agents apply all

Heider’s rules but the fourth one, and the community splits into k ≥ 3 groups such that

intra-group relationships are cooperative and inter-group relationships are antagonistic,

thus giving rise to a weakly balanced network Wasserman & Faust (1994). In this scenario

the Altafini model does not guarantee any consensus configuration, except for the trivial

one in which all the states of the agents converge to zero Altafini (2013). Therefore, it is

interesting to understand if it is possible to modify DeGroot’s algorithm, so that non trivial

equilibrium configurations may be obtained, where all agents in the same cluster converge

to the same decision. In other words, we are interested in a form of “group consensus"

that represents the natural generalisation of bipartite consensus to k ≥ 3 clusters and

guarantees that the splitting of the final decisions in groups is representative of the group

partitioning of the underlying communication graph. In this regard it is worth mentioning

the pioneering work from Hegselmann & Krause (2002) in which a clustering of opinions is

obtained in a network in which all agents are connected but only agents whose opinions is

close enough, communicate. In this chapter, we will show that under suitable hypotheses a

different type of group consensus, associated with a pre-fixed network structure, is possible,

by introducing a minor modification of DeGroot’s law, that requires agents in the same

cluster to adjust the coefficients that weight their own opinions, while leaving unchanged
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the weights given to all the other individuals’ opinions.

By assuming that interactions between agents in the same clusters are cooperative, while

interactions between agents belonging to different clusters may only be antagonistic, we

aim to achieve a group consensus where all individuals that cooperate (and hence necessar-

ily belong to the same cluster) converge to the same decision/opinion. This problem set-up

seems more suitable to formalise consensus problems arising in the economical, biological,

sociological fields (see, e.g., Easley & Kleinberg (2010), Wasserman & Faust (1994)). Soci-

ological models were, in fact, the primary motivation behind the set-up adopted in Altafini

(2013).

Our study is first developed under the homogeneity condition that requires that each

agent in a group distributes the same amount of “trust" to the agents in its own group

and “distrust" to the agents belonging to adverse groups. This is equivalent to saying that

given two arbitrary (not necessarily distinct) classes, say i and j, the sum of the weights

of the incoming edges from all the agents of class j to an agent of class i depends on i and

j, and not on the specific agent.

More in detail, we assume that the communication graph between agents is modeled by an

undirected, signed, weighted, connected graph, and that the agents are partitioned into k

clusters, such that intra-cluster interactions may only be nonnegative, while inter-cluster

interactions can only be nonpositive. We investigate under what conditions a revised

version of the DeGroot’s distributed feedback control law that only requires to modify the

weight that each agent belonging to the same class has to give to its own opinion, can lead

the multi-agent system to k-partite consensus.

It is worthwhile remarking that the design of these coefficients cannot be obtained in

a fully distributed way, since the algorithm we propose requires that each cluster is aware

of the choices made by the clusters preceding it, with respect to some suitable ordering.

However, once the parameters have been chosen the control algorithm is completely dis-

tributed.

The homogeneity conditions will be relaxed in the last part of this chapter in wich a

weaker notion of consensus, known in the literature as sign consensus, will be studied.
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3.2 k-Partite Consensus: Problem Statement

We consider a multi-agent system consisting of N agents, each of them described as a

continuous-time integrator Altafini (2013), Olfati-Saber et al. (2007), Olfati-Saber & Mur-

ray (2004), Ren et al. (2007). The overall system dynamics is described as

ẋ(t) = u(t), (3.1)

where x ∈ RN and u ∈ RN are the state and input variables, respectively.

Assumption 1 on the communication structure. [Connectedness and clustering]

The communication among theN agents is described by an undirected, signed and weighted

communication graph G = (V , E ,A), with V = [1, N ]. The entries [A]i,j = [A]j,i, i ̸= j, of

A are nonzero if and only if the i-th and the j-th agents have a direct relationship, which

is cooperative if [A]i,j > 0 and antagonistic if [A]i,j < 0. We also assume that the graph G

is connected and all the agents are grouped in k ≥ 3 clusters, Vi, i ∈ [1, k], with ni = |Vi|.

The aim of this work is to propose an extension to the case of k clusters of the results

reported in Altafini (2013) for structurally balanced graphs, namely graphs with two clus-

ters, by proposing conditions under which agents in the same cluster Vi, i ∈ [1, k], reach

consensus. In other words, we investigate conditions ensuring that the state variables of

the agents belonging to the same cluster asymptotically converge to the same value:

lim
t→+∞

xk(t) = γi, ∀ k ∈ Vi, ∀ i ∈ [1, k].

When dealing with multi-agent systems with cooperative and antagonistic relationships,

one can use the DeGroot’s type distributed feedback control law Altafini (2013), Ren et al.

(2007):

ui(t) = −
∑

j:(j,i)∈E

|[A]i,j| · [xi(t)− sign([A]i,j)xj(t)],

i ∈ [1, N ], with sign(·) as the sign function, that corresponds, in aggregated form, to

u(t) = −Lx(t),

where L is the Laplacian matrix associated with the adjacency matrix A, defined as Altafini

(2013), Hou et al. (2003) L := C − A, where C is the (diagonal) connectivity matrix, with
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diagonal entries [C]ii =
∑

h:(h,i)∈E |[A]ih|,∀i ∈ [1, N ]. In other words

[L]ij =


∑

h:(h,i)∈E |[A]i,h|, if i = j;

−[A]i,j, if i ̸= j.

As shown in Altafini (2013), however, this control law leads to an autonomous multi-agent

system ẋ(t) = −Lx(t), that may achieve a nontrivial consensus only if the underlying

communication graph is structurally balanced. This immediately implies that if the agents

can be partitioned into k ≥ 3 clusters, but not into a smaller number of clusters, then the

only possible consensus is the one to the zero value. So, in the following we investigate how

to modify the distributed control law (3.2), to achieve consensus when the communication

graph is connected and signed, but the agents split into k ≥ 3 disjoint groups.

For the sake of simplicity, we will assume that the agents are ordered in such a way

that the agents belonging to the cluster V1 are the first n1, the agents in the cluster

V2 are the subsequent n2, ... and the agents in the cluster Vk are the last nk. Clearly,

n1 + n2 + · · · + nk = N . This assumption entails no loss of generality, since it is always

possible to reduce ourselves to this structure by means of a relabelling of the nodes/agents.

Accordingly, the adjacency matrix of the graph G is block-partitioned as follows

A =


A1,1 A1,2 . . . A1,k

A2,1 A2,2 . . . A2,k

...
... . . . ...

Ak,1 Ak,2 . . . Ak,k

 (3.2)

with Ai,j ∈ Rni×nj , Ai,i = A⊤
i,i ≥ 0, ∀i ∈ [1, k], Ai,j ≤ 0 ∀i ̸= j, i, j ∈ [1, k], [Ai,i]ℓ,ℓ = 0,

∀i ∈ [1, k], ℓ ∈ [1, ni]. We consider a distributed control law for the system (4.3.1) of the

type

u = −LDx, (3.3)

where LD ∈ RN×N takes the form

LD = D −A, (3.4)

with A the adjacency matrix of G and D ∈ RN×N ia diagonal matrix that can be partitioned

according to the block-partition of A, namely

D = diag{D1,D2, . . . ,Dk}, Di ∈ Rni×ni ,
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where Di = δiIni
, ni being the cardinality of the i-th cluster, is a scalar matrix. The overall

multi-agent system is hence described as

ẋ(t) = −LDx(t), (3.5)

and we aim to investigate if it is possible to choose the parameters δi so that all the agents

reach k-partite consensus, by this meaning that for every initial condition x(0) ∈ RN

(except for a set of zero measure in RN) all the state variables, associated to agents in the

same cluster, converge to the same value, namely

lim
t→+∞

x(t) = [γ11
⊤
n1
, γ21

⊤
n2
, . . . , γn1

⊤
nk
]⊤, (3.6)

for suitable γi = γi(x(0)) ∈ R, i ∈ [1, k], not all of them equal to zero.

The diagonal entries δi, i ∈ [1, k], of the matrix D are henceforth our design parameters.

Each δi can be seen as the degree of “self-confidence" of the agents of the i-th cluster.

It quantifies how much the individuals in the cluster Vi are conservative about their own

opinions. As it will be clarified in the following, the proposed control scheme is not fully

distributed, since the agents will not be able to autonomously decide the level of self-

confidence they have to adopt in order to guarantee that the final target is achieved.

However the proposed modification of the standard control law is minimal, since it only

requires the agents to modify the weight that each of them gives to its own opinion. Note

that once the diagonal entries of D have been set, the control algorithm is implemented in

a purely distributed way.

3.3 k-Partite Consensus: Preliminary Results

In order to provide a solution to the k-partite consensus problem under certain assumptions

on the communication graph, we first present a simple lemma that provides necessary and

sufficient conditions for k-partite consensus. The result is elementary and extends the

analogous result for consensus of cooperative multi-agent systems.

Lemma 3.1. A multi-agent system (4.3.1), whose communication graph G satisfies As-

sumption 1, adopting the distributed control law (3.3), and hence described as in (3.5),

with LD ∈ RN×N as in (3.4), A as in (3.2), D = diag{D1,D2, . . . ,Dk} ∈ RN×N and

Di ∈ Rni×ni, i ∈ [1, k], scalar matrices, reaches k-partite consensus if and only if the

following conditions hold:
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(C.1) LD is a singular positive semidefinite matrix.

(C.2) The kernel of LD is spanned by vectors of the type z = [α11
⊤
n1
, . . . , αk1

⊤
nk
]⊤, αi ∈

R, i ∈ [1, k].

Sufficiency. If LD is a singular positive semidefinite matrix, then the system ẋ = −LDx

is stable (but not asymptotically stable), and for every x(0) ∈ RN

lim
t→+∞

x(t) =
m∑
i=1

pivi, (3.7)

where m is the dimension of the eigenspace associated with the (dominant) zero eigenvalue,

pi ∈ R are coefficients that depend on the initial conditions and vi ∈ RN are the eigenvec-

tors associated with the zero eigenvalue. By condition (C.2), each vi is block-partitioned

in k blocks, conformably with the clusters’ dimensions, and hence
∑m

i=1 pivi takes the form

[γ11
⊤
n1
, . . . , γk1

⊤
nk
]⊤.

[Necessity] If condition (3.6) holds for (almost) every x(0), then 0 must be the dominant

eigenvalue of the matrix −LD, and hence, being a symmetric matrix, it follows that LD

is (singular and) positive semidefinite. Moreover, as condition (3.6) has to hold for every

x(0) that is an eigenvector of −LD corresponding to 0, this implies condition (C.2).

We now introduce some additional assumptions on the communication graph that will

be used in the following analysis, and comment on their meaning.

Assumption 2 on the communication structure. [Homogeneity of trust/mistrust]

All the agents in a class Vi have the same constant and pre-fixed amount of trust to be

distributed among their cooperators and distrust, specific for each class Vj, j ̸= i, to be

distributed among the agents in antagonistic classes. This translates into assuming that

the sums of the elements of the rows belonging to the same block assume the same value,

namely for every i, j ∈ [1, k], Ai,j1nj
= cij1ni

, where cii ≥ 0 and cij ≤ 0, ∀i ̸= j.

Note that even if the adjacency matrix is symmetric, cij may differ from cji.

Example 3.2. Consider the undirected, signed, unweighted, connected and clustered com-

munication graph, with k = 3 clusters of cardinality n1 = 2, n2 = 4, n3 = 1, and adjacency
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matrix

A =



0 1 −1 −1 0 0 −1

1 0 0 0 −1 −1 −1

−1 0 0 1 1 0 −1

−1 0 1 0 0 1 −1

0 −1 1 0 0 1 −1

0 −1 0 1 1 0 −1

−1 −1 −1 −1 −1 −1 0


It is easy to see that this graph satisfies both Assumption 1 and Assumption 2, and the

parameters cij are c11 = 1, c12 = −2, c13 = −1, c21 = −1, c22 = 2, c23 = −1, c31 = −2, c32 =

−4, c33 = 0.

Remark 3.3. Assumption 2 may be regarded as a generalization of the concept of equi-

table partition, originally introduced in Egerstedt et al. (2012) for undirected, unweighted

and unsigned graphs. In an equitably partitioned (unweighted, unsigned and undirected)

graph, in fact, all the agents in the same cluster are restricted to have the same number

of neighbours in every cluster, i.e. Ai,j1nj
= cij1ni

, ∀ i, j ∈ [1, k], and each cij is a non-

negative integer number, representing the number of unitary entries in each row of Ai,j.

Moreover, this assumption is similar to the one introduced in the first part of Xia & Cao

(2011) dealing with cooperative multi-agent systems, where it was assumed that the blocks

Ai,j, i ̸= j, have constant (and nonnegative) row sums.

Assumption 3 on the communication structure. [Close friendship] There exist

k − 1 distinct indices i1, i2, . . . , ik−1 ∈ [1, k] such that every cluster Vh, h ∈ {i2, . . . , ik−1},

either consists of a single node/agent or for every choice of two distinct agents i, j ∈ Vh
either one of the following cases applies:

i) i and j are friends (the edge (i, j) belongs to E and it has positive weight);

ii) i and j are enemies of two (not necessarily distinct) vertices in Vi1 that are familiar

to each other. This means that there exist r, s ∈ Vi1, and belonging to the same

connected component in Vi1, such that the edges (r, i) and (j, s) belong to E (and

have negative weights).
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It is worthwhile to better illustrate this graph property. Conditions i) and ii) amount

to saying that either the vertices i and j of Vh are connected by an edge or there is a path

connecting them whose intermediate vertices are all in Vi1 . Figure 3.1 provides a graphical

representation of this property. The property holds for Vih and Vik−1
, but not for Vik , the

remaining set.

Figure 3.1: Graphical representation of Assumption 3.

The idea behind this assumption is that if two agents belong to the same clusters

Vh, h ∈ {i2, i3, . . . , ik−1}, they have a close relationship: they are either friends or they are

enemies of agents belonging to the same group of friends in Vi1 .

From an algebraic point of view, Assumption 3 states that for every h ∈ {i2, i3, . . . , ik−1}

and for every i, j ∈ Vh, i ̸= j, either [Ah,h]i,j > 0 or there exists t ∈ Z+ such that

[Ah,i1At
i1,i1

Ai1,h]i,j > 0. As a consequence, for every scalar matrix Di1 such that Di1 −Ai1,i1

is positive definite (see Lemma 2.5 in Section 2.3.1), and hence (Di1 − Ai1,i1)
−1 ≥ 0, we

have that

[Ah,h +Ah,i1(Di1 −Ai1,i1)
−1Ai1,h]i,j > 0, ∀ i ̸= j.

By referring to the previous Example 3.2, it is easy to see that Assumption 3 trivially holds

for every choice of i1, i2 ∈ [1, 3], i1 ̸= i2. Note that V3 consists of a single node, while V1

and V2 consist of a single connected component.
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3.4 k-Partite Consensus: Problem Solution Under the

Homogeneity Constraint

We are now in a position to prove that under the homogeneity constraint imposed by

Assumption 2 and the close friendship hypothesis formalised in Assumption 3, we can

always find suitable choices of the scalar matrices Di = δiIni
, i ∈ [1, k], that lead the

multi-agent system to k-partite consensus.

Theorem 3.4. Consider the multi-agent system (4.3.1), with communication graph G sat-

isfying Assumptions 1, 2 and 3. There exist δi ∈ R, i ∈ [1, k], such that the closed-

loop multi-agent system (3.5) reaches k-partite consensus, (i.e., (3.6) holds for suitable

γi = γi(x(0)) ∈ R, i ∈ [1, k]), under the distributed control law (3.3), with LD ∈ RN×N

described as in (3.4), A as in (3.2), D = diag{D1,D2, . . . ,Dk} ∈ RN×N and Di = δiIni
,

i ∈ [1, k].

Proof. We assume without loss of generality that Assumption 3 holds for i1 = 1 and

ih = h + 1 for h = 2, 3, . . . , k − 1. In fact, we can always relabel the clusters, and accord-

ingly permute the blocks of A, so that this condition is satisfied.

By Lemma 3.1, we need to prove that under the theorem assumptions it is always pos-

sible to choose the real parameters δ1, δ2, . . . , δk so that (C.1) the matrix LD is singu-

lar and positive semidefinite, and (C.2) its kernel is spanned by vectors taking the form

z = [α11
⊤
n1
, α21

⊤
n2
, . . . , αk1

⊤
nk
]⊤, αi ∈ R, i ∈ [1, k].

Condition (C.1). To impose that LD is singular and positive semidefinite, we make use

of the result in Section 2.3.1. Specifically, we first set H1 := LD and block-partition it as

follows

H1 := LD =


D1 −A1,1 −A1,2 . . . −A1,k

−A2,1 D2 −A2,2 . . . −A2,k

...
... . . . ...

−Ak,1 −Ak,2 . . . Dk −Ak,k

 =

Φ1 S1

S⊤
1 Q1

 .

We impose that Φ1 ∈ Rn1×n1 is positive definite and its Schur complement in H1, i.e.,

H2 := Q1 − S⊤
1 Φ

−1
1 S1, is positive semidefinite and singular. This means that condition
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(3.4) holds:

Φ1 := D1 −A1,1 = δ1In1 −A1,1 ≻ 0,

and the matrix H2 in (3.8) is positive semidefinite and singular.

H2 =

Φ2 S2

S⊤
2 Q2

 (3.8)

with

Φ2 =
[
D2 −A2,2 −A2,1(D1 −A1,1)

−1A1,2

]
,

S2 =
[
−A2,3 −A2,1(D1 −A1,1)

−1A1,3 · · · − A2,k −A2,1(D1 −A1,1)
−1A1,k

]
,

Q2 =


D3 −A3,3 −A3,1(D1 −A1,1)

−1A1,3 . . . −A3,k −A3,1(D1 −A1,1)
−1A1,k

... . . . ...

−Ak,3 −Ak,1(D1 −A1,1)
−1A1,3 . . . Dk −Ak,k −Ak,1(D1 −A1,1)

−1A1,k

 .

We note that if we assume δ1 > c11 ≥ 0, then Φ11n1 = (δ1In1 −A1,1)1n1 > 0. By making

use of Lemma 2.5, part i), in the Appendix for D = δ1In1 , A = A1,1 and z = 1n1 , we can

claim that Φ1 = D − A is positive definite, i.e., (3.4) holds.

To ensure that H2 ⪰ 0 (and is singular), we apply again the result from Section 2.3.1, and

impose that its first block Φ2 is positive definite, namely condition (3.4) holds:

Φ2 := D2 −A2,2 −A2,1Φ
−1
1 A1,2 ≻ 0,

while its Schur complement H3 (see (3.9)) is positive semidefinite and singular.

To address condition (3.4), we first observe that by Lemma 2.5, part ii), Φ−1
1 = (D1 −

A1,1)
−1 is symmetric and nonnegative, and hence so is A2,2 + A2,1Φ

−1
1 A1,2. But then we

can apply Lemma 2.5, part i), again, by assuming D = D2 and A = A2,2 + A2,1Φ
−1
1 A1,2.

Indeed, if we impose the following constraint on δ2:

δ2 > c22 +
c12c21
δ1 − c11

, (3.10)

then it is easy to verify that

Φ21n2 = (D − A)1n2 = (δ2 − c22)1n2 −A2,1Φ
−1
1 c121n1

= (δ2 − c22)1n2 − c21(δ1 − c11)
−1c121n1 > 0,
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H3 :=


D3 −A3,3 −A3,1(D1 −A1,1)

−1A1,3 . . . −A3,k −A3,1(D1 −A1,1)
−1A1,k

...
. . .

...

−A⊤
3,k −Ak,1(D1 −A1,1)

−1A1,3 . . . Dk −Ak,k −Ak,1(D1 −A1,1)
−1A1,k



−


−A3,2 −A3,1(D1 −A1,1)

−1A1,2

...

−Ak,2 −Ak,1(D1 −A1,1)
−1A1,2

Φ−1
2 · (3.9)

·
[
−A2,3 −A2,1(D1 −A1,1)

−1A1,3 . . . −A2,k −A2,1(D1 −A1,1)
−1A1,k

]
=

Φ3 S3

S⊤
3 Q3



where we used the fact that Φ−1
1 1n1 = (D1−A11)

−11n1 = (δ1− c11)
−11n1 . Therefore D−A

is positive definite, namely (3.4) holds.

Consider, now, the first block of H3 in (3.9):

Φ3 := D3 −A3,3 −A3,1Φ
−1
1 A1,3 − [A3,2 +A3,1Φ

−1
1 A1,2] · Φ−1

2 [A2,3 +A2,1Φ
−1
1 A1,3].

We want to prove that for a suitable choice of δ3 we can ensure that Φ3 is positive definite

and impose that its Schur complement is positive semidefinite and singular. We observe

that from Assumption 3 (see also (3.3)) and the properties of (D1 − A1,1)
−1 it follows

that Aℓ,ℓ + Aℓ,1(D1 − A1,1)
−1A1,ℓ, ℓ ∈ [3, k], is a nonnegative matrix whose off-diagonal

entries are all positive. On the other hand, by Lemma A.1 we can always choose δ2 > 0

sufficiently large (something that ensures, in particular, that (3.10) is met) to guarantee

that the entries of Φ−1
2 are arbitrarily small, and hence the entries of [Aℓ,2 + Aℓ,1(D1 −

A1,1)
−1A1,2]Φ

−1
2 [A2,ℓ+A2,1(D1−A1,1)

−1A1,ℓ], ℓ ∈ [3, k], are arbitrarily small. This ensures,

in particular, that the matrix A = −Φ3 +D3 ≈ A3,3 +A3,1(D1 −A1,1)
−1A1,3 has positive

off-diagonal entries, and hence −Φ3 is an irreducible Metzler matrix.

If we now choose δ3 such that

δ3 > c33 +
c31c13
δ1 − c11

+
(
c32 +

c31c12
δ1 − c11

)
·
(
δ2 − c22 −

c21c12
δ1 − c11

)−1(
c23 +

c21c13
δ1 − c11

)
(3.11)

we ensure that Φ3 satisfies Φ31n3 > 0. This proves that Φ3 is positive definite.

The previous reasoning, that we have commented in detail for the first three steps, namely

for the matrices H1,H2 and H3, (and that is based on result from Section 2.3.1 and Lemma

2.5 in Appendix A), needs to be applied k times, as many as the number of clusters in the
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communication graph. The procedure is described in detail in Algorithm 1 and it consists

of recursively imposing, for h = 1, 2, . . . , k − 1, that Φh, the first block of Hh, is positive

definite and the opposite of a Metzler matrix, while its Schur complement Hh+1, is positive

semidefinite and singular. Finally, Φk is positive semidefinite and singular, with a single

eigenvalue in 0. In detail, the algorithm is initialised by identifying H1 with the original

matrix LD, each matrix LD
(0)
i,j with the (i, j)-th block of A and each coefficient m(0)

i,j with

the row sum ci,j (of Ai,j). At each step h, ranging from 1 to k−1, we choose the parameter

δh large enough so that

• The Metzler matrix −Φh = −Dh+LD
(h−1)
h,h = −δhInh

+LD
(h−1)
h,h satisfies −Φh1nh

< 0,

something that requires δh1nh
> LD

(h−1)
h,h 1nh

(i.e., δh > m
(h−1)
h,h ), and that ensures

that the Metzler matrix −Φh is Hurwitz (equivalently Φh is (symmetric and) positive

definite).

• While −Φ1 and −Φ2 are Metzler for every choice of δ1 and δ2, in order to ensure that

−Φh, h ∈ [3, k], are all Metzler matrices, we exploit Assumption 3 that ensures that

LD
(1)
h,h, h ∈ [3, k], are all Metzler matrices with strictly positive off-diagonal entries. By

making use of Lemma A.1, it is immediate to show that if LD
(i)
h,h has strictly positive

off-diagonal entries, then also LD
(i+1)
h,h has strictly positive off-diagonal entries. This

allows to say that all the matrices LD
(h)
h+1,h+1, h ∈ [2, k], (have strictly positive off-

diagonal entries and hence) are Metlzer. This, in turn, allows to say that all matrices

−Φh, h ∈ [3, k], are (irreducible) Metzler matrices.

Once we have chosen δh and hence uniquely identified Φh, we first update the matrices LD
(h)
i,j

and then define Hh+1, the Schur complement of Φh in Hh, that turns out to be expressed

in terms of the diagonal blocks Dh+1, . . . ,Dk and of the matrices LD
(h)
i,j as described in the

algorithm.

So, by proceeding in this way, we construct all positive definite matrices Φ1, . . . ,Φk−1 and

at the last step we choose δk > 0 so that −Φk1nk
= 0. Being −Φk an irreducible Metzler

matrix, this ensures (see Theorem 2.3) that 0 is a simple dominant eigenvalue of −Φk, and

therefore Φk is positive semidefinite and singular, with a simple eigenvalue in 0.

Since the spectrum of LD is the union of the spectra of the positive definite matrices

Φh, h ∈ [1, k − 1], and of the positive semidefinite and singular matrix Φk, then LD is

positive semidefinite with a simple eigenvalue in 0.
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Algorithm 1 Selection of the δh, h = 1, 2, . . . , k.
for i, j ∈ [1, k] do ▷ Initialization

LD
(0)
i,j := Ai,j

m
(0)
i,j := ci,j

H1 := LD

for h ∈ [1, k − 1] do ▷ Recursive Step

Choose δh > 0 so that

δh > m
(h−1)
h,h and

if h > 1 then

∀ ℓ ∈ [h+ 1, k],∀ i ̸= j

[LD
(h−1)
ℓ,ℓ +LD

(h−1)
ℓ,h [δhInk

− LD
(h−1)
h,h ]−1LD

(h−1)
h,ℓ ]ij > 0

Set

Dh := δhInh

Φh := Dh − LD
(h−1)
h,h

ϕh := δh −m
(h−1)
h,h

LD
(h)
i,j := LD

(h−1)
i,j + LD

(h−1)
i,h Φ−1

h LD
(h−1)
h,j

m
(h)
i,j := m

(h−1)
i,j +m

(h−1)
i,h ϕ−1

h m
(h−1)
h,j ∀i, j

Hh+1 :=


Dh+1 − LD

(h)
h+1,h+1 . . . −LD

(h)
h+1,k

... . . . ...

−LD
(h)
k,h+1 . . . Dk − LD

(h)
k,k


(Schur complement of Φh in Hh)

Set ▷ Final Step

δk := m
(k−1)
k,k

Dk := δkInk

Φk := Dk − LD
(k−1)
k,k

ϕk := δk −m
(k−1)
k,k = 0
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Condition (C.2). We want to prove that if we assume for the parameters δ1, δ2, . . . , δk

the values obtained by means of the previous algorithm we ensure that LD has an eigen-

vector associated with the 0 eigenvalue with the desired block structure. We note that

LDz = 0N is equivalent to the family of equations

αiδi1ni
= αicii1ni

+
k∑

j=1,j ̸=i

αjcij1ni
, i ∈ [1, k],

that, in turn, can be equivalently rewritten as

αiδi = αicii +
k∑

j=1,j ̸=i

αjcij, i ∈ [1, k],

and hence in matrix form as (D−C)
[
α1 α2 . . . αk

]⊤
= 0k, where D := diag{δ1, δ2, . . . , δk}

and C := [cij]i,j∈[1,k].

Now we observe that all the constraints on the δi, i ∈ [1, k], that we have derived, can be

simply obtained from the (non symmetric) matrix D−C by imposing that the (1, 1)-entry

of each of the first k − 1 Schur complements, obtained according to the same algorithm

that we used to define the matrices Φh, h ∈ [1, k − 1], are positive, while the k-th one

is zero. Indeed, such (1, 1)-entries just correspond to the coefficients ϕ1, ϕ2, . . . , ϕk. But

this implies that if we choose δi, i ∈ [1, k], according to the previous algorithm, we ensure

that det(D − C) = ϕ1ϕ2 . . . ϕk = 0, namely D − C is singular. Therefore D − C has an

eigenvector w = [α1, α2, . . . , αk]
⊤, corresponding to 0, and hence [α11

⊤
n1
, α21

⊤
n2
, . . . , αk1

⊤
nk
]⊤

is an eigenvector of LD associated with the zero eigenvalue. Moreover, since we proved that

0 is a simple eigenvalue, all the eigenvectors of LD corresponding to 0 have the desired block

structure.

Example 3.5. Consider, again, Example 3.2. As previously remarked, the communication

graph satisfies Assumptions 1, 2 and 3 for i1 = 1 and i2 = 3 (as in the proof). If we apply

Algorithm 1 we obtain the constraints

δ1 > 1, δ2 > 2 +
2

δ1 − 1
, δ3 =

2

δ1 − 1
+

(
−4 + 4

δ1−1

)(
−1 + 1

δ1−1

)
[
δ2 − 2− 2

δ1−1

]−1 .

If we assume δ1 = 2 then, independently of δ2, one gets δ3 = 2. It turns out that for

every choice of δ2 > 4 the eigenvector corresponding to the zero eigenvalue of LD is z =



3.5. K-PARTITE CONSENSUS FOR COMPLETE UNWEIGHTED GRAPH 29

[ 1 1 | 0 0 0 0 | −1]⊤.

Figure 3.2 shows the state evolution of the system described as in (3.5), with adjacency

matrix as in Example 3.2, with random initial conditions x(0) taken as realizations of

a Gaussian vector with 0 mean and variance σ2 = 4, i.e. x(0) ∼ N (0, 4). The graph

shows that tripartite consensus is reached after about 1.5 units of time with regime values

γ1 = −1.39, γ2 = 0, γ3 = 1.39.

Alternatively, one can choose δ1 = 3, δ2 = 4 and δ3 = 2, and get as dominant eigenvector

z̄ = [ 0 0 | 1 1 1 1 | −2]⊤.

Figure 3.2: Graph corresponding to Example 3.5.

Remark 3.6. If the number of clusters coincides with the number of agents, i.e. each

cluster consists of a single node and all nodes are enemies to each other, the homogene-

ity constraint trivially holds (cij = Aij = [A]ij) and hence Theorem 3.4 applies under

Assumption 1 alone.

3.5 k-partite Consensus for Multi-agent Systems with

Complete Unweighted Graph

In this subsection we will focus our attention on multi-agent systems with complete, un-

weighted and undirected communication graphs, clustered into an arbitrary number k of

groups. By resorting to a suitable relabelling of the agents, we can always assume that the



30 CHAPTER 3. CONSENSUS FOR CLUSTERS OF AGENTS

adjacency matrix A is described as in (3.2) with Ai,i = 1ni
1⊤
ni
− Ini

and Ai,j = −1ni
1⊤
nj

for

i ̸= j, i.e.,

A=


1n11

⊤
n1

− In1 −1n11
⊤
n2

. . . −1n11
⊤
nk

−1n21
⊤
n1

1n21
⊤
n2

− In2 . . . −1n21
⊤
nk

...
...

. . .
...

−1nk
1⊤n1

−1nk
1⊤n2

. . . 1nk
1⊤nk

− Ink

 (3.12)

ni being the cardinality of the i-th cluster. Also, in this case we plan to design a dis-

tributed control law for the system (4.3.1) of the type (3.3), with LD = D −A, and

D = diag{δ1In1 , . . . , δkInk
} ∈ RN×N .

Under the previous hypotheses on the adjacency matrix A, Assumptions 1, 2 and 3 are

trivially satisfied. So, the existence of a suitable choice of the coefficients δi, i ∈ [1, k],

that ensures k-partite consensus follows from the previous Theorem 3.4. On the other

hand, the particular structure of A allows to obtain a much simpler proof as well as an

explicit expression of (a possible choice of) the δi’s that cannot be obtained in the general

homogeneous case. For this reason we provide here an independent proof of this result.

Theorem 3.7. Consider the multi-agent system (4.3.1), with unweighted and complete

communication graph G split into k clusters, and adjacency matrix A as in (3.12). If we

assume

δi = 2ni − 1, i ∈ [1, k],

the closed-loop multi-agent system (3.5) reaches k-partite consensus, under the distributed

control law (3.3), with LD ∈ RN×N described as in (3.4), and D = diag{δ1In1 , . . . , δkInk
} ∈

RN×N .

Proof. By Lemma 3.1, we need to prove that under the theorem hypotheses and by as-

suming the parameters δi, i ∈ [1, k], as in (3.7), we can ensure that (C.1) the matrix LD

is singular and positive semidefinite, and (C.2) its kernel is spanned by vectors taking the

block form z = [α11
⊤
n1
, α21

⊤
n2
, . . . , αk1

⊤
nk
]⊤, αi ∈ R, i ∈ [1, k].

Condition (C.2). By assuming δi, i ∈ [1, k], as in (3.7), and by imposing LDz = 0N , for z

described as above, we obtain the family of equations

Nk

[
α1 α2 . . . αk

]⊤
= 0,

where Nk := 1k

[
n1 n2 . . . nk

]
is a singular matrix whose kernel coincides with
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H =


H2,2 H2,3 . . . H2,k

H3,2 H3,3 . . . H3,k

...
... . . . ...

Hk,2 Hk,3 . . . Hk,k

 ,
Hi,i = 2niIni

− 1ni
1⊤
ni
− 1ni

1⊤
n1
(2n1In1 − 1n11

⊤
n1
)−11ni

1⊤
ni

Hi,j = 1ni
1⊤
nj

− 1ni
1⊤
n1
(2n1In1 − 1n11

⊤
n1
)−11ni

1⊤
nj
, i ̸= j.

ker
[
n1 n2 . . . nk

]
. This implies that ker LD includes all the vectors

z = [α11
⊤
n1
, α21

⊤
n2
, . . . , αk1

⊤
nk
]⊤, with [α1, α2, . . . , αk] ∈ ker

[
n1 n2 . . . nk

]
. To prove

that all the eigenvectors of LD corresponding to the zero eigenvalue take the form

[α11
⊤
n1
, . . . , αk1

⊤
nk
]⊤, αi ∈ R, i ∈ [1, k], let w =

[
w⊤

1 w⊤
2 . . . w⊤

k

]⊤
be any eigenvector

of LD corresponding to 0. Then condition LDw = 0N implies

2niwi = (1⊤
ni
wi)1ni

−
k∑

j=1,j ̸=i

(1⊤
nj
wj)1ni

, i ∈ [1, k],

which ensures that every wi is a scalar multiple of 1ni
.

Condition (C.1). We now prove that by assuming δi, i ∈ [1, k], as in (3.7):

(A) the upper diagonal block of LD, namely Φ := 2n1In1 − 1n11
⊤
n1

, is positive definite, and

(B) its Schur complement H, given in (3.13), is positive semidefinite and singular.

Therefore, by the result in Section 2.3.1, LD is positive semidefinite and singular.

By Lemma 2.5 part i), we can claim that, since (2n1In1 − 1n11
⊤
n1
)1n1 = n11n1 > 0, (A)

holds.

Now, we observe that, for any vector

z = [α11
⊤
n1
, α21

⊤
n2
, . . . , αk1

⊤
nk
]⊤, with [α1, α2, . . . , αk] ∈ ker

[
n1 n2 . . . nk

]
, we have 0 =

(2n1In1 − 1n11
⊤
n1
)α11n1 + 1n1α2n2 + · · ·+ 1n1αknk, and hence

(2n1In1 − 1n11
⊤
n1
)−11n1 = − α1

(
∑k

i=2 αini)
1n1 =

1

n1

1n1 .

This allows to verify that the matrix H takes the block diagonal form

H = diag{2n2In2 − 21n21
⊤
n2
, 2n3In3 − 21n31

⊤
n3
, . . . , 2nkInk

− 21nk
1⊤
nk
}.

Each diagonal block 2niIni
−21ni

1⊤
ni
, i ∈ [2, k], is easily seen (by a straightforward extension

of Lemma 2.5) to be positive semidefinite and singular (with 0 as a simple eigenvalue). So,

we have shown that LD is positive semidefinite and singular and hence (B) holds. Therefore

condition (C.1) holds and k-partite consensus is asymptotically achieved.
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Example 3.8. Consider the multi-agent system (3.5), with unweighted and complete com-

munication graph and 5 clusters of size n1 = 9, n2 = 13, n3 = 14, n4 = 11, n5 = 7. We

assume δi, i ∈ [1, 5], as in (3.7) and x(0) ∼ N (0, 4). The system reaches 5-partite con-

sensus after about 0.2 units of time, with regime values γ1 = −0.1781, γ2 = 0.484, γ3 =

−0.9866, γ4 = 0.1849, γ5 = 1.004, as illustrated in Fig. 3.3.

Figure 3.3: Graph corresponding to Example 3.8.

3.6 k-Partite Consensus for a Class of Nonlinear Models

In the following, an extension of the k-partite consensus analysis to nonlinear systems

is proposed. To this aim, by adopting a set-up similar to the one in Altafini (2013),

we consider a multi-agent system described as in (4.3.1), with communication graph G

satisfying Assumption 1 and subjected to the feedback law

u = f(x), (3.13)

where f : RN → RN is a Lipschitz continuous function satisfying f(0) = 0.

Assumption 4 on the vector field f : We assume for f a distributed additive ex-

pression. Specifically, we assume that each component fi(x), i ∈ [1, N ], of the function

f depends only on the states of the neighbouring agents of the agent i, namely for every

i ∈ [1, N ], the function fi(x) depends only on those entries xj such that (j, i) ∈ E, and is
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expressed as follows

fi(x) = −
∑

j:(j,i)∈E

(
[D]ih̃i(xi(t))− [A]i,jh̃j(xj(t))

)
,

where [D]i is a real number, and the nonlinear function h̃k(·) is the same for all the agents

belonging to the same cluster. So, if we assume that the agents are partitioned into k

clusters and ordered in such a way that A is described as in (3.2), the vector x is accordingly

partitioned as x =
[
x⊤
1 x⊤

2 . . . x⊤
k

]⊤
, with xi ∈ Rni representing the states of the agents

belonging to the i-th cluster. The function f can be expressed as the product of the matrix

LD, given in (3.4), and of a nonlinear function h(x):

ẋ = −LDh(x), (3.14)

with h(x) = [h1(x1)
⊤ h2(x2)

⊤ . . . hk(xk)
⊤]⊤, and hi(xi) : Rni → Rni, i ∈ [1, k], described

as follows

hi(xi) = [hi(xsi+1) hi(xsi+2) . . . hi(xsi+ni
)]⊤, (3.15)

si =

0, i = 1;∑
j<i nj, i = 2, . . . , k.

(3.16)

The scalar functions hi(·) are assumed to be monotone, bijective functions belonging to the

following set:

R :=
{
h : R → R : (h(xa)− h(xb))(xa − xb) > 0, xa ̸= xb,

h(0) = 0,

∫ xa

xb

(h(z)− h(xb))dz → ∞ as |xa − xb|→ ∞
}
.

The following theorem provides sufficient conditions for a networked closed-loop system

described as in (3.14) to reach k-partite consensus that extend those given in Theorem 3.4.

Similarly, the extension of Theorem 3.7 would be possible.

Theorem 3.9. Consider the multi-agent system (4.3.1), with communication graph G sat-

isfying Assumptions 1, 2 and 3, and distributed control law (3.13) satisfying Assumption

4 and (3.6). Consequently, the multi-agent system is described as in (3.14), with the func-

tion h(x) defined as above, LD ∈ RN×N described as in (3.4), D ∈ RN×N described as in

(3.2) and Di = δiIni
, for i ∈ [1, k]. There exist δi ∈ R, i ∈ [1, k], such that the closed-loop

multi-agent system (3.14) reaches k-partite consensus.
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Proof. Clearly, the equilibrium points of system (3.14) are all the vectors x∗ in RN such

that 0 = LDh(x
∗).We want to show that it is possible to choose the coefficients δi, i ∈ [1, k],

so that all the equilibrium points of the system are block partitioned according to the block

partitioning of the matrix LD, and they are globally simply stable. This ensures that the

set of all such equilibrium points is the attractor of every state trajectory (there cannot

be limit cycles and the trajectories cannot diverge), and hence the multi-agent system

asymptotically reaches k-partite consensus.

We have proved (see Theorem 3.4) that under Assumptions 1, 2 and 3 it is possible to choose

the coefficients δ1, δ2, . . . , δk ∈ R so that LD is a singular positive semidefinite matrix,

having 0 as a simple eigenvalue and the corresponding eigenvector takes the form z =

[α11
⊤
n1
, α21

⊤
n2
, . . . αk1

⊤
nk
]⊤, for suitable αi ∈ R, i ∈ [1, k]. This implies that the equilibrium

points of the system (3.14) are the vectors x∗ such that h(x∗) ∈ ⟨z⟩. As the maps hi

belong to R, for every c ∈ R such that c · αi belongs to the image of the corresponding

hi for every i ∈ [1, k], there exist β1, β2 . . . βk ∈ R such that c · [α11
⊤
n1
, . . . αk1

⊤
nk
]⊤ =

h([β11
⊤
n1
, . . . βk1

⊤
nk
]⊤).

Suppose, without loss of generality, that this is the case for c = 1, set

x∗ := [β11
⊤
n1
, β21

⊤
n2
, . . . , βk1

⊤
nk
]⊤, and consider a suitably modified version of the Lya-

punov function V : RN → R adopted in Altafini (2013):

V (x) =
k∑
i=1

si+ni∑
j=si+1

∫ xj

x∗j

(hi(z)− hi(x
∗
j))dz =

k∑
i=1

si+ni∑
j=si+1

∫ xj

βi

(hi(z)− αi)dz, (3.17)

(see (3.16) for the definition of si) for x ̸= x∗. Moreover, V (x) is radially unbounded and

its derivative is

V̇ (x) =
k∑
i=1

si+ni∑
j=si+1

(hi(xj)− hi(x
∗
j))ẋj = −(h(x)− h(x∗))⊤LDh(x) = −h(x)⊤LDh(x) ≤ 0,

where we used the fact that LD = L⊤
D and LDh(x

∗) = LDz = 0, and the last inequality

holds since LD is a singular positive semidefinite matrix. This ensures that every equilib-

rium point x∗ of the system is globally stable and since all such equilibrium points have

the required block-structure, k-partite consensus is guaranteed.

Example 3.10. Consider the multi-agent system (3.14), with unweighted and complete

communication graph, h(x(t)) = tanh(x(t)), and 4 clusters of size n1 = 6, n2 = 9, n3 =

11, n4 = 7. We have assumed that x(0) ∼ N (0, 4) and δi = 2ni−1 for every i ∈ [1, 4]. The
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system reaches 4-partite consensus after approximately 0.5 time units, with regime values

γ1 = 0.4967, γ2 = −0.5369, γ3 = −1.925, γ4 = 2.418, as illustrated in Fig. 3.4.

Figure 3.4: Graphs associated with Example 3.10. The upper shows the time evolution of

h(x(t)) = tanh(x(t)). The one below shows the time evolution of x(t).



36 CHAPTER 3. CONSENSUS FOR CLUSTERS OF AGENTS

3.7 Relaxation of the Homogeneity Assumption

The remaining part of this chapter addresses networks that are partitioned into three

clusters of agents that do not fulfil the homogeneity assumption (see Assumption 2). In

this setting, we will focus on the reaching of tripartite consensus and sign consensus. While

in the homogeneous case the desired goal was achieved by choosing a self-confidence degree

common to all the agents belonging to the same class, from now onward the agents’ degree

of self-confidence will be individually tuned.

By focusing on Lemma 3.1 (ii), we provide the following lemma whose easy proof is

omitted.

Lemma 3.11. Given the matrix LD ∈ RN×N described as in (3.4), D ∈ RN×N described

as in (3.2) and Di ∈ Rni×ni, for i ∈ [1, 3], diagonal matrices, the kernel of LD includes a

vector of the type v = [v11
⊤
n1
, v21

⊤
n2
, v31

⊤
n3
]⊤, vi ∈ R, i ∈ [1, 3], if and only if

rank



d1 − a11 −a12 −a13

−a21 d2 − a22 −a23

−a31 −a32 d3 − a33


 < 3, (3.18)

where

di := Di1ni
, aij := Ai,j1nj

, i, j ∈ [1, 3].

Based on Lemmas 3.1 and 3.11, in the sequel we will provide conditions ensuring the

existence of diagonal matrices Di (equivalently, of vectors di = Di1ni
), for i ∈ [1, 3], such

that the corresponding matrix LD is a singular positive semi-definite matrix, with a simple

eigenvalue in 0 and condition (3.18) holds. In fact, if 0 is a simple eigenvalue, in order to

fulfil condition (ii) of Lemma 3.1 it is sufficient to prove that there exists a single vector

in the kernel of LD having the desired block structure.

Assumption 5 The clustering partition into 3 clusters is minimal.

It is worth noticing that aij ̸= 0 for every pair i, j ∈ [1, 3], i ̸= j. In fact aij = 0

implies Ai,j = 0 and hence also Aj,i = 0 which means that Vi and Vj could be grouped

together, thus contradicting the minimality of the partitioning into 3 clusters introduced

in Assumption 5.

We are now in a position to introduce one of the two main results of this section.
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Theorem 3.12. Consider the multi-agent system (4.3.1), with undirected, signed, weighted

and connected communication graph G satisfying Assumption 1, Assumption 2 and As-

sumption 5 for a suitable choice of i1, i2 ∈ [1, 3], i1 ̸= i2. Also, suppose that the following

conditions hold:

1) every agent in Vi3 has at least one enemy in Vi2, namely Ai3,i21ni2
≪ 0, and

2) there exists h ∈ {i2, i3} such that every agent in Vi1 has at least one enemy in Vh,

namely Ai1,h1h ≪ 0.

Then there exist diagonal matrices Di ∈ Rni×ni , i ∈ [1, 3], such that the distributed control

law (3.3), with LD ∈ RN×N described as in (3.4), D ∈ RN×N described as in (3.2), makes

the closed-loop multi-agent system (3.5) reach tripartite consensus.

Proof. We can always relabel the vertices in V so that i1 = 1, i2 = 3 and i3 = 2. Note, also,

that aij = Ai,j1nj
≤ 0, for every i, j ∈ [1, 3], i ̸= j (but aij ̸= 0), and aii = Ai,i1ni

≥ 0.

Based on the previous comments, related to Lemmas 3.1 and 3.11, we prove that there

exist diagonal matrices Di, i ∈ [1, 3], such that (A) LD is a singular positive semi-definite

matrix, with a simple eigenvalue in 0, and (B) the matrix in (3.18) has a nontrivial vector

ṽ :=
[
v1 v2 v3

]⊤
in its kernel.

We first prove that Assumption 2 ensures that (A) holds. To ensure that the matrix

LD =


D1 −A1,1 −A1,2 −A1,3

−A2,1 D2 −A2,2 −A2,3

−A3,1 −A3,2 D3 −A3,3

 (3.19)

is positive semidefinite, we impose (see Section 2.3.1) that the upper diagonal block is

positive definite and its Schur complement is positive semi-definite, i.e., that conditions

(3.20):

D1 −A1,1 ≻ 0 (3.20)

and (3.21) hold.

Assume that

d1 ≫ a11 ≥ 0. (3.22)
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D2 −A2,2 −A2,1(D1 −A1,1)
−1A1,2 −A2,3 −A2,1(D1 −A1,1)

−1A1,3

−A3,2 −A3,1(D1 −A1,1)
−1A1,2 D3 −A3,3 −A3,1(D1 −A1,1)

−1A1,3

 ⪰ 0. (3.21)

Φ3 := D3 −A3,3 −A3,1(D1 −A1,1)
−1A1,3 − [A3,2 +A3,1(D1 −A1,1)

−1A1,2]

·[D2 −A2,2 −A2,1(D1 −A1,1)
−1A1,2]

−1[A2,3 +A2,1(D1 −A1,1)
−1A1,3] ⪰ 0

and singular. (3.24)

Then (D1 −A1,1)1n1 ≫ 0, and hence Lemma 2.5, part i), holds for v = 1n1 , thus ensuring

that D1 −A1,1 is positive definite.

To ensure that (3.21) holds, we iterate the same procedure, and impose condition:

D2 −A2,2 −A2,1(D1 −A1,1)
−1A1,2 ≻ 0, (3.23)

as well as condition (3.24).

To address condition (3.23), we first observe that by Lemma 2.5, part ii), (D1−A1,1)
−1

is symmetric and nonnegative, and hence so is A2,2+A2,1(D1−A1,1)
−1A1,2. But then we can

apply Lemma 2.5, part i), again, by assumingD = D2 and A = A2,2+A2,1(D1−A1,1)
−1A1,2.

Indeed, if we impose the following constraint on d2:

d2 ≫ a22 +A2,1(D1 −A1,1)
−1a12 ≥ 0, (3.25)

then it is easy to verify that

(D − A)1n2 =d2 − a22 −A2,1(D1 −A1,1)
−1a12 ≫ 0.

Therefore D − A is positive definite, namely (3.23) holds.

On the other hand, we can always choose the positive diagonal entries of the diagonal

matrix D2, namely the vector d2, so that not only d2 fulfils condition (3.25), but it is also

sufficiently large to ensure that the entries of [A3,2 + A3,1(D1 − A1,1)
−1A1,2][D2 − A2,2 −

A2,1(D1 −A1,1)
−1A1,2]

−1[A2,3 +A2,1(D1 −A1,1)
−1A1,3] are small enough to guarantee that

−(Φ3 −D3) ≈ A3,3 +A3,1(D1 −A1,1)
−1A1,3.
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By Assumption 2, for i1 = 1 and i3 = 2, the matrix A3,3 + A3,1(D1 − A1,1)
−1A1,3 has

positive off-diagonal entries, and hence the same is true for −(Φ3−D3). This ensures that

−Φ3 is an irreducible Metzler matrix.

So, now, we are remained with proving that for a suitable choice of D3 we can ensure

that (3.24) holds. If we apply the vector 1n3 on the right side of the matrix Φ3, by making

use of reasonings similar to those just exploited to prove (3.23), we obtain

Φ31n3 = d3 − a33 −A3,1(D1 −A1,1)
−1a13 − [A3,2 +A3,1(D1 −A1,1)

−1A1,2]

· [D2 −A2,2 −A2,1(D1 −A1,1)
−1A1,2]

−1 · [a23 +A2,1(D1 −A1,1)
−1a13].

Therefore, by imposing

d3 = a33 +A3,1(D1 −A1,1)
−1a13 + [A3,2 +A3,1(D1 −A1,1)

−1A1,2]

· [D2 −A2,2 −A2,1(D1 −A1,1)
−1A1,2]

−1 · [a23 +A2,1(D1 −A1,1)
−1a13],

we ensure that Φ31n3 = 0. This guarantees that the matrix Φ3 has 0 as an eigenvalue

corresponding to the eigenvector 1n3 ≫ 0, and therefore (see Theorem 2.3) 0 is the simple

dominant eigenvalue of the irreducible Metzler matrix −Φ3. Since the eigenvalues of LD

are the union of the eigenvalues of the matrices in (3.20) and (3.23) and of the matrix Φ3,

that have been obtained from LD by applying the Schur complement, then LD is positive

semidefinite with 0 as simple eigenvalue and thus condition (A) holds. Now we show that

under conditions 1) and 2) we can determine vectors di, i ∈ [1, 3], so that also condition

(B) holds.

Note that by condition 1), a23 ≪ 0, and by condition 2), either a12 ≪ 0 or a13 ≪ 0. In

the sequel we will focus on the case a12 ≪ 0, the other case being completely equivalent. We

want to prove that we can always find vectors di, i ∈ [1, 3], consistent with the constraints

(3.22), (3.25) and (3.26), so that (B) holds and hence there exist v2, v3 such that
a11 a12 a13

a21 a22 a23

a31 a32 a33



1

v2

v3

 =


d1

v2d2

v3d3

 . (3.26)

This is equivalent to determining scalars v2 and v3 that make the vectors

d1 = a11 + v2a12 + v3a13 (3.27)

d2 = a22 +
1

v2
a21 +

v3
v2
a23 (3.28)

d3 = a33 +
1

v3
a31 +

v2
v3
a32, (3.29)
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consistent with the constraints (3.22), (3.25) and (3.26).

We first note that since a12 ≪ 0, we can always choose v2 < 0 with large module, and

v3 > 0 and small, so that v2a12 + v3a13 ≫ 0, which automatically implies that d1 satisfies

condition (3.22). Also, we can choose the modules of v2 and v3 in such a way that the

entries of d1 and hence of D1 are so large that a23 +A2,1(D1 −A1,1)
−1a13 ≈ a23 ≪ 0 and

hence a23 +A2,1(D1 −A1,1)
−1a13 ≪ 0, and also

v3
v2

[
a23 +A2,1(D1 −A1,1)

−1a13

]
≫ 0. (3.30)

By making use of (3.30), we obtain that

d2 = a22 +
1

v2
a21 +

v3
v2
a23 ≫ a22 +

1

v2
a21 −

v3
v2
A2,1(D1 −A1,1)

−1a13

= a22 +
1

v2
A2,1[1n1 − v3(D1 −A1,1)

−1a13] = a22 +
1

v2
A2,1[v2(D1 −A1,1)

−1a12]

= a22 +A2,1(D1 −A1,1)
−1a12,

where we used the fact that condition (3.27) is equivalent to

1n1 = v2(D1 −A1,1)
−1a12 + v3(D1 −A1,1)

−1a13. (3.31)

So, this proves that also (3.25) holds. Finally, it is possible to prove that if the identities

(3.27) and (3.28) hold, then the constraints (3.29) and (3.26) are equivalent.

Hence we conclude that there exist suitable choices of di, i ∈ [1, 3], such that both

conditions (A) and (B) are fulfilled and hence the overall multi-agent system reaches

tripartite consensus.

Example 3.13. Consider the undirected, signed, weighted, connected and clustered com-

munication graph, with three clusters of cardinalities n1 = 5, n2 = 4, n3 = 2, respectively,

and adjacency matrix composed of the sub-matrices
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A1,1 =



0 4 0 0 1

4 0 3 10 2

0 3 0 1 0

0 10 1 0 1

1 2 0 1 0


A1,2 = −



1.5 1.5 0 1.5

0.5 3 0 2.5

3 0.5 0 2.5

3 3 0 2

0 0 0.5 2.5


,

A1,3 = −



7 2

0 3

4 2

8 0

7 3


, A2,2 =


0 6 0 2

6 0 4 4

0 4 0 0

2 4 0 0

 ,A2,3=−


3 4

6 1

1 0

4 6

 , A3,3 =

0 6

6 0

 ,

all the others being deduced by symmetry. Assumption 2 holds for i1 = 1 and i2 = 3, and

both assumptions 1) and 2) of Theorem 3.12 hold, since a23 ≪ 0, a12 and a13 are both

strictly negative vectors. So, we can assume, for example, (v1, v2, v3) = (1, 5,−8), and

hence d1 = [54.5 13 19.5 36 74]⊤, d2 = [17.6 23.6 5.5 19.9]⊤ and d3 = [18 14.125]⊤. The

dynamics of the state vector of the system, with random initial conditions x(0) taken as

realizations of a gaussian vector with 0 mean and variance σ2 = 4, i.e. x(0) ∼ N (0, 4), is

given in Fig. 3.5. The plot shows that tripartite consensus is reached after about 1.8 units

of time with regime values(c1 c2 c3) = (0.22 1.11 −1.76) = 0.22·(1 5 −8) = 0.22·(v1 v2 v3).

Figure 3.5: Tripartite consensus for Example 1.
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3.8 Sign Consensus

In this section we introduce the concept of sign consensus for which a formal definition is

given in the following.

Definition 3.14 (Sign Consensus). The overall multi-agent system described as in (3.5),

with LD ∈ RN×N described as in (3.4), D ∈ RN×N described as in (3.2) and Di ∈ Rni×ni,

for i ∈ [1, 3], diagonal matrices, whose interconnection topology is described by an undi-

rected, signed and connected communication graph G, having 3 clusters, reaches sign con-

sensus if there exists a relabelling of the three clusters such that, for every index i ∈ V2,

limt→∞ xi(t) = 0, while for every i, j ∈ V1 ∪ V3

lim
t→∞

sgn(xi(t))− sgn(xj(t)) = 0, if ∃m : i, j ∈ Vm,

lim
t→∞

sgn(xi(t))− sgn(xj(t)) ̸= 0, if ̸ ∃m : i, j ∈ Vm.

The following lemma provides necessary and sufficient conditions for sign consensus to

be reached.

Lemma 3.15. Given an undirected, signed, weighted and connected communication graph,

G, having 3 clusters, the multi-agent system (4.3.1), with communication graph G and

distributed control law (3.3), and hence described as in (3.5), with LD ∈ RN×N given in

(3.4), A in (3.2) for k = 3, D ∈ RN×N in (3.2) and Di ∈ Rni×ni, for i ∈ [1, 3], diagonal

matrices reaches sign consensus if and only if the following conditions hold:

i) LD is a singular positive semi-definite matrix.

ii) There exists a reordering {i1, i2, i3} of the index set {1, 2, 3} such that every nonzero

vector in the kernel of LD can be expressed as v = [v⊤
1 ,v

⊤
2 ,v

⊤
3 ]

⊤ with vi2 = 0, and in

the pair (vi1 ,vi3) one of the vectors is strictly positive and one is strictly negative.

Proof. Analogous to the proof of Lemma 3.1.

Theorem 3.16. Consider the multi-agent system (4.3.1), with undirected, signed, weighted

and connected communication graph G satisfying Assumption 1 and Assumption 2 for a

suitable choice of i1, i2 ∈ [1, 3], i1 ̸= i2. Also, suppose that the following conditions hold:
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a) every agent in Vi1 has at least one enemy in Vi2, which means that Ai1,i21ni2
≪ 0,

and

b) there exist vectors vi1 ∈ Rni1 and vi2 ∈ Rni2 , one of them strictly positive and the

other strictly negative, such that Ai3,i1vi1 +Ai3,i2vi2 = 0, where i3 = [1, 3] \ {i1, i2}.

Then there exist diagonal matrices Di ∈ Rni×ni , i ∈ [1, 3], such that the distributed control

law (3.3), with LD ∈ RN×N described as in (3.4), D ∈ RN×N described as in (3.2), makes

the closed-loop multi-agent system (3.5) reach sign consensus.

Proof. We can always relabel the vertices in V so that assumption a) and b) hold for

i1 = 1, i2 = 3, i3 = 2.

By Lemma 3.15, it will be sufficient to prove that under assumptions a)-b), it is always

possible to choose the diagonal matrices D1,D2 and D3 so that (A) the matrix LD is

singular and positive semi-definite with a simple eigenvalue in 0, and (B) the kernel of

LD includes the vector v = [v⊤
1 ,0

⊤
n2
,v⊤

3 ]
⊤, where v1 ∈ Rn1 and v3 ∈ Rn3 are two vectors

satisfying assumptions b), and we assume w.lo.g. that v1 ≫ 0 and v3 ≪ 0.

To prove (B) we note that solving the system of equations LDv = 0v is equivalent to solve

the system 
D1 −A1,1 −A1,2 −A1,3

−A2,1 D2 −A2,2 −A2,3

−A3,1 A3,2 D3 −A3,3



v1

0n2

v3

 = 0N , (3.32)

and this in turn is equivalent to the three identities

D1v1 = A1,1v1 +A1,3v3 (3.33)

0n2 = A2,1v1 +A2,3v3. (3.34)

D3v3 = A3,1v1 +A3,3v3. (3.35)

Identity (3.34) holds by assumption b) and we note that the constraint (3.33) and (3.35) al-

low to uniquely determine 1 the diagonal matrices D1 and D3, since they can be component-

wise written as

[Dp]i,i =
1

[vp]i

(∑
j;j ̸=i

[Ap,p]ij[vp]j +

nq∑
k=1

[Ap,q]i,k[vq]k

)
(3.36)

1Note, however, that the values of D1 and D3 depend on the specific choice of the vectors v1 and v3

satisfying (3.34), which are not necessarily uniquely determined.
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D2 −A2,2 −A2,1(D1 −A1,1)
−1A1,2 −A2,3 −A2,1(D1 −A1,1)

−1A1,3

−A3,2 −A3,1(D1 −A1,1)
−1A1,2 D3 −A3,3 −A3,1(D1 −A1,1)

−1A1,3

 ⪰ 0. (3.39)

for p, q ∈ {1, 3}, p ̸= q.

We are now remained with proving that, after having determined the matrices D1 and D3,

it is always possible to choose D2 so that (A) is satisfied. To do so we proceed as follows

(see Section 2.3.1): we first verify that the upper diagonal block of LD:

LD =


D1 −A1,1 −A1,2 −A1,3

−A2,1 D2 −A2,2 −A2,3

−A3,1 −A3,2 D3 −A3,3

 , (3.37)

is positive definite, namely condition

D1 −A1,1 ≻ 0 (3.38)

holds, and then impose (by means of a suitable choice of D2) that its Schur complement

is positive semi-definite with a simple eigenvalue in 0, namely it verifies condition (3.39),

and it has a simple eigenvalue in 0. Condition (3.33) ensures that

(D1 −A1,1)v1 = A1,3v3 ≫ 0, (3.40)

where we used the fact that v3 ≪ 0 and A1,3 has no zero rows. Then Lemma 2.5, part i),

holds with v = v1, thus ensuring that D1 −A1,1 is positive definite.

To ensure that (3.39) holds for a suitable choice of D2, we iterate the same procedure,

and impose condition (3.41):

D2,2 −A2,2 −A2,1(D1 −A1,1)
−1A1,2 ≻ 0, (3.41)

as well as condition (3.43).

To address condition (3.41), we first observe that by Lemma 2.5, part ii), (D1−A1,1)
−1

is symmetric and nonnegative, and hence so is A := A2,2 +A2,1(D1 −A1,1)
−1A1,2. Let us

set ai2 := Ai,21n2 , i ∈ [1, 2], and d2 := D21n2 , and impose the following constraint on d2:

d2 ≫ a22 +A2,1(D1 −A1,1)
−1a12. (3.43)
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Φ3 := D3 −A3,3 −A3,1(D1 −A1,1)
−1A1,3 − [A3,2 +A3,1(D1 −A1,1)

−1A1,2] (3.42)

·[D2 −A2,2 −A2,1(D1 −A1,1)
−1A1,2]

−1[A2,3 +A2,1(D1 −A1,1)
−1A1,3] ⪰ 0.

Then it is easy to verify that

(D − A)1n2 =d2 − a22 −A2,1(D1 −A1,1)
−1a12 ≫ 0,

where D = D2. But then we can apply Lemma 2.5, part i), again, to claim that D − A is

positive definite, namely (3.41) holds.

We now observe that we can always choose the positive diagonal entries of the diagonal

matrix D2 sufficiently large to ensure that (not only (3.43) holds, but also) the entries

of [A3,2 + A3,1(D1 − A1,1)
−1A1,2][D2 − A2,2 − A2,1(D1 − A1,1)

−1A1,2]
−1[A2,3 + A2,1(D1 −

A1,1)
−1A1,3] are arbitrarily small and hence also the matrix A = −Φ3 + D3 has positive

off-diagonal entries. This ensures that −Φ3 is an irreducible Metzler matrix.

So, we now prove that (3.43) holds. We observe that from condition a) for i1 = 1

and i2 = 3 it follows that A3,3 + A3,1(D1 − A1,1)
−1A1,3 is a nonnegative matrix whose

off-diagonal entries are all positive. If we apply the vector −v3 ≫ 0 on the right side of

the matrix Φ3, appearing in (3.43), we obtain

−Φ3v3 = −D3v3 +A3,3v3 +A3,1(D1 −A1,1)
−1A1,3v3 + [A3,2 +A3,1(D1 −A1,1)

−1A1,2]

· [D2 −A2,2 −A2,1(D1 −A1,1)
−1A1,2]

−1 · [A2,3v3 +A2,1(D1 −A1,1)
−1A1,3v3].

We first note that by (3.35) we have −D3v3 +A3,3v3 = −A3,1v1. On the other hand, from

equation (3.33) one gets

A1,3v3 = (D1 −A1,1)v1, (3.44)

from which it follows

A3,1(D1 −A1,1)
−1A1,3v3 = A3,1v1. (3.45)

Therefore

−D3v3 +A3,3v3 +A3,1(D1 −A1,1)
−1A1,3v3 = 0. (3.46)

On the other hand, from (3.44) it also follows that A2,1(D1 −A1,1)
−1A1,3v3 = A21v1, and

making use of (3.34), this latter identity leads to

A2,1(D1 −A1,1)
−1A1,3v3 +A2,3v3 = 0. (3.47)
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So, by replacing (3.46) and (3.47) in the expression of −Φ3v3 we obtain the zero vector.

Since −Φ3 is an irreducible Metzler matrix, this ensures (see Theorem 2.3) that 0 is the

simple dominant eigenvalue of −Φ3 and hence Φ3 is positive semidefinite and singular with

a simple eigenvalue in 0. Since the eigenvalues of LD are the union of the eigenvalues of the

matrices in (3.38) and (3.41) and of the matrix Φ3, that have been obtained from LD by

applying the Schur complement, then LD is positive semidefinite with a simple eigenvalue

in 0, and hence (A) holds.

To conclude, we have proved that by setting D1 and D3 as in (3.36), by choosing the

diagonal entries of the diagonal matrix D2 sufficiently large, both conditions of Lemma

3.15 are fulfilled, and the overall multi-agent system reaches sign consensus.

Example 3.17. Consider the undirected, signed, unweighted, connected and clustered com-

munication graph, with three clusters of cardinality n1 = 5, n2 = 4, n3 = 2, respectively,

and adjacency matrix whose submtarices Ai,i, i ∈ [1, 3] are as in Example 1, while the

remaining blocks are

A1,2 = −



3 3 0 3

6 6 0 12

6 6 0 6

6 6 0 6

0 0 3 3


, A1,3 = −



3.5 1

0 1.5

1 1

1.5 0

3.5 1.5


,A2,3 = −


36 3

24 6

12 0

12 15

 .

Condition b) of Theorem 3.16 holds for v1 = [2, 1, 1, 1, 2]⊤ ≫ 0, v3 = −[0.5, 2]⊤ ≪ 0, while

d2 = a22+A2,1(D1−A1,1)
−1a12+v, where v is a vector whose entries are the absolute value

of the entries of the realization of a Gaussian vector with 0 mean and standard deviation

σ = 200.

The dynamics of the state vector of system (3.5), with random initial conditions x(0)

taken as realizations of a Gaussian vector with 0 mean and variance σ2 = 4, i.e. x(0) ∼

N (0, 4), is given in Fig. 3.6.
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Figure 3.6: Sign consensus for Example 2.





Chapter 4

Dynamic Social Balance

In this chapter we propose two discrete time binary models, based on the homophily and

influence social mechanisms, that dynamically reduce the cognitive dissonance among the

agents in a social network. The first model, according to our interpretation, represents

a mathematical formalization of a cognitive bias known in the literature as bandwagon

bias and its dynamics is based on the interplay between appraisals and opinions. The

dynamics of the second model is uniquely driven by the homophily mechanism and only

the interpersonal appraisals are taken into account. It will be shown that both models can

drive an initially structurally unbalanced network towards a socially balanced one.

The results presented in this chapter can be found in:

• G. De Pasquale, M. E. Valcher, “A Bandwagon Bias Based Model for Opinion Dynam-

ics: Intertwining between Homophily and Influence Mechanisms", European Journal

for Control, pp. 1-22, 2022, https://doi.org/10.1016/j.ejcon.2022.100675.

• G. De Pasquale, M. E. Valcher, “A binary homophily model for opinion dynamics",

European Control Conference (ECC), pp. 1515-1520, Rotterdam, The Netherlands,

2022, 10.23919/ECC54610.2021.9655049.

4.1 Introduction

In several cases, sociological models represent the primary focus of the investigation, but

there are numerous contexts, such as product promotion, spread of diseases, resource al-

49
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location, etc., where social dynamics represents the context in which other phenomena

evolve. Consequently, understanding its behaviour is a preliminary but fundamental step

in order to investigate and understand the evolution of the process of interest Aghbolagh

et al. (2019), Marvel et al. (2011). As a result, it becomes of great importance to build

a reliable model for the social dynamics, that allows to forecast the network evolution

and thus to design strategies aimed at driving the network towards the desired configu-

ration Proskurnikov & Tempo (2017). Dynamic social balance theory is concerned with

the study and analysis of the evolution of socially unbalanced networks towards socially

balanced ones, namely networks in balanced configurations in which all the agents split in

(at most) two groups in such a way that all the agents in the same group have friendly

relationships, while agents from different groups have not Harary et al. (1988), Heider

(1944).

Even if, from a modeling perspective, the study of social balance has rather remote

origins, as witnessed by the pioneering works of Heider (1944),Harary (1959), Harary et al.

(1988), the dynamic social balance theory represents an active and timely research topic. In

this regard, a recent interesting work in which a sociological mathematical model, including

two coexisting social mechanisms, is studied, is the work from Liu et al. (2020). This work

inspired the model presented in Section 4.3 that represents its mixed binary and real valued

counterpart.

Both models can be interpreted as a mathematical formalization of a form of cognitive

bias known in psychology as “bandwagon bias" Niesiobedzka (2017). Namely the bias ac-

cording to which our opinions on topics are influenced by the opinions that other individuals

have on the same topics and by the relationships we have with those individuals. Band-

wagon bias results in an intertwined dynamics involving both a homophily mechanisms for

the interpersonal relationships and an influence mechanism for the agents’ opinions. This is

in line with the fact that, in real life, interpersonal appraisals influence individual opinions

and viceversa. It is worth noticing that this model applies better to online social-networks

rather than real-life ones, since in the first case it is reasonable to assume that opinions

and interpersonal relationships evolve according to the same time-scale.

The model presented in Section 4.4 is entirely binary and it only involves mutual in-

terpersonal relationships among agents. Its dynamics is driven by the natural human

propensity to minimize the number of unbalance triads every pairs of individuals belongs
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to Heider (1944).

The motivation behind the study of the dynamical evolution of unweighted signed social

networks comes from the fact that there are many circumstances in which recognizing the

type (friendly or hostile) of relationship between individuals is easy, while assessing its

intensity is complicated and prone to model errors. In fact, while individual evaluations

of certain products or their opinions on certain topics can be easily obtained, attributing

numerical values to the mutual appraisals is more challenging.

4.2 Preliminaries

4.2.1 Two Social Mechanisms

We introduce two social mechanisms that drive human behaviour to minimize the cognitive

dissonance of the network and that drive the dynamics of the models presented in this

chapter Mei et al. (2019), Lazarsfeld & Merton (1954), Friedkin & Johnsen (2011).

(i) Homophily mechanism: the interpersonal appraisals of any two individuals in a

social group are adjusted based on whether they agree on the appraisals of the group

members,

(ii) Influence mechanism: each individual assigns influence to others proportionally

to her/his appraisal of them.

In this chapter we consider undirected and signed graphs with unitary self loops. Therefore

the adjacency matrix of the graph belongs to the set De Pasquale & Valcher (2021)

SN1 := {M ∈ {−1, 0, 1}N×N : M = M⊤, [M ]ii = 1, ∀i ∈ [1, N ]}. (4.1)

Lemma 4.1 (Structural balance for complete graphs). Given a matrix X ∈ SN1 ∩{−1, 1}N×N ,

the following facts are equivalent:

i) X = pp⊤, for some vector p ∈ {−1, 1}N ;

ii) rank(X) = 1;

ii) for every a, b ∈ [1, N ] either e⊤aX = e⊤b X or e⊤aX = −e⊤b X ;



52 CHAPTER 4. DYNAMIC SOCIAL BALANCE

iv) the graph G(X) is structurally balanced;

v) all the triads (i, j, k) of distinct vertices in G(X) are balanced.

In the following we will say that X is structurally balanced if G(X) is structurally

balanced. Given a group of N agents, we denote by X(t) ∈ {−1, 0, 1}N×N the appraisal

matrix at time t of the agents, whose (i, j)-th entry represents agent i’s appraisal of agent j

at time t. [X(t)]ij = 1 if i has positive feelings towards j and [X(t)]ij = −1 if i has negative

feelings towards j, while [X(t)]ij = 0 if i chooses not rely on j in forming its opinion1. We

assume that for each pair of agents (i, j) at each time instant t the appraisal is mutual,

namely [X(t)]ij = Xji(t) ∀i, j ∈ [1, N ], and hence X(t) is a symmetric matrix ∀t ≥ 0.

The (undirected and signed) graph G(X), having X as adjacency matrix, represents the

appraisal network Mei et al. (2019).

4.3 A Bandwagon Bias Based Model for Opinion Dy-

namics: Intertwining between Homophily and In-

fluence Mechanisms

4.3.1 The Model: Properties, Equilibrium Points and Periodic

Solutions

In this section we assume that the agents express their opinions about a certain number,

say m, of issues. This information is collected in a matrix Y(t) ∈ RN×m, whose (i, j)-th

entry is the opinion that agent i has about the issue j at the time instant t. Y(t) is called

the opinion matrix at the time instant t of the social network. We assume that the opinion

matrix and the appraisal matrix evolve according to an intertwined dynamics expressed by

the following equations

X(t+ 1) = sgn(Y(t)Y(t)⊤) (4.2)

Y(t+ 1) =
1

N
X(t+ 1)Y(t) (4.3)

1Since we consider small-medium size networks, this formalizes the case when agent i knows agent j

but does not find correlation between its own choices and agent j’s opinions, and hence chooses not to

give it any weight.
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that component-wise correspond to

[X(t+ 1)]ij = sgn

(
m∑
k=1

[Y (t)]ik[Y (t)]jk

)
(4.4)

[Y (t+ 1)]ij =
1

N

N∑
k=1

[X(t+ 1)]ik[Y (t)]kj. (4.5)

Equation (4.5) shows that the opinion that agent i has about issue j at the time instant

t+ 1 is a (signed) weighted average of the opinions that all agents have about the topic j

at the time instant t, where the weights are the appraisals that agent i has about them at

the time instant t, divided by the number of agents.

On the other hand, from equation (4.4), we notice that the the (i, j)-th entry of the

appraisal matrix at the time instant t+1, namely, the appraisal that agent i has about agent

j at the time instant t + 1, depends on the comparison between the opinions that agents

i and j have about all the topics at the time instant t. In particular, if the agents agree

(resp. disagree) on a specific issue k, this will give a positive (resp. negative) contribution

[Y (t)]ik[Y (t)]jk > 0 (resp. [Y (t)]ik[Y (t)]jk < 0), in determining the relationship between i

and j at the time instant t+ 1.

Essentially, this model captures the evolution of opinion-dependent time-varying graph

structures. In this regard one can see analogies with the pioneering work form Hagselmann-

Krause Hegselmann & Krause (2002), in which the closeness of opinions determines the

structure topology of the (unweighted) interaction graph. On the other hand, in our

model all agents potentially communicate and their opinions will rather determine the

type (friendly/antagonistic) of relationship. Equations (4.2) and (4.3) can be grouped into

a single equation that describes the update of the opinion matrix alone and takes the form

Y(t+ 1) =
1

N
sgn(Y(t)Y(t)⊤)Y(t). (4.6)

Equation (4.6) shows that the mathematical abstraction of the bandwagon bias leads the

intertwining between opinion dynamics and appraisal dynamics to a peculiar form of opin-

ion dynamics model. It is immediate to notice that if Y(0) has a zero row (a situation that

formalizes the case when one of the agents expresses no opinion on any of the m topics),

then that same row remains zero in every subsequent opinion matrix Y(t), t ≥ 0. Similarly,

if Y(0) has a zero column (none of the agents expresses any judgement on a specific topic),

that same column remains zero in all the matrices Y(t), t ≥ 0. Therefore both cases are of
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no interest (substantially, one can always remove the agent and/or the topic and focus on

the analysis of the remaining variables) and will not be considered in the following.

Remark 4.2. Compared with the model proposed and investigated in Liu et al. (2020),

we have modified the law that governs the appraisal matrix update and how it affects the

opinion dynamics in two aspects. First, we have chosen to keep into account only the signs

of the mutual appraisals, rather than their absolute values. This is motivated by the fact

that, in a lot of practical situations, being able to assess the sign of the mutual appraisal is

easier and more robust to modeling errors with respect to determining the numerical value

associated to the tie strength. Moreover, the influence that agent j can have on the opinion

agent i has on a certain issue does not necessarily scale with the absolute value of [X]ij.

Secondly, we have chosen to “give a weight" also to the fact that a pair of agents chooses

not rely on each other’s opinion, namely to the fact that [X]ij = 0. Since we consider

small-medium size networks, this formalizes the case when agent i knows agent j but does

not find correlation between its own choices and agent j’s opinions, and hence chooses

not to give it any weight. In this perspective, the fact that the mutual appraisal is 0 is

an information that should be considered and this motivates the fact that in the opinion

dynamics update equation (4.5) each row is divided by the overall number of agents N ,

rather than by the absolute value of its entries. It is worth noticing that, however, since

the appraisal matrix is obtained by comparing the (real valued) opinions of the agents on the

various topics into play, and its (i, j)-th entry is zero only if the opinion vectors of agents

i and j are orthogonal, a zero entry in the appraisal matrix is a very rare occurrence, as it

will be confirmed by the numerical simulations at the end of the section.

As we will see in the following, our model retains all the relevant features of the model

investigated in Liu et al. (2020), and it is simpler to analyse and implement.

Assumption 1 (No zero rows/columns). In the following, we will steadily assume

that Y(0) is devoid of zero rows/columns.

Lemma 4.3 (No zero rows dynamics). If Y(0) ∈ RN×m has no zero rows, then for every

t ≥ 0 the matrix Y(t), obtained from the model (4.6) corresponding to the initial condition

Y(0), has no zero rows.

Proof. Suppose, by contradiction, that this is not the case, and let t0 ≥ 0 be the smallest

time instant such that Y(t0) has no zero rows, but Y(t0 + 1) has (at least) one zero row.
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It entails no loss of generality assuming that the first row of Y(t0+1) becomes zero (if not

we can always resort to a relabelling of the agents to reduce ourselves to this case). If we

set Y := Y(t0), this means that Y has no zero rows, but

e⊤1 sgn(YY⊤)Y = 0⊤.

Set z⊤ := e⊤1 sgn(YY⊤) ∈ {−1, 0, 1}1×N . We observe that since the first row of Y is not

zero then the (1, 1)-entry of YY⊤ is positive and hence the first entry of z is 1. The

remaining ones belong to {−1, 0, 1}. We distinguish two cases: either all the other entries

of z are zero (Case A) or there exist other nonzero entries in z (Case B), and in this latter

case we can assume without loss of generality (if not, we can always permute the m topics,

namely the m columns of Y, to make this possible) that

z⊤ =
[
1 z2 . . . zr 0 . . . 0

]
,
zi ∈ {−1, 1},

i ∈ [2, r].

Condition z⊤Y = 0⊤ implies that the columns of Y are all orthogonal to the vector z. In

Case B this implies that Y can be expressed as

Y =


1⊤
r−1

Σ

0⊤

0⊤

0 IN−r


Ca
Cb

 (4.7)

for some matrices Ca ∈ R(r−1)×m and Cb ∈ R(N−r)×m, where Σ := −diag{z2, . . . , zr}.

On the other hand, the vector z⊤ and the matrix Y are related by the identity z⊤ =

e⊤1 sgn(YY⊤) = sgn(e⊤1 YY⊤), and hence it must be

[
1 z2 . . . zr 0 . . . 0

]
= sgn

1⊤
r−1Ca

[
C⊤
a C⊤

b

]1r−1 Σ 0

0 0 IN−r

 .

This implies, in particular, that[
z2 . . . zr

]
= sgn(1⊤

r−1CaC
⊤
a Σ),

or, entrywise, keeping into account the definition of Σ:

zi = −sgn(1⊤
r−1CaC

⊤
a ziei−1), ∀ i ∈ [2, r].

This amounts to saying that

sgn(1⊤
r−1CaC

⊤
a ei−1) = −1, ∀ i ∈ [2, r],
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namely 1⊤
r−1CaC

⊤
a ≪ 0, by this meaning that it is a vector with all negative entries. But

this would imply ∥C⊤
a 1r−1∥2 = 1⊤

r−1CaC
⊤
a 1r−1 < 0, which is clearly impossible.

We consider now Case A. If the only nonzero entry of z is the first one, then Y can be

expressed as Y = WC0, where W = [0|IN−1]
⊤ and C0 is a real matrix of size (N −1)×m.

By resorting to the same reasoning as in Case B, condition z⊤ = e⊤1 sgn(YY⊤) becomes[
1 0 . . . 0

]
= sgn(e1WC0C

⊤
0 W

⊤) = sgn(0⊤),

which is impossible. Therefore it is not possible that there exists t0 ≥ 0 such that Y(t0)

has no zero rows, but Y(t0 + 1) has (at least) one zero row.

Based on the preliminary remarks and Lemma 4.3, we introduce the set Mei et al.

(2019)

Snz−rows := {Y ∈ RN×m : e⊤i Y ̸= 0⊤,∀ i ∈ [1, N ]},

and in the following we will steadily assume that Y(0) ∈ Snz−rows, and hence Y(t) ∈

Snz−rows for every t ≥ 0. It is worth noticing that, differently from Liu et al. (2020), we do

not need to impose that Y(0) ∈ Y := {Y : Y(t) ∈ Snz−rows∀t ≥ 0}, since for our model it

suffices to assume that Y(0) ∈ Snz−rows to guarantee that Y(t) ∈ Snz−rows, ∀t ≥ 0.

Note that, as a further consequence, for every t ≥ 0, X(t + 1) = sgn(Y(t)Y(t)⊤) is a

symmetric matrix with unitary diagonal entries, and hence belongs to SN1 , ∀t ≥ 0.

Remark 4.4. The case when there exists t > 0 such that the matrix Y(t) has a zero

column, even if Y(0) has no zero columns, may arise, but it is a rare occurrence. This

happens if and only if one of the columns of Y(t) belongs to the kernel of the matrix

X(t + 1) = sgn(Y(t)Y(t)⊤). This means that at the time t the column vector describing

the opinions that the agents have on some specific topic is such that for every agent i the

sum of the opinions of the agents trusted by i equals the sum of the opinions of the agents

not trusted by agent i. Since the agents’opinions are arbitrary real numbers this case arises

for a set of initial conditions Y(0) having zero measure.

An elementary example is represented by the case when Y(0) =

1 ϵ

2 −ϵ

, where ϵ is

nonzero and sufficiently small. Correspondingly, we get Y(1) =

3/2 0

3/2 0

.
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After having explored these preliminary aspects regarding agents that become indiffer-

ent to all issues, or issues that become irrelevant to all agents, we want to investigate the

existence and structure of the equilibrium points for the model (4.2)- (4.3), when starting

from initial opinion matrices Y(0) satisfying Assumption 1.

Definition 4.5 (Equilibrium point). A pair (Y∗,X∗) is an equilibrium point for the model

(4.2)- (4.3) if

X∗ = sgn(Y∗(Y∗)⊤) (4.8)

Y∗ =
1

N
X∗Y∗. (4.9)

It is interesting to notice that the only possible nontrivial equilibrium points for the

model are those that correspond to a structurally balanced configuration of the appraisal

network G(X∗). Moreover, the appraisal network is necessarily complete, namely each

agent needs to express its appraisal towards all the other agents.

Proposition 4.6 (Equilibrium equivalence conditions). A pair (Y∗,X∗) ̸= (0,0) is an

equilibrium point for the model (4.2)- (4.3) if and only if

i) X∗ = pp⊤, for some p ∈ {−1, 1}N ;

ii) Y∗ = p
[
a1 a2 . . . am

]
, for some ai ∈ R,

∑m
i=1 a

2
i ̸= 0.

Proof. It is immediate to observe that if i) and ii) hold, then the identities (4.8) and (4.9)

hold.

Conversely, assume that the pair (Y∗,X∗) is an equilibrium point. Then (4.9) holds, but

this means that the nonzero columns of Y∗ are eigenvectors of 1
N
X∗ corresponding to the

unitary eigenvalue. This means that 1 ∈ σ
(

1
N
X∗) and therefore, by Lemma A.2 in the

Appendix, i) holds. On the other hand, by replacing the matrix X∗ in (4.9) with pp⊤, we

obtain ii).

We want now to show that the model we have proposed cannot exhibit periodic solutions

and hence limit cycles. To prove this result we need a preliminary lemma, that will be

useful also for the subsequent analysis.
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Lemma 4.7 (Upper bounded opinion dynamics). For every j ∈ [1,m] and every t ≥ 0

i)

max
i∈[1,N ]

|[Y (t+ 1)]ij| ≤ max
i∈[1,N ]

|[Y (t)]ij|. (4.10)

ii) Condition

max
i∈[1,N ]

|[Y (t+ 1)]ij| = max
i∈[1,N ]

|[Y (t)]ij| ≠ 0

holds if and only if

(a) Y(t)ej = p · µj, ∃ p ∈ {−1, 1}N and µj > 0; and

(b) once we set h := argmaxi∈[1,N ]|[Y (t + 1)]ij| then e⊤hX(t + 1) has no zero entries and

e⊤hX(t+ 1) = ph · p⊤.

Proof. i) From equation (4.3) it follows that

|[Y (t+ 1)]ij| = | 1
N

N∑
k=1

[X(t+ 1)]ik[Y (t)]kj|≤
1

N

N∑
k=1

|[X(t+ 1)]ik||[Y (t)]kj|

≤ 1

N

N∑
k=1

|[Y (t)]kj| ≤
1

N
N max

k
|[Y (t)]kj| = max

k
|[Y (t)]kj|,

and hence (4.10) holds.

ii) Set h := argmaxi∈[1,N ]|[Y (t+1)]ij|. Then |[Y (t+1)]hj| = maxi∈[1,N ]|[Y (t+1)]ij| coincides

with maxi∈[1,N ] |[Y (t)]ij| if and only if

N∑
ℓ=1

|[X(t+ 1)]hℓ||[Y (t)]ℓj| = N · max
i∈[1,N ]

|[Y (t)]ij|

and this is possible if and only if all the entries in the j-th column of Y(t) have the same

absolute value µj > 0 (and this leads to (a), for some suitable vector p) and all the terms

[X(t + 1)]hℓ[Y (t)]ℓj, ℓ ∈ [1, N ], have the same sign. But this latter condition means that

e⊤hX(t + 1) either coincides with p⊤ or with its opposite, and since [X(t + 1)]hh = 1 this

means that condition (b) holds.

We are now in a position to prove the following result.

Proposition 4.8 (Aperiodicity in opinion dynamics). Suppose that there exist t̄ ≥ 0,

T ≥ 1 and nonzero matrices Ỹi ∈ RN×m, i ∈ [1, T ], such that

Y(t̄+ i) = Ỹi, i ∈ [1, T ], and Y(t̄+ T + 1) = Ỹ1,

namely from t̄+ 1 onward the sequence of matrices {Y(t)}t≥t̄+1 becomes periodic of period

T , then T = 1, namely the sequence becomes constant.
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Proof. From Lemma 4.7, part i), we can claim that for every j ∈ [1,m] and every t ≥ 0

maxℓ∈[1,N ] |[Y (t+ T + 1)]ℓj| ≤ maxℓ∈[1,N ] |Yℓj(t+ T )|

≤ ... ≤ maxℓ∈[1,N ] |[Y (t+ 2)]ℓj| ≤ maxℓ∈[1,N ] |[Y (t+ 1)]ℓj|.

But since for t = t̄ we have Y(t̄+T+1) = Y(t̄+1) = Ỹ1 and hence the two extremes in the

previous sequence of inequalities coincide, it follows that all the symbols ≤ are equalities,

namely

max
ℓ∈[1,N ]

|[Ỹi]ℓj| = µj > 0, ∀ j ∈ [1,m], ∀ i ∈ [1, T ].

This also implies, see Lemma 4.7 part ii), that, for every non zero column in Ỹi,

Ỹiej = pi · µj, ∃ pi ∈ {−1, 1}N , µj > 0, (4.11)

and that, for every h ∈ [1, N ], one has e⊤h sgn(ỸiỸ
⊤
i ) = [pi]h · p⊤

i . This implies that for

every i ∈ [1, T ]

sgn([ỸiỸ
⊤
i ]) = pip

⊤
i , ∃ pi ∈ {−1, 1}N×N .

Consequently2

Ỹ(i+1 mod T ) =
1

N
sgn([ỸiỸ

⊤
i ])Ỹi =

1

N
pip

⊤
i Ỹi. (4.12)

So, by comparing (4.11) and (4.12) one gets that every matrix Ỹi, i ∈ [1, T ], takes the form

Ỹi = pi

[
a
(i)
1 . . . a

(i)
m

]
, ∃ pi ∈ {−1, 1}N , a(i)k ∈ R,

but this also implies that

Ỹ(i+1 mod T ) =
1
N
sgn([ỸiỸ

⊤
i ])Ỹi =

1
N
sgn(pip

⊤
i ·
∑

k[a
(i)
k ]2)pi

[
a
(i)
1 . . . a

(i)
m

]

= 1
N
pip

⊤
i pi

[
a
(i)
1 . . . a

(i)
m

]
= pi

[
a
(i)
1 . . . a

(i)
m

]
= Ỹi.

So, all matrices Ỹi coincide.

4.3.2 Convergence to an Equilibrium in a Finite Number of Steps

We want to explore under what conditions the equilibrium can be reached in a finite

number of steps. It is easy to see that if there exists a time instant t0 ≥ 0 such that
2The expression i+ 1 mod T means the remainder of i+ 1 when divided by T .
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Y(t0 + 1) = Y(t0) ̸= 0 then Y(t) = Y(t0) =: Y∗ for every t ≥ t0. Consequently, also X(t)

becomes constant starting at t = t0 + 1, and it coincides with X∗ := sgn(Y(t0)Y(t0)
⊤).

However, the converse is not true: if the appraisal matrix becomes constant at some time

t0 ≥ 0, the opinion matrix Y(t) can still keep evolving for t ≥ t0. This situation is

illustrated in Example 4.9, below.

As a matter of fact, if there exists a time instant t0 ≥ 0 such that X(t) = X∗,∀t ≥ t0,

we can only claim that Y(t+1) = 1
N
X∗Y(t). Equivalently, if we denote by yj(t), the j-th

column of the matrix Y(t), then the dynamics expressed by equation (4.2) decomposes

into m linear time invariant systems of the form

yj(t+ 1) =
1

N
X∗yj(t), ∀ j ∈ [1,m]. (4.13)

As X∗ ∈ SN1 , the matrix X∗

N
is symmetric and hence diagonalizable. Moreover, by Gersh-

gorin Circle Theorem 2.4 , all its (real) eigenvalues λi, i ∈ [1, N ], satisfy

|λi −
1

N
|≤ N − 1

N
⇐⇒ −N − 2

N
≤ λi ≤ 1, ∀i ∈ [1, N ].

As a consequence, two cases may arise. The first case is the one depicted in Example 4.9,

namely the case when the systems in (4.13) are asymptotically stable, which means that

Y(t) asymptotically converges to 0 (and hence limt→+∞ X(t) = 0 ̸= X∗).

Example 4.9. Let us consider the case N = m = 3, with

Y(0) =


1.41 −1.21 0.49

1.42 0.72 1.03

0.67 1.63 0.73

 .
It turns out that ∀t ≥ 1

X(t) = X∗ =


1 1 −1

1 1 1

−1 1 1


and σ(1/3 ·X∗) = (−1/3, 2/3, 2/3), and indeed for t ≥ 14 we have Yij(t) = o(10−2),∀i, j ∈

[1, 3].

The second possible situation is when X∗

N
is simply (but not asymptotically) stable.

This amounts to saying that 1 is a (simple) eigenvalue of X∗

N
, and hence by Lemma A.2,
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X∗ takes the form X∗ = pp⊤, ∃ p ∈ {−1, 1}N . In this case, the convergence is not

asymptotic but instantaneous. In fact, it is sufficient that 1
N
X(t0) becomes simply (but

not asymptotically) stable at a single time instant, to ensure the instantaneous convergence

of Y(t) to an equilibrium condition.

Proposition 4.10 (Equilibrium points characterization). If there exists t0 > 0 such that
1
N
X(t0), with X(t0) ∈ SN1 , is simply (but not asymptotically) stable, then (X∗,Y∗) :=

(X(t0),
1
N
X(t0)Y(t0 − 1)) is an equilibrium point.

Proof. By Lemma A.2 in the Appendix, we know that if 1
N
X(t0) ∈ SN1 is simply stable or,

equivalently, 1 ∈ σ( 1
N
X(t0)), then there exists a vector p ∈ {−1, 1}N such that X(t0) =

pp⊤. On the other hand, if X(t0) = pp⊤, then

Y(t0) =
1

N
pp⊤Y(t0 − 1) = p[a1, . . . , am],

where

[a1, . . . , am] :=
1

N
p⊤Y(t0 − 1).

Therefore (X∗,Y∗) := (X(t0),
1
N
X(t0)Y(t0 − 1)) is an equilibrium point.

Remark 4.11. If m = 1 the model reaches the equilibrium in one step. When so, in

fact X(1) = sgn(Y(0)Y⊤(0)) = pp⊤, where p := sgn(Y(0)). Numerical simulations at

the end of the section will show that, when m > 1, namely multiple topics are considered,

convergence to structural balance is almost surely guaranteed, and it occurs in a rather

small number of steps even for medium size networks (e.g. N = 100).

Remark 4.12. Gershgorin Circle theorem (see Theorem 2.4) also allows to say that if

X∗ is the adjacency matrix of a disconnected graph, all the eigenvalues of the matrix X∗

N

lie in the circle of the complex plane of center the origin and radius N−1
N

(or smaller), and

hence X∗

N
is necessarily an asymptotically stable matrix.

Theorem 4.13 summarizes the main results of this section.

Theorem 4.13 (Main theorem). The following conditions are equivalent

i) there exists a time instant t0 ≥ 0 such that 1 ∈ σ( 1
N
X(t0));
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ii) there exists a time instant t0 ≥ 0 such that Y(t0) = Y(t0 + 1);

iii) the opinion-appraisal dynamic model (4.2)- (4.3) converges in finite time to an equi-

librium (X∗,Y∗);

iv) the opinion-appraisal dynamic model (4.2)- (4.3) converges in finite time to an equi-

librium (X∗,Y∗), with X∗ = pp⊤ and Y∗ = p[a1, . . . , am], ∃ p ∈ {−1, 1}N , and

ai ∈ R, i ∈ [1,m], with
∑m

i=1 a
2
i ̸= 0.

Proof. iv) ⇔ iii) follows from Proposition 4.6. iii) ⇒ ii) is obvious, while the converse has

been commented upon at the beginning of the section.

i) ⇒ iv) follows from Proposition 4.10, while iv) ⇒ i) is obvious.

4.3.3 Long Term Behaviour

In the previous section, we have investigated what happens if either Y(t) or X(t) be-

come constant starting at some time instant. In the former case the overall system (4.2)-

(4.3) reaches the equilibrium in a finite number of steps. In the latter case a nontrivial

equilibrium is reached if and only if X(t) at some point becomes structurally balanced.

Differently the opinion matrix asymptotically converges to zero. We want to investigate

now if a nontrivial equilibrium can be reached asymptotically, but not in a finite number

of steps.

An immediate consequence of the analysis of the previous section is that if the sequence

of appraisal matrices {X(t)}t≥1 does not converge in a finite number of steps then X(t)
N

is

an asymptotically stable matrix for every t ≥ 1. This means that if we define the set

Sstable := SN1 \ {X ∈ SN1 : X = pp⊤,∃p ∈ {−1, 1}N}, (4.14)

then X(t) ∈ Sstable for every t ≥ 1.

Proposition 4.14 (Zero vanishing condition). If for every t ≥ 0, X(t) ∈ Sstable, then

limt→+∞ Y(t) = 0.
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Proof. For every j ∈ [1,m], let us define µj(t) := maxi∈[1,N ] |[Y (t)]ij|, and let us introduce

the (generalized) Lyapunov function for the system in equation (4.6), V : RN×m → R,

defined as

V (Y(t)) :=
m∑
j=1

µj(t).

We notice that V (Y) ≥ 0, ∀Y ∈ RN×m and that V (Y) = 0 if and only if Y = 0. Define

∆2V (Y(t)) := V (Y(t+ 2))− V (Y(t)). We want to prove that ∆2V (Y(t)) < 0, ∀t ≥ 0.

By Lemma 4.7 it immediately follows that ∆2V (Y(t)) =
∑m

j=1 µj(t + 2) − µj(t) ≤ 0.

We show now that there is not a time instant t0 ≥ 0 such that ∆2V (Y(t)) = 0. If this

were the case, in fact, this would mean that ∀j ∈ [1,m], µj(t0 + 2) = µj(t0) and therefore

µj(t0 + 2) = µj(t0 + 1) = µj(t0) =: µj. As a consequence of Lemma 4.7 we deduce that

a) Y(t0)ej = pj(t0)µj, ∃ pj(t0) ∈ {−1, 1}N ,

Y(t0 + 1)ej = pj(t0 + 1)µj, ∃ pj(t0 + 1) ∈ {−1, 1}N ,

b) ∀h ∈ [1, N ], eThX(t0 + 1) = phpj(t0)
⊤,

from which it follows that X(t0 + 1) = pj(t0)pj(t0)
⊤ for every j ∈ [1,m]. But then

X(t0 + 1) = p(t0)p(t0)
⊤ with p(t0) = ±pj(t0), ∀j ∈ [1,m], that means that X(t0 + 1)

is structurally balanced and hence it does not belong to Sstable, thus contradicting the

hypotheses. Consequently, it must be ∆2V (Y(t)) < 0, ∀t ≥ 0. Finally, by defining

∆1V (Y(t)) := V (Y(t+ 1))− V (Y(t)) we get that

∆2V (Y(t)) + ∆1V (Y(t)) < 0, ∀t ≥ 0,

so the thesis follows as a direct consequence of Theorem 2.6.

Summarizing, Theorem 4.13 and Proposition 4.14 show that either there exists a time

instant t0 such that ∀ t ≥ t0, X(t) = pp⊤ and consequently Y(t) = p[a1, a2, . . . , am],

ai ∈ R,
∑

i a
2
i ̸= 0, otherwise, if a time instant t such that X(t) reaches the structural

balance does not exist, then Y(t) converges to zero as time goes to infinity.
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4.3.4 Simulations

In this section we show the outcome of Monte Carlo simulations in order to validate the

convergence properties of the model. Figure 4.1 shows how the average number of iterations

needed in order to reach a structural balanced configuration over the total number of

30000 simulations varies as a function of the number of topics m ∈ [1, 10], for networks

involving N = 9, 20, 100 agents. Simulations are based on initial conditions Y(0) with

entries independently drawn from a Gaussian random variable with zero mean and standard

deviation σ = 10, namely Yij(0) ∼ N (0, 100). It turns out that, in accordance with the

Chernoff bound, by running 30000 simulations, the estimated probability p̂ to reach a

structurally balanced configuration is equal to 1 with accuracy ϵ = 0.01 and confidence

level 1 − δ = 0.99, namely P (|p̂ − p|≤ ϵ) ≥ 1 − δ, for the case of N = 20, 100 agents,

regardless of the number of topics taken into account while p̂ is greater than or equal to

0.98 for all m ∈ [1, 10], for N = 9, with the same accuracy and confidence interval.

Figure 4.1: Average number of iterations, over 30000 simulations, needed in order to reach

a structural balance configurations for the cases N = 9, 20, 100 and m ∈ [1, 10].
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4.4 A Binary Homophily Model for Opinion Dynamics

Given a group of N ≥ 3 agents, We assume that for every i, j ∈ [1, N ], [X(t)]ij ∈ {−1, 1}.

For every pair (i, j), i ̸= j, we introduce the sets

Aij(t) := {k ∈ [1, N ], k ̸= i, j : [X(t)]ik[X(t)]jk = 1},

Dij(t) := {k ∈ [1, N ], k ̸= i, j : [X(t)]ik[X(t)]jk = −1},

representing the sets of agents, distinct from i and j, on which i and j agree or disagree,

respectively, at time t. We assume that the relations between pairs of agents are updated

according to the following binary homophily model (i), that is:

[X(t+ 1)]ij =


1, if |Aij(t)| > |Dij(t)|;

−1, if |Aij(t)| < |Dij(t)|;

[X(t)]ij, otherwise.

(4.15)

This amounts to assuming that i and j at time t+1 will have a good opinion of each other

if at time t they agree in their evaluations of most of the other agents. They will have a

bad opinion of each other if, on the contrary, they disagree on most of the other elements of

the group. If, finally, their opinions coincide on exactly half of the other agents (something

that is possible only if the overall number of agents, N , is even) they will keep their mutual

evaluations unchanged. The binary homophily model can be equivalently described as:

[X(t+ 1)]ij =

sign
(∑

k ̸=i,j[X(t)]ik[X(t)]jk

)
, if

∑
k ̸=i,j[X(t)]ik[X(t)]jk ̸= 0;

[X(t)]ij, if
∑

k ̸=i,j[X(t)]ik[X(t)]jk = 0.

(4.16)

So, if X(t) denotes the N×N symmetric matrix with entries in {-1,1} whose (i, j)-th entry

is [X(t)]ij, the binary homophily model can be expressed in matrix form as

X(t+ 1) = sign
[(

X(t)− diag(X(t))
)(

X(t)− diag(X(t))
)⊤

+ αX(t)
]

(4.17)

with α arbitrary in (0, 1). The term αX(t) is meant to enforce the rule that if [(X(t) −

diag(X(t)))(X(t) − diag(X(t)))⊤]ij is nonzero then α[X(t)]ij is irrelevant in determining

[X(t+ 1)]ij, otherwise [X(t+ 1)]ij = [X(t)]ij.

Remark 4.15. It is worth noticing that, after the first iteration of the binary homophily

model, the matrix X(t) is not only symmetric but also with unitary diagonal elements, i.e.
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X(1) = X(1)⊤ and Xii(1) = 1, ∀i ∈ [1, N ]. So, if we define

SN1,c := {M = M⊤ ∈ {−1, 1}N×N: [M]ii = 1,∀i ∈ [1, N ]} = SN1 ∩ {−1, 1}N×N ,

then ∀ X(0) = X(0)⊤ ∈ {−1, 1}N×N , X(t) ∈ SN1,c, ∀t ≥ 1.

If we assume X(0) ∈ SN1,c then, ∀t ≥ 0, diag(X(t)) = IN and [X(t) − diag(X(t))]⊤ =

X(t)− IN . Therefore, under this assumption, the binary homophily model can be equiva-

lently rewritten as

X(t+ 1) = sign
(
(X(t)− IN)

2 + αX(t)
)
= sign

(
(X(t))2 + βX(t) + IN

)
,

where β := −2 + α is any real number in (−2,−1). Moreover, by noticing that [X(t)2 +

βX(t) + IN ]ii = N + β + 1, ∀t ≥ 0, and N ≥ 3, it directly follows that[
sign

(
(X(t))2 + βX(t) + IN

)]
ii
=
[
sign

(
(X(t))2 + βX(t)

)]
ii
.

Since the identity matrix does not play any role in the calculation of the off-diagonal entries

of the matrix X(t), the binary homophily model (under the assumption that X(0) ∈ SN1 )

can be rewritten as:

X(t+ 1) = sign
(
(X(t))2 + βX(t)

)
, (4.18)

−2 < β < −1.

In the rest of the section we will steadily assume X(0) ∈ SN1,c and hence we will make use,

equivalently, of the update equations (4.16) and (4.18).

4.4.1 Equilibrium Points Characterization and Structurally Bal-

anced Equilibrium Points

A matrix X∗ ∈ SN1 is an equilibrium point for the binary homophily model if

X(0) = X∗ ⇒ X(t) = X∗, ∀t ≥ 0.

From (4.16) we deduce that X∗ ∈ SN1 is an equilibrium point if and only if the following

condition holds.

Proposition 4.16. A matrix X∗ ∈ SN1 is an equilibrium point if and only if X∗ =

sign((X∗)2 −X∗).
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Proof. We preliminary notice that, as a result of (4.16) and of the previous remark, X∗ is

an equilibrium point for the binary homophily model if and only if ∀i, j ∈ [1, N ], one has:

i ̸= j and
∑
k ̸=i,j

[X∗]ik[X
∗]jk ̸= 0 ⇒ [X∗]ij = sign

(∑
k ̸=i,j

[X∗]ik[X
∗]jk

)
,

i = j ⇒ [X∗]ii = 1. (4.19)

On the other hand, for every X∗ ∈ SN1 condition X∗ = sign((X∗)2−X∗) can be equivalently

expressed, for every i, j, i ̸= j, as

[(X∗)2 −X∗]ij =
∑
k

[X∗]ik[X
∗]jk − [X∗]ij = [X∗]ii[X

∗]ij + [X∗]ij[X
∗]jj+∑

k ̸=i,j

[X∗]ik[X
∗]jk − [X∗]ij = [X∗]ij +

∑
k ̸=i,j

[X∗]ik[X
∗]jk.

By making use of these preliminary remarks we can prove the result.

Necessity: Let us assume that X∗ is an equilibrium point for the binary homophily

model. Then, by making use of the characterization (4.19), we get [(X∗)2 −X∗]ii = N − 1,

therefore sign([(X∗)2 −X∗]ii) = 1 = [X∗]ii. For the off-diagonal entries we distinguish the

following two cases:

a)
∑
k ̸=i,j

[X∗]ik[X
∗]jk ̸= 0 b)

∑
k ̸=i,j

[X∗]ik[X
∗]jk = 0.

a) If
∑

k ̸=i,j[X
∗]ik[X

∗]jk > 0 then [X∗]ij = 1. On the other hand,

[(X∗)2 −X∗]ij = [X∗]ij +
∑
k ̸=i,j

[X∗]ik[X
∗]jk > 0

from which it follows that [sign((X∗)2 −X∗)]ij = 1 = [X∗]ij. Analogous calculations can

be done to verify the case
∑

k ̸=i,j[X
∗]ik[X

∗]jk < 0.

b) If
∑

k ̸=i,j[X
∗]ik[X

∗]jk = 0 then

[(X∗)2 −X∗]ij = [X∗]ij +
∑
k ̸=i,j

[X∗]ik[X
∗]jk = [X∗]ij.

Thus, [sign((X∗)2 −X∗)]ij = [X∗]ij.

Therefore, if X∗ is an equilibrium point, then X∗ = sign((X∗)2 −X∗).

Sufficiency: Let us suppose that the matrix X∗ ∈ SN1 satisfies X∗ = sign((X∗)2 −X∗).

We will show that X∗ is an equilibrium point for the binary homophily model, namely its

entries satisfy the characterization (4.19). Consider the identity

[(X∗)2 −X∗]ij = [X∗]ij +
∑
k ̸=i,j

[X∗]ik[X
∗]jk.



68 CHAPTER 4. DYNAMIC SOCIAL BALANCE

We distinguish the following cases:

- If
∑

k ̸=i,j[X
∗]ik[X

∗]jk ≤ −2, since

[X∗]ij = sign
(
[X∗]ij +

∑
k ̸=i,j

[X∗]ik[X
∗]jk

)
(4.20)

we get [X∗]ij = −1.

- If
∑

k ̸=i,j[X
∗]ik[X

∗]jk ≥ 2 from (4.20), we get [X∗]ij = 1.

- If
∑

k ̸=i,j[X
∗]ik[X

∗]jk = −1, it could not happen that [X∗]ij = 1, otherwise one would

get [X∗]ij +
∑

k ̸=i,j[X
∗]ik[X

∗]jk = 0, and so (4.20) could not hold, against the hypothesis.

Therefore it must be [X∗]ij = −1. An analogous reasoning applies to
∑

k ̸=i,j[X
∗]ik[X

∗]jk =

1, in which case [X∗]ij = 1 is obtained.

So, every time
∑

k ̸=i,j[X
∗]ik[X

∗]jk ̸= 0 we have [X∗]ij = sign
(∑

k ̸=i,j[X
∗]ik[X

∗]jk

)
, and this

proves that X∗ is an equilibrium point.

Remark 4.17. If X∗ ∈ SN1,c is such that G(X∗) is structurally balanced, i.e. (see Propo-

sition 4.1) there exists x ∈ {−1, 1}N such that X∗ = xx⊤, then the condition expressed in

Proposition 4.16 is trivially satisfied.

For certain values of N , we can show that networks of N agents admit only structurally

balanced equilibrium points.

Proposition 4.18. Given a network of N agents, with N ∈ {3, 4, 5, 7}, if X∗ is an equi-

librium point for the binary homophily model, then G(X∗) is structurally balanced.

Proof. We will prove this statement for N = 2p + 1 and p ∈ [1, 3] by contrapositive. The

proof of the case N = 4 is similar and hence omitted. If G(X∗) is not structurally balanced

then (see Proposition 4.1) there exists at least an unbalanced triad in G(X∗). Without loss

of generality we will assume that (1, 2, 3) is such a triad. Two cases may occur as Fig. 4.2

illustrates:

a) There is only one negative edge in (1, 2, 3). Without loss of generality we will

suppose that [X∗]12 = −1, [X∗]13 = 1, [X∗]23 = 1. Since [X∗]12 = −1, it must hold that∑
k ̸=1,2[X

∗]1k[X
∗]2k ≤ 0. Moreover, as [X∗]13[X

∗]23 = 1, it must hold that
∑

k≥4[X
∗]1k[X

∗]2k ≤

−1. Let us define D12, the set of agents on which agents 1 and 2 disagree, namely:

D12 := {k ̸= 1, 2 : [X∗]1k[X
∗]2k = −1}.
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Figure 4.2: Unbalanced triads. On the left: a triad with a single negative arc (case a)).

On the right: a triad with three negative arcs (case b)).

It holds that D12 ⊆ [4, N ] = [4, 2p + 1] and |D12| ≥ ⌈2p−1
2

⌉ = p, where ⌈x⌉ denotes the

smallest integer greater than or equal to x. On the other hand, since [X∗]13 = 1, [X∗]23 = 1

and [X∗]12 = −1 (and so [X∗]23[X
∗]12 = −1), then the set of agents on which agents 1 and

3 agree, namely

A13 := {k ̸= 1, 3 : [X∗]1k[X
∗]3k = 1},

is such that A13 ⊆ [4, 2p+1] and |A13| ≥ p. Keeping in mind that D12 ⊆ [4, 2p+1],A13 ⊆

[4, 2p+1], |D12| ≥ p, |A13| ≥ p and that |[4, 2p+1]| = 2p− 2, it holds that |D12∩A13| ≥ 2.

Moreover, ∀k ∈ D12 ∩ A13 we have that [X∗]1k[X
∗]2k = −1, [X∗]1k[X

∗]3k = 1, from which

it follows that ∀k ∈ D12 ∩ A13, [X∗]2k[X
∗]3k = −1.

Finally, since [X∗]23 = 1, the set of the agents on which agents 2 and 3 share the same

opinion, A23, is such that A23 ⊆ [4, N ] \ (D12 ∩A13) and |A23| ≥ p, but |[4, 2p+1] \ (D12 ∩

A13)| ≤ (2p − 2) − 2 = 2p − 4 and for p ∈ [1, 3], the condition p ≤ |A23| ≤ 2p − 4 is

impossible. This contradicts the fact that [X∗]23 = 1 satisfies the equilibrium condition.

b) All the edges in the triad (1, 2, 3) are negative. Following a reasoning analogous to

the one in a), we can show that D12 ⊆ [4, 2p + 1] and |D12| ≥ p. Similarly, the set D13 of

the agents about which agents 1 and 3 disagree must be such that D13 ⊆ [4, 2p + 1] and

|D13| ≥ p. But this leads to conclude that the set D23 of the agents on which agents 2 and

3 disagree satisfies the condition p ≤ |D23| ≤ 2p− 4 that cannot be true for p ∈ [1, 3], thus

contradicting the fact that X∗ is an equilibrium point.

4.4.2 (V,Σ)-Factorization

In this section we propose an equivalent representation for the matrices in SN1,c that allows

us to derive additional conditions for the analysis of the equilibrium points of the binary
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homophily model.

Lemma 4.19. Given X ∈ SN1,c, there exist a permutation matrix P ∈ {0, 1}N×N , positive

integers k and ni, vectors vi ∈ {−1, 1}ni , i ∈ [1, k], with
∑k

i=1 ni = N , and Σ ∈ Sk1,c, such

that

P⊤XP = VΣV⊤, where V := v1 ⊕ · · · ⊕ vk. (4.21)

Proof. We preliminarily notice that, given X ∈ SN1,c, it is always possible to select distinct

rows of X such that all the other rows are either identical to or the opposite of one of them.

This means that ∀ X ∈ SN1,c,∃k ≤ N , B ∈ {−1, 1}k×N , whose rows are pairwise linearly

independent, and a matrix A ∈ {−1, 0, 1}N×k, of rank k, whose rows are signed canonical

vectors, such that X = AB.

Without loss of generality we can choose a permutation matrix P such that

P⊤XP = [v1 ⊕ · · · ⊕ vk]


b⊤
1

. . .

b⊤
k

 , (4.22)

where vi ∈ {−1, 1}ni , i ∈ [1, k], ni ≥ 1,
∑k

i=1 ni = N , and bi ∈ {−1, 1}N , i ∈ [1, k].

Partitioning the vectors bi in blocks, according to the block partitioning of the matrix on

the left in the above factorisation, we get
b⊤
1

. . .

b⊤
k

 =


v⊤
11 v⊤

12 . . . v⊤
1k

. . . . . . . . . . . .

v⊤
k1 v⊤

k2 . . . v⊤
kk

 , (4.23)

with vij ∈ {−1, 1}nj . We notice that, since X ∈ SN1,c, P⊤XP ∈ SN1,c as well. Therefore

the diagonal blocks of dimension ni, i ∈ [1, k], of the matrix P⊤XP belong to Sni
1,c, and

this implies vi = vii for every i ∈ [1, k]. Putting together (4.22) and (4.23) and making

use of the symmetry of P⊤XP, we also obtain viv
⊤
ij = (vjv

⊤
ji)

⊤,∀i, j ∈ [1, k], i ̸= j, and

due to the fact that the vector components are either 1 or −1, it must be that either (a)

vji = vi and vij = vj or (b) vji = −vi and vij = −vj. In light of these considerations

we assume vij = σijvj, with σij ∈ {−1, 1} and it must be σij = σji. Therefore we have
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P⊤XP = VΣVT , where V := v1 ⊕ · · · ⊕ vk ∈ {−1, 0, 1}N×k and

Σ =


1 σ12 . . . σ1k

σ21 1 . . . σ2k
...

... . . . ...

σk1 σk2
... 1

 ∈ Sk1 .

In the following, we will refer to the factorization (4.21) as a (V,Σ)-factorization. As

shown in Lemma 4.19, every matrix X ∈ SN1,c admits a (V,Σ)-factorization, modulo a

suitable permutation of its rows and columns, and we will provide characterisations of the

matrices X∗ ∈ SN1,c that represent equilibrium points of the binary homophily model in

terms of the matrix Σ and of the sizes ni of the vectors vi appearing in V involved in any

such factorisation. On the contrary, the specific entries of the vectors vi will play no role.

Finally, note that the permutation matrix P such that P⊤X∗P = VΣV⊤ is not relevant

when providing such a characterisation, since X∗ is an equilibrium point if and only if

P⊤X∗P is an equilibrium point. Therefore in the following we will assume, for the sake of

simplicity, X∗ = VΣV⊤.

We now propose a graph interpretation of a (V,Σ)-factorization. To this aim it is worth

noticing that the identity X∗ = VΣV⊤ can be equivalently expressed as

X∗ =


v1v

⊤
1 σ12v1v

⊤
2 . . . σ1kv1v

⊤
k

σ12v2v
⊤
1 v2v

⊤
2 . . . σ2kv2v

⊤
k

...
... . . . ...

σ1kvkv
⊤
1 σ2kvkv

⊤
2 . . . vkv

⊤
k

 . (4.24)

From this expression one deduces that the product viv⊤
i , i ∈ [1, k], corresponds to a struc-

turally balanced subclass, let us call it Ci, of cardinality ni = dim(vi), in the graph G(X∗).

Based on the sign of the entries of vi, the class Ci splits into two adverse factions, CiA and

CiB, each of them consisting of agents that are friends. On the other hand, σij can be

interpreted as the relation between agents in class Ci and agents in class Cj. Specifically,

all agents in a faction CiA are friends [enemies] of all agents of CjA and enemies [friends]

of all agents of CjB provided that σij is positive [negative], and the same statement holds

true if the suffixes A and B are swapped. As a result, in the partition of G(Σ) thus ob-

tained, ∀i, j ∈ [1, k], G(Ci ∪ Cj) is structurally balanced, in turn. Figure 4.3 is a graphical
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representation of what has just been stated above. As the graph G(X∗) is complete and

unweighted we will draw only the positive edges within the vertices of each class Ci, while

negative edges will be omitted. Self-loops will always have weight 1 and will be omitted,

in turn. Arcs between two distinct classes Ci and Cj will be represented by means of the

parameter σij, as a result of the previous interpretation.

Figure 4.3: Graphic representation of G(VΣV⊤).

We now introduce a technical lemma that will be used in the following.

Lemma 4.20. Let vi ∈ {−1, 1}ni i = 1, . . . , k and set V = v1 ⊕ · · · ⊗ vk. Then for every

Φ ∈ Sk1 and every matrix Ψ ∈ Rk×k, VΦV⊤ = sign(VΨV⊤) ⇐⇒ Φ = sign(Ψ).

Proof. For every i, j ∈ [1, N ] we have e⊤i VΦV⊤ej = sign(e⊤i VΨV⊤ej) if and only if

∀ℓ, s ∈ [1, k], ∀r ∈ [1, nℓ], p ∈ [1, ns] condition [vℓ]re
⊤
ℓ Φes[vs]p = sign([vℓ]re

⊤
ℓ Ψes[vs]p)

holds, which means that ∀ℓ, s ∈ [1, k] we have e⊤ℓ Φes = sign(e⊤ℓ Ψes).

The following proposition provides a condition on a matrix X0 ∈ SN1,c that guarantees

that the binary homophily model starting from X0 converges to a structurally balanced

equilibrium point in one step. Such a condition relies on the matrix Σ involved in a

(V,Σ)-factorization of X0.

Proposition 4.21. Consider a matrix X0 ∈ SN1,c and a (V,Σ)-factorization of X0, i.e.,

X0 = VΣV⊤, where V := v1 ⊕ v2 · · · ⊕ vk, vi ∈ {−1, 1}ni, i ∈ [1, k],
∑k

i=1 ni = N , and

Σ ∈ Sk1,c. Set

N := V⊤V = n1 ⊕ n2 ⊕ · · · ⊕ nk. (4.25)

If Σ satisfies

sign

(
ΣNΣ− 3

2
Σ

)
= ww⊤ (4.26)
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for some w ∈ {−1, 1}k, then sign
(
X2

0 − 3
2
X0

)
= Vww⊤V⊤. Therefore the binary ho-

mophily model starting from X(0) = X0 converges in one step to the structurally balanced

equilibrium point X∗ = vv⊤, where v := Vw. In particular, if all entries of ΣNΣ − 3
2
Σ

are positive then the equilibrium point is X∗ = vv⊤, where v := V1k.

Proof. By Lemma 4.20, if identity (4.26) holds then

Vww⊤V⊤ = sign
(
VΣNΣV⊤ − 3

2
VΣV⊤

)
= sign

(
VΣV⊤VΣV⊤ − 3

2
VΣV⊤

)
= sign

(
X2

0 −
3

2
X0

)
.

On the other hand, the binary homophily model (4.18) for β = −3/2 leads to saying

that X(1) = sign
(
X(0)2 − 3

2
X(0)

)
. Therefore if X(0) = X0 then X(1) = (Vw) (Vw)⊤,

and this concludes the proof.

The following proposition states that when dealing with binary homophily models of

size N = 4, every X0 ∈ S4
1,c is either a (structurally balanced) equilibrium point or it

converges in one step to a structurally balanced equilibrium point (see Proposition 4.18).

Proposition 4.22. For every X0 ∈ S4
1,c, the matrix X∗ := sign

(
X2

0 − 3
2
X0

)
is an equilib-

rium point for the binary homophily model, and hence it is structurally balanced.

Proof. If X0 is structurally balanced, then X0 is already an equilibrium point, and hence

if we assume X(0) = X0 then, by adopting model (4.18) with β = −3/2, we get X0 =

X(1) = sign
(
X(0)2 − 3

2
X(0)

)
.

Suppose, now, that X0 is not structurally balanced, and hence it admits a (V,Σ)-factorization

X0 = VΣV⊤, with Σ ∈ Sk1,c for some k ∈ {2, 3, 4} not structurally balanced. We first note

that all matrices in S2
1,c are structurally balanced, and hence we have to rule out the case

k = 2 because it would correspond to a structurally balanced Σ and hence to a structurally

balanced X0. For k = 3 assume w.l.o.g. that

N =


1

1

2

 .
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It is straightforward to prove that if Σ ∈ S3
1 is not structurally balanced, then

sign

(
ΣNΣ− 3

2
Σ

)
=


1 −σ12 σ13

−σ12 1 σ23

σ13 σ23 1


and this is a structurally balanced matrix. Therefore sign

(
ΣNΣ− 3

2
Σ
)
= ww⊤ for some

w ∈ {−1, 1}3. So, by applying Proposition 4.21 we obtain the result.

Finally, if k = 4 (and hence N = I4), it can be proved that if Σ is not structurally balanced

then there exists w ∈ {−1, 1}4 such that Σ = 2I4 −ww⊤. But then

sign

(
Σ2 − 3

2
Σ

)
= sign[(2I4 −ww⊤)2 − 3

2
(2I4 −ww⊤)] = sign(I4 +

3

2
ww⊤) = ww⊤.

Therefore, by applying again Proposition 4.21, we obtain the result.

4.4.3 Not Structurally Balanced Equilibria

ForN ≥ 6 there exist equilibrium points X∗ ∈ SN1,c associated to a not structurally balanced

graph G(X∗). In the following we provide an example for the binary homophily model of

dimension N = 6.

Example 4.23. It is easy to verify that

X∗ =



1 1 1 1 −1 −1

1 1 1 −1 1 −1

1 1 1 1 −1 −1

1 −1 1 1 −1 1

−1 1 −1 −1 1 −1

−1 −1 −1 1 −1 1


∈ S6

1,c

satisfies the condition given in Proposition 4.16, and therefore it is an equilibrium point.

It is worth noticing that rank(X∗) = 3 (and hence X∗ is not structurally balanced, see

Proposition 4.1) and P⊤X∗P = VΣV⊤, where V := v1 ⊕ v2 ⊕ v3, with

v1 =

1
1

 , v2 = v3 =

 1

−1

 , Σ =


1 1 1

1 1 −1

1 −1 1

 .
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Proposition 4.24 below states a necessary and sufficient condition for X∗ to be an equilib-

rium point in terms of any matrix Σ involved in a (V,Σ)-factorization of X∗.

Proposition 4.24. A matrix X∗ ∈ SN1,c is an equilibrium point for the binary homophily

model if and only if

Σ = sign(ΣNΣ−Σ), (4.27)

where Σ ∈ Sk1 is the matrix Σ involved in a (V,Σ)-factorization of X∗, N is defined as in

(4.25) and n1, . . . , nk are the sizes of the vectors vi appearing in V.

Proof. By Proposition 4.16, X∗ is an equilibrium point if and only if X∗ = sign((X∗)2 −X∗).

From the identity X∗ = VΣV⊤, the previous equilibrium condition can be equivalently

written as VΣV⊤ = sign(V(ΣV⊤VΣ − Σ)V⊤). By Lemma 4.20, this identity is true

if and only if (4.27) holds. Therefore X∗ is an equilibrium point if and only if (4.27)

holds.

As a consequence of Proposition 4.24, we can show that if Σ ∈ S3
1,c fulfils (4.27) it is

always possible to find an equilibrium network X∗ and a matrix V such that X∗ = VΣV⊤.

The proof is omitted due to page constraints.

Proposition 4.25. If Σ ∈ S3
1 , then one can always find positive integers n1, n2, n3 such

that

Σ = sign(ΣNΣ−Σ), (4.28)

where N := n1 ⊕ n2 ⊕ n3.





Chapter 5

Opinion Dynamics over Opinion

Varying Network Topology

In this chapter we consider two multi-dimensional Hagselmann-Krause (HK) models for

opinion dynamics. The two models describe how individuals adjust their opinions on

multiple topics, based on the influence of their peers. The models differ in the criterion

according to which individuals decide whom they want to be influenced from. In the

average-based model individuals compare their average opinions on the various topics with

those of the other individuals, and interact only with those individuals whose average

opinions lie within a confidence interval. For this model we provide a new proof for the

contractivity of the range of opinions, based on semicontraction theory, and show that the

agents’ opinions reach consensus/clustering if and only if their average opinions do so. In

the uniform affinity model agents compare their opinions on each single topic and influence

each other only if, topic-wise, such opinions do not differ more than a given tolerance. We

identify conditions under which the uniform affinity model enjoys the order-preservation

property topic-wise and we prove that the global range of opinions (and hence the range

of opinions on each single topic) are non-increasing. The results presented in this chapter

can be found in:

• G. De Pasquale, M. E. Valcher, “Multi-dimensional extensions of the Hegselmann-

Krause model” accepted for presentation at the 61st Conference on Decision and

Control (CDC 2022), Cancun, Mexico.
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5.1 Introduction

A problem of interest when dealing with social networks is the modelling and analysis

of the spread of information in the network. Different works that address this problem

and that focus on different diffusion mechanisms have been proposed, see Hegselmann &

Krause (2002), Mei et al. (2019). A common objective, in this context, is to understand

when reaching a consensus, as a consequence of complex interactions among the agents in

the network, is possible Etesami & Basar (2015). Consensus is an active research topic in

many fields Bernardo et al. (2015), Zuo et al. (2020). It is about the achievement of an

agreement or of a common goal by agents in a network. However, there are contexts in

which the reaching of a consensus is either not desirable or does not represent a realistic

scenario. This is the case also when dealing with social contexts, e.g. political elections,

surveys. It is in these contexts that the disagreement phenomenon, along with consensus,

becomes of interest Etesami & Basar (2015), Parsegov et al. (2017).

A sociological model that considers both consensus and disagreement is the one known

in the literature as Hegselmann-Krause (HK) model Hegselmann & Krause (2002). The

HK dynamics evolves under a bounded-confidence mechanism (another sociological models

based on the bounded-confidence mechanism is Lorenz (2003)). Confidence intervals are

expressed as a function of the gap between pairs of agents’ opinions. Since only agents

whose opinions are close enough interact, the model represents a mathematical abstraction

of confirmation bias Del Vicario et al. (2017). Confirmation bias is based on the natu-

ral human propensity to search for and welcome information that supports prior beliefs

Nickerson (1998). In this paper we focus our attention on the Hegselmann-Krause model,

assuming that agents are asked to express their opinion on a pre-fixed and finite number of

topics. This represents an extension of the classical scalar version Hegselmann & Krause

(2002). A multi-dimensional version of the model has been already studied in the literature.

The characterization of the dynamics in the multi-dimensional case is not trivial and some

open questions still remain. In addition, we believe that the proposed multi-dimensional

extension is not the only possible one. This is what motivates the work here presented.

We consider two multi-dimensional HK models for opinion dynamics: the average-based

model and the uniform affinity model. In the average-based mode that, to the best of

our knowledge, has not been considered before in the literature, individuals compare their
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average opinions on the various topics with those of the other individuals, and interact

only with those individuals whose average opinions lie within a confidence interval. For

this model we provide an alternative proof for the contractivity of the range of opinions,

and show that the agents’ opinions reach consensus/clustering if and only if their average

opinions do so. The uniform affinity model is a special instance of the multi-dimensional

HK model investigated in Bhattacharyya et al. (2013), Etesami & Basar (2015), Etesami

et al. (2013), Nedić & Touri (2012), where we specifically adopt the ℓ∞-norm. In other

words, agents compare their opinions on each single topic and influence each other only if,

topic-wise, such opinions do not differ more than a given tolerance. We identify conditions

under which the uniform affinity model enjoys the order-preservation property topic-wise

and we prove that the global range of opinions (and hence the range of opinions on each

single topic) are non-increasing.

5.2 Preliminaries

Definition 5.1 (Vector ℓ∞-norm). Given x ∈ RN , the ℓ∞-norm of x is ∥x∥∞ = maxi|xi|.

Definition 5.2 (Seminorms). A function |||·||| : RN → R≥0 is a seminorm on RN if it

satisfies the following properties:

(homogeneity): |||ax||| = |a||||x|||,∀ x ∈ RN and a ∈ R;

(subadditivity): |||x+ y||| ≤ |||x|||+ |||y|||,∀ x, y ∈ RN .

Definition 5.3. (ℓ∞ weighted seminorm Jafarpour et al. (2021)) Let ∥·∥∞ : Rk → R≥0 be

the ℓ∞-norm on Rk and let R ∈ Rk×N . The R-weighted seminorm on RN associated with

the ℓ∞-norm on Rk is

|||x|||∞,R := ∥Rx∥∞, ∀x ∈ RN .

Example 5.4 (C⊤
N -weighted1 seminorm De-Pasquale et al. (2021)). Given a vector x ∈ RN

and the oriented incidence matrix CN ∈ RN×m, the C⊤
N -weighted seminorm of x associated

with the ℓ∞-norm is

|||x|||∞,C⊤
N
= max

i,j∈{1,...,N}
|xi − xj|.

1Note that CN is considered as defined in Section 2.2.
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Lemma 5.5 (Preliminary lemma). Given a vector x ∈ RN and a row stochastic matrix

A ∈ RN×N ,

|||Ax|||∞,C⊤
N
≤ |||A|||∞,C⊤

N
|||x|||∞,C⊤

N
,

where

|||A|||∞,C⊤
N
:= max

|||x|||∞,C⊤
N
=1

x⊥ker(C⊤
N )

|||Ax|||∞,C⊤
N

is the C⊤
N -weighted, ℓ∞ induced seminorm of A.

Proof. Upon noticing that A(kerC⊤
N) ⊆ kerC⊤

N , the result follows from Lemma A.3 in

the Appendix and from the conditional sub-multiplicativity property of the semi norms

according to which for every x ⊥ K, |||Ax||| ≤ |||A||||||x|||, Kolpakov (1983).

Theorem 5.6. (Expression for the C⊤
N -weighted, ℓ∞ induced seminorm De-Pasquale et al.

(2021)) For a row stochastic matrix A ∈ RN×N ,

|||A|||∞,C⊤
N
= 1−min

ij

N∑
k=1

min{[A]ik, [A]jk}. (5.1)

Proof. From Proposition 7 in Charron-Bost (2013) one gets the upper bound

|||A|||∞,C⊤
n
≤ 1−min

i,j

n∑
k=1

min{[A]i,k, [A]j,k}. (5.2)

To prove that the inequality is in fact an equality we will show that there always exists a

vector x∗ for which the inequality in (5.2) holds as an equality. In particular, by exploiting

the result from Theorem 3.7 in Ipsen & Selee (2011), according to which, for a row stochastic

matrix

1

2
max
i,j

n∑
k=1

|[A]i,k − [A]j,k| = 1−min
i,j

n∑
k=1

min{[A]i,k, [A]j,k}. (5.3)

we will show that

max
∥x∥∞,C⊤

n
≤1
∥Ax∥∞,C⊤

n
=

1

2
max
i,j

n∑
k=1

|[A]i,k − [A]j,k|.
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In fact, by Definition 5.3 together with Example 5.4, it follows that

max
∥x∥∞,C⊤

n
≤1
∥Ax∥∞,C⊤

n
= max

∥x∥∞,C⊤
n
≤1

max
i,j

|(e⊤i − e⊤j )Ax| = max
∥x∥∞,C⊤

n
≤1

max
i,j

∣∣∣ n∑
k=1

([A]i,k − [A]j,k)xk

∣∣∣
≤ 1

2
max
i,j

n∑
k=1

|[A]i,k − [A]j,k|, (5.4)

and the inequality in (5.4) holds as an equality for x∗ such that x∗k =
1
2
sign([A]̃i,k − [A]j̃,k),

k = {1, . . . , N}, with (̃i, j̃) = argmaxi,j
∑

k|[A]i,k− [A]j,k| and this concludes the proof.

5.3 The Average-Based (Multi-Dimensional) HK Model

In this section we introduce a multi-dimensional extension of the HK model in which

agents compare their (scalar) average opinions on a set of topics, rather than (the vectors

representing) their specific opinions topic by topic. This model is suitable to describe the

situation when the opinions that an agent has on the different topics are not too far apart,

as it happens, for instance, when the topics are related and homogeneous.

Given a group of N ≥ 2 agents and m ≥ 2 (related) topics, we let [X(t)]ij denote the

opinion that agent i has about the topic j at the time instant t. The average opinion that

the agent i has about the m topics at the time instant t is given by

x̄i(t) =
1

m

m∑
j=1

[X(t)]ij

and in vector form

x̄(t) =
1

m
X(t)1m. (5.5)

We assume that the opinion that the i-th agent has on topic j at time t + 1 is influenced

only by the opinions at time t on that same topic of agents whose average opinion about

the m topics is not too far from agent i’s average opinion at time t. Specifically, given a

certain confidence threshold ε > 0, we define the set of neighbours (or influencers) of the

agent i at the time instant t as a function of the average opinions of the agents, namely

as:

N ave
i (x̄(t)) = {k ∈ {1, . . . , N} : |x̄k(t)− x̄i(t)| ≤ ε}. (5.6)
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Accordingly, by adopting a notation similar to the one in Parasnis et al. (2018), the influ-

ence matrix Φave ∈ {0, 1}N×N of this average-based HK model is defined as

[Φave(x̄(t))]ik :=

1, if k ∈ N ave
i (x̄(t));

0, otherwise.
(5.7)

Upon defining the matrix

Dave(x̄(t)) :=


|N ave

1 (x̄(t))|
. . .

|N ave
N (x̄(t))|

 , (5.8)

the opinion matrix X(t) evolves over time as

X(t+ 1) = Aave(x̄(t))X(t), (5.9)

where

Aave(x̄(t)) := Dave(x̄(t))−1Φave(x̄(t))

is well-posed since Dave(x̄(t)) is nonsingular as a consequence of the fact that i ∈ N ave
i (x̄(t))

(and hence |N ave
i (x̄(t))| ≥ 1) ∀i ∈ {1, . . . , N}, ∀t ≥ 0. Equation (5.9) component-wise

reads as

[X(t+ 1)]ij =
1

|N ave
i (x̄(t))|

n∑
k=1

[Φave(x̄(t))]ik[X(t)]kj. (5.10)

5.4 Average-Based HK Model: Main Definitions

In this section we introduce some fundamental definitions for the average-based HK model

that will be used in the following.

Definition 5.7 (Consensus for average-based HK model). The average-based HK model

X(t+ 1) = Aave(x̄(t))X(t), (5.11)

x̄(t) =
1

m
X(t)1m, (5.12)

with X(0) ∈ RN×m, is said to reach consensus if

lim
t→∞

X(t) = 1Nc
⊤, ∃ c ∈ Rm. (5.13)
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Definition 5.8 (Clustering for average-based HK model). The average-based HK model

(5.11)-(5.12) reaches clustering if there exists a partitioning of the agents V1,V2, . . . ,Vd
(Vi ∩ Vj = ∅ for i ̸= j, and ∪di=1Vi = {1, . . . , N}) such that ∀i, k ∈ Vℓ, ℓ ∈ {1, . . . , d},

lim
t→∞

Xi∗(t) = lim
t→∞

Xk∗(t) (5.14)

and ∀i ∈ Vℓ, ∀k ∈ Vp, ℓ ̸= p,

lim
t→∞

Xi∗(t) ̸= lim
t→∞

Xk∗(t). (5.15)

Definition 5.9 (Range of opinions on a specific topic). Given the average-based HK model

(5.11)-(5.12), the range of opinions on topic j, at the time instant t, is defined as

νj(X(t)) = max
i,k∈{1,...,N}

|[X(t)]ij − [X(t)]kj|. (5.16)

Remark 5.10. Note that νj(X(t)) = |||X∗j(t)|||∞,C⊤
N
.

5.5 Average-Based HK Model: Opinion Ranges

In this section we explore the monotonicity properties of the range of opinions defined in

the previous section. As we will see, the average-based HK model preserves several nice

properties of the scalar HK model Hegselmann & Krause (2002).

Proposition 5.11 (Range of opinions on topic). Given the average-based HK model (5.11)-

(5.12), for every choice of X(0) ∈ RN×m, the range of opinions on a specific topic

{νj(X(t)}t≥0, j ∈ {1, . . . ,m}, is a non-increasing sequence.

Proof. The proof follows from the fact that each column ofX(t) in (5.11) updates according

to the equation

X∗j(t+ 1) = A(x̄(t))X∗j(t). (5.17)

where A(x̄(t)) is row stochastic.

Remark 5.12. By the same reasoning adopted to prove the previous result we can claim

that ∀i ∈ {1, . . . , N}, j ∈ {1, . . . ,m} and t ≥ 0, one has

[X(t)]ij ∈ [mink[X(0)]kj,maxk[X(0)]kj]. Consequently, if consensus is reached and we

assume c = [c1 . . . cm]
⊤, then

min
k

[X(0)]ki ≤ ci ≤ max
k

[X(0)]ki. (5.18)
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In the following proposition we provide an alternative proof for the rate of contractivity

of the range of opinions in the average-based HK model.

Proposition 5.13 (Range of opinions). Given the average-based HK model (5.11)-(5.12),

for every choice of X(0) ∈ RN×m, the range of opinions on a specific topic {νj(X(t)}t≥0, j ∈

{1, . . . ,m}, satisfies

νj(X(t+ 1)) ≤ γ(x̄(t))νj(X(t)), (5.19)

where

γ(x̄(t)) := 1−min
iℓ

N∑
k=1

min{[A(x̄(t))]ik, [A(x̄(t))]ℓk}.

Proof. Consider (5.17), where A(x̄(t)) is row stochastic. From Remark 5.10 and the sub-

multiplicativity property of the induced matrix seminorms, we get

νj(X(t+ 1)) = |||X∗j(t+ 1)|||∞,C⊤
N

= |||A(x̄(t))X∗j(t)|||∞,C⊤
N
≤ |||A(x̄(t))|||∞,C⊤

N
|||X∗j(t)|||∞,C⊤

N

=
(
1−min

iℓ

N∑
k=1

min{[A(x̄(t))]ik, [A(x̄(t))]ℓk}
)
νj(X(t))

where the inequality follows from Lemma 5.5, while the last identity from Theorem 5.6.

Opinions of the agents on each topic do not enjoy any order preservation property. So,

even if x̄i(t) ≤ x̄j(t), nothing can be said about [X(t)]ik and [X(t)]jk for specific values of

k ∈ {1, . . . ,m}. For this reason, agents whose opinions on a specific topic are very close

may not influence each other. Also, differently from the scalar case, there is no guarantee

for order preservation among opinions.

5.6 Average-Based HK Model: Steady State Behaviour

We first note that the vector of the average opinions x̄(t) in (5.5) obeys the dynamics

x̄(t+ 1) =
1

m
X(t+ 1)1m =

1

m
Aave(x̄(t))X(t)1m

= Aave(x̄(t))x̄(t), (5.20)

and hence it follows a scalar HK model. Upon a reordering of the agents, so that x̄1(0) ≤

x̄2(0) ≤ · · · ≤ x̄N(0) then, see Proposition 1 in Blondel et al. (2009), we can guarantee
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that x̄1(t) ≤ x̄2(t) ≤ · · · ≤ x̄N(t), ∀t ≥ 0. Also, by Proposition 2 in Blondel et al. (2009),

each sequence {x̄i(t)}t≥0 is monotone and non-increasing and limited by x̄N(0), therefore

limt→∞ x̄i(t) exists and is finite, for every i ∈ {1, . . . ,m}. Moreover, if x̄∗ := limt→∞ x̄(t),

∀i ∈ {1, . . . , N − 1} either x̄∗i = x̄∗i+1 or |x̄∗i+1 − x̄∗i | > ε, namely the steady state average

opinions reach either consensus or clustering. Finally, according to Theorem 1 in Blondel

et al. (2009), the limit configuration is reached in a finite number of steps, i.e., ∃ t∗ ≥ 0

such that x̄(t∗) = x̄∗ ∈ RN .

Remark 5.14. As proved in Dittmer (2001) consensus is reached if and only if the

sequence x̄(t) is an ε-chain for all t ≥ 0, by this meaning that, assuming the initial ordering

x̄1(0) ≤ x̄2(0) ≤ · · · ≤ x̄N(0), then we have |x̄i+1(t)−x̄i(t)| ≤ ε, for every i ∈ {1, . . . , N−1}

and t ≥ 0.

Let us suppose that from t∗ ≥ 0 on-wards,

x̄(t) =
1

m
X(t)1m = x̄∗ ∈ RN (5.21)

and hence

X(t+ 1) = Aave(x̄∗)X(t). (5.22)

Let us consider first, the case when x̄∗ = c∗1N , that is, Dave(x̄∗) = NIN and Φave(x̄∗) =

1N1
⊤
N . Therefore, ∀t ≥ t∗ we have Aave(x̄(t)) = Aave(x̄∗) = 1

N
1N1

⊤
N which is a constant

doubly-stochastic symmetric matrix. Consequently, ∀t ≥ t∗

X(t+ 1) =
1

N
1N1

⊤
NX(t) (5.23)

which implies

X(t∗ + 1) = 1N [m̄1(t
∗), . . . , m̄m(t

∗)] (5.24)

where

m̄j(t
∗) :=

1

N

N∑
i=1

Xij(t
∗) (5.25)

represents the average opinion of the agents on the j-th topic at the time instant t∗.

Consequently,

X(t∗ + 2) =
1

N
1N1

⊤
NX(t∗ + 1) (5.26)

=
1

N
1N1

⊤
N(1N [m̄1(t

∗), . . . , m̄m(t
∗)]) (5.27)

= 1N [m̄1(t
∗), . . . , m̄m(t

∗)], (5.28)
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which means that if the HK model that describes the evolution of the average opinions

of the agents on the m topics reaches consensus at the time instant t∗, then the punctual

opinions of the agents on the topics reach consensus at the next time-step

X(t) = X(t∗ + 1) = 1N [m1(t
∗), . . . ,mm(t

∗)], ∀t ≥ t∗ + 1.

Let us consider now the case when there exists t∗ such that x̄(t∗) = [c∗11
⊤
n1
|c∗21⊤n2

| . . . |c∗d1⊤nd
]⊤,

namely the mean values of the agents’ opinions on the m topics clusterize into d disjoint

clusters: V1, . . . ,Vd, |Vi| = ni, in each of which the average opinion takes value c∗i and

|c∗i − c∗i+1| > ε,∀ i ∈ {1, . . . , N − 1}. In this case, the matrices Dave(x̄∗) and Φave(x̄∗) in

(5.11)-(5.12) take the structure

Dave(x̄∗) =


n1In1

. . .

ndInd

 , Φave(x̄∗) =


1n11

⊤
n1

. . .

1nd
1⊤nd

 (5.29)

and for all t ≥ t∗

X(t+ 1) =


1
n1
1n11

⊤
n1

. . .
1
nd
1nd
1⊤nd

X(t). (5.30)

Consequently,

X(t∗ + 1) =


1n1

. . .

1nd

M(t∗) (5.31)

with M(t∗) ∈ Rd×m and

e⊤i M(t∗) =
1

ni
[0⊤|1⊤ni

|0⊤]X(t∗) =
1

ni

∑
k∈Ii

e⊤kX(t∗),

where Ii = {n1 + · · · + ni−1 + 1, . . . , n1 + · · · + ni−1 + ni} is the set of agents in the i-th

cluster. The j-th entry of the row vector e⊤i M(t∗) ∈ R1×m represents the average opinion

on the j-th topic of the agents in the i-th cluster. Moreover,

X(t∗ + 2) =


1
n1
1n11

⊤
n1

. . .
1
nd
1nd
1⊤nd



1n1

. . .

1nd

M(t∗) =


1n1

. . .

1nd

M(t∗)

= X(t∗ + 1).
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Therefore, if the average opinions clusterize at the time instant t∗ then, from t∗+1 onward,

the punctual opinions clusterize as well by maintaining the same partition, in d clusters,

as the average opinions of the agents over the m topics. Note that

M(t∗)1m =
[
c∗1 c∗2 . . . c∗d

]⊤
.

Remark 5.15. If the average opinion vector x̄(t) clusterizes in d clusters V1,V2, . . . ,Vd
then the opinions on each single topic j clusterize in dj ≤ d clusters and each cluster, say

Ṽi, is the union of one or more clusters V1,V2, . . . ,Vd.

To summarize the results of this section we propose the following theorem.

Theorem 5.16 (Steady state of average-based HK model). Given the average-based HK

model (5.11)-(5.12), for every choice of X(0) ∈ RN×m the systems dynamics reaches a

steady state configuration in a finite number of steps. Moreover, the average-based HK

model reaches consensus (clustering) if and only if the HK model describing the evolution

of the average opinions reaches consensus (clustering).

The following result shows that if the maximum gap between the average opinions does

not change when moving from time t to time t+ 1, then the same maximum gap remains

at all subsequent times, thus showing that if such gap is nonzero then consensus is not

reached.

Proposition 5.17. Consider the average-based HK model (5.11)-(5.12). If at some time

t ≥ 0 one gets

max
ij∈{1,...,N}

|x̄i(t)− x̄j(t)| = max
ij∈{1,...,N}

|x̄i(t+ 1)− x̄j(t+ 1)| (5.32)

then

max
ij∈{1,...,N}

|x̄i(t+ 1)− x̄j(t+ 1)| =max
ij∈{1,...,N}

|x̄i(t+ 2)− x̄j(t+ 2)|. (5.33)

Therefore, if the quantity in (5.32) is positive, then the average-based HK model (5.11)-

(5.12) does not achieve consensus.

Proof. Assume, without loss of generality, that x̄1(t) ≤ x̄2(t) ≤ · · · ≤ x̄N(t), then one has

maxij∈{1,...,N} |x̄i(t)− x̄j(t)| = x̄N(t)− x̄1(t). Since x̄1(t+1) ≥ x̄1(t) and x̄N(t+1) ≤ x̄N(t),

then (5.32) implies x̄1(t + 1) = x̄1(t) and x̄N(t + 1) = x̄N(t), that easily leads to (5.33).

Since the sequence of average opinions does not reach consensus, neither does the sequence

{X(t)}t≥0.
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5.7 The Uniform Affinity Model

The multi-dimensional HK model investigated in Etesami & Basar (2015), Etesami et al.

(2013), Nedić & Touri (2012) has a structure similar to the one we explored in the previous

sections, however it adopts as a criterion to define the opinion proximity the distance

(induced by the norm) between the opinion vectors of the agents. Specifically, it is assumed

that the neighbours of agent i at time t are2

Ni(X(t)) = {k ∈ {1, . . . , N} : ∥Xi∗(t)
⊤ −Xk∗(t)

⊤∥ ≤ ε},

where ε > 0 is the confidence threshold and ∥·∥ denotes an arbitrary norm. Accordingly,

the influence matrix Φ ∈ {0, 1}N×N at time t is the one whose (i, k)-th entry is

[Φ(X(t))]ik =

1, if k ∈ Ni(X(t));

0, otherwise.
(5.34)

Upon defining the matrix3

D(X(t)) :=


|N1(X(t))|

. . .

|NN(X(t))|

 (5.35)

the opinion matrix X(t) evolves over time as

X(t+ 1) = A(X(t))X(t), (5.36)

where

A(X(t)) := D(X(t))−1Φ(X(t)) (5.37)

is well-posed (D(X(t)) is nonsingular) and row stochastic.

In the references Etesami & Basar (2015), Etesami et al. (2013), Nedić & Touri (2012) the

main focus has been on proving that the multi-dimensional HK model (5.36), with the row

stochastic matrix A(X(t)) defined as above, (for any choice of the norm ∥·∥) converges to a

steady-state solution in a finite number of steps, and on providing an upper bound on the
2Since the norm is formally defined for column vectors, while Xi∗(t) and Xk∗(t) are row vectors, we

moved to their transposed versions.
3In the following we will replace Ni(X(t)) with the more compact notation Ni(t). If we assume that

X(0) is assigned, the notation makes perfect sense.
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termination time (see, in particular, Etesami & Basar (2015)). The interesting aspect is

that the termination time is independent of the number m of topics. See Figure 5.1 for an

example of an uniform affinity model with N = 10 agents and m = 2 topics that reaches

consensus.

In this section we want to explore some monotonicity properties of the previous model by

considering specifically the case when the norm is the ℓ∞-norm. This means that

Ni(X(t)) = {j : max
k∈{1,...,m}

|[X(t)]ik − [X(t)]jk| ≤ ε}

so, in order for two agents to influence each other, their opinions must be close topic-wise.

This model is in line with the spirit of bounded-confidence even in contexts in which agents

take different positions about the various topics. We will refer to the multi-dimensional

HK model with ℓ∞-norm (5.36) as the uniform affinity model.

We first prove that if we consider the range of opinions on a specific topic k at time t and

we consider the largest of such values over all the possible topics, then such a quantity is

non increasing over time.

Proposition 5.18. (Range of opinions in uniform affinity HK model) For the uniform

affinity model, the quantity

ν(X(t)) := max
i,j∈{1,...,N}
k∈{1,...,m}

|[X(t)]ik − [X(t)]jk| = max
k∈{1,...,m}

νk(X(t))

is non increasing over time, namely ν(X(0)) ≥ ν(X(1)) ≥ ν(X(2)) ≥ . . . .

Proof. We first observe that ∀k ∈ {1, . . . ,m}

ν(X(t)) ≥ max
ij

|[X(t)]ik − [X(t)]jk| = max
i

[X(t)]ik −min
j
[X(t)]jk = [X(t)]uk − [X(t)]lk

(5.38)

for some specific u, l.

For all i, j ∈ {1, . . . , N} and k ∈ {1, . . . ,m}

|[X(t+ 1)]ik − [X(t+ 1)]jk| =
∣∣∣ ∑
d∈Ni(t)

1

|Ni(t)|
[X(t)]dk −

∑
d∈Nj(t)

1

|Nj(t)|
[X(t)]dk

∣∣∣ ≤
∣∣∣max

ℓ
[X(t)]ℓk −min

ℓ
[X(t)]ℓk

∣∣∣ = ∣∣∣[X(t)]uk − [X(t)]lk

∣∣∣ = [X(t)]uk − [X(t)]lk ≤ ν(X(t)).
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Figure 5.1: Convergence to consensus of the uniform affinity model with N = 10 agents,

m = 2 topics, confidence threshold ε = 0.8. Initial conditions are uniformly generated in

the interval [−1, 1]m. Convergence occurs after 3 iterations.

Since this is true for all i, j ∈ {1, . . . , N} and for all k ∈ {1, . . . ,m}, then it is also true

that

ν(X(t+ 1)) = max
ij∈{1,...,N}
k∈{1,...,m}

|[X(t+ 1)]ik − [X(t+ 1)]jk| ≤ ν(X(t)).

A consequence of Proposition 5.18 is that the opinion gap on each single topic (see

Definition 5.9) is non-increasing too.

Differently from what happens with the standard HK model (and partly with the

average-based HK model), there is no way to introduce a meaningful total ordering in

Rm and hence in the set of all agents’ opinions. In fact, in general, the ordering is different

on each topic, and condition |[X(t)]ik−[X(t)]jk| ≤ ε for some specific k does not ensure that

i and j are neighbours. So, it may happen that [X(t)]ik < [X(t)]jk, but at the subsequent
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time step [X(t + 1)]ik > [X(t + 1)]jk. See, for instance, Figure 5.1, where moving from

t = 0 to t = 1 the opinions of agents 1 and 5 on topic 2 swap (even if eventually they all

converge to a consensus).

However, if at some time t every pair of agents who do not influence each other have

opinions about all the topics that differ by more than ε, then the opinions’ ordering on

each topic remains unaltered when moving from time t to t+ 1.

Proposition 5.19 (One-step order preservation). Consider the uniform affinity model and

suppose that at some time t ≥ 0 one has that for every i, j ∈ {1, . . . , N} condition j ̸∈ Ni(t)

implies

|[X(t)]ik − [X(t)]jk| > ε, ∀ k ∈ {1, . . . ,m}. (5.39)

If for every k ∈ {1, . . . ,m} we sort the agents’ opinions (the order specifically depending

on k) so that [X(t)]i1k ≤ [X(t)]i2k ≤ · · · ≤ [X(t)]iNk, then the same opinion ordering on

that topic is preserved at t+ 1, i.e., [X(t+ 1)]i1k ≤ [X(t+ 1)]i2k ≤ · · · ≤ [X(t+ 1)]iNk.

Proof. Let k be arbitrary in {1, . . . ,m} and consider ih ∈ {i1, . . . , iN−1}.

We preliminarily observe that if ih+1 ̸∈ Nih(t), assumption (5.39) implies that

Nih(t) ∩Nih+1
(t) = ∅; Nih(t) \ Nih+1

(t) ⊆ {i1, . . . , ih}; Nih+1
(t) \ Nih(t) ⊆ {ih+1, . . . , iN}

On the other hand, if ih+1 ∈ Nih(t), then

Nih(t) \ Nih+1
(t) ⊆ {i1, . . . , ih−1}; Nih+1

(t) \ Nih(t) ⊆ {ih+2, . . . , iN}.

So, we can define

[∆(t)]hk :=
1

|Nih(t) ∩Nih+1
(t)|

∑
ℓ∈Nih

(t)∩Nih+1
(t)

[X(t)]ℓk,

[X̃(t)]ihk :=

∑
ℓ∈Nih

(t)\Nih+1
(t)[X(t)]ℓk

|Nih(t) \ Nih+1
(t)|

,

[X̃(t)]ih+1k :=

∑
ℓ∈Nih+1

(t)\Ni(t)
[X(t)]ℓk

|Nih+1
(t) \ Ni(t)|

,

and get

[X(t+ 1)]ihk =
|Nih(t) ∩Nih+1

(t)|
|Nih(t)|

[∆(t)]hk +
|Nih(t) \ Nih+1

(t)|
|Nih(t)|

[X̃(t)]ihk
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and similarly

[X(t+ 1)]ih+1k =
|Nih(t) ∩Nih+1

(t)|
|Nih+1

(t)|
[∆(t)]hk +

|Nih+1
(t) \ Nih(t)|

|Nih+1
(t)|

[X̃(t)]jk.

Since [X̃(t)]ih+1k ≥ [∆(t)]hk ≥ [X̃(t)]ihk if ih and ih+1 are neighbours, while [∆]hk(t) = 0

and [X̃(t)]ih+1k > [X̃(t)]ihk if ih and ih+1 are not neighbours, it follows that [X̃(t+1)]ih+1k ≥

[X̃(t+ 1)]ihk.

The reasoning behind the previous result can be extended to a different situation when

the agents’ opinions at some time t are ordered so that for every k ∈ {1, . . . ,m}

[X(t)]1k ≤ [X(t)]2k ≤ · · · ≤ [X(t)]Nk.

When so, such ordering is preserved at all subsequent time instants. This is based on

the fact that if i < j and i and j are not neighbours, then there exists k̄ such that

[X(t)]jk̄− [X(t)]ik̄ > ε. But this implies that for every p < i one has [X(t)]jk̄− [X(t)]pk̄ > ε,

and for every q > j one has [X(t)]qk̄−[X(t)]ik̄ > ε. Consequently, Ni(t)∩{j, j+1, . . . , N} =

∅ and similarly Nj(t) ∩ {1, 2, . . . , i} = ∅. Conversely, if i < j and i and j are neighbours,

then Ni(t)∩Nj(t) ⊇ {i, i+1, . . . , j}. Based on these comments, the proof of the following

result can be easily obtained by mimicking the proof of Proposition 5.19.

Proposition 5.20 (Sufficient condition for order preservation). Consider the uniform

affinity model. If at some time t ≥ 0 one has that for every topic k ∈ {1, . . . ,m}

[X(t)]1k ≤ [X(t)]2k ≤ · · · ≤ [X(t)]Nk,

then it is also true that for every τ ≥ 0 and every topic k ∈ {1, . . . ,m}

[X(t+ τ)]1k ≤ [X(t+ τ)]2k ≤ · · · ≤ [X(t+ τ)]Nk.



Chapter 6

On the Herdability of Linear

Time-Invariant Systems with Special

Algebraic or Topological Structure

In this chapter we investigate the herdability property, namely the capability of a system to

be driven towards the (interior of the) positive orthant, for the class of linear time-invariant

state space models. Some conditions that allow to reduce the problem size, as well as some

sufficient conditions for the problem solvability, are first derived. Herdability of matrix

pairs (A,B), with A in Jordan form, is subsequently investigated. Finally, herdability

of certain matrix pairs (A,B) is explored, by analysing the corresponding leader-follower

network, under the assumption that the graph G(A) is clustering balanced (in particular,

structurally balanced), or it has a tree topology and a single leader.

The results presented in this chapter can be found in:

• G. De Pasquale, M. E. Valcher, "On the herdability of linear time-invariant systems

with special algebraic or topological structure" provisionally accepted in Automatica

2022

• G. De Pasquale, M. E. Valcher. “Algebraic and graph-theoretic conditions for the

herdability of linear time invariant systems", Proceedings of the 60th IEEE Con-

ference on Decision and Control (CDC 2021), pp. 5826-5831, Austin, Texas, USA,

10.1109/CDC45484.2021.9683703
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10.1109/CDC45484.2021.9683703
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6.1 Introduction

Networked multi-agent systems have been the subject of an impressive number of contribu-

tions in the last two decades, due to their wide range of applications Antsaklis & Baillieul

(2007), Baillieul & Antsaklis (2007), Olfati-Saber et al. (2007), Zhang et al. (2012). As a

result, the controllability of this class of systems, namely the property of the system state

to be driven towards any point of the state space, has attracted a lot of interest, mainly

aimed at deriving conditions that rely on the communication graph structure, rather than

on the specific weights attributed to the graph edges Boothby (1982), Egerstedt et al.

(2012), Johnson et al. (1993), Mousavi et al. (2019), Parlangeli & Notarstefano (2012),

Rahmani et al. (2009), Tsatsomeros (1998). However, there are many research fields, such

as biology Jacquez (1972), chemistry Bower & Bolouri (2001), sociology Scott (1988), neu-

roscience Gupta et al. (2007), etc. for which, due to the nature of the applications involved,

investigating if the system state can be brought towards any point of the state space may

not be of practical interest, and may lead to overly restrictive conditions on the model into

play. In particular, when dealing with social networks, in contexts in which some individ-

uals have leading roles over the network, and hence can be identified as leaders, different

problems with respect to the ones of consensus or polarization may be taken into account.

In these situations one may wonder under what conditions leader nodes in the network

can influence the state of the other individuals (followers) so that they can be brought

above a certain threshold. For example, in the context of marketing advertisement, it is

of interest to devise strategies targeting some individuals to bring the consumption level

of a certain good for a group of consumers over a certain threshold. In this circumstance,

it is pointless to require that the state entries may assume any real value, including the

negative ones. It is in contexts like this one that the investigation of a weaker concept

with respect to the one of controllability, known in the literature as herdability Ruf et al.

(2018, 2019), becomes of interest. Herdability refers to the possibility of driving the state

variable towards the interior of the positive orthant. More precisely, a system is herdable

if, for every choice of the initial conditions, there exists a control input that drives all

the state variables over a positive threshold. Generally speaking, herdability applies to

leader-follower network systems in which one may wonder where to locate the leaders in

the network so that the system is herdable. The problem considered in this chaper shares
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some similarities with the one known in the literature as unanimity of opinions studied in

Altafini & Lini (2015) where it is shown that herdabilty can be ensured when the graph

adjacency matrix is eventually positive.

In this chapter we study the herdability of leader-follower networked linear time in-

variant systems described by a matrix pair (A,B), both from an algebraic and from a

topological perspective, this latter being of great relevance, as mentioned before, when the

pair (A,B) represents a multi-agent system. In particular, we focus on special topologies of

the graph G(A), as the tree topology, or the case when the graph is structurally/clustering

balanced. On the other hand, we present a condition that allows to reduce the study of

the herdability of a pair (A,B) to the one of a related pair (Ã, B̃) of lower dimensions, and

we provide a complete analysis of herdability for pairs whose matrix A is in Jordan form.

6.2 Algebraic Conditions for Herdability of General Pairs

(A,B)

The concept of herdability of linear and time-invariant state space models described by a

matrix pair (A,B), with A ∈ Rn×n and B ∈ Rn×m, has been defined in various ways Ruf

et al. (2018, 2019), She et al. (2019). In this paper we are interested in the behavior of all

state variables, rather than in the behavior of a subset of them. Consequently, we assume

the following definition (which is equivalent to Definition 3 in Ruf et al. (2019)).

Definition 6.1. Given a (continuous-time or discrete-time) (linear and time-invariant)

state space model of dimension n with m inputs, described by a pair (A,B), A ∈ Rn×n and

B ∈ Rn×m, the system (the pair) is said to be herdable if for every x(0) and every h > 0,

there exists a time tf > 0 and an input u(t), t ∈ [0, tf ), that drives the state of the system

from x(0) to x(tf ) ≥ h1n.

Both in the continuous-time case and in the discrete-time case, herdability reduces to

a condition on the controllability matrix associated with the pair (A,B).

Proposition 6.2 (Corollary 1, Ruf et al. (2019)). A pair (A,B), A ∈ Rn×n and B ∈ Rn×m,

is herdable if and only if Im(R(A,B)) includes a strictly positive vector, where

R(A,B) :=
[
B AB A2B . . . An−1B

]
(6.1)
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is the controllability matrix of the pair (A,B).

Clearly, every reachable pair (A,B) is herdable, but the converse is not true. Also, if

R(A,B) has zero rows then the problem is clearly not solvable. So, in the following we will

investigate herdability by assuming that R(A,B) is devoid of zero rows and Im(R(A,B))

is a proper subset of Rn.

In this section we present some sufficient conditions for the herdability of a generic

matrix pair (A,B). We will later focus on pairs (A,B) that are endowed with specific

structural properties.

Lemma 6.3. Given a pair (A,B), A ∈ Rn×n and B ∈ Rn×m, assume that R := R(A,B) ∈

Rn×nm satisfies the following conditions:

i) R has no zero rows;

ii) the set J := {j ∈ [1, nm] : Rej is unisigned} is such that |∪j∈JZP(Rej)|≥ n− 1.

Then the pair (A,B) is herdable.

Proof. Let us first suppose that |∪j∈JZP(Rej)|= n, which means that ∀i ∈ [1, n], there

exists j ∈ J such that the i-th entry of the unisigned vector Rej is nonzero. By choosing

the vector u with entries

[u]j =

0, if j /∈ J ;

sign(Rej), if j ∈ J ;

(6.2)

it is immediate to see that Ru ≫ 0, and hence the pair (A,B) is herdable.

Let us assume now that |∪j∈JZP(Rej)|= n − 1, and set J = {j1, j2, . . . , jk}. This

implies that there exists a unique index i ∈ [1, n] such that e⊤i R[ej1|ej2| . . . |ejk ] = 0⊤
k . On

the other hand, by hypothesis i), there exists h ∈ [1, nm], h /∈ J , such that e⊤i Reh ̸= 0.

Therefore, by choosing the vector u with entries

[u]j =


sign(e⊤i Reh), if j = h;

0, if j /∈ J ∪ {h};

k · sign(Rej), if j ∈ J ;

(6.3)

there always exists k ∈ R, k > 0, sufficiently large such that Ru ≫ 0.



6.2. ALGEBRAIC CONDITIONS FOR HERDABILITY 97

We now introduce a technical lemma, whose proof is elementary and hence omitted.

Lemma 6.4. Given a matrix Φ ∈ Rn×k, assume that there exist two permutation matrices

P1 ∈ Rn×n and P2 ∈ Rk×k such that

P1ΦP2 =

Φ11 Φ12

0 Φ22

 , (6.4)

and that both Im(Φ11) and Im(Φ22) include a strictly positive vector. Then ∃ u ∈ Rk such

that Φu > 0.

Remark 6.5. The result of Lemma 6.4 easily extends to the case when the matrix Φ ∈

Rn×k can be reduced (by means of row and column permutations) to the more general block-

triangular form:

P1ΦP2 =


Φ11 Φ12 . . . Φ1k

0 Φ22 . . . Φ2k

...
... . . . ...

0 0 . . . Φkk

 , (6.5)

where the diagonal blocks Φii are not necessarily square matrices. Indeed, if the image of

each diagonal block Φii, i ∈ [1, k], includes a strictly positive vector then it is straightforward

to see that there exists u ∈ Rk such that Φu > 0. This is true, in particular, if for every

i ∈ [1, k] we can select a subset of the columns of Φii with the following properties: 1) each

of them is unisigned; 2) for each row index j, at least one of these unisigned columns has

the j-th entry which is nonzero.

Based on Lemma 6.4, we can derive the following sufficient condition for heardability.

Lemma 6.6. Given a pair (A,B), A ∈ Rn×n and B ∈ Rn×m, assume that R := R(A,B) ∈

Rn×nm has no zero rows. Define the sets

J := {j ∈ [1, nm] : Rej is unisigned} (6.6)

H := ∪j∈JZP(Rej), (6.7)

and suppose that ∀h ∈ [1, n] \ H there exists j ∈ [1, nm] \ J such that

i) [R]hj = e⊤hRej ̸= 0, and
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ii) ∀k ∈ [1, n] \ H, condition [R]kj = e⊤kRej ̸= 0 implies sign([R]kj) = sign([R]hj),

namely for every index h that does not belong to H there exists a column of R, say Rej,

where the h-th entry and all the nonzero entries corresponding to indices that do not belong

to H are of the same sign. Then the pair (A,B) is herdable.

Proof. Under the lemma assumptions there exists a set of indices T ⊆ [1, nm]\J such that

a)
(
∪j∈JZP(Rej)

)
∪
(
∪j∈TZP(Rej)

)
= [1, n];

b) if we denote by S ∈ R(n−|H|)×n the (selection) matrix whose rows are the n-dimensional

canonical vectors indexed in [1, n] \ H, then SRej is unisigned for every j ∈ T .

This implies that there exist two permutation matrices P1 ∈ Rn×n and P2 ∈ Rnm×nm such

that

P1RP2 =

R11 R12

0 R22

 ,
where R11 has all unisigned columns, while R22 has a subset of its columns that are

unisigned and therefore Im(R22) includes a strictly positive vector. So, the result follows

from Lemma 6.4.

The idea behind Lemma 6.4 and Lemma 6.6 can be recursively iterated, thus leading

to an algorithm that checks a sufficient condition for herdability. The algorithm receives

as input the controllability matrix and returns, if the sufficient condition is verified, a

confirmation that the pair (A,B) is herdable. In detail, it proceeds as follows: at each step

the algorithm detects a column vector that is unisigned, then sets to zero all the rows of

R that correspond to the nonzero entries (the non-zero pattern) of such a column vector.

Subsequently, the algorithm repeats the same step on the modified matrix R, until either

R becomes the zero matrix or the matrix R has no unisigned columns, thus iteratively

applying the same strategy as in Lemma 6.4. In the former case the pair (A,B) is herdable,

in the second case the algorithm stops.

Algorithm 2, below, makes use of the following notation. Given a matrix R ∈ Rn×nm

and a set I ⊆ [1, n], we denote by RI the matrix obtained from R by (leaving unchanged

all rows indexed in I and) replacing every row indexed in [1, n] \ I with the zero row.

Lemma 6.7. Consider a pair (A,B), where A ∈ Rn×n and B ∈ Rn×m. For every non-

singular matrix T ∈ Rm×m, the pair (A,B) is herdable if and only if the pair (A,BT ) is

herdable.
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Algorithm 2 Greedy algorithm to check herdability
R := [B|AB| . . . |An−1B] ▷ Initialization

I := [1, n]

J := [1, nm]

while I ≠ ∅ do ▷ Recursive check

for j ∈ J do

if Rej is unisigned then

J = J \ {j}

I = I \ ZP(Rej)

R = RI

if I = ∅ then

(A,B) is herdable

if there are no unisigned column vectors in R then

stop

Proof. Follows from Im(R(A,B)) = Im(R(A,BT )).

Proposition 6.8, below, provides a method for the dimensionality reduction of the herd-

ability problem for matrix pairs (A,B), with A and B conformably partitioned as:

A =

A11 A21

A21 A22

 , B =

B1

0

 . (6.8)

It states that, when there is a set of leaders among the n nodes of the graph G(A), the

herdability of the system depends only on the way followers interact and leaders exert their

influence on their followers. How followers, in turn, “evaluate/weight" the leaders has no

influence on the herdability of the system. This result will be largely exploited in the rest

of the paper.

Proposition 6.8. Consider a pair (A,B), where A ∈ Rn×n and B ∈ Rn×m are described

as in (6.8), where B1 ∈ Rr×m is of full row rank and A11 ∈ Rr×r. The pair (A,B) is

herdable if and only if the pair (A22, A21) is herdable.

Proof. Let R(A,B) be the controllability matrix of (A,B) and R(A22, A21) the controlla-

bility matrix of (A22, A21). We preliminarily note that, since B1 is of full row rank, there
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exists a nonsingular matrix T ∈ Rm×m such that B1T =
[
Ir 0

]
. Since the zero columns

of BT are irrelevant, in the following by making use of Lemma 6.7 we will assume r = m

and B1 = Im. Since

R(A,B) =

Im Φ12

0 Φ22


where

Φ22 :=
[
A21 A21A11 + A22A21 A21(A

2
11 + A12A21) + A22(A21A11 + A22A21) ...

]
=
[
0 In−m

] [
AB A2B . . . An−1B

]
,

it is immediate to see that for every v1 ∈ Rm

v =

v1

v2

 ∈ Im(R(A,B)) ⇔ v2 ∈ Im(Φ22).

We now prove that

Im(Φ22) = Im
([

0 In−m

][
AB A2B . . . An−1B

])
= Im (R(A22, A21)) .

To prove this result we show that for every k ∈ [1, n− 1]

[
0 In−m

]
AkB=

[
A21 A22A21 . . . Ak−1

22 A21

]

∗

∗
...

Im

 (6.9)

where ∗ denotes a real matrix (whose value is not relevant). We proceed by induction on

k. If k = 1 the result is true since
[
0 In−m

]
AB = A21 =

[
A21

]
Im.

We assume now that the result is true for k < k̄ and then show that the result is true for

k = k̄. Indeed, there exists some matrix Ξ such that[
0 In−m

]
Ak̄B =

[
0 In−m

]
AAk̄−1B =

[
A21 A22

]
Ak̄−1B =

[
A21 A22

] Ξ[
0 In−m

]
Ak̄−1B

 = A21Ξ + A22

[
A21 A22A21 . . . Ak̄−2

22 A21

]

∗

∗
...

Im

 =

[
A21 A22A21 . . . Ak̄−1

22 A21

]

Ξ

∗
...

Im

 .
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From (6.9), applied for every k ∈ [1, n− 1], it follows that

[
0 In−m

] [
AB A2B . . . An−1B

]
=
[
A21 A22A21 . . . An−2

22 A21

]

Im ∗ . . . ∗

Im . . . ∗
. . . ...

Im


and hence (by Cayley-Hamilton’s theorem)

Im(
[
0 In−m

] [
AB A2B . . . An−1B

]
) =

Im(
[
A21 A22A21 . . . An−2

22 A21

]
) = Im(R(A22, A21)).

Consequently, the pair (A,B) is herdable if and only if the pair (A22, A21) is herdable.

The following result can be obtained by recursively applying Proposition 6.8.

Corollary 6.9. Consider a pair (A,B), where A ∈ Rn×n and B ∈ Rn×m are block-

partitioned as follows:

A =



A11 A12 A13 . . . . . . A1k

A21 A22 A23 . . . . . . A2k

0 A32 A33 . . . . . . A3k

0 0
. . . . . . ...

...
... . . . . . . ...

0 0 . . . . . . Ak,k−1 Akk


B =



B1

0
...
...
...

0


,

and assume that the matrices B1 ∈ Rn1×m, Ai,i−1 ∈ Rni×ni−1 , i ∈ [2, k − 1], are all of full

row rank. Then the pair (A,B) is herdable if and only if the pair (Akk, Ak,k−1) is herdable.

Proposition 6.8 allows to easily obtain two results that are already available in the

literature. As we will see in the next section, however, the consequences of Proposition 6.8

can be further exploited.

Corollary 6.10 (Proposition 1 Meng et al. (2020)). Consider a pair (A,B), where A ∈

Rn×n and B ∈ Rn×m are described as in (6.8). If the directed graph G(A) is strongly

connected and structurally balanced, and the classes in which the agents split are V1 = [1,m]

and V2 = [m+ 1, n], then the pair (A,B) is herdable.
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Proof. We first note that as G(A) is strongly connected then R(A,B) cannot have zero

rows, therefore (see Proposition 6.8) also R(A22, A21) has no zero rows. If V1 = [1,m], then

A21 is a nonpositive matrix, while A22 is a nonnegative matrix, therefore the controllability

matrix of the pair (A22, A21) has all negative columns and no zero rows. This ensures that

(A22, A21) is herdable.

Remark 6.11. It is easily seen that the result of Corollary 6.10 would still be true if the

set of leaders would include V1 rather than coincide with it.

Corollary 6.12 (Theorem 1 in She et al. (2019)). Consider a pair (A,B), where A ∈ Rn×n

and B ∈ Rn×m are described as in (6.8). If every follower is reached by at least one of the

leaders in a single step, namely through a walk of length 1, and for each leader the walks

of length 1 to its followers have the same sign, then the pair (A,B) is herdable.

Proof. By the corollary assumptions the matrix A21 is devoid of zero rows and all its

columns are either zero vectors or unisigned vectors, therefore Im(A21) includes a strictly

positive vector and, since Im(A21) ⊆ Im(R(A22, A21)), also Im(R(A22, A21)) does. On the

other hand, by Proposition 6.8, the pair (A,B) is herdable if and only if the pair (A22, A21)

is herdable, and this completes the proof.

6.3 Herdability of Pairs (A,B) with A in Jordan Form

In this section we show that in the special case of pairs (A,B), with A a real matrix in

Jordan form, herdability can be easily checked by making use of a criterion that represents

the natural extension of the reachability criterion (derived from the PBH reachability test)

for such matrix pairs, see Theorem 2.7.

Proposition 6.13. Consider a pair (A,B), where A ∈ Rn×n and B ∈ Rn×m. Assume that

A is a real matrix in Jordan form with r distinct (real) eigenvalues λ1, λ2, . . . , λr, namely

A =


J1

J2
. . .

Jr

with Ji =


Ji,1

Ji,2
. . .

Ji,si


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where Ji, i ∈ [1, r], is the Jordan block and Ji,ℓ, ℓ ∈ [1, si], the ℓ-th elementary Jordan block,

both of them associated with the eigenvalue λi. We let ni be the dimension of Ji and ni,ℓ

the dimension of Ji,ℓ. Accordingly, we can partition the matrix B as follows:

B =


B1

B2

...

Br

 , with Bi =


Bi,1

Bi,2

...

Bi,si

 , i ∈ [1, r]. (6.10)

Let B̃i ∈ Rsi×m, i ∈ [1, r], be the matrix obtained by piling up the last rows of each of the

blocks Bi,1, Bi,2, . . . Bi,si. Then the pair (A,B) is herdable if and only if ∀i ∈ [1, r] there is

a strictly positive vector in the image of B̃i.

In particular, if m = 1, namely B is a column vector, then (A,B) is herdable if and only

if for every i ∈ [1, r] the vector B̃i has all nonzero entries and is unisigned.

Proof. We prove the statement for the case m = 1 and adopt the notation bi, bi,ℓ and

b̃i for Bi, Bi,ℓ and B̃i, respectively. The case m > 1 is a straightforward generalization

of what follows, but the notation is much more cumbersome. First of all, we define the

shift function σ(·) : Rk → Rk as the function that takes as input a vector, shifts up by one

position all its components and puts a zero as final entry, namely

σ(v) =


v2
...

vk

0

 =


0 1

0 1
. . . 1

0




v1

v2
...

vk

 =: Nkv, (6.11)

where Nk ∈ Rk×k is the elementary Jordan block of size k associated with the zero eigen-

value. Clearly, σt(v) is recursively defined as σ(σt−1(v)) for every t ∈ {2, 3, . . . }. Similarly,

given a block partitioned vector v = [v1,v2, . . . ,vs], we define the function σ̃(·) as

σ̃(v) = σ̃




v1

v2

...

vs



 =


σ(v1)

σ(v2)
...

σ(vs)

 . (6.12)

Since the matrix A is in Jordan form we notice that the controllability matrix associated
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with the pair (A,B) takes the following structure:

R(A,B) =


b1 J1b1 . . . Jn−1

1 b1

b2 J2b2 . . . Jn−1
2 b2

...
...

...

br Jrbr . . . Jn−1
r br

 .

We want to show that every block Jki bi, i ∈ [1, r], k ∈ [1, n−1], of the controllability matrix

can be expressed in terms of the vectors σ̃k(bi), and therefore an appropriate factorization

of the controllability matrix can be derived.

As the generic elementary Jordan block Ji,ℓ can be expressed as Ji,ℓ = λiIni,ℓ
+ Nni,ℓ

,

its k-th power takes the following form (Ji,ℓ)
k = (λiIni,ℓ

+ Nni,ℓ
)k =

∑k
t=0

(
k
t

)
λk−ti (Nni,ℓ

)t.

Moreover, since Nni,ℓ
bi,ℓ = σ(bi,ℓ), we get that (Ji,ℓ)

kbi,ℓ =
∑k

t=0

(
k
t

)
λk−ti σt(bi,ℓ), that is:

(Ji,ℓ)
kbi,ℓ =

[
bi,ℓ σ(bi,ℓ) . . . σk(bi,ℓ)

]


λki(
k
1

)
λk−1
i

...(
k
k

)
λ0i

 .

If we now set ci := maxℓ ni,ℓ and we keep into account that σj(bi,ℓ) = 0 for j ≥ ci and that

that
(
k
i

)
= 0 for k < i, we obtain

(Ji,ℓ)
kbi,ℓ=

[
bi,ℓ σ(bi,ℓ) . . . σci−1(bi,ℓ)

]


λki(
k
1

)
λk−1
i

...(
k

ci−1

)
λk−ci+1
i


Accordingly,

[
bi,ℓ Ji,ℓbi,ℓ . . . Jn−1

i,ℓ bi,ℓ

]
=[

bi,ℓ σ(bi,ℓ) . . . σci−1(bi,ℓ)
]
Aci(λi), where

Aci(λi) :=


1 λi λ2i λ3i . . . λn−1

i

1
(
2
1

)
λi

(
3
1

)
λ2i . . .

(
n−1
1

)
λn−2
i

. . . ...
...

1 . . .
(
n−1
ci−1

)
λn−cii


is a matrix in Rci×n. Keeping into account the block partitioning of the vectors bi and of

the Jordan blocks Ji, we can claim that, for every i ∈ [1, r],
[
bi Jibi . . . Jn−1

i bi

]
=[

bi σ̃(bi) . . . σ̃ci−1(bi)
]
Aci(λi). Therefore the matrix R(A,b) factorizes as in (6.13).
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R(A,B)=


b1 σ̃(b1) . . . σ̃c1−1(b1)

b2 σ̃(b2) . . . σ̃c2−1(b2)

. . .

br σ̃(br) . . . σ̃cr−1(br)




Ac1(λ1)

Ac2(λ2)
...

Acr (λr)

≜BA
(6.13)

We want to prove that the matrix A in (6.13) is of full row rank. To this end we first

note that A ∈ R(c1+c2+···+cr)×n and that δ := c1 + c2 + · · · + cr ≤ n. Therefore it will be

sufficient to prove that the δ × δ submatrix obtained by selecting the first δ columns, i.e.,

Ψ := A

 Iδ

0(n−δ)×δ

 =


Ac1(λ1)

Ac2(λ2)
...

Acr(λr)


 Iδ

0(n−δ)×δ



is nonsingular. We note that a nonzero vector p ∈ Rδ,p :=
[
p0 p1 . . . pδ−1

]⊤
, belongs

to the kernel of Ψ if and only if

0 = p(λi) =
dp(s)

ds

∣∣∣∣
s=λi

= · · · = dci−1p(s)

dsci−1

∣∣∣∣
s=λi

,i ∈ [1, r],

where p(s) :=
∑δ−1

i=0 pis
i. But this amounts to saying that p(s) has λi as a zero of multi-

plicity (at least) ci, for every i ∈ [1, r], namely p(s) is a multiple of q(s) := (s− λ1)
c1(s−

λ2)
c2 . . . (s − λr)

cr , which is impossible since deg q(s) = δ > deg p(s). Consequently, Ψ is

of full row rank. This implies that the image of R(A,B) coincides with the image of the

matrix B in (6.13).

We consider, now, each i-th block of B, i.e., [bi σ̃(bi) . . . σ̃ci−1(bi)], and we note that

there exist permutation matrices P1i and P2i such that

P1i

[
bi σ̃(bi) . . . σ̃ci−1(bi)

]
P2i =



Φ
(ci−1)
ii ∗ . . . ∗ ∗

0 Φ
(ci−2)
ii . . . ∗ ∗

...
... . . . ...

...

0 0 . . . Φ
(1)
ii ∗

0 0 . . . 0 Φ
(0)
ii


,

where Φ
(0)
ii = b̃i, while Φ

(k)
ii includes only the entries of the vector b̃i that correspond to

elementary Jordan blocks Ji,ℓ whose dimension ni,ℓ is greater than k. It is immediate to
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realise that there exists a strictly positive vector in the image of
[
bi σ̃(bi) . . . σ̃ci−1(bi)

]
if and only if Φ(0)

ii = b̃i is a vector devoid of zero entries and unisigned. Therefore there

exists a strictly positive vector in the image of B (and hence in the image of R(A,B)) if

and only if the previous condition holds for every vector b̃i, i ∈ [1, r]. This concludes the

proof.

Remark 6.14. For pairs (A,B) with A in Jordan form and cyclic (i.e., it has one

elementary Jordan block for each eigenvalue) and B = b a column vector, the vectors b̃i

reduce to scalars, thus the pair is herdable if and only if such scalars are all nonzero and

this is equivalent to the reachability of the pair, as it follows from the PBH reachability test

(see Theorem 2.7).

If A is a diagonal matrix and B a column vector, Proposition 6.13 leads to the following

corollary.

Corollary 6.15. Given a matrix pair (A,B), with A = λ1⊕λ2⊕· · ·⊕λn ∈ Rn×n a diagonal

matrix, and B = b ∈ Rn, the pair is herdable if and only b is devoid of zero entries and

condition λi = λj implies [b]i · [b]j > 0.

6.4 Herdability of Pairs (A,B) Corresponding to a Di-

rected Graph G(A) with m Leaders

We now investigate the herdability of the pairs (A,B), described as in (6.8), with B1 = Im

and A11 ∈ Rm×m. Based on Lemma 6.7, we can always reduce ourselves to this case

by resorting to a change of basis in the input space and to a permutation of the state

entries, every time the matrix B has a subset of its rows that is linearly independent and

the remaining rows are all zero. One of the advantages of this set-up is that it allows

to investigate the herdability of the pair (A,B) by resorting to the signed and weighted

directed graph G(A) whose nodes are partitioned into leaders and followers, depending

on whether the state variable associated to the node is endowed with an external and

independent control input (leader) or not (follower). Specifically we introduce the following:

Assumption 1: We assume that in the signed and weighted directed graph G(A) the

first m vertices, associated with the m canonical vectors in B, represent the set L = [1,m]
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of leaders and the remaining vertices are the set of followers, i.e., F = [m + 1, n]. We let

Fd be the set of followers whose distance from the leaders is d, d ∈ [1, k], by this meaning

Fd := {j ∈ F : d(L, j) = d}. We assume Fk ̸= ∅, Fd = ∅, d > k. This means that k is

the maximum distance from the set of leaders to a follower. It entails no loss of generality

assuming that F1 = [m+1,m+m1], . . . ,Fd = [m+m1+ · · ·+md−1+1,m+m1+ · · ·+md],

so that |L| = m and |Fd| = md. We also assume that m+m1 + · · ·+mk = n.

Under Assumption 1, the controllability matrix in k + 1 steps

Rk+1 = [B|AB|A2B| . . . |AkB] has a structure as in (6.5), with Φ11 = Im, and all the

matrices Φdd ∈ Rmd×m, d ∈ [2, k], have no zero rows.

We consider the case when the leaders split into the two classes of the structurally

balanced graph G(A).

Proposition 6.16. Consider a pair (A,B), where A ∈ Rn×n and B ∈ Rn×m. Assume that

the directed graph G(A) is structurally balanced, and the classes in which the agents split

are V1 = [1, n1] and V2 = [n1 + 1, n], so that A is described as in (6.8), with A11 ∈ Rn1×n1.

We note that Aii ≥ 0, while Aij ≤ 0 for i ̸= j. Assume, now, that the set of m leaders

splits in the two classes as follows: L = [1,m1] ∪ [n1 + 1, n1 +m2], with 1 ≤ mi ≤ ni for

i ∈ [1, 2], and hence B is described as

B =


Im1 0

0 0

0 Im2

0 0

 .

If

a) ∀i ∈ V1 \ L there exists ℓ ∈ L ∩ V1 = [1,m1] such that d(ℓ, i) < d(ℓ, j),∀j ∈ V2 \ L;

b) ∀i ∈ V2 \ L there exists ℓ ∈ L∩V2 = [n1 +1, n1 +m2] such that d(ℓ, i) < d(ℓ, j),∀j ∈

V1 \ L;

then the pair (A,B) is herdable.

Proof. We first observe that if two nodes (leader or follower) belong to the same class,

every path that connects them has a positive weight. As a result, if i, j ∈ Vp for some
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p ∈ [1, 2] and [AkB]ij ̸= 0 for some k > 0, then [AkB]ij > 0.

Condition a) ensures that for every i ∈ V1 \ L there exists ℓ ∈ L ∩ V1 = [1,m1] and ki > 0

such that [AkiB]iℓ ̸= 0 and hence [AkiB]iℓ > 0. On the other hand, [AkiB]jℓ = 0 for every

j ∈ V2 \ L. Therefore if [AkiB]jℓ ̸= 0 and j ̸∈ L then [AkiB]jℓ > 0. Consequently, for every

i ∈ V1 \ L there exists ℓ ∈ V1 \ L and ki > 0 such that the vector AkiBeℓ has the i-the

entry which is nonzero and its restriction to the entries that correspond to the followers is

a unisigned vector. By exploiting b), we can claim the same result for all indices i ∈ V2 \L.

So, keeping in mind the structure of B, we can claim that there exists a permutation matrix

P and a selection matrix S such that

PR(A,B)S =

Im Φ12

0 Φ22

 ,
where all columns of Φ22 are unisigned (in fact, nonnegative) and Φ22 has no zero rows.

By Lemma 6.4, we can claim the herdability of the pair (A,B).

The previous result allows to extend the herdability analysis first to graphs with 3

clusters and then to graphs with an arbitrary number of clusters.

Proposition 6.17. Consider a pair (A,B), with A ∈ Rn×n and B ∈ Rn×m. Assume that

G(A) is a clustering balanced directed graph with three clusters, and hence up to a relabelling

of the nodes, A can be described as follows:

A =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 ,
with Aii ∈ Rni×ni , i ∈ [1, 3], Aii ≥ 0, and Aij ≤ 0 for i ̸= j. This means that the

three clusters correspond to the sets of nodes V1 = [1, n1], V2 = [n1 + 1, n1 + n2] and

V3 = [n1 + n2 + 1, n].

Let us assume, then, that the set of leaders coincides with one of the clusters, without loss

of generality L = V1 = [1, n1], and hence m = n1 and B is described as B =

In1

0

 . If

a) ∀i ∈ V2 there exists ℓ ∈ L = V1 such that d(ℓ, i) < d(ℓ, j), ∀j ∈ V3;

b) ∀i ∈ V3 there exists ℓ ∈ L = V1 such that d(ℓ, i) < d(ℓ, j), ∀j ∈ V2;
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then the pair (A,B) is herdable.

Proof. Under the statement assumptions, Proposition 6.8 holds for m = n1, and hence

(A,B) is herdable if and only if the pair

(Ã, B̃) :=

A22 A23

A32 A33

 ,
A21

A31


is herdable. We now set Ṽ2 := [1, n2] and Ṽ3 := [n2 + 1, n2 + n3] and we observe that G(Ã)

is structurally balanced.

In order to show that (Ã, B̃) is herdable, we first notice that the matrix B̃ has all non

positive column vectors. Therefore, if we denote by I1 the index set corresponding to the

non null rows of B̃, namely I1 := {i : e⊤i B̃ ̸= 0⊤}, then there exists a positive vector

v ∈ Im(B̃) ⊆ Im(R(Ã, B̃)) such that [v]i > 0, ∀i ∈ I1, and [v]i = 0, ∀i ∈ [1, n2+n3]\I1 =

(Ṽ2 ∪ Ṽ3) \ I1.

We now observe that if we regard the set I1 as the set of leaders then conditions a) and

b) lead to

a’) ∀i ∈ Ṽ2 \ I1 there exists ℓ ∈ I1 ∩ Ṽ2 such that d(ℓ, i) < d(ℓ, j),∀j ∈ Ṽ3;

b’) ∀i ∈ Ṽ3 \ I1 there exists ℓ ∈ I1 ∩ Ṽ3 such that d(ℓ, i) < d(ℓ, j),∀j ∈ Ṽ2.

So, by Proposition 6.16, the pair (Ã, B̃) is herdable and hence (A,B) is herdable.

The previous result generalises to any clustering balanced graph with k clusters.

Proposition 6.18. Consider a pair (A,B), with A ∈ Rn×n and B ∈ Rn×m. Assume that

G(A) is a clustering balanced directed graph with k disjoint clusters, say V1,V2, . . . ,Vk, and

that the set of leaders L coincides with V1. If for every p ∈ [2, k] and ∀i ∈ Vp there exists

ℓ ∈ L = V1 such that d(ℓ, i) < d(ℓ, j),∀j ∈ ∪ℓ̸∈{1,p}Vℓ, then the pair (A,B) is herdable.
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6.5 Herdability of Pairs (A,B) with G(A) an Undirected

Tree with a Single Leader

Let us now consider the case when B is a canonical vector and the matrix A is a symmetric

real matrix whose associated undirected graph G(A) is acyclic, namely G(A) is a tree. This

corresponds to the case of a tree with a single leader and n − 1 followers. This case has

been investigated in She et al. (2019), where a sufficient condition for the herdability of

the pair (A,B) has been provided. In this section we provide a sufficient condition for

herdability that is less restrictive, and in the case of trees whose followers have distance at

most 2 from the leader we provide necessary and sufficient conditions.

To investigate the problem we adopt the following

Assumption 2: The graph G(A) is a signed, weighted, connected and acyclic undirected

graph, namely a tree. The leader is L = {1} (and hence B = e1), while the followers

split into classes, based on their distance from the leader. The followers at distance 1

from the leader are F1 = [2,m1 + 1], the followers at distance 2 from the leader are

F2 = [m1 + 2,m1 + m2 + 1], and so on till the last class Fk = [m1 + · · · +mk−1 + 2, n],

where k is the maximum distance between the leader and one of its followers.

Proposition 6.19. Consider a pair (A,B), with A ∈ Rn×n and B ∈ Rn satisfying the

previous Assumption 2.

If, for every d ∈ [0, k−1], all the edges from the vertices in Fd to the vertices in Fd+1 have

the same sign, then the pair (A,B) is herdable.

Proof. Under the previous assumption, it is easy to see that every vertex in Fd is reached

for the first time by the leader in d steps, d ∈ [0, k], and subsequently it is reached after

d + 2h steps for every h ∈ {1, 2, 3, . . . } (since each undirected edge of the graph can be

crossed back and forth, and hence condition [AdB]i ̸= 0 implies [Ad+2B]i ̸= 0). Therefore
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the controllability matrix of the pair (A,B) takes the form

R =



1 0 ∗ 0 ∗ . . .

0 v1 0 ∗ 0 . . .

0 0 v2 0 ∗ . . .

0 0 0 v3 0 . . .
...

...
...

...
...

0 0 . . . . . . vk . . .


, (6.14)

where vd ∈ Rmd , d ∈ [1, k], are, by assumption, unisigned, while ∗ denotes (nonzero)

vectors/entries whose values are not relevant. So, by making use of Remark 6.5, we im-

mediately deduce that there exists a strictly positive vector in the image of R, and hence

(A,B) is herdable.

Remark 6.20. Theorem 3 in She et al. (2019) follows as a corollary of the previous propo-

sition, since it imposes that all paths from the leader to the followers in Vo := ∪h∈Z+F1+2h

have the same sign and, at the same time, all paths from the leader to the followers in

Ve := ∪h∈Z+F2+2h have the same sign. This means that not only all the edges from vertices

in Fd to vertices in Fd+1, d ∈ [0, k − 1], (where F0 := L) have the same signs, but such

signs are uniquely determined for d ≥ 1 once we choose the signs of the edges from F1 to

F2.

Example 6.21. Consider a pair (A,B), with A = A⊤ ∈ R9×9 and B = e1, and assume

that the undirected graph G(A) associated with the matrix A is a tree whose structure and

edge signs are described in Figure 6.1. The nodes i = 2 and j = 9 both belong to Vo, since

Figure 6.1: Tree structure of the herdable system of Example 6.21.

both of them are reached from the leader (node 1 in Fig. 6.1) in an odd number of steps
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(1+2h and 3+2h, h ∈ {0, 1, 2, . . . }, respectively). The node i is reached by the leader with

positive walks, while j with negative ones, so the hypotheses of Theorem 3 in She et al.

(2019) are violated. However, the controllability matrix of the pair takes the structure in

(6.14) for k = 3, with unisigned vectors v1, v2 and v3, the first one with a positive entry,

while the other two with negative entries, thus the pair is herdable by Proposition 6.19.

Given a matrix A and hence a graph G(A) with a tree structure, we propose now

Algorithm 3 for the selection of a (unique) leader i in order to ensure, if possible, that the

pair (A, ei) is herdable. The algorithm searches for a single node, if it exists, for which the

sufficient condition given in Proposition 6.19 is satisfied. For the meaning of the symbols

Out+(F),Out−(F) etc., we refer the reader to the Notation in Section 2.1.

Algorithm 3 Algorithm for the selection of a single leader to ensure herdability of a pair

(A,B) when G(A) is a tree
for i ∈ V do

if Out+(i) = Out(i) ̸= ∅ or Out−(i) = Out(i) ̸= ∅ then

L := {i}

F := {j : (i, j) ∈ E}

H := L ∪ F

if |H| = n then

(A,B) is herdable

else

while Out+(F) = Out(F) ̸= ∅ or

Out−(F) = Out(F) ̸= ∅ do

F = F ∪Out(F)

H = H ∪ F

if |H| = n then

(A,B) is herdable

Propositions 6.22 and 6.23, below, provide complete characterizations of herdability

for trees in which followers have all distance 1 from the leader or distance at most 2,

respectively.

Proposition 6.22. Consider a pair (A,B), with A ∈ Rn×n and B ∈ Rn satisfying As-

sumption 2, and suppose that all the followers have distance one from the leader.
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Then the pair (A,B) is herdable if and only if all the edges have the same sign.

Proof. If all the followers have distance 1 from the leader, namely k = 1, then

A =

 0 A12

A21 0(n−1)×(n−1)

 ,
where A21 = A⊤

12 ∈ Rn−1 is devoid of zero entries. By Proposition 6.8, (A,B) is herdable

if and only if the pair (0(n−1)×(n−1), A21) is herdable, and this is the case if and only if A21

is unisigned.

Proposition 6.23. Consider a pair (A,B), with A ∈ Rn×n and B ∈ Rn satisfying As-

sumption 2, and suppose that all the followers have distance at most 2 from the leader, and

hence

A =


0 A12 01×m2

A21 0m1×m1 A23

0m2×1 A32 0m2×m2

 ,
where A21 = A⊤

12 ∈ Rm1 and A32 = A⊤
23 ∈ Rm2×m1. Then the pair (A,B) is herdable if and

only if for every i, j ∈ F1 = [2,m1 + 1] (including i = j)1 such that

[A23A32]ii = [A23A32]jj, (6.15)

we have:

i) [A21]i · [A21]j > 0 (namely the two edges from the leader L to i and j have the same

sign);

ii) A32(ei+ej) is either zero or unisigned (namely all edges from i and j to their followers

in F2 have the same sign).

Proof. First of all, we highlight that, by Assumption 2, A21 is devoid of zero entries, and

for every i ∈ [1,m2] the row vector e⊤i A32 is a monomial vector (namely it has a single

nonzero entry). Consequently, A23A32 = A⊤
32A32 is a diagonal matrix (with nonnegative

diagonal entries). By Proposition 6.8, (A,B) is herdable if and only if the pair0m1×m1 A23

A32 0m2×m2

 ,
A21

0m2


1Note that for i = j condition i) becomes trivial, while condition ii) becomes “A32ei is either zero or

unisigned".
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R̂ :=

A21 0 (A23A32)A21 0 (A23A32)
2A21 0 . . .

0 A32A21 0 A32(A23A32)A21 0 A32(A23A32)
2A21 . . .


(6.16)

is herdable, and this is the case if and only if the image of the controllability matrix R̂ of

the previous pair, given in (6.16) includes a strictly positive vector. This is the case if and

only if the following conditions simultaneously hold:

a) the image of the controllability matrix R1 :=
[
A21 (A23A32)A21 (A23A32)

2A21 . . .
]

includes a strictly positive vector, namely the pair (Λ,Γ) := (A23A32, A21) is herdable;

b) the image of the matrix A32R1 includes a strictly positive vector.

As the matrix Λ = A23A32 is diagonal, while the column vector Γ = A21 has no zero entries,

by Corollary 6.15, the pair (Λ,Γ) = (A23A32, A21) is herdable if and only if condition (6.15)

implies [A21]i · [A21]j > 0. This means that a) is equivalent to condition i).

Note, also, that by suitably relabelling the nodes in F1, we can always reduce ourselves

to the case

Λ =


J1

J2
. . .

Jr

 , Γ =


γ1

γ2
...

γr

 ,

where Ji = λiIni
is a scalar matrix (a Jordan block whose elementary blocks have all

unitary size), λi ̸= λj for i ̸= j, and Γ has been accordingly block-partitioned. In this set-

up condition a), or equivalently i), amounts to requiring that all vectors γi are unisigned

vectors devoid of zero entries. Moreover, by mimicking the proof of Proposition 6.13 for

the special case when the Jordan form is a diagonal matrix, we deduce that Im(R1) =

Im (γ1 ⊕ · · · ⊕ γr) .

So, we are now remained with proving that if i) (equivalently, a)) holds, then b) and

ii) are equivalent. If i) holds, then Im (A32R1) = Im (A32 · (γ1 ⊕ · · · ⊕ γr)) . Set W =[
w1 | . . . |wr

]
:= A32 · (γ1⊕ · · ·⊕ γr), where each vector wi is obtained by combining with

the coefficients of the vector γi (having all the same sign) the columns of A32 of indices

[hi + 1, hi + ni], where by definition h1 := 0, while hi := n1 + n2 + · · ·+ ni−1 for i ∈ [2, r].
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We observe that all columns of A32 are either zero (if a vertex in F1 = [2,m1 + 1] has no

followers) or have disjoint nonzero patterns, meaning that for every ℓ,m ∈ [hi + 1, hi +

ni], ℓ ̸= m, ZP(A32eℓ) ∩ ZP(A32em) = ∅. As a result also the columns wi of W are either

zero or have disjoint nonzero patterns.

We can conclude that condition b) holds if and only if Im (A32R1) = Im(W ) contains a

strictly positive vector, but this is possible if and only if all vectors wh are unisigned. By

the way the vectors wh have been obtained, this is possible if and only if ii) holds.

Example 6.24. Consider the pair (A,B), with

A =


0 A12 0

A21 0 A23

0 A32 0

 =



0 1 a 2 0 0

1 0 0 0 0 0

a 0 0 0 b c

2 0 0 0 0 0

0 0 b 0 0 0

0 0 c 0 0 0


, B = e1,

whose graph is given in Fig. 6.2, where a, b and c are nonzero real values. Note that

L = {1},F1 = [2, 4] and F2 = [5, 6], so that m1 = 3 and m2 = 2. We first check

Figure 6.2: Graph structure related to the pair (A,B) in Example 6.24.

for all indices i, j ∈ [1, 3], i ̸= j, whether condition (6.15) holds. It is easily seen that

[A23A32]11 = [A23A32]33 = 0. In fact, for the pair of indices (1, 3) both condition i) and

condition ii) of Proposition 6.23 are satisfied, since [A21]1 · [A21]3 = 2 > 0 and both column

1 and column 3 of A32 are zero. On the other hand, if we assume i = j ∈ [1, 3], for which

condition (6.15) trivially holds, condition i) is straightforward, while condition ii) holds

provided that bc > 0 (namely b and c have the same sign), because all columns of A32 are

zero or unisigned if and only if bc > 0. Therefore the pair (A,B) is herdable for every

a ̸= 0 and for bc > 0.





Chapter 7

Conclusions and Future Directions

In this manuscript we dealt with the study of opinion dynamics from a control system

perspective by following three main directions. We first assumed the network topology of

agents interaction to be fixed and in a clustering balance configuration. In this case we

studied under what conditions on the weights distribution over the graph, agent’s opinion

reach a steady state configuration that mirrors the partition of the agents in the network,

thus ensuring the reaching of k-partite consensus, where k is the number of clusters in

the network. In the second part of this thesis we assumed the topological network to be

opinion-varying. The network dynamics is driven by two fundamental mechanisms: the

homophily mechanism and the influence mechanism. In this circumstance we investigated

the reaching of socially balanced configurations in the network. The last part of this thesis

pertains with the study of herdability. We focused on leader-follower networked systems

with special topologies end we deduced the herdability of the systems from a structural

perspective.

Future directions include the investigation of k-partite consensus under milder assump-

tions on the weights distribution in the network and possibly for opinion-varying network

topologies. Also, we are interested in investigating other possible clustering configura-

tions of the opinions that are of interest in social contexts, e.g. polarization and that are

compatible with the clustering configuration in the network.

In the context of opinion varying network topology it would be interesting to better

investigate the scientific literature from the social sciences and understand what other fun-

damental mechanisms characterize opinion dynamics in a social network, mathematically

117
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formalize them and possibly intertwine them with the already investigated ones and see

what the consequences in terms of reaching of social equilibria are.

As far as herdabiliy is concerned, future directions involve the investigation of this

property for other network topologies different from clustering, structural balanced ones

and tree topology. We are also interested in the herdability of time-varying networked

systems and nonlinear systems.
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Appendix A

Technical Lemmas

Lemma A.1. Given a scalar ε > 0 and matrices A ∈ Rn×n, B ∈ Rn×m and C ∈ Rm×n, with

A Metzler and symmetric, it is always possible to choose a scalar matrix D = δIn ∈ Rn×n,

δ > 0, such that C(D − A)−1B is a matrix whose entries satisfy |[C(D − A)−1B]i,j| < ε,

∀ i, j ∈ [1,m].

Proof. As A is symmetric, there exists an orthonormal matrix T ∈ Rn×n such that T⊤AT =

diag{λ1, . . . , λn} =: Λ. Note also that, as D is scalar, then T⊤DT = D. Therefore if we

denote by cℓ the ℓ-th column of CT and by b⊤
ℓ the ℓ-th row of T⊤B, then

C(D − A)−1B = (CT )[T⊤(D − A)T ]−1(T⊤B)

= (CT )[D − Λ]−1(T⊤B) =
n∑
ℓ=1

cℓb
⊤
ℓ

1

δ − λℓ
.

Therefore |[C(D−A)−1B]i,j| ≤ n·ψ
δ−maxℓ λℓ

,∀ i, j, where ψ := max ℓ∈[1,n]
h,k∈[1,m]

|[cℓb⊤
ℓ ]h,k|. Therefore

by imposing that δ > maxℓ λℓ+
n·ψ
ε

, we ensure that all entries of C(D−A)−1B have modulus

smaller than ε.

Lemma A.2 (Rank-one matrices with special structures). Given a matrix M ∈ SN1 , if

1 ∈ σ
(

1
N
M
)
, then M = pp⊤ for some p ∈ {−1, 1}N , and hence M has no zero entries

and σ(M) = (0, . . . , 0, 1).

Proof. Let v :=
[
v1 v2 . . . vN

]⊤
∈ RN ,v ̸= 0, be an eigenvector of 1

N
M corresponding

to the unitary eigenvalue, or equivalently of M corresponding to N . Then Mv = Nv. Let

129



130 APPENDIX A. TECHNICAL LEMMAS

h := argmaxi∈[1,N ]|vi|. Then condition

Nvh =
N∑
i=1

Mhivi = vh +
N∑
i=1
i ̸=h

Mhivi

holds if and only if (a) |vi| = |vh| for every i ∈ [1, N ]; (b) Mhi ̸= 0 for every i ∈ [1, N ], and

sgn(Mhi)sgn(vi) = sgn(vh).

This implies that v = pm for some p ∈ {−1, 1}N and somem > 0 and e⊤hM = sgn(vh)p
⊤ =

php
⊤.

On the other hand, since condition (a) holds, this means that every index j ∈ [1, N ] is

argmaxi∈[1,N ]|vi|, and hence all the rows of M satisfy e⊤i M = pip
⊤. This implies that

M = pp⊤, and the rest immediately follows.

Lemma A.3 (De-Pasquale et al. (2021)). Given a seminorm |||·||| : Rn → R≥0 with kernel

K ⊆ Rn, any matrix A ∈ Rn×n such that AK ⊆ K satisfies

|||A||| = max
|||x|||≤1

|||Ax|||. (A.1)

Proof. Clearly,

max
|||x|||≤1

|||Ax||| ≥ max
|||x|||≤1
x⊥K

|||Ax||| = |||A|||.

On the other hand, every x ∈ Rn can be expressed as x = x1 + x2, for some x1 ∈ K,

x2 ∈ K⊥, and condition |||x||| ≤ 1 implies |||x2||| ≤ 1. Therefore

|||Ax||| = |||A(x1 + x2)||| ≤ |||Ax1|||+ |||Ax2||| = |||Ax2||| ≤ max
|||x2|||≤1
x2⊥K

|||Ax2||| = |||A|||,

where we exploited the subadditivity property of the seminorm and the fact that Ax1 ∈ K

and hence |||Ax1||| = 0. Therefore (A.1) holds.
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