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leukemic immune repertoires in CD8+ T-cell large
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T cell large granular lymphocytic leukemia (T-LGLL) is a rare lymphoproliferative disorder of

mature, clonally expanded T cells, where somatic-activating STAT3 mutations are common.

Although T-LGLL has been described as a chronic T cell response to an antigen, the function

of the non-leukemic immune system in this response is largely uncharacterized. Here, by

utilizing single-cell RNA and T cell receptor profiling (scRNA+TCRαβ-seq), we show that

irrespective of STAT3 mutation status, T-LGLL clonotypes are more cytotoxic and exhausted

than healthy reactive clonotypes. In addition, T-LGLL clonotypes show more active cell

communication than reactive clones with non-leukemic immune cells via costimulatory

cell–cell interactions, monocyte-secreted proinflammatory cytokines, and T-LGLL-clone-

secreted IFNγ. Besides the leukemic repertoire, the non-leukemic T cell repertoire in T-LGLL

is also more mature, cytotoxic, and clonally restricted than in other cancers and autoimmune

disorders. Finally, 72% of the leukemic T-LGLL clonotypes share T cell receptor similarities

with their non-leukemic repertoire, linking the leukemic and non-leukemic repertoires toge-

ther via possible common target antigens. Our results provide a rationale to prioritize

therapies that target the entire immune repertoire and not only the T-LGLL clonotype.
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T cell Large Granular Lymphocytic Leukemia (T-LGLL) is a
rare lymphoproliferative disease characterized by the
accumulation of abnormal, clonally restricted, and activated

effector T cells in the blood, bone marrow, and spleen1,2. Although
immune-mediated cytopenias (most frequently neutropenia,
70–80%) and autoimmune manifestations (most frequently
rheumatoid arthritis [RA], 10–18%) are commonly associated
with T-LGLL, it usually presents as an indolent disease that is
manageable with low-dose immunosuppressive therapies3–5.

The absence of presenting symptoms and shared morphological
and phenotypic (CD3+CD8+CD45RA+CD57+) features with
healthy reactive cytotoxic T cells impose challenges in the diagnosis
of CD8+ T-LGLL3. Activating somatic mutations in the STAT3
gene, the hallmark of CD8+ T-LGLL, occurs in 40–50% of
patients6–11, where the majority of variants (e.g., Y640F, D661V,
and D661Y) are located in the SH2 domain of STAT3. Although the
clinical features of patients with mutated and wild-type STAT3
overlap, (severe) neutropenia and autoimmune manifestations are
more common in mutated STAT3 cases6,10,12–14. Nevertheless,
T-LGLL clonotypes show constant STAT3 activation irrespective of
the STAT3 mutation status and are resistant to FAS/FAS-L medi-
ated apoptosis, which can be explained by upregulated survival
signaling pathways, such as MCL1, NF-κB, and PI3K/AKT15–17.

Although chronic antigenic stimulation has been suggested to
drive cytotoxic T cell lymphoproliferation in T-LGLL, little has
been reported about the function of non-leukemic populations in
driving or aiding T-LGLL pathogenesis. Altered B-cell activities
(dyscrasias, hypergammaglobulinemia, enhanced production of
immunoglobulins, including autoantibodies)18, elevated levels of
multiple cytokines (e.g., IL-15, TNF, IL-6)19–22, and that IL-15
expression by monocytes can initiate T-LGLL in transgenic
mice19,20 suggest the possible function of non-leukemic cells in
the disease. As changes in leukemia cell burden cannot be asso-
ciated with therapy responses12,23,24, and multiple symptoms can
be attributed to elevated cytokine expressions3, a holistic under-
standing of the total immune repertoire behind T-LGLL is an
unmet need.

Here, we use single-cell RNA and TCR sequencing (scRNA
+TCRαβ-seq) to separate T-LGLL clonotypes from their non-
leukemic repertoire and compare them with healthy controls,
other cancers, and autoimmune disorders to identify the position
of T-LGLL in the intersection of cancer, autoimmune disorders,
and chronic inflammation. We extend our findings with bulk-
RNA-seq, TCRβ-seq, flow cytometry, serum protein profiling,
and ex vivo validations. Our systems immunology analysis
highlights the synergistic function of clonal and non-clonal
immune repertoires in the pathogenesis of T-LGLL and suggests
that future therapies should be geared toward attenuating the
entire immune system and not the T-LGLL clone alone (Fig. 1a).

Results
T-LGLL cells show elevated cytotoxicity and exhaustion. To
gain an unsupervised view of the immune system in T-LGLL, we
analyzed over 150,000 flow cytometry-sorted CD45+ blood
mononuclear cells (Supplementary Fig. 1a) from 11 T-LGLL sam-
ples from nine individuals and six age-matched healthy controls
with scRNA+TCRαβ-seq (10X Genomics, Supplementary Data 1).
After initial clustering of the entire dataset (Fig. 1b, Supplementary
Fig. 2a–d), we focused on cells expressing TCR and reclustered
these (Fig. 1c, Supplementary Fig. 3a–d). Despite similarities with
the clonally expanded CD8+ T cells (defined as at least two cells
with identical TCR) from the healthy controls, the clonally
expanded CD8+ T cells from T-LGLL patients also had unique
T-LGLL-specific characteristics, and they were overrepresented in
several CD8+ T cell clusters (Supplementary Fig. 3e).

As expected, samples from patients with T-LGLL were more
clonal and had more expanded cells than those from healthy
controls (P < 0.01, Mann-Whitney test) (Fig. 1d). This was
invariant to the chosen threshold for expanded clones (Supple-
mentary Fig. 4a–b). To identify transcriptomic differences
between T-LGLL cells and reactive cytotoxic clonotypes, we
extracted the hyperexpanded clonotypes (defined as at least 10
cells with identical TCR) from patients with T-LGLL and healthy
controls and annotated them with the previously calculated
clusters (Fig. 1c, e). In healthy controls, the hyperexpanded
cells had preferentially CD8+ effector memory (CD8+ TEM)
phenotype (P < 0.0001, two-sided Fisher’s test), whereas in
T-LGLL, the hyperexpanded cells were phenotypically more
heterogeneous (Fig. 1e, Supplementary Fig. 5a). In comparison
with hyperexpanded reactive cells from the healthy, the top
upregulated genes in T-LGLL cells included multiple cytotoxicity-
associated transcripts (GZMB, PRF1, KLRB1, KLRD1), where the
most significantly upregulated was NKG7, which is essential in the
mobilization of cytotoxic vesicles25 (Fig. 1f, Supplementary
Data 2). Another top differentially expressed (DE) gene included
common T-LGLL markers (CCL4, CCL5 [RANTES], FOS,
FCGR3A [CD16], IFNG), anti-apoptotic genes (JUN, DUSP1),
and genes associated with T cell exhaustion (LAG3 and TIGIT)
(Fig. 1g). The DE genes translated to the top upregulated pathways
in T-LGLL being cell killing, T cell activation, and response to
IFNγ signaling pathways (Fig. 1h, Supplementary Data 2). In
healthy controls, the top DE genes, including other cytotoxic genes
(GNLY, LYZ), genes forming calprotectin (S100A8 and S100A9),
and CD52, were not enriched to any immune-associated pathway
(Fig. 1f, g, Supplementary Fig. 5b).

To validate the higher cytotoxicity profile in T-LGLL in
comparison to reactive cells, we performed flow cytometry analysis
with six T-LGLL and six healthy control samples (Supplementary
Data 1). Putative T-LGLL clonotypes (CD8+CD57+) were
confirmed to express more cytotoxic proteins (GZMA/GZMB
P < 0.01, PRF1 P < 0.05, Mann-Whitney test) than the CD8+CD57+

T cells from healthy controls (Fig. 1i, Supplementary Fig. 6a). In
addition, the CD8+CD57+ T-LGLL cells failed to respond well to
anti-CD3/CD28/CD49 antibody-mediated TCR stimulation. Their
degranulation responses (CD107a/b) were deficient (P < 0.01), and
their cytokine production (TNF/IFNγ) in response to stimulation
was diminished (P < 0.01) relative to the healthy CD8+CD57+ cells
(Fig. 1j, Supplementary Fig. 6a). However, basal levels of TNF/IFNγ
were higher in T-LGLL (Supplementary Fig. 6b). Since higher levels
of TNF/IFNγ have been previously reported in T cells of patients
with latent infections like CMV26, we hypothesized that this
phenomenon is suggestive of antigen-experienced T cell exhaustion,
which is concordant with DE genes.

Phenotypic characterization of T-LGLL clones. The TCR-
repertoires of patients with T-LGLL varied from oligoclonal to
polyclonal, with the immunodominant clonotype explaining
7–50% of the total TCR repertoire (Fig. 2a). We separated the
T-LGLL clonotypes from other CD8+ T cells by manually cur-
ating data from (1) scTCRαβ-seq, (2) Vβ flow cytometry (pre-
sence of immunodominant Vβ family), and (3) STAT3 amplicon
sequencing (matching variant allele frequency of STAT3 mutation
or wild-type STAT3 with Vβ flow cytometry data, Supplementary
Data 1). In total, we identified 18 T-LGLL clonotypes (nine
mutated STAT3 and nine wild-type STAT3, Supplementary
Data 3), and each individual patient harbored one to four
T-LGLL clonotypes (Fig. 2a). Two patients had follow-up sam-
ples, and the same T-LGLL clonotypes were observed in both
timepoints (four T-LGLL clonotypes in patient 1, and one in
patient 2) (Fig. 2a).
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A reclustering of the cells belonging to the T-LGLL clonotypes
identified seven different transcriptomic T-LGLL phenotypes
(Fig. 2b–d, Supplementary Fig. 7a–b). Each T-LGLL clonotype
was represented in more than one cluster (Fig. 2e). The biggest
cluster, which upregulated T-LGLL markers FCGR3A (CD16) and
CCL4 and exhaustion markers LAG3, TIGIT, and TOX, was the
dominant phenotype in the majority of clonotypes (13/18, 72.2%)

(Fig. 2c–e, Supplementary Data 2). Other T-LGLL phenotypes
included an effector cluster with upregulated KLRB1, IL32, and
BATF expression (cluster 1); a highly cytotoxic cluster (cluster 2);
memory-like cluster (cluster 3); and a preferentially cytokine-
producing cluster with upregulated IFNG and CCL3 (cluster 4).
In pathway analysis, 4/7 (57.14%) clusters (clusters 0, 3, 4, and 6)
had upregulated NF-kB activation, whereas clusters 3 and 6
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demonstrated a significant response to IFNγ (Fig. 2d, Supple-
mentary Data 2). Clusters 0, 3, and 4 displayed upregulated
STAT3 transcription factor regulatory networks in SCENIC27

analysis (Supplementary Fig. 7c–d).

Wild-type STAT3 T-LGLL clones are more cytotoxic than
mutated clones. Notably, STAT3 mutated and wild-type clono-
types imputed from scTCRαβ-seq and amplicon sequencing data
were partly grouped separately in the dimensionality-reduced space
(Fig. 2f). To validate our manual inference of STAT3 status, we
analyzed off-target reads from the scRNA-seq data and identified 83
cells that expressed mutated STAT3 and 200 cells that expressed
wild-type STAT3 (Fig. 2f, Supplementary Fig. 8a). STAT3 cells
expressing Y640F, S614R, and D661Y mutations were enriched in
the CD52+ memory-like cluster 3 (P < 0.001, two-sided Fisher’s
exact test), whereas the wild-type STAT3 cells were enriched in the
cytotoxic cluster 2 (P < 0.0001). The largest cluster (cluster 0)
contained both mutated and wild-type STAT3 cells.

DE gene and pathway analysis showed that the wild-type
STAT3 cells were more activated and displayed increased
cytotoxicity compared with the mutated STAT3 cells. The
top DE genes in the wild-type STAT3 cells included GNLY,
KLRG1, and CD5, and the most upregulated pathways included
T cell activation, upregulated TCR signaling, and response to
IFNγ (Fig. 2g, h, Supplementary Data 2). Furthermore, the
wild-type STAT3 T-LGLL clonotypes also demonstrated a
higher cytotoxicity score28 (P < 0.0001, Mann-Whitney test)
and a lower exhaustion score (P < 0.0001) than the mutated
STAT3 T-LGLL clonotypes (Fig. 2i, Supplementary Fig. 8b). On
the contrary, the upregulated genes in the mutated STAT3
clonotypes included genes associated with T cell survival
(JUND, KLF2) and cytokine signaling (CCL3, CCL4L2, IL2RG),
and the top upregulated pathways were associated with protein
translation and response to type I interferons (IFNα, IFNβ)
although none were significant after P-value adjustment
(Supplementary Fig. 8c).

To validate the differences between mutated and wild-type
STAT3 T-LGLLs, we profiled additional patients with mutated
STAT3 (n= 10) and wild-type STAT3 (n= 5) CD8+ T-LGLL
together with CD8+ T cells from healthy donors (n= 5) with
bulk-RNA-seq (Supplementary Data 1). The bulk-RNA-seq data
confirmed that the wild-type STAT3 samples were separated from
the mutated STAT3 ones in the dimensionality-reduced space by
principal component 2 (PC2) which explained 15.85% of the
variance (Fig. 2j). The bulk-RNA-seq data also validated the

higher cytotoxicity scores of CD8+ T cells in the wild-type STAT3
patients compared with the mutated STAT3 patients (P < 0.05,
Mann-Whitney test) (Fig. 2k).

Leukemic and non-leukemic TCRs share structural similarities.
Although direct evidence is lacking, it is generally hypothesized
that the T-LGLL clones originate from antigen-specific immune
responses3. As the underlying antigen specificities of the T-LGLL
clonotypes remain largely unknown, we combined previously
TCRβ-seq profiled T-LGLL clonotypes24,29 together with our
samples profiled with scTCRαβ-seq (n= 11), TCRβ-seq from
CD8+ sorted samples (n= 8), and TCRαβs inferred from bulk-
RNA-seq (n= 15) data (Supplementary Data 1) to form the
largest described dataset of 199 T-LGLL clones from 170 patients
(Supplementary Data 3). By genotyping or inferring the HLA-
types30 from scRNA-seq and bulk-RNA-seq data, we were able to
determine the HLA type for 31% of the clonotypes (62/199), and
69% (43/62) were HLA-A*02+ . All T-LGLL clonotypes were
restricted to individual patients, and no structural amino acid-
level similarities were identified by GLIPH231, even when the
analysis was focused only on the 43 HLA-A*02+ T-LGLL clones.
This suggests the absence of shared target antigen(s) driving the
clonal expansions in T-LGLL.

Next, we hypothesized that despite there being no shared
antigen between patients, the non-leukemic clonotypes could
target the same eliciting antigen in individual patients, which
would be observed as shared TCR motifs between leukemic and
non-leukemic clonotypes. Iterative GLIPH2 analysis performed
on CD8+ (n= 8) and mononuclear cell (MNC) sorted (n= 17)
TCRβ-seq patient samples indicated that the leukemic T-LGLL
clones indeed shared amino acid-level similarities with their non-
leukemic repertoire in 72% of patients with T-LGLL (6/8 CD8+

and 12/17 MNC-sorted samples, Fig. 3a, b, Supplementary Fig. 9,
Supplementary Data 3). To avoid bias due to differences in the
sequencing depth, the samples were subsampled to the same
read-depth (30,000 reads per sample) before analysis. Similar
results were also obtained after excluding the leukemic clone and
subsampling only the non-leukemic TCRs to 30,000 reads per
sample (Supplementary Fig. 10a, Supplementary Data 3). These
findings denote that the majority of the leukemic T-LGLL
clonotypes are likely to target the same antigen as clonotypes in
their non-leukemic repertoire, and therefore, we termed them
antigen-driven clonotypes.

To understand whether the antigen drive is restricted to T-
LGLL, we performed a similar analysis using TCRβ-seq samples

Fig. 1 T-LGLL cells show elevated cytotoxicity and exhaustion as compared to healthy hyperexpanded clonotypes. a Schematic diagram of the study,
where the left panel denotes the different cohorts, and the right panel highlights the main findings. b Uniform Manifold Approximation and Projection
(UMAP) representation of CD45+ sorted cells from T-LGLL (n= 11) and healthy donor (n= 6) samples profiled with scRNA+TCRαβ-seq. Different colors
indicate clusters, and cells with detected TCR are highlighted in red. c UMAP representation of the reclustered T cells and their phenotypes (left). Cells
with detected TCR (right) were divided into singletons (TCR detected once), expanded (TCR detected ≥2 times), and hyperexpanded (TCR detected ≥10
times) clonotypes. d Proportion of the cells from hyperexpanded (TCR detected ≥10 times) clonotypes as compared between T-LGLL (n= 11) and healthy
(n= 6). The definition of box plot visualization is stated in the Methods section Data visualization. P-value was calculated with two-sided Mann-Whitney
test. e Focused UMAP of the cells with hyperexpanded TCRs from panel c without reclustering (left). Distribution of the cells from patients with T-LGLL
and healthy controls are shown separately (right). f Differentially expressed genes (Padj < 0.05, calculated with a Bonferroni corrected t-test) between
hyperexpanded T-LGLL and healthy clonotypes. Top 30 differentially expressed genes from T-LGLL and top 10 from healthy are labelled. X-axis denotes the
average log2 fold-change between the two conditions and Y-axis denotes the Padj-value in a negative log10. Dashed line denotes Padj= 0.05. g The scaled
expression of the selected top differentially expressed genes highlighted using the same UMAP representation as in panel e. h Top upregulated GO-
pathways (Padj < 0.05, Benjamini-Hochberg corrected Fisher’s one-sided exact test on differentially expressed genes) in T-LGLL clonotypes in comparison
to hyperexpanded clonotypes from healthy controls. Colors indicate whether the pathway can be associated to immune function by manual curation.
i Protein level expression (mean fluorescence intensity, MFI) of cytotoxic proteins (GMZA, GZMB, and PRF1) from patients with T-LGLL (n= 6) and
healthy controls (n= 6) in flow cytometry cohort. P-values were calculated with two-sided Mann-Whitney test. j Protein level expression (log2 fold-change
of MFI) of cytokines (TNF and IFNγ) and degranulation markers (CD107a and CD107b) between TCR stimulated and unstimulated conditions. P-values
were calculated with two-sided Mann-Whitney test.
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from patients with RA32 (n= 45), metastatic melanoma sampled
from blood33 (SKCM, n= 29), and healthy controls (CD8+

sorted32, n= 38; MNC-sorted n= 78534) (Supplementary Data 1)
with similar subsampling. The antigen drive was the most
prevalent in T-LGLL (P < 0.05, two-sided Fisher’s exact test) and
the least seen in healthy controls (Fig. 3b, Supplementary Data 4).
The antigen-driven clonotypes were detected in both mutated

(n= 6) and wild-type STAT3 patients (n= 6) in equal propor-
tions (Fig. 3c).

We next asked whether the antigens causing these polyclonal
responses in T-LGLL are caused by commonly encountered
antigen epitopes. Less than half (74/199, 37.19%) of the T-LGLL
clonotypes were found at least once in the healthy (n= 785)
TCRβ repertoires34, and they explained <1% of the healthy
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repertoire (Supplementary Fig. 10b, c). To control the impact of
HLA genotypes, we also restricted our analysis to 43 T-LGLL
clonotypes with known HLA-A*02+ and searched them only
among HLA-A*02+ healthy donors (n= 294). 44.2% (19/43) of
the clonotypes were found at least once, also in low frequencies
(Supplementary Fig. 10d, Supplementary Data 3).

Interestingly, the antigen-driven clonotypes were more frequently
observed in the healthy controls’ (n= 785) TCRβ repertoires than
the non-antigen-driven clonotypes (P < 0.01, Kruskal-Wallis test,
Supplementary Fig. 10e), suggesting that antigen-driven clonotypes
could recognize commonly encountered antigens. Therefore, we
predicted the antigen specificities for T-LGLL clonotypes with a
supervised machine-learning method TCRGP35 against common
viral epitopes from CMV, EBV, Influenza A, and HSV2. Only 2 of
199 (1.0 %) T-LGLL clonotypes were predicted to recognize these
antigens and both clonotypes were targeting CMV pp65 epitope
(Supplementary Data 3). As the TCRGP-models have been trained
using data from HLA-A*02 donors, we next focused only on the 43
T-LGLL clonotypes detected in HLA-A*02+ patients. None of the
T-LGLL clonotypes from either HLA-A*02+ positive (n= 43) or
HLA-A*02 negative (n= 19) patients were predicted to recognize
these viruses (Supplementary Data 1 and 3). The two TCRs
predicted to target CMV pp65 were from patients from which HLA
type was not available. Overall, these results suggest that these four
viruses do not contain major driver antigens for T-LGLL.

We next studied a cohort of T-LGLL patients from which
follow-up samples were available24 (n= 17, 38 samples). We
noted that the same patient could harbor both antigen-driven and
non-driven clones, and that the clonotypes with antigen drive
were larger than the non-driven clonotypes during follow-up
(P < 0.05, Mann-Whitney test, Fig. 3d, Supplementary Fig. 10f)
suggesting that antigen drive can potentially provide a growth
advantage for the clones.

To further understand the evolution of the antigen-driven and
non-driven clones, we studied samples from a patient with both
types of clones (patient 1). The analysis was performed using three
peripheral blood samples collected seven years apart (2011–2018).
Although the patient had no treatment for her T-LGLL disease, the
dominant STAT3 mutated clone (78% → 10%) which was not
antigen-driven, was replaced by an antigen-driven STAT3 wild-type
clone (5% → 24%) carrying a different TCRαβ (Fig. 3e, f,
Supplementary Fig. 11a–e). The non-antigen-driven STAT3
mutated and the antigen-driven STAT3 wild-type clones were
phenotypically different and possibly two different maturation end-
points as suggested by trajectory analysis with Slingshot36 (Fig. 3f).
The expanding, antigen-driven wild-type STAT3 clone was more

cytotoxic than the shrinking STAT3 mutated clone (Fig. 3f,
Supplementary Fig. 11a–e). The top DE genes in the expanded
clone included GZMH, GNLY, and FCGR3A (CD16) and the clone
had a higher cytotoxicity score than the shrinking one (P < 0.0001,
Mann-Whitney test, Fig. 3f, Supplementary Fig. 11d, Supplemen-
tary Data 2). Conversely, the STAT3 mutated shrinking clone
presented an attenuated CD8+ TEM phenotype marked by the
expression of GZMK and upregulated SOCS1 and SOCS3, which are
known to inhibit JAK-STAT signaling19.

To conclude, our results suggest that a majority, but not all,
T-LGLL clonotypes could originate from an initial polyclonal
antigen-response. Also, the antigen-driven clonotypes are larger
and often display a more cytotoxic phenotype than the non-
driven T-LGLL clonotypes.

In T-LGLL non-leukemic T cell populations are mature and
clonal. After finding the connection that clonal and non-clonal
immune cell repertoires are possibly connected via antigen pre-
ferences, we sought to investigate the phenotypes of non-leukemic
immune cell populations in T-LGLL in detail. As the presence of
T-LGLL clonotypes biases the immune repertoire, we removed
the clonally expanded T-LGLL cells from scRNA+TCRαβ-seq
data and compared it with similar data from solid cancers37 (n= 3),
hematologic cancers38 (n= 8), and healthy controls (n= 6)
(Supplementary Data 1). After clustering (Fig. 4a, Supplementary
Fig. 12a–c), we observed that, in comparison with the other cancers,
the proportion of conventional dendritic cells (cDCs) (P < 0.01 and
Padj= 0.052, Benjamini-Hochberg corrected Mann-Whitney test)
and naïve B-cells (P < 0.05 and Padj= 0.16) were reduced, and the
proportion of mature CD4+ TEM-cells (clusters 2 and 13, both
P < 0.01 and Padj= 0.052) was increased in T-LGLL (Fig. 4b, Sup-
plementary Fig. 13a–b). When including only patients with
hematologic cancers (n= 8), CD4+ TEM cells were still markedly
elevated in T-LGLL (Fig. 4b). Similar results were obtained when
compared to healthy controls (n= 6, Supplementary Fig. 13c, d).

A patient cohort profiled with flow cytometry validated that
patients with T-LGLL had a significantly higher percentage of
mature terminally differentiated, antigen-experienced CD4+CD57+

T cells39,40 when compared with the healthy controls (P < 0.05,
Mann-Whitney test, Fig. 4c, Supplementary Fig. 13e–g). To support
the maturity of the CD4+ T cells in T-LGLL, we noted that the
proliferative capacity of the total CD4+ T cell compartment,
measured as carboxyfluorescein succinimidyl ester (CFSE) dilution
upon TCR ligation and TLR stimulation, was reduced in T-LGLL
compared with the healthy controls (P < 0.05, Fig. 4d, Supplemen-
tary Fig. 13f).

Fig. 2 T-LGLL clones are phenotypically heterogeneous and wild-type STAT3 clones are more cytotoxic than mutated STAT3 clones. a Clonal expansion
of clonotypes in T-LGLL (n= 11) and one representative healthy control. Each box denotes a unique T cell clonotype in a sample as detected with scTCRαβ-
seq and the size of the box corresponds to its frequency in the repertoire occupancy. b UMAP representation of the transcriptomes of the selected 18
T-LGLL clonotypes highlighted in panel a from 11 T-LGLL samples (n= 9 patients). c Scaled expression of selected differentially expressed genes between
T-LGLL clusters highlighted in the same UMAP representation as in panel b. d Heatmap showing scaled expression of differentially expressed genes
(Padj < 0.05, calculated with Bonferroni corrected two-sided t-test) between T-LGLL phenotype clusters. Cluster (cl) numbers referring to panel b are
marked on right side of the heatmap. e Proportion of the different patient-specific T-LGLL clonotypes in different clusters. Each bar represents an individual
T-LGLL clone. f The imputed and detected STAT3 mutation status presented in the UMAP representation. The inferred STAT3 mutation status was
obtained clonotype-wise as in panel a (shown in the panel on the left) and the detected STAT3 mutation status was retrieved from the scRNA-seq data
using a variant detection tool Vartrix (shown in the panel on the right). g Differentially expressed genes between (Padj < 0.05, calculated with Bonferroni
corrected two-sided t-test) the mutated and wild-type STAT3 T-LGLL clones. Top 20 genes from each condition are labeled. X-axis denotes the average
log2 fold-change between the two conditions and Y-axis denotes the Padj-value in a negative log10 transformed scale. h Top upregulated GO-pathways
(Padj < 0.05, Benjamini-Hochberg corrected Fisher’s one-sided exact test on differentially expressed genes) in wild-type STAT3 in comparison to mutated
STAT3 clonotypes. i Cytotoxicity score of individual cells in wild-type STAT3 clones in comparison to mutated STAT3 clones in scRNA-seq. P-value was
calculated with two-sided Mann-Whitney test. j Principal component analysis (PCA) plot from bulk-RNA-sequencing data from 10 mutated and 5 wild-type
STAT3 T-LGLL patients’ and 5 healthy donors’ CD8+-sorted T cells. k Cytotoxicity score of the wild-type STAT3 patients (n= 5) as compared to the STAT3
mutated (n= 10) patients’ scores in the bulk-RNA-seq validation cohort. P-value was calculated with two-sided Kruskal-Wallis test.
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Fig. 3 T-LGLL clonotypes’ TCRs share structural similarities with their non-leukemic counterpart. a Network plots showing antigen-driven clonotypes
from three selected patients with T-LGLL. Antigen drive denotes that the T-LGLL clone shares amino acid-level similarities with its non-leukemic repertoire.
Each dot (a node) is a TCR clonotype, and clonotypes with shared amino acid-level similarities are connected by a line (an edge). The T-LGLL clones are
highlighted with blue and the non-leukemic with red. Below each network plot are shown parts of the GLIPH2 results for the individual patient with the
same color coding on the TCRs. Additional T-LGLL cases are shown in the Supplementary Fig. 9. b The presence of antigen drive (i.e., whether the largest
clonotypes have shared amino acid-level similarities with the rest of the TCR repertoire) in T-LGLL (mononuclear cell [MNC]-sorted n= 17, CD8+-sorted
n= 8), metastatic melanoma sampled from blood (SKCM, n= 29), rheumatoid arthritis (RA, n= 32), and healthy controls (HC, MNC-sorted n= 785,
CD8+-sorted n= 38). T-LGLL patients have more antigen-driven cases than the rest of the conditions (P < 0.05, Fisher’s one-sided exact test). All samples
were subsampled to the same read-depth (30,000 reads per sample). Results where the T-LGLL clone was excluded before downsampling and in which
the subsampling was only done for the non-leukemic library are shown in the Supplementary Fig. 10a. c The proportion of mutated (n= 6) and wild-type
STAT3 patients (n= 6) where antigen-driven or no antigen-driven clonotypes were detected in the MNC-cohort. d The evolution of antigen-driven and
non-antigen-driven T-LGLL clonotypes in multiple timepoints. Individual lines correspond to individual T-LGLL clonotypes while the bolded line shows the
median. P-value was calculated with two-sided Mann-Whitney test. e Flow cytometry analysis of Vβ repertoires and variant allele frequency (VAF) of
STAT3 Y640F clone (located in the shrinking Vβ1 clone) are used to demonstrate T-LGLL clonal dynamics (clonal drift) in patient 1. f UMAP representation
of the CD8+ T cells from patient 1 from two different timepoints. The left panel highlights the different clusters, and the superimposed lines correspond to
predicted maturation trajectories (pseudotime) calculated with a pseudotime algorithm Slingshot. The middle panel illustrates the expanding and shrinking
clones. The panel on the right highlights the previously defined cytotoxicity score in T-LGLL clonotypes.
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Besides increasing T cell maturity, antigen-driven processes
increase T cell repertoire clonality. Therefore, we compared the
clonality of the non-leukemic CD8+ T cells in T-LGLL to CD8+

sorted healthy and RA samples24,32 and found that the non-leukemic
CD8+ T cells in patients with T-LGLL had a more restricted TCR

repertoire than patients with RA (P < 0.01, Mann-Whitney test) and
healthy controls (P < 0.05), latter of which was validated in the
MNC-cohort (P < 0.0001, Fig. 4e). In addition, the non-leukemic
repertoires of wild-type STAT3 patients were more clonal than those
of the mutated STAT3 patients (P < 0.0001) (Fig. 4e).

Fig. 4 Non-LGLL T cell populations are more mature, clonal, and cytotoxic in T-LGLL compared with T cells of healthy controls and patients with other
cancers. a UMAP representations of non-leukemic CD45+ sorted cells from 11 T-LGLL, 6 healthy, 4 CML, 4 CLL, 2 RCC, and 1 NSCLC samples profiled from
peripheral blood with 10X technologies, where different colors indicate clusters. Density estimates showing the overlapping dots for each cohort are presented
on the right. b Differentially abundant non-leukemic clusters (from panel a) between patients with T-LGLL (n= 9) and patients with other cancers (n= 11, upper
panel) and T-LGLL and with blood cancers (n= 8, lower panel). The horizontal line indicates P=0.05, as calculated with two-sided Mann-Whitney test.
c Percentage of mature effector memory CD4+CD57+ cells out of CD4+ T cells in T-LGLL (n= 6) as compared with healthy controls (n= 6) in the flow
cytometry cohort. P-values were calculated with two-sided Mann-Whitney test. d Percentage of proliferating CD4+ T cells out of CD4+ T cells measured with
CFSE dilution after stimulation with either TCR ligation or TLR stimulation in patients with T-LGLL compared with healthy controls in the flow cytometry cohort.
P-values were calculated with two-sided Mann-Whitney test. e Left: Clonality index (Gini, higher denotes more clonal) in CD8+ sorted populations from T-LGLL
(n= 10), rheumatoid arthritis (RA) (n= 32), and healthy controls (n= 38) profiled with TCRβ-seq. Middle: Clonality index in non-leukemic TCR-repertoires of
mononuclear cell (MNC) samples in patients with T-LGLL (n= 38) and healthy controls (n= 785). Right: Clonality index in non-leukemic TCR-repertoires of
MNC samples in STAT3 mutated (mt) (n= 26) and wild-type (wt) (n= 39) patients. P-values were calculated with two-sided Mann-Whitney test.
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IFNγ drives activation of the non-leukemic immune cell
repertoire. Besides changes in cell abundances, scRNA-seq also
showed the activation of different non-leukemic subsets in T-LGLL
in comparison with patients with other cancers and healthy con-
trols. For example, the expression of different cytokines (CCL2/3/4/
5), co-stimulatory genes (CD27, TNFRSF4 [HVEM], TNFRSF14
[OX40], TNFRSF25 [DR3]), and IFNγ response genes (e.g., B2M,
TAP1, HLA molecules) were upregulated in different non-leukemic
NK-cells, monocytes, and B-cell clusters in comparison with healthy
controls (Fig. 5a), other cancers (Supplementary Fig. 14a), and
patients with blood cancers (Supplementary Fig 14b, Supplemen-
tary Data 2). Notably, the expression of different cytotoxic genes
(GZMA/B/H, PRF1, NKG7) was upregulated in non-leukemic
CD8+, CD4+, and NK-cell clusters. The phenotype of the non-
leukemic T cells was validated in the flow cytometry cohort, where
CD8+CD57− and total CD4+ populations in T-LGLL expressed
higher levels of GZMA/B (P < 0.01 for CD8+CD57− and CD4+,
Mann-Whitney test) and PRF1 (P < 0.01 for CD8+CD57− and
CD4+) than healthy (Fig. 5b).

To understand the pathways driving immune activation in T-
LGLL, we performed pathway analysis among patients with T-
LGLL, patients with other cancers, and healthy subsets. The most
upregulated pathways in T-LGLL included IFNγ-response (upre-
gulated in 12/16 subsets vs. other cancers, 16/17 vs. healthy, 9/15 vs
other blood cancers), IFNα-response (9/16 vs. other cancers, 15/17
vs. healthy, 8/15 vs other blood cancers), and NFκB (11/16 vs. other
cancers, 0/17 vs. healthy, 4/15 vs other blood cancers) pathways
(Fig. 5c, Supplementary Fig. 14c, d).

We focused on the IFNγ response, as it was among the most
upregulated pathway in all comparisons and quantified its effect by
calculating an IFNγ response module score41 in all immune subsets
in individual patients. The strongest IFNγ response was seen in
different myeloid subsets (CD16+ monocytes, CD16− monocytes,
cDCs), NK-cells, and CD8+ TEM cells (Fig. 5d). In unsupervised
clustering, the samples were split into two groups, high IFNγ and
low IFNγ, based on their IFNγ-response scores. The samples from
the T-LGLL group were enriched to the high-IFNγ group (P < 0.05,
Fisher’s one-sided exact test), confirming that IFNγ response is
more strongly activated in T-LGLL than in other cancers. A similar
analysis with the NF-κB pathway did not show enrichment of
T-LGLL samples (Supplementary Fig. 14e). Interestingly, T-LGLL
cells expressed higher amounts of IFNG than non-leukemic cells
(P < 0.0001, Mann-Whitney), where the highest expression was
seen in cytokine-secreting T-LGLL cluster 4 (Fig. 5e).

T-LGLL clones show an elevated amount of predicted cell–cell
interactions. To further understand the function of cytokines as
mediators of immune responses between the leukemic and non-
leukemic compartments in T-LGLL, we reanalyzed the plasma
cytokine profiles of nine T-LGLL patients and eight healthy
controls42 (Supplementary Data 1). In patients with T-LGLL,
multiple cytokines, including IFNγ-inducible cytokines (CXCL10,
CXCL11), JAK-STAT pathway-activating cytokines (IL-6, IL-10,
IL-15RA), and inflammatory chemokines (CCL3, CCL4, MCP1),
were elevated (Fig. 6a). However, in line with previous
publications20,21, IFNγ levels were not elevated in T-LGLL. The
incorporation of plasma cytokine data with scRNA-seq showed
that the majority (11/17, 64.7%) of upregulated cytokines were
expressed predominantly by monocytes or cDCs (e.g., CCL2/3/7,
CXCL10/11, IL15RA) instead of T-LGLL clonotypes (Fig. 6b,
Supplementary Fig. 15a). Conversely, 6 of 17 upregulated cyto-
kines (e.g., CCL4, TNFRSF9 [CD137], TNFRSF14 [HVEM]) and
IFNG were preferentially expressed by T-LGLL clones.

In addition to being the most important cytokine
producers, monocytes were also the most transcriptionally altered

subpopulations between T-LGLL and other conditions in the DE
gene analysis (first, CD16+ monocytes; fourth, CD16- monocytes)
(Supplementary Fig. 15b–g). Flow cytometry analysis also
confirmed that although the total number of monocytes was
reduced (P < 0.05, Mann-Whitney test), the distribution of
different monocyte subsets was altered, and T-LGLL patients
had a bigger proportion of CD16+ cells (P < 0.05, Supplementary
Fig. 16a, b) out of the CD14+ monocytes. The upregulated DE
genes in monocyte populations included multiple HLA molecules
and classical scavenging receptors (e.g., CLEC10A, CD44,
CLEC2B, CLEC9A, MRC1), translating into upregulated HLA
class II28 (P < 0.0001, Kruskal-Wallis test) and scavenging scores
(P < 0.0001, Fig. 6c, Supplementary Fig. 16c, Supplementary
Data 2). To analyze the antigen-presenting function of the
monocytes, we incubated blood MNCs with fluorescent micro-
spheres and found that the proportions of bead-adhering
CD14+CD16+ and CD14dimCD16+ monocytes were increased
in T-LGLL compared with healthy controls (P < 0.05 Mann-
Whitney test, Fig. 6d, Supplementary Fig. 16d), which may
indicate higher scavenging potential.

Next, we calculated ligand–receptor interactions with
CellPhoneDB43 between T-LGLL clonotypes and other immune
cells and compared that to the interactome of hyperexpanded
clonotypes from healthy controls. The interactome analysis
implicated an increased number of interactions between
T-LGLL clonotypes and other immune cells in comparison with
healthy hyperexpanded clonotypes (Fig. 6e). The majority of the
differences could be tracked to T-LGLL–monocyte interactions,
and many of the predicted interactions could be attributed as co-
stimulatory (e.g., CD2–CD58, CD48–CD244, CLEC2B–KLRF1,
TNFSF14–TNFRSF14); while only a few interactions were
inhibitory (e.g., LGALS9–HAVCR2) (Fig. 6f). Based on the
number of ligand–receptor interactions, T-LGLL clonotypes
formed three clusters: (1) strongly interacting (the highest
number of interactions), (2) interacting, and (3) immune
independent (the lowest number of interactions), which was also
evident in the focused clustering of T-LGLL clonotypes (Fig. 6g).
Immune independent STAT3 mutated T-LGLL clonotype from
patient 2 had the lowest number of interactions, and during the
1-year follow-up, the size and the phenotype of this clone were
stable (Supplementary Fig. 17a–e).

Discussion
The asset of scRNA+TCRαβ-seq in this study is its accuracy in
identifying the TCR-sequence-restricted clonal expansions. In other
non-T cell-malignancies, similar cell-specific markers are rarely
available or require simultaneous DNA sequencing to define clonal
cells. With scRNA+TCRαβ-seq, we were able to perform detailed
and precise characterizations of the expanded T-LGLL clones from
the oligo- and polyclonal CD8+ T cell repertoires and show evi-
dence of a strong antigen-driven immune response that shapes the
entire immune cell repertoire in T-LGLL.

T-LGLL clonotypes are known to overexpress cytotoxic and T
cell activation-associated genes in comparison with their healthy
reactive counterparts44,45. Here, we also found exhaustion-
associated genes, such as LAG3 and TIGIT, among the most
upregulated genes between T-LGLL and hyperexpanded cells in
healthy controls, but not the previously found PDCD1 (PD1) and
HAVCR2 (TIM-3)44,45. Our in vitro validation suggested that
TCR ligation fails to trigger normal degranulation and cytokine
production in the T-LGLL clonotypes. These findings may
partly explain why T-LGLL usually presents only with moderate
lymphocytosis and rarely develops into a more aggressive (pro-
liferative) disease despite highly activating STAT3 and STAT5B
mutations46,47.
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Our data demonstrate inter and intrapatient heterogeneity,
where T-LGLL clones with the same TCR rearrangement can
harbor multiple phenotypes. Importantly, the CD16+ CCL4+

LAG3+ TOX+ phenotype was identified as the dominant phe-
notype in most clonotypes (13/18, 72.2%) and was seen in
patients with either mutated or wild-type STAT3, further unifying
these diseases besides the noted shared JAK-STAT activity19. As

this phenotype differs significantly from the effector memory
phenotype of hyperexpanded CD8+ T cells in healthy controls, it
could aid the diagnostic process, particularly in the distinction of
wild-type STAT3 cases from reactive processes. However, the
finding that wild-type STAT3 clonotypes have higher T cell
activity, cytotoxicity and non-leukemic clonality than those with
mutated STAT3, which was not seen in a previous publication
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with flow cytometry14, proposes that mutated STAT3 T-LGLL,
wild-type STAT3 T-LGLL, and reactive processes arise from
different pathogeneses.

The eliciting antigen in T-LGLL has remained elusive. We ana-
lyzed TCRs in both unsupervised and supervised manners with the
current best-practice bioinformatics tools31,35,48 but found no evi-
dence of common putative, known or unknown antigens, even in
individual patients. The obvious limitation in these analyses is that
they were done independently of HLA-genotype or involved only
T-LGLL clones from patients with HLA-A*02+ background.
Unfortunately, HLA information was not available from all patients
that were included in the previously published T-LGLL TCR
datasets24. Supervised TCRGP tool has shown to outperform other
similar methods35, when the genotype of the analyzed TCR
repertoire is known. However, as the training data of epitope-
specific TCRs is limited, it is probable that the existing TCR analysis
tools do not capture the full heterogeneity of antigen-specific
repertoire, resulting in false negatives even in the cases of HLA-
A*02+ patients. Nevertheless, our results imply that the common
denominator underlying T-LGLL patients is perhaps not the anti-
gen, but rather the environmental, genetic, and/or immunological
factors that support the expansion and persistence of T-LGLL
clonotypes. These results are in accordance with Gao et al.49, who
profiled alemtuzumab treated T-LGLL patients with scRNA
+TCRαβ-seq, and no shared T-LGLL clonotypes or T-LGLL clo-
notypes targeting known antigens were observed.

Our results do not, however, contradict that T-LGLL is driven
by an abnormal response to an antigen. On the contrary, in an
analysis that is invariant to HLA genotypes, we observed that over
half (72%) of the T-LGLL clonotype TCRs share structural
similarities with TCRs from the same patients’ non-leukemic
repertoires. Our results from the antigen drive support the view
that the antigen response in T-LGLL is poly- or oligoclonal,
rather than monoclonal. Our results are in line with the previous
data suggesting that STAT3 mutation follows the initial clonal
expansion and is an event that solidifies the clonal dominance3.
The antigen-driven clonotypes in T-LGLL patients were larger,
and they could occur concomitantly with non-antigen-driven
clones. Interestingly, in one patient with follow-up samples, the
mutated STAT3 clone was replaced by a more cytotoxic wild-type
STAT3 clone. Further, the non-leukemic CD8+ and CD4+ T cell
repertoires in T-LGLL were more mature, cytotoxic, and clonally
restricted than in other cancers, in RA, and in healthy controls,
suggesting the strong immune-editing capacity of a driving
antigen. The advent of high-throughput epitope-MHC-TCR-
screening tools50 and their use in T-LGLL will provide invaluable
information about the antigen-specific response in general.

Also other findings, besides non-leukemic CD8+ and CD4+

T cells, further support the idea of an aberrant oligoclonal immune
response against a patient-specific antigen as a disease-inducing and
evolution-driving trigger in T-LGLL. We noted increased co-
stimulatory cell–cell interactions between T-LGLL clonotypes and

monocytes and enhanced antigen-presenting cell function of
monocytes. The immunological factor driving these differences was
a response to IFNγ and it was the most evident in monocyte
populations. The IFNG was preferentially expressed by T-LGLL
clonotypes, and not by monocytes, linking the leukemic and non-
leukemic repertoires into a vicious cycle. With only incidental cases
of clonal drift seen in our data, we cannot pinpoint whether the
non-leukemic immune repertoire caused the transformation of a T
cell clonotype to a T-LGLL clone or vice versa, which needs to be
addressed in future studies.

Current therapies in T-LGLL, including corticosteroids,
methotrexate, and cyclosporine A, offer unsatisfactory results, as
over half of patients eventually relapse18, posing a need for
combined or sequential therapies. Current salvage therapies
include T cell depleting anti-CD52 (alemtuzumab) and anti-CD3
(anti-thymocyte globulin) regimens3,51,52. These approaches also
target non-T-LGLL clones which could explain why TCR reper-
toire does not diversify after alemtuzumab treatment49 and why
treatment responses do not correlate with the STAT3 mutation
status or clonal burden23. Moreover, treatments that attenuate the
entire immune system have shown encouraging results, both as
first-line (cyclophosphamide, >70% response rate)53 and salvage
therapies (tofacitinib, a JAK3 inhibitor >60% response rate)54.

In conclusion, our study highlights how the entire immune cell
repertoire, including hyperexpanded CD8+ T-LGLL cells, non-
leukemic CD8+ cells, CD4+ cells, and monocytes, contribute to the
CD8+ T-LGLL disease phenotype. An aberrant antigen-driven
immune response shapes the repertoire and maintains the persis-
tence of the hyperexpanded T-LGLL clonotypes. Our results imply
that future therapies should not only target the T-LGLL clonotypes
but also other immune cell types and their interactions to transform
the outcome of patients with T-LGLL.

Methods
T-LGLL patients. Samples from T-LGLL patients were collected at the Helsinki
University Hospital Comprehensive Cancer Center (Finland), Cleveland Clinic
(USA), University Clinic of Cologne (Germany), University Hospital of Padova
(Italy), and Shinshu University School of Medicine (Japan). Patient details can be
seen in Supplementary Data 1. The study was approved by local ethical commit-
tees. Written informed consent was received from all patients and the study was
conducted in accordance with the Declaration of Helsinki, and no donors were
compensated for their efforts. Mononuclear cells (MNCs) were separated from
peripheral blood (PB) using Ficoll-Paque PLUS (GE Healthcare). The following
institutes ethically approved the protocol: Hematology Research Unit Helsinki,
University of Helsinki and Helsinki University Hospital Comprehensive Cancer
Center, Helsinki, Finland; Translational Hematology and Oncology Department,
Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA; Department I of
Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-
Duesseldorf, University of Cologne (UoC), Cologne, Germany; Clinic of Hema-
tology and Cellular Therapy, University of Leipzig, Leipzig, Germany; Department
of Medicine (DIMED), Hematology and Clinical Immunology Branch, Padova
University School of Medicine, Italy; Department of Biomedical Laboratory Sci-
ences, Shinshu University School of Medicine, Matsumoto, Japan; Division of
Hematology, Department of Internal Medicine, Shinshu University School of
Medicine, Matsumoto, Japan; and Division of Hematology/Oncology, Department
of Medicine, UVA Cancer Center, University of Virginia, Charlottesville, VA, USA.

Fig. 5 IFNγ secretion by T-LGLL clonotypes drives the activation of the non-leukemic immune cell repertoire. a Expression of selected differentially
expressed genes (Padj < 0.05, calculated with Bonferroni corrected two-sided t-test) grouped by their functional pathways between the non-leukemic
CD45+ sorted cells from patients with T-LGLL (n= 9) and healthy controls (n= 6). Values are presented as log2 fold-change (log2fc). b Left: Protein level
expression (MFI mean fluorescence intensity) of cytotoxic proteins GZMA/B and PRF1 in CD8+CD57− cells in T-LGLL patients (n= 6) and healthy
controls (n= 6). Right: The proportion of GZMA/B and PRF1+ CD4+ cells in the flow cytometry cohort. P-values calculated with two-sided Mann-Whitney
test. c Upregulated HALLMARK-category pathways (Padj < 0.05, Benjamini-Hochberg corrected Fisher’s one-sided exact test on differentially expressed
genes) in non-leukemic cells from T-LGLL (n= 9) in comparison with healthy (n= 6). d Median expression of the IFNγ response module score in different
immune subsets in patients with T-LGLL (n= 9), healthy controls (n= 6), and patients with other cancers (n= 11). The T-LGLL samples were enriched in
the IFNγ high cluster (P < 0.05, Fisher’s one-sided exact test). Clustering was performed with Ward’s linkage. e Left: Scaled expression of IFNG in leukemic
(red) and non-leukemic (green) populations. P-value was calculated with two-sided Mann-Whitney test. Right: Scaled expression of IFNG in different
leukemic (red) and non-leukemic populations (green). Cluster numbers refer to Fig. 2b (leukemic clusters) and Fig. 4a (non-leukemic clusters).
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Flow cytometry and Vβ staining. T cell receptor (TCR) Vβ families were analyzed
from T-LGL leukemia patients’ whole blood or PB MNC samples by combining
0.5 ul of anti-CD3 APC (Clone: SK7, Cat#: 557851, Lot#: 8037645, BD Biosciences),
4 ul of anti-CD4 PerCP (Clone: SK3, Cat#: 345770, Lot#: 6281605, BD Biosciences),
0.8 ul of anti-CD8 PE-CY7 (Clone: SK1, Cat#: 345774, Lot#: 82152, BD Bios-
ciences) antibodies with the panel of TCR Vβ antibodies (10ul/sample) corre-
sponding to 24 members of variable regions of the TCR β chain (∼70% coverage of
normal human TCR Vβ repertoire) (IOTest Beta Mark TCR Vbeta Repertoire Kit,
Cat#: IM3497, Lot#: 66, Beckman Coulter). Staining was done in 100 ul of whole

blood and stained samples were analyzed with FACSVerse (BD Biosciences) and
FlowJo software (Version 10.4.2, Becton Dickinson).

Amplicon sequencing. To detect STAT3 mutations, locus-specific primers were
designed covering the Src homology 2 (SH2) domain of STAT3 (exons 19–24) as
reported previosly6. The list of primers used in this study is provided in Supple-
mentary Data 1. Illumina HiSeq System was used as described previously55. Briefly,
2 step PCR protocol (Illumina) was used with coverage of over 100,000× and
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variant allele frequency detection sensitivity of 0.5%. It was then sequenced using
Illumina HiSeq Reagent Kit v4 100 cycles kit or Illumina MiSeq System using
MiSeq 600 cycles kit (Illumina, San Diego, CA, USA).

Single-cell RNA and TCRαβ-sequencing and data analysis. Viably frozen cells
from 11 T-LGLL samples from 9 T-LGLL patients and 6 age-matched healthy
samples were thawed in PBS with 2 mM EDTA and stained with anti CD45+ APC-
H7 (Cat#: 560178 BD Biosciences) antibody. CD45+ cells were selected with Sony
SH800 (Sony Biotechnology Inc.). Single-cells were partitioned using a Chromium
Controller (10X Genomics) and scRNA-seq and TCRαβ-libraries were prepared
using Chromium Single Cell 5′ Library & Gel Bead Kit (10X Genomics)
(CG000086 Rev D) as done in Kim et al.56. Briefly, from individual samples 17,000
cells were suspended in 0.04% BSA and then loaded to a Chromium Single Cell A
Chip. After generation of single-cell barcoded cDNA the remaining steps were
performed in bulk. To amplify full-length cDNA 14 cycles of PCR (Veriti, Applied
Biosystems) were run. Chromium Single Cell Human T cell V(D)J Enrichment Kit
(10× Genomics) was used to amplify TCR cDNA. Illumina NovaSeq, S1 flowcell
(read length configuration: Read1= 26, i7= 8, i5= 0, Read2= 91) was used for
sequencing gene expression libraries. Illumina HiSeq2500 in Rapid Run (read
length configuration: Read1= 150, i7= 8, i5= 0, Read2= 150) was used for
sequencing TCR-enriched libraries. The raw data were processed using Cell Ranger
(ver 2.1.1) with GRCh38 as the reference genome. Additional scRNA-seq data from
CD45+ sorted samples from patients with chronic myeloid leukemia (n= 4),
chronic lymphocytic leukemia (n= 4), non-small cell lung carcinoma (n= 1), and
renal cell carcinoma (n= 3) were also gathered as stated in Supplementary Data 1.

For the T-LGLL samples, specific quality control thresholds were used for
individual samples to retain the T-LGLL cells since T-LGLL samples showed
considerable heterogeneity and viability levels during library preparation
(Supplementary Data 1). For the healthy samples and the non-leukemic analyses
for T-LGLL with comparison data from CLL, CML, RCC, and NSCLC data cells
with >15% mitochondrial transcripts, <10% or >50% ribosomal transcripts, <250 or
>4,500 expressed genes or <1,000 or >20,000 UMI counts were removed from the
analysis. For the non-leukemic analysis, the leukemic cell populations from T-
LGLL, CLL, and CML samples were removed as well as a cluster that was specific to
T-LGLL and healthy samples produced for this project.

To overcome batch-effect, we used scVI (ver 0.5.0)57 with default parameters
where each sample was treated as a batch. The obtained latent embeddings were
then used for graph-based clustering and uniform mainifold approximation and
projection (UMAP) dimensionality reduction implemented in Seurat (ver
3.0.0)58,59. The datasets were scaled with 3,000 most highly variable genes with the
FindVariable-function and ScaleData-functions with default parameters. For each
different clustering, the genes related to V(D)J-recombination were removed and
the resolution values in FindClusters-function were inspected visually within the
range of 0.1–3 with intervals of 0.1, where the chosen values were within 0.2–0.5 to
prevent overclustering (for 0.2 for Fig. 1b, 0.5 for Fig. 1c and the same clusters are
in Fig. 1e, 0.2 for Fig. 2b, 0.2 for Fig. 3g, 0.5 for Fig. 4a, and 0.3 for Supplementary
Fig. 17a). Clusters are named in descending order (cluster 0 contains the most cells)
and were annotated by analysis of canonical markers, differentially expressed
genes, relationship to other clusters, signature scores, T cell receptor repertoire
clonalities, and reference-bases cell-type annotation with SingleR60(ver 1.2.4) with
Blueprint61 as a reference. For UMAP-dimensionality reductions, the default
parameters in RunUMAP-function were used throughout. Pseudotime analyses
were done with Slingshot (ver 1.1.4)36 on unsupervised mode on precalculated
UMAP coordinates with default parameters.

Differential expression analyses were performed based on the t-test, as
suggested by Soneson et al.62, and P-values were adjusted with Bonferroni
correction. Enrichment analyses were performed with the up or downregulated
genes (Padj < 0.05) with hypergeometric testing implemented in ClusterProfiler
(3.16.0)63 with GO- and HALLMARK-categories gathered from MSigDB. GO-

categories were inspected manually, and redundant pathways were removed from
visualizations but retained in Supplementary Data 2.

Different scores were calculated with the AddModuleScore-function, as
suggested by Tirosh et al.41, which briefly considers the expression of a given set of
genes and subtracts a similarly counted expression of a randomly selected gene set.
Cytotoxicity score was calculated with genes defined by Dufva and Pölönen et al.28,
including GZMA, GZMH, GZMM, PRF1, and GNLY. The IFNγ and NF-κB scores
were calculated from genes included the gene sets downloaded from MSigDb
HALLMARK-categories (HALLMARK_INTERFERON_GAMMARESPONSE, 200
genes, ver 5.0; and HALLMARK_TNFA_SIGNALING_VIA_NFKB, 200 genes, ver
5.0). HLA II score was calculated with HLA-DMA, HLA-DMB, HLA-DOA, HLA-
DOB, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DQB1-AS1, HLA-
DQA2, HLA-DQB2, HLA-DRA, HLA-DRB1, and HLA-DRB5. The scavenging
receptor score was calculated with genes included in the Hugo Gene Nomenclature
under Scavenger Receptors (SCAR)64, including CD14, CD207, CD209, LY75,
MRC1, MSR1, MARCO, SCARA3, COLEC12, SCARA5, SCARB1, SCARB2, CD36,
CD68, OLR1, CLEC7A, SCARF1, SCARF2, MEGF10, CXCL16, STAB2, STAB1,
CD163, CD163L1, AGER, SSC4D, SSC5D. To visualize gene expressions, scaled
expressions were used in the FeaturePlot-function implemented in Seurat, where
the order= T option was used.

Ligand–receptor interaction analyses were performed with CellPhoneDB (ver
2.0.0)43 with default parameters for subsets with at least 50 cells and 1,000
iterations for the permutation testing. The co-stimulatory and coinhibitory
receptor–ligand pairs were gathered from Dufva and Pölönen et al.28.

Somatic variant detection was performed with Vartrix65 (ver 1.1.0) with default
parameters against the whole COSMIC database (ver 86) except indels >10 base
pairs in length. Only STAT3 variants associated with CD8+ T-LGLL (Y640F,
S614R, N647I, I659L, and D661Y) were retained.

To calculate regulons for T-LGLL clonotypes phenotypes, the SCENIC27 (ver
1.2.4) vignette was followed with the default parameters.

Heat maps were performed with the ComplexHeatmap package (ver. 2.4.2),
where different clustering analyses were performed with Ward’s linkage with
default parameters and seed as 123. For clustering based on the IFNγ and NF-κB
scores, k was chosen as 2 and for the interactome analysis as 4 after visual
inspections for values of k between 2–10.

For scTCRαβ-seq, and only TCR productive full-length sequence information
were considered and all ambiguous cells with multiple TCRα and/or TCRβ chains
were removed. Clones were defined as exact same CDR3 amino acid sequence in
both TCRαβ-chains, if available, or just in TCRβ-chain. The clonotypes for
individual samples have been named in descending order (clonotype 1 contains the
most cells). T-LGLL clonotypes were inferred as stated in the manuscript by
manually curating data from scTCRαβ-seq, Vβ flow cytometry, and STAT3
amplicon sequencing data. From scTCRαβ, wild-type T-LGLL clonotype had to
explain at least >5% of total TCR repertoire (in any time point, if multiple
timepoints present). For patient 1, clonotype 4 was seen in both timepoints in
scTCRαβ-seq data but was filtered during quality control in scRNA-seq data in
time point 2015.

Bulk-RNA sequencing and data analysis. Bulk-RNA-sequencing was performed
as described by Savola et al.32. Briefly, Qiagen miRNeasy micro kit (cat. no 217084)
and SMART-Seq v4 Ultra Low Input RNA Kit (cat. no. 634890) was used to extract
RNA. Sequencing was conducted using Illumina Nextera XT kit (FC-131-1096).
Data filtering was done using Trimmomatics (filtering parameters leading: 3,
trailing: 3, sliding window: 4:15 and minlen: 36). STAR aligner was used for
alignment using the human reference genome (Ensembl GRCh38). EdgeR (3.3.3)66

was used to count the DEGs, where read counts have normalized with the Trim-
med Mean of M-values (TMM) method with exact Test-function implemented in
edgeR with dispersion= ”common” option. Cytotoxicity scores were calculated as
geometric means as suggested by Dufva and Pölönen et al28, with the same genes as

Fig. 6 T-LGLL clonotypes have increased amounts of predicted cell–cell interactions, especially with monocytes. a Differentially expressed (unadjusted
two-sided Mann-Whitney test) plasma cytokines between patients with T-LGLL (n= 9) and healthy controls (n= 8), where cytokines P < 0.05 (horizontal
line) are labeled. bMedian expression of differentially expressed cytokines in the scRNA-seq data in non-leukemic and leukemic immune cell subsets in the
patients with T-LGLL (cluster numbers refer to Fig. 4a). Heatmap clustering was performed with Ward’s linkage. Values are scaled for each column. c HLA
class II module score in T-LGLL in different monocyte clusters (as seen in Fig. 4a) in comparison with healthy controls and other disease cohorts. P-values
were calculated with two-sided Kruskal-Wallis test. d Proportion of bead-adhering (fluorescent microspheres) CD16+ and CD16+ CD14dim monocytes in
patients with T-LGLL (n= 6) in comparison to healthy controls (n= 6). P-values were calculated with Mann-Whitney test. e Number of significant
ligand–receptor interactions (P < 0.05, CellPhoneDB permutation test) between T-LGLL clonotypes (as shown in Fig. 2e) or the top expanded
hyperexpanded clonotypes (>50 TCRs) from healthy controls and different non-leukemic immune cell subpopulations, calculated CellPhoneDB. Clustering
was performed with Ward’s linkage. Color scale from blue to red marks the number of predicted interactions between cell types. f Number of significant
ligand–receptor interactions of T-LGLL clonotypes with different immune subpopulation. Shown receptor–ligand pairs are statistically significant
interactions that have been attributed as co-stimulatory or inhibitory. The color indicates the number of T-LGLL clonotypes that have the interaction with
the cell type. g Left: UMAP representation showing the distribution of the T-LGLL clonotypes with different numbers of interactions with their non-leukemic
counterparts. Right: UMAP representation of the transcriptomes of the selected 18 leukemic T-LGLL clonotypes as seen in Fig. 2b.
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above in scRNA-seq analysis. TCRαβ-sequences were gathered from bulk-RNA-
sequencing data with MiXCR (ver 3.0.13)67 with default parameters.

TCRβ-sequencing and data analysis. TCRβ-sequencing from the genomic DNA
was conducted with ImmunoSEQ assay by Adaptive Biotechnologies Corp as per
manufacturers guidance and as previously described by Savola et al.32. Additional
TCRβ data from CD8+ sorted samples from patients with rheumatoid arthritis
from diagnosis (n= 32), metastatic melanoma from diagnosis (n= 29), and
healthy control samples (n= 38) from peripheral blood and MNC-sorted samples
from patients with T-LGLL (n= 38) or healthy controls (n= 785) from peripheral
blood were also gathered as stated in Supplementary Data 1.

Analyses were done with VDJtools (ver 1.2.1)68, where non-functional
clonotypes were removed and diversity indices calculated with CalcDiversityStats-
function. To allow reliable diversity metrics, all samples were subsampled to 30,000
reads and samples that had fewer reads were removed from further analyses
(n= 28; 13 RA samples and 15 T-LGLL samples from Kerr et al.).

TCRs were grouped based on amino acid-level-similarities decided by GLIPH2
(1.0.0)31, with default parameters and CD8 as reference sets for CD8+-sorted
samples and CD4CD8 for MNC-sorted samples. To detect antigen-driven
clonotypes, the subsampled TCRβ-seq or scTCRαβ-seq samples were inputted
individually to GLIPH2. The analysis was repeated also for samples where the non-
leukemic repertoire in T-LGLL or to samples without the largest clone for the rest
of the cohorts were subsampled to the same read-depth of 30,000 reads to avoid
biases. In TCRβ-seq data T-LGLL, the clonotypes in the CD8+ data explaining >5%
of the repertoire, in the MNC data reported in the original publication by Kerr
et al.24, or in scTCRαβ data found as in Fig. 2b were assumed to be T-LGLL clones
(Supplementary Data 3). Similarly for other datasets, the antigen drive for the
largest clone was analyzed. The presence of antigen drive was defined if GLIPH2
notified a statistically significantly enriched cluster with at least two TCRs against
the reference dataset included in GLIPH2.

Epitope predictions were performed with TCRGP (ver 1.0.0)35 using precalculated
models against HLA-A*02 background gathered from the packages GitHub page for
each TCRβ identified in the dataset. The tested epitopes were “GILGFVFTL_cdr3b”
(from Influenza A M1 GILGFVFTL epitope), “GLCTLVAML_cdr3b” (EBV
BMLF1GLCTLVAML epitope), “IPSINVHHY_cdr3b” (CMV pp65IPSINVHHY epitope),
“NLVPMVATV_cdr3b” (CMV pp65NLVPMVATV epitope), “RAKFKQLL_cdr3b” (EBV
BZLF1RAKFKQLL epitope), “RPRGEVRFL_cdr3b” (HSV2 B7RPRGEVRFL epitope),
“TPRVTGGGAM_cdr3b” (CMV pp65TPRVTGGGAM antigen), and “YVLDHLIVV_
cdr3b” (EBV BRLF1YVLDHLIVV epitope). The probability needed to be above a cut-off of
0.85 to be considered as specific to the tested epitope.

HLA genotyping and HLA phenotyping inference from sequencing data.
The healthy samples profiled with scRNA+TCRαβ-seq (n= 6) were typed at the
Histocompatibility Testing Laboratory, Finnish Red Cross Blood Service accredited
by European Federation for Immunogenetics. The HLA specificities were reported
based on the current World Health Organization (WHO) nomenclature for the
HLA system. The typing for HLA-A, -B, -C, and -DRB1 loci was performed using
the Luminex bead array technology together with sequence-specific oligonucleotide
probes (Commercial LabType kits RSSO1A, RSSO1B, RSSO1C, RSSO2B1, One
Lambda, Los Angeles, CA). The bead array data were interpreted according to the
manufacturer’s recommendations using the HLA Fusion software 3.2 (One
Lambda).

HLA phenotypes were inferred from the paired-end scRNA-seq and bulk-RNA-
seq data with PHLAT (v 1.1) and bowtie (v 2.7.0) with default parameters, ran on
paired-end mode. Convincingly, PHLAT arrived at the same six-digit allele as in
HLA-A, -B, -C and -DRB1 loci in 47/48 (97.91%) of the alleles in the healthy
donors, where the only difference was in one individual where the HLA-C*07:02
was predicted to be HLA-C*4:01. In the T-LGLL samples profiled with scRNA-seq,
we had two time series samples to consider how reproducible the algorithm is for
different samples from the same individual. When the two-digit accuracy was
considered, the agreement between different timepoints for Pt1 was 8/8 (100%) and
for Pt2 7/8 (87.5%), where the different HLAs were HLA-B*07 and HLA-B*40.
When considering six-digit accuracy, the accuracy was 7/8 (87.5%) for Pt1 and 5/8
(62.5%) for Pt2.

The full HLA-genotype and HLA inferred phenotypes can be found in
Supplementary Data 1 and 3.

Plasma cytokine analysis. A multiplexed Proseek Multiplex Inflammation I
(Olink Biosciences) panel including 92 proteins from 17 plasma samples from 9
T-LGLL patients and 8 healthy donors were gathered from Savola et al.42 pub-
lication. The differentially expressed cytokines were calculated from the normalized
protein expression units (NPX) with Mann-Whitney test and corrected with
Benjamini-Hochberg.

Functional validations. Three different experiments were done for the functional
validation cohort: cytotoxicity and cytokine secretion, proliferation, and phago-
cytosis assays. On day 1, viably frozen cells were thawed and plated on 96 well
plates and cultured overnight in complete RPMI. For the Cytotoxicity and cytokine
secretion assay, 20 ul of CD3 APC UCHT1 (BD Cat. 555335), 1.8 ul α-CD49d

(1:10 dilution, BD, Cat. 340976), 1.8 ul of α-CD28 (1:10 dilution, BD, Cat. 340975),
10 ul of CD107a FITC (BD, Cat. 555800), 10 ul of CD107b FITC (BD, Cat. 555804),
and 0.36 ul of GolgiStop (BD, Cat. 554724) were added to a total volume of 150 ul
RPMI the next day and cells were incubated overnight at 37 °C. The following day
cells were washed with 1 ml of PBS-EDTA-BSA and stained with 20 ul of CD3
UCHT1 APC, 0.5 ul of CD3 SK7 APC (BD, Cat. 345767), 2.5 ul of CD57 PE (BD
Cat. 560844), 0.8 ul of CD8 PE-CY7 (BD, Cat. 335822), 1 ul of CD45 V500 (BD,
Cat. 655873), 3 ul of TNF V450 (BD, Cat. 561311), 3 ul of IFNG V450 (BD, Cat.
560371), 0.5 ul of Granzyme A AlexaFluor700 (Biolegend Cat. 507210), 0.9 ul of
Granzyme B AlexaFluor700 (BD, Cat. 561016, 560213), 2.5 ul of Perforin 1 PerCP-
Cy5.5 (BD, Cat. 563762). The staining antibodies were not diluted and used
according to the manufacturer’s guidelines.

For the proliferation assay, cells were washed and incubated with CFSE Cell
Division tracker kit (Biolegend Cat. 423801) for 20 min at 37 °C protected from
light. Fluorescence was quenched by adding RPMI, washed, resuspended in
complete RPMI and incubated at room temperature for 10 min. Cells were then
added to wells, pre-coated with CD3 okt-3 (BD, Cat. 555329) on the day before.
Stimulants for cell proliferation were added as follows: α-CD49d+ α-CD28 or LPS
(Sigma Aldrich cat. - L2018) or LPS+ R848 (Resiquimod, Sigma Aldrich Cat.
SML0196) and incubated for 72 h at 37 °C. On Day 4, cells were washed with 1 ml
of PBS-EDTA-BSA and stained with 2.5 ul of CD57 PE (BD Cat. 560844), 0.8 ul of
CD8 (PE-Cy7), 1 ul of CD45 (V500), 5 ul of CD14 (APC-Cy7), 2.5 ul of CD16
(PerCP-Cy5.5), 2.5 ul of CD19 (V450), and 1 ul of CD3 (APC).

For the phagocytosis assay, on day 2 cells were incubated with FluoSpheres
fluorescent beads (FluoSpheres Carboxylate-Modified Microspheres, 1.0 µm,
yellow-green fluorescent (505/515), 2% solids—F8823, Thermofisher) at a
concentration of cells to beads ratio of 1:10. Cells were incubated for 30 min at
37 °C protected from light in only a serum-containing medium. Cells were
trypsinized and washed with 1 ml of PBS-EDTA-BSA and stained with the
following markers—2.5 ul of CD14 Pe-Cy7 (BD Cat. 562698), 2.5 ul of CD16
PerCP-Cy5.5 (BD Cat. 560717), and 2 ul of CD45 APC-H7 (BD Cat. 641417). All
stained samples were analyzed with Cells were acquired on BD FACSVerse and
FlowJo software (Version v10.7, Becton Dickinson).

Statistical testing. P-values were calculated with nonparametric tests, including
Mann-Whitney test (two groups), Kruskal-Wallis test (more than two groups), and
Fisher’s exact test where the alternative hypotheses are reported. P-values were
corrected with Benjamini-Hochberg adjustment. All calculations were done with R
(4.0.2) or Python (3.7.4).

Data visualization. In the box plots, center line corresponds to the median, the
box corresponds to the interquartile range (IQR), and whiskers 1.5 × IQR, while
outlier points are plotted individually where present.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The processed scRNA-sequencing data for both the T-LGLL and healthy samples
generated in this study are available at ArrayExpression under accession code E-MTAB-
11170. The raw scRNA-sequencing and bulk-RNA-sequencing are available in the
European Genome-Phenome Archive under accession code EGAS00001005297. The
TCRαβ-sequencing data, TCRβ-sequencing data, and Seurat-objects are available at
Zenodo under: https://doi.org/10.5281/zenodo.4739231 [https://zenodo.org/record/
4739231] with restricted access due to GDPR regulations and data can be accessed by
placing a request via Zenodo. The publicly available scRNA+TCRαβ-sequencing and
TCRβ-sequencing data used in this study are listed in Supplementary Data 1. Source data
are provided with this manuscript. Source data are provided with this paper.

Code availability
The code to reproduce the key findings is available in Github [https://github.com/
janihuuh/cd8_tlgll_manu] (v1, https://zenodo.org/badge/latestdoi/356225989 [https://
zenodo.org/record/5715103#.YaS9p_FBzGw]).
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