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Abstract—Using robots for automating tasks in environments
shared with humans, such as warehouses, shopping centres, or
hospitals, requires these robots to comprehend the fundamental
physical interactions among nearby agents and objects. Specif-
ically, creating models to represent cause-and-effect relation-
ships among these elements can aid in predicting unforeseen
human behaviours and anticipate the outcome of particular
robot actions. To be suitable for robots, causal analysis must
be both fast and accurate, meeting real-time demands and
the limited computational resources typical in most robotics
applications. In this paper, we present a practical demonstration
of our approach for fast and accurate causal analysis, known as
Filtered PCMCI (F-PCMCI), along with a real-world robotics
application. The provided application illustrates how our F-
PCMCI can accurately and promptly reconstruct the causal
model of a human-robot interaction scenario, which can then
be leveraged to enhance the quality of the interaction.

Index Terms—causal robotics, causal discovery, human-robot
spatial interactions

I. INTRODUCTION

The increased use of robots in numerous sectors, such
as industrial, agriculture and healthcare, represents a turning
point for their progress and growth. However, it requires also
new approaches to study and design effective human-robot
interactions. A robot, sharing the working area with humans,
must accomplish its task taking into account that its actions
may lead to unpredicted responses by the individuals around it,
while at the same time taking into account the execution time
and the computational cost for completing the task. Rapid and
accurate understanding of the cause-and-effect relationships
in the environment will allow the robot to reason on its own
actions. The latter represents a crucial step towards effective
human-robot interactions and collaborations.

Causal inference [1] is an active research area in various
fields, including robotics [2], human-human and human-robot
spatial interactions (HRSI) [3], [4]. Over the past decades,
numerous causal discovery methods have been developed for
static and time-series data [5], [6]. However, most of these
works overlooked a feature that is crucial for real-world
applications, i.e. the computational cost of the causal analysis
when applied to scenario with limited hardware resources
and real-time requirements, such as autonomous robotics.
Indeed, causal analysis of complex and dynamical systems
is extremely demanding in terms of time and hardware re-
sources [6], making it a challenge for autonomous robotics [7].
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Fig. 1. A mobile robot in a warehouse-like settings observes the interaction
between agents A and B. With our method, the robot can ignore interactions
AC and BC, since agent B is a static object and agent C is a stationary human
not participating in the interaction.

This paper presents an overview of our approach Filtered
PCMCI (F-PCMCI) along with a real-world robotics applica-
tion. F-PCMCI offers an all-in-one solution that identifies the
causal features characterising the system and builds a causal
model directly from time-series data. As a result, the causal
discovery process turns out faster and more accurate, ren-
dering it well-suited for applications in autonomous robotics.
In an automated warehouse scenario (see Fig. 1), where a
robot observes interactions among objects and humans (e.g.,
workers and shelves), identifying relevant features from the
robot’s sensors is vital. For instance, features like human-
shelf distance/angle and human velocity are significant for
describing observed interactions, while others (e.g., unrelated
humans) can be ignored. F-PCMCI allows the robot to exclude
unnecessary features, constructing a causal model solely from
the crucial ones. This causal model can then be used to better
understand and predict the interaction of the involved agents.

To summarise, our approach F-PCMCI is an effective algo-
rithmic solution to select the most meaningful features from a
set of variables and build a causal model from such selection.
To this end, we significantly enhance speed and accuracy of the
causal discovery making it suitable for robotics applications.

II. FILTERED-BASED CAUSAL DISCOVERY

Our Filtered PCMCI (F-PCMCI) [4] extends one of the
state-of-the-art causal discovery methods, i.e. PCMCI [6],
augmenting it with a feature-selection algorithm that is able
to identify the correct subset of variables for causal analysis,
starting from a predefined set of them. It comprises two main
components: the feature selection step and the causal discovery
process. In the feature selection step, we use a Transfer
Entropy (TE)-based method to “filter” important features and
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Fig. 2. Pipeline showing the use of F-PCMCI for modeling and predicting spatial interactions in a robot’s intralogistics scenario [4].

identify potential associations from a larger set of variables.
This filter calculates TE between each variable and the others.
If an association is found, the variables are considered in
subsequent causal discovery, performed by the PCMCI, to
assess their causal relationship [4]. The TE filter therefore
provides a set of variables and a hypothetical causal model
which contribute to speeding up and improving the accuracy
of the causal discovery.

To aid the evaluation and application of our method on real-
world problems, we have implemented a Python package of
F-PCMCI, which is publicly available on GitHub1 and PyPI2.
Additionally, we have provided a comprehensive web page and
various tutorials that explain how to use F-PCMCI, starting
from input time-series data to the output causal model.

III. ROBOT APPLICATION

We applied our approach to model and predict spatial
interactions in a human-robot collaboration scenario for in-
tralogistics [4], as part of a large EU project (DARKO3). As
shown in Fig. 2, this involves three main steps: (i) extracting
time-series of sensor data (i.e. trajectories) from human spatial
interactions; (ii) reconstructing the causal model using F-
PCMCI; (iii) embedding the causal model in a neural network,
LSTM-based prediction system. We extracted human and
robot trajectories from the THÖR dataset [8], which uses hel-
mets and infrared cameras to track agents’ motion. The dataset
features a shared working area comprising people, target po-
sitions, static objects, and a moving robot in a warehouse-like
environment. People carry boxes and navigate the environment
alone or in groups, simulating intralogistics activities. The
robot, a small autonomous forklift, moves in a safe but socially
unaware manner, following a predefined path with a maximum
speed of 0.34 m/s. It projects its current motion intent onto
the floor in front of it using a mounted beamer. We chose this
dataset for its diverse range of interactions, including humans,
robot, and static objects (Fig. 2, left image). Our LSTM-based
prediction system includes an encoder-decoder network with
an input-attention layer, which selects the most relevant time
steps from the observation window, and a self-attention one to
identify the key prediction cues. The latter integrates also the
causal discovery output as a non-trainable parameter.

1https://github.com/lcastri/fpcmci
2https://pypi.org/project/fpcmci
3https://cordis.europa.eu/project/id/101017274

A detailed explanation of the system and experimental
results can be found in our recent paper [4]. It compares our
F-PCMCI to the standard PCMCI in terms of accuracy and
execution time, outperforming the latter in both metrics. It also
shows how F-PCMCI’s causal model improves the accuracy
of the spatial interaction prediction, for a possible robot’s
intralogistics scenario, compared to a non-causally informed
system. Further details about the Python implementation of the
prediction system are provided in the companion web page4.

IV. CONCLUSION

In this paper, we motivated the need and provided an
overview of an efficient causal discovery algorithm for robotics
applications. By integrating a feature-selection module based
on transfer entropy, our F-PCMCI enhances the accuracy and
computational efficiency of causal discovery, making it well-
suited for autonomous robot applications. In particular, the pa-
per shows a robot-assisted intralogistics scenario in which the
F-PCMCI causal model improves the quality of the prediction
of spatial interactions in a warehouse-like environment.

Inspired by recent research on continual learning and causal-
ity [7], our future work aims to enhance F-PCMCI with a
real-time strategy for adaptive causal modeling. This would
empower the robot to continually improve the causal model
and adapt to changing scenarios as new data arrives.
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