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Introduction

In recent years particle physics has encountered an unexpected slow down
compared to the glorious days of the second half of the 20th century. The
Standard Model (SM) of elementary particles alongside the Einstein’s the-
ory of General Relativity for gravity provides the study of Nature with a
remarkably simple framework, that at present, explains almost all the phys-
ical processes observed in the Universe. Only physics beyond the Planck
scale, where a full theory of Quantum Gravity is required, and experimental
evidence such as dark matter and neutrino masses seem to escape from this
general framework. It seems that new physics can only appear at scales well
below the reach of terrestrial colliders. These extreme scales are so high that
no new feasible experiments could ever test them.

After the discovery of the Higgs boson at the Large Hadron Collider
(LHC) at CERN [1], open questions are still standing and await clues or
answers, either from the LHC or from other experiments. Some of these
are: Is there a path to the unification of all the fundamental forces? Why is
there more matter than anti–matter? Are there “hidden” space dimensions?
What are dark matter and dark energy? Alongside these open questions
probably the most pressing ones are concerns in the theoretical exploration
and understanding of the SM itself. There are indeed many good reasons to
be at least concerned with the currents state of the theory and in particular
with the origin of many of its parameters. Typically these values are obtained
experimentally and rarely have a dynamical reason to have the value they
have today. The mechanisms driving their evolutions are typically not clear
and some of the values are deemed not “natural”. To recover a satisfying
picture fit to tackle the more delicate questions risen by the SM itself there
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is a need to postulate some type of physics beyond the Standard Model.
The LHC project was conceived to elucidate the mechanism by which the

W and Z bosons acquire mass while the photon does not. The postulate of
a field frozen below a critical energy and interacting with some of the d.o.f.,
due to symmetry arguments, explains the different possible masses in the
model. The purposes of the experiments there were to search for the Higgs
boson and to look for some clues of physics beyond the theoretical knowledge.
As of today none has been found, but the machine did characterize a scalar
resonance, the first scalar particle deemed as fundamental.

Nonetheless even with this result naturalness issues with the parameters
of the model are still standing. The mass of the Higgs boson is among these
parameters. Another important naturalness issue emerges in the reign of
QCD. Experimentally strong interactions appear to conserve CP symmetry
to a very high degree of precision, nonetheless in the years between the 1970’s
and the 80’s the theory of QCD, due to its non–trivial vacuum structure,
brought to light the issue of Strong CP Violation via an extra term in the
Lagrangian proportional to the CP–violating topological gluon density GG̃
that was ignored before, the θ term. An economical solution to the issue and
to a number of other SM problems is the introduction of a light pseudo–scalar
degree of freedom a the axion. The only mandatory coupling is the one to
the GG̃ term. Once the axion field relaxes to a vacuum expectation value,
its potential will force the infamous θ phase responsible for the unobserved
neutron Electron Dipole Moment to disappear.

Of course the introduction of new degrees of freedom will have an impact
essentially on every branch of high energy physics. The newly introduced res-
onance can play a role in Cosmology and the thermal history of the Universe
as well as Colliders. Having the axions very weakly coupled with the SM
degrees of freedom, at the phase transition occurring in the early Universe,
where T ∼ fa, can parametrically induce different thermal distributions use-
ful to probe possibile dark matter and dark energy models. For light enough
particles one can also deduce limits on their coupling from Astrophysical
observations, such as supernova bounds, helioseismology and measurement
based on the Hertzsprung–Russell diagram.

The simple solution of an extra spin 0− particle, coming from a U(1) in
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the UV is very easily realised theoretically. This is of course one of the reasons
for the popularity of axions. String theory and GUT among others naturally
produce many light scalar fields that can be assembled into axions or Axion-
Like Particles (ALPs). Indeed all the properties discussed up until now are
independent to a large extent on the particular UV completion of the model.
Tuning the high energy origin and behaviour of the axion can dynamically
solve low–energy issues of the SM. Notable examples are: Relaxion models [2]
where the presence of an axion dynamically relaxes the value of the Higgs
mass with respect to its naturally large value, Flaxion models [3] where the
particular flavor structure of the axion coupling to the SM degrees of freedom
explains the hierarchical structure of low–energy fermion phenomenology in
the quark and the lepton sector.

In this manuscript the axion solution to the Strong CP Problem is ex-
plored. The first step is to understand the problem and its solutions. Many
of the techniques and results discussed in Chapter 1 carry strong conceptual
importance and are central topics and milestones in understanding QFTs.
Namely Sec.1.1–1.3 contain a discussion on fundamental QFT knowledge
of Strong Interactions and QCD. The rest of the chapter tackles the intro-
duction of the axions and ALPs in general with a brief tour of the Chiral
Lagrangian of QCD. A number of model independent aspect of the theory
of these light–pseudo scalar bosons are discussed and the most notable UV
complete models are derived. In the final part of the chapter a discussion on
the difficulties, and the introduction of ALPs is studied.

In Chapter 2 the ALP Effective Field Theory expansion truncated at or-
der 1/fa is presented and some of its Renormalization Group flow properties
are discussed. Meaningful relations between the parameters and the oper-
ators of the model derived from the symmetries of the theory are studied.
The redundancies of the description are addressed and a set of well defined
physical operators and couplings is indicated in order to project limits onto
them. A set of CP–Violating dimension–5 operators along with the conse-
quences that they entail are discussed in Sec.2.6, some of the models able to
generate them are introduced.

A brief review of the present experimental bounds and searches is dis-
cussed in Chapter 3. Most of the attention is dedicated to Terrestrial Facili-
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ties and Fixed Target Experiments while some attention is dedicated to the
indirect measurement of ALPs and axions parameters via cosmological and
astrophysical probes. Some future prospects are discussed.

In Chapter 4 a general discussion on hadronization techniques can be
found. Particular attention is devoted to the possible criticalities one might
encounter when applying these methods. Indeed the opening arguments are
aimed at understanding the approximations in the Brodsky–Lepage approach
to factorisation. Once the correct technology is introduced a number of
hadronized amplitude are obtained, using both Brodsky–Lepage methods
and Lattice QCD results. A set of new meson-to-meson ALP form factors
is computed and presented for the first time enabling the phenomenological
study of the following chapter. A discussion on the possible issue emerging
from the asymptotic regions of momenta distributions is presented.

Finally in Chapter 5 the whole machinery developed is applied to a num-
ber of phenomenological studies, up to three particles final states. Some
restrictions on the ALPs theory space are recovered utilizing terrestrial re-
sults in the hypothesis that the ALP would escape detection, the so called
“invisible ALP.” The limits obtained are always projected onto flavor con-
serving ALP–fermion couplings, as the flavor violating ones are taken to be
dominated by loop induced contributions. The searches are divided based
on the different possible final states allowed by these hypothesis and by the
energies reached by flavor experiments.



Chapter 1

Axions and Axion–Like
Particles

In theoretical particle physics the study of matter fields, their symmetries
and their associated conservations laws intertwines in what is known as a
gauge theory or a Quantum Field Theory (QFT). It turns out that classical
symmetries of a theory are not always “respected” in QFTs, and in a sense
quantization can spoil them. This should not come as too much of a surprise
given the very different nature of a classical field theory and a quantum
one. These kind of symmetry violations associated to quantum effects are
called “anomalies” and the symmetry that gets broken at the quantum level
is labelled as anomalous. Strange or unpredicted effects appearing at the
quantum level are nothing new and are rarely worrying, instead anomalies
must be treated carefully and are a major feature of QFT with the power to
modify the spectrum of the theory in unexpected ways and to even invalidate
the whole theoretical structure.

Two main types of symmetries are present in QFTs, global symmetries,
sometimes called accidental, and local (or gauge) symmetries. The former
are associated to charges and conserved currents while the latter represent
redundancies in the representation of the physical degrees of freedom de-
scribed by the theory. Gauge symmetries are introduced by hand in order to
build the theory using the simplest possible representation of the Poincaire
group that contains the desired degrees of freedom. If a global symmetry

9
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is anomalous the theory is perfectly fine and only the phenomenology will
have important modifications. If, instead, a gauge symmetry is anomalous
the theory breaks down and the internal consistency is ruined. In some cases
is possible to avoid the anomaly, but doing so imposes strict constraints on
the physical content, e.g. QED with a single Weyl fermion is inconsistent
because it would have an anomalous local U(1). Anomalies have a profound
impact on a theory, they can dictate the field content of a model and influ-
ence the phenomenology of it. In QCD one has a beautiful realisation of a
global anomaly that helped understand deep facts about Yang–Mills theories
and the theory of strong interactions them self. In what follows a discussion
of the QCD anomaly, its phenomenological impact and the inconsistencies
encountered with experiments is presented. The introduction of a new spin
0− degree of freedom, an axion or an ALP, is chosen as a possible solution.

1.1 The U(1) axial anomaly
For massless quarks mu = md = ms = 0, the QCD lagrangian contains
a global invariance under an extended symmetry group. The U(1) axial
trasformation is given by

ψ =

⎛⎝ u

d

s

⎞⎠→ ψ′ = e−iθγ5ψ. (1.1)

In this limit, which we shall adopt until further notice, Noether’s theorem
can be applied to identify the classically conserved axial current.

J
(0)
5µ = ūγµγ5u+ d̄γµγ5d+ s̄γµγ5s, ∂µJ

(0)
5µ = 0 (1.2)

where the superscript on J (0)
5µ denotes an SU(3) singlet current. In the

full quantum theory the approximate symmetry is lost because the current
divergence has an anomaly. One can see this in a number of ways, the
most hands on is due to Adler Bell and Jackiw [4, 5], while for a deeper
understanding Fujikawa’s path integral method is reffered in [6] and discussed
in Sec. 1.1.1.
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An anomaly is said to occur when a symmetry of the classical action is
not a true symmetry of the full quantum theory. The Noether current is
no longer divergenceless, but receives a contribution arising from quantum
corrections. This contribution is typically reffered to as the anomalous part.

It is important to review the work of Adler, Bell and Jackiw in the case
of the coupling of an axial U(1) current to two gluons. Define the quantity

T abµαβ(k, q) = i

∫︂
d4xd4yeik·xeiq·y

⟨︂
0
⃓⃓⃓
T
(︂
J
(0)
5µ (x)J

a
α(y)J

b
β(0)

)︂⃓⃓⃓
0
⟩︂

(1.3)

where Jaα is a flavor-singlet vector current coupled to gluons

Jaα =
∑︂

q=u,d,s

q̄γα
λa

2
q. (1.4)

Here the SU(3) matrices relative to the latin indices, a and b pertain the
color degree of freedom and not the flavor space [7, 8]. There are two Ward
identities [9], representing the conservation of axial and vector currents. The
vector Ward identity, corresponds to ∂αJaα = 0, is

qαT abµαβ(k, q) = 0, (1.5)

while for the case of the axial ward identity is derived via in a similar fashion
∂µJ

(0)
5µ = 0, to obtain

kµT abµαβ(k, q) = 0. (1.6)

In order to reveal the anomalous behaviour of this coupling, one can
calculate the vertex in lowest-order in perturbation theory and compute the
contribution from the two possible momentum route [10]

T abµαβ = −3
∫︂

d4p

(2π)4

[︂
Tr
(︂
γµγ5

1

/p+ /k
γβ
λb
2

1

/p− /q
γα
λa
2

1

/p

)︂
+ Tr

(︂
γµγ5

1

/p+ /k
γα
λa
2

1

/p+ /q + /k
γβ
λb
2

1

/p

)︂]︂
,

(1.7)

the prefactor 3 comes from the three massless quarks contributing equally to
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the amplitude.
It is easy to see that the integrals in the definition of T abµαβ are linearly

divergent, and as such they might be not well defined, this is alredy a hint
that the computation is troublesome. To quantify the effect of a shift in the
integration variable is instructive to consider

Iγ =

∫︂
d4p
[︂pγ
p4
− (p− l)γ

(p− l)4
]︂
. (1.8)

A linearly divergent integral is of the form
∫︁
d4pF (p) where p3F (p) ̸= 0 but

p3F ′(p) = p3F ′′(p) = ... = 0 for p → ∞. In Euclidean coordinates one can
Taylor expand and use Gauss’ theorem to compute the effect of shifting the
integration variable∫︂

d4pE

[︂
F (p)− F (p− l)

]︂
=

∫︂
d4pE[l

µ∂µF (p)−
1

2
lµlν∂µ∂νF (p) + ...] =

= lµ
∫︂
dSµ[F (p)−

1

2
lν∂νF (p)]p→∞ = lµ

∫︂
dSµF (p)p→∞,

(1.9)

where in the last equality we used the fact that p3F ′(p)
⃓⃓
p→∞ = 0. So Eq.(1.9)

means that a shift in the integration value will change the result by an amount
proportional to said shift, times the integral of the function over the boundary
of the physical space. In case of Iγ one finds that

Iγ = i

∫︂
d4pE

(︂pγ
p4
− (p− l)γ

(p− l)4
)︂
= ilµ

∫︂
d3Sµ

pγ
p4

= ilµ
∫︂
d3S

pµ
p

pγ
p4
. (1.10)

It’s easy to see how the integral will not depend on the specific value of p
since the dependence will be exactly cancelled. This leaves Iγ = iπ

2lγ
2
. To

apply this to the case at hand one needs to compute the shift to T abµαβ. Namely
one substitutes p→ p+ b1q + b2(−k− q) in the first term. To preserve Bose
symmetry one needs to change in the second term p→ p+ b2q+ b1(−k− q).

The change is computed using Eq.(1.7–1.10)

∆T abµαβ = − δab

16π2
(b1 − b2)ϵµαβγ(2q + k)γ (1.11)
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and is induced by the shift in the original integration variable pµ. Still there
is no indication of violation of any global symmetry, just an indication in
handling these contributions. One can compute the Ward Identites directly
with the same technique by using the shift p → q − (q − p). The results
are trivial once we know of Eq.(1.11), the interesting observation is that
the original integration shift shows that one can never satisfy both equation
simultaneously

qαT abµαβ(k, q) = −
3δab

16π2
(1 + b1 − b2)ϵµβρσqσkρ

kµT abµαβ(k, q) =
3δab

8π2
(1− b1 + b2)ϵαβρσq

σkρ.

(1.12)

The important physical result is that despite the claim of Noether’s theo-
rem that there are two sets of conserved currents, namely SU(3)c vector and
U(1)A, one loop calculations indicate that only one of the two can be con-
served. Of course one can not violate Gauge symmetry otherwise the theory
loses every possible meaning and so the axial current must not be divergence-
less. The anomaly is that Noether’s theorem was wrong, or wrongly applied
rather. The violation of the current is not dynamical but purely a loop effect,
and it can be show that this is equivalent to the addition of an operator to
the QCD lagrangian

∂µJ
(0)
5µ =

3αs
4π

Ga
µνG̃

aµν
, (G̃

aµν
=

1

2
ϵµναβGa

αβ). (1.13)

1.1.1 Fujikawa’s Method

It is instructive to look at the path integral treatment of the issue discussed
above, as done in [6]. One defines the theory via the generating functional

Z[aµ, A
c
λ] =

∫︂
[Dψ][Dψ̄] exp

∫︂ (︂
LQCD(ψ, ψ̄, A

c
λ)− aµJ

(0)µ
5

)︂
, (1.14)



14 CHAPTER 1. AXIONS AND AXION–LIKE PARTICLES

the logarithmic change along the axial current source is given by the func-
tional expansion truncated at first order

lnZ[aµ − ∂µβ,Acλ]− lnZ[aµ, A
c
λ] =∫︂

d4x∂µβ(x)
δ

δaµ
ln (Z[aν , A

c
λ]) |aν=0 = −i

∫︂
d4xβ(x)∂µJ̄

µ(0)
5 (x),

(1.15)

where −iJ̄µ(0)5 (x) is the functional derivative that appears in Eq.(1.15).

The two gluon matrix described above is given by

T abµαβ(x, y, z) = (i)2

[︄
δ2

δAαa (y)δA
β
b (z)

J̄
µ(0)
5 (x)

]︄
Ac

λ=aν=0

. (1.16)

Solving for J̄µ(0)5 (x) is done by parametrizing the β transformation inside the
fermionic part of the lagrangian, meaning that

LQCD(ψ, ψ̄, A
c
µ) + ∂µβJ̄

µ(0)
5 (x) = LQCD(ψ

′, ψ̄
′
, Acµ) (1.17)

where

ψ′ = e−iβγ5ψ

ψ̄
′
= ψ̄e−iβγ5 .

(1.18)

Furthermore, one needs to change the path integration from ψ → ψ′. As
such, one should keep track of an eventual Jacobian J associated with this
operation ∫︂

[Dψ][Dψ̄] =

∫︂
[Dψ′][Dψ̄

′
]J ,

if the jacobian does not depend on the fermion fields one finds that

Z[aµ − ∂β, Acλ] = JZ[aµ, Acλ], (1.19)

meaning that
lnJ = −i

∫︂
d4xβ(x)∂µJ̄

(0)µ
5 (x). (1.20)
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The lesson here is that the quantum current J̄ (0)µ
5 (x) will have zero diver-

gence if and only if the Lagrangian and the measure of the path integral are
invariant (i.e. J = 1) under the U(1)A transformation. If both the conditions
are realised the symmetry is preserved at the quantum mechanical level. It is
easy to understand that all the classical symmetries will satisfy the condition
relative to the Lagrangian, so that the jacobian of a transformation will be
the condition to determine if a symmetry will translate consistently to the
quantum theory. In the case at hand the jacobian, if properly renormalised,
has the form

J = exp(−2i tr βγ5) = exp

[︃
−i
∫︂
d4xβ(x)

3αs
4π

Ga
µνG̃

aµν
]︃
, (1.21)

from here one reads off the current divergence

∂µJ̄
(0)
5µ (x) =

3αs
4π

Ga
µνG̃

aµν
. (1.22)

The final task is to compute the regularised jacobian, as it will be a divergent
quantity. From the Eq.(1.18) one recovers the formal expression

J =
[︁
det
(︁
eiβγ5

)︁]︁−1 [︁
det
(︁
eiβγ5

)︁]︁−1
. (1.23)

The determinant runs over all the indices of the object, namely the 4 ×
4 Dirac indices, the three flavor, color and the spacetime index (i.e. the
position xµ). For finite objects this can be made less formal by using detC =

exp(tr lnC). This identity allows for the expression

J = exp(−2i tr βγ5). (1.24)

The trace symbol indicates a sum over flavor space, Dirac index, colour and
spacetime index,

J = exp

(︃
−2iTr′

∫︂
d4x ⟨x| βγ5 |x⟩

)︃
, (1.25)

where Tr′ is now the sum over the discrete flavor, colour and Dirac indices.
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To regulate the calculation a high energy eigenmode removal via a gauge
invariant cutoff is introduced. So the final formal expression is

J = lim
M→∞

exp

(︃
−2iTr′

∫︂
d4x ⟨x| βγ5e−( /D/M)2 |x⟩

)︃
, (1.26)

where /D is the QCD covariant derivative. Using the heat kernel expansion
one gets that

J = exp

(︃
1

16π2

∫︂
d4xβ(x)Tr′

(︃
γ5
g3sλ

aλb

16
σµνGa

µνσ
αβGb

αβ

)︃)︃
,

= exp

(︃
− 1

16π2

∫︂
d4xβ(x)3 · 2δab · 4iϵµναβ g

2
s

16
Ga
µνG

b
αβ

)︃
= exp

(︃
−i
∫︂
d4x β(x)

3αs
4π

Ga
µνG̃

aµν
)︃
.

(1.27)

The fact that this is not the identity means that the symmetry is not con-
served at the quantum level. If one includes quark masses the anomaly
equation is

∂µJ̄
(0)µ
5 (x) = 2i(muūγ

5u+mdd̄γ
5d+mss̄γ

5s) +
3αs
4π

Ga
µνG̃

aµν
, (1.28)

meaning that the IR and the UV contribution to the anomaly do not talk to
each other. To generalize the result one can define

V (b)
µ = ψ̄γµT

(b)
V ψ, A(b)

µ = ψ̄γµγ
5T

(b)
A ψ, (1.29)

where T (b)
V and T (b)

A are matrices in the quark flavor space. The anomalous
couplings for the currents are

∂µA(b)
µ =

Dbcd

16π2
ϵµναβGc

µνG
d
αβ +masses

Dbcd =
Nc

2
Tr
(︂
T

(b)
A {T

(c)
V , T

(d)
V }

)︂
,

(1.30)

where Nc is the number of colors.
This shows how symmetries of a classical Lagrangian are not always sym-



1.2. THE θ VACUUM 17

metries of the full quantum theory. Anomalies spoil the classical symmetry,
appearing in perturbation theory within divergent Feynman diagrams. The
anomalous breaking is not a dynamical breaking of the symmetry associated
with a phase transition, and one should not expect a Goldstone boson. From
the path-integral point of view a more rigorous picture is extracted, the sym-
metry never existed in the first place as the generating functional was never
invariant under the transformation law. As such Noether’s theorem needs
to be supplemented with the jacobian to test the symmetries of a Quantum
Theory.

1.2 The θ vacuum

Gauge theories with particularly simple gauge groups, QED and theories
with local U(1)’s, are completely described by their Lie Algebra, or their
differentiable structure. More complicated ones are affected also by global
properties of the symmetry space, in particular topological properties play
a fundamental role. One is generally concerned with gauge transformations
that are connected to the group’s identity via infinitesimal steps. What
happens if one considers the disconnected parts of the group? Will these
topological properties have any effect on the phenomenology? To answer
these questions one has to look at “large” gauge transformations which, in
the SU(3)c case at hand, change the color gauge fields in a more drastic,
disconnected–to–the–identity fashion [11, 12]. For example the gauge trans-
formation generated by

Λ1(x) =
x2 − d2

x2 + d2
+ 2id

τ · x
x2 + d2

, (1.31)

where d is an arbitrary parameter and τ is an SU(2) Pauli matrix in any
SU(2) subgroup of SU(3). Such a transformation is given only by the non–
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homogeneous part and changes the null potential into

A
(1)
j (x) =− i

gs
(∇jΛ1(x))Λ1(x)

−1

=− 2d

gs(x2 + d2)2
[τj(d

2 − x2) + 2xj(τ · x)− 2d(τ · x)j],
(1.32)

where
Aµ = Aaµ

λa

2
. (1.33)

This pure gauge potential lies in an SU(2) subgroup of the full color
SU(3) group, and is “large” in the sense that it cannot be brought contin-
uously into the identity. The τ · x factor couples the internal colour indices
to the spatial position such that a path in coordinate space implies a cor-
responding path in the SU(2) color subspace. Associated with every gauge
potential Aµ is a conserved topological charge called the winding number,

n =
ig3s
24π2

∫︂
d3xTr

[︂
Ai(x)Aj(x)Ak(x)

]︂
ϵijk. (1.34)

It can be demonstrated by direct substitution that the gauge field of Eq.(1.32)
corresponds to the value n = 1. Fields with any integer value of the winding
number n can be obtained by repeated applications of Λ1(x), i.e.

Λn(x) = [Λ1(x)]
n. (1.35)

All gauge potentials can be classified into disjoint sectors labeled by their
winding number. The existence of these distinct classes has interesting con-
sequences. Namely consider a gluon field that a t→ −∞ as the zero potential
A(x) = 0, has some interpolating A(x, t) for intermediate times, and ends
up at t → +∞ lying in the gauge-equivalent configuration A(x) = A(1)(x),

these configurations are known to exist [13]. Then the following integral can
be shown to be nonvanishing:

g2s
32π2

∫︂
d4x Ga

µνG̃
aµν
.
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This is surprising since the integral is a total divergence as GG̃ can be
written as

Ga
µνG̃

aµν
= ∂µK

µ, Kµ = ϵµνλσ
[︃
AaνG

a
λσ +

1

3
gsfabcA

a
νA

b
λA

c
σ

]︃
, (1.36)

as thus the integral can be written as a surface integral at t = ±∞ :

g2s
32π2

∫︂
d4x Ga

µνG̃
aµν

=
g2s

32π2

∫︂
d4x ∂µK

µ

=
g2s

32π2

∫︂
d3x K0

⃓⃓⃓t=∞

t=−∞

= i
g3s

24π2

∫︂
d3x ϵijk Tr

(︂
A

(1)
i (x)A

(1)
j (x)A

(1)
k (x)

)︂
= 1.

(1.37)

More generally, the integral of GG̃ gives the change in the winding number

g2s
32π2

∫︂
d4x Ga

µνG̃
aµν

=
g2s

32π2

∫︂
d3x K0

⃓⃓⃓t=∞

t=−∞
= n+ − n− (1.38)

between asymptotic gauge-field configurations.

Thus the vacuum state vector will be characterized by configurations of
gluon fields, which fall into classes labelled by winding number. Moreover
one can associate unitary operators {Un}, acting on state vectors, to gauge
transformations {Λn} so that in general

U1 |n⟩ = |n+ 1⟩ . (1.39)

This implies that a gauge-invariant vacuum state requires contributions
from all the classes in a coherent manner

|θ⟩ =
∑︂
n

e−inθ |n⟩ (1.40)

so that the theta state is invariant under gauge transformation up to a global
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phase parametrized by the arbitrary θ parameter. This means that a gauge
invariant vacuum must contain coherent contributions from all the separated
topological classes. The nontrivial vacuum structure requires an extra input
in defining the theory of QCD: the QCD Lagrangian, the scale ΛQCD and fi-
nally the vacuum label θ. In a path–integral representation the θ = 0 vacuum
would imply transition elements of the form

⟨θ = 0|X |θ = 0⟩ =
∫︂

[Dψ][Dψ̄][DAµ]Xe
iSQCD =

∑︂
m,n

⟨m|X |n⟩ . (1.41)

A different value of θ corresponds to a phase in the decomposition

⟨θ|X |θ⟩ =
∑︂
m,n

ei(m−n)θ ⟨m|X |n⟩ . (1.42)

However, this phase can be accounted for in the path integral by the addition
of a new term to SQCD. In particular one can actually write

⟨θ|X |θ⟩ =
∫︂

[Dψ][Dψ̄][DAµ]Xe
iSQCD+i

g2s
32π2 θ

∫︁
d4xGa

µνG̃
aµν

, (1.43)

where X is a generic operator. It has been shown that to implement correctly
the computation with the θ dependence one can simply follow the standard
path–integral approach with a modified action depending on the vacuum
parameter

LQCD = Lθ=0
QCD + θ

g2s
32π2

Ga
µνG̃

aµν
. (1.44)

The θ parameter is considered a coupling constant, and as such there
is an important distinction between the vacua of QCD and the different
possible vacuum states of a theory with spontaneous symmetry breaking.
In the latter case the possible vacuum expectation values allowed from the
potential simply distinguish between different equivalent states of a same
theory. In QCD instead each value of θ produces different amplitudes values
similarly to how a change in ΛQCD would produce different amplitudes. This
way different values of θ represent different possible theories that Nature
might choose.
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1.2.1 Chiral rotations and θ vacua

There is a connection between the axial anomaly and the presence of a θ
vacuum. In a massless theory with Nf fermions the U(1) axial current

J
(0)
5µ =

∑︂
k

ψ̄kγµγ
5ψk (1.45)

is not conserved due to the anomaly

∂µJ
(0)
5µ =

Nfαs
4π

GaµνG̃
aµν
. (1.46)

However one can define a new conserved current using Eq.(1.36) as

J̃
(0)

5µ = J
(0)
5µ −

Nfαs
4π

Kµ. (1.47)

The associated charge
Q̃5 =

∫︂
d3xJ̃5,0(x) (1.48)

and the current itself are conserved but are not gauge–invariant. Under a Λ1

transformation, defined in Eq.(1.39), the operator Q̃5 is modified

U1Q̃5U
−1
1 = Q̃5 − 2Nf . (1.49)

As such the different θ vacua of the theory are related by chiral transforma-
tions

U1e
iαQ̃5 |θ⟩ = U1e

iαQ̃5U−1
1 U1 |θ⟩ = eiθ−2NfαeiαQ̃5 |θ⟩ (1.50)

or rather, using the fact that

U1 |θ⟩ = eiθ |θ⟩ (1.51)

one obtains
eiαQ̃5 |θ⟩ = |θ − 2Nfα⟩ . (1.52)

The lesson is that in Yang–Mills theories there are inequivalent pure gauge
field configurations that have to be classified in different topological classes.
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This in turn means that finding a gauge invariant vacuum state is not a
trivial task. The anomaly between SU(3)c and U(1)A leads to non trivial
transformations laws of the gauge invariant vacuum under both symmetries.
The special case of massless quarks is free from these difficulties as one can
rotate away any effect due to θ, but massive theories will unavoidably have
a term that is CP–violating. In summary the non–trivial vacuum of Yang–
Mills theories requires that the path integral is extended to include gauge
field configurations with non zero quantum charges, and in turn requires the
inclusion in the effective action of the CP violating term GG̃.

1.3 The U(1) puzzle
An argument supporting the picture discussed in the previous sections is
the fact that there is no light state corresponding to the Nambu–Goldstone
boson of a spontaneously broken U(1)A flavor symmetry in the hadronic
spectrum. This effect was dubbed the U(1) puzzle, or the U(1) problem by
Weinberg [14]. The solution is easily seen since U(1)A was never a symmetry
of the theory due to the topologically non–trivial structure of QCD. The
global anomaly of QCD changes the prediction of the theory and in particular
the spectrum of the Low–Energy Chiral Lagrangian. Once more consider the
massless QCD Lagrangian with the 3 lightest flavor

LQCD = −1

4
(F a

µν)
2 + iq̄jL /Dq

i
L + iq̄jR /Dq

i
R, (1.53)

where the chiral fermions are the fundamental degree of freedom. The sym-
metry of the classical theory is U(3)L × U(3)R, and the QCD vacuum is
⟨q̄LqR⟩ ≈ V 3 ≈ Λ3

QCD, spontaneously breaking the flavor group into it’s
diagonal part, U(3)diagonal. Thus there should be nine massless Goldstone
boson, written as a matrix as πaT a. In particular the diagonal part of the
matrix is associated with the neutral ones, of which there are three. Since
quarks do have masses, the global symmetry being broken is only approxi-
mate, and as such the Goldstone bosons will have masses according to the
Gell-Mann-Oakes-Renner relation m2

πF
2
π ≈ V 3mq. The experimental spec-

trum is however in strong disagreement with this prediction, at least for the
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heaviest neutral particle, the η′. In theory its mass should be bounded by√
3mπ0 to around 200 MeV, but experiments measure it closer to 1 GeV.

The heaviness of the η′. is sometimes called the U(1) puzzle, since one of the
Goldstone boson associated with a U(1) factor of U(3)diagonal is missing. The
solution is rather simple, The true symmetry of the theory is not the one
we assumed because the axial U(1) is anomalous, as such the mass of the
particle associated to it will also get contributions from the triangle diagram
SU(3)2cU(1)A. The physics of topologically non trivial gauge configurations
has a very direct impact on the spectrum of QCD, shifting the value of the
η′ mass. One can study the effects using non-perturbative techniques and
obtains a satisfactory prediction [15].

1.3.1 QCD vacuum dependence on θ

It should be noted that the dependence of the QCD vacuum energy density
on the θ parameter, E(θ), is extremely important in discussing the axion.
Indeed the axion VEV will play the role of an effective θ, so that the same
result established for the QCD angle will easily translate to the axion. In the
large volume limit, the energy density is related to the Euclidean functional
generator, Z(θ), via (see [13])

Z(θ) = lim
V4→∞

e−E(θ)V4 . (1.54)

The same quantity can be taken in the Euclidean path–integral representa-
tion for pure gauge field configurations

Z(θ) =

∫︂
DA exp

(︃
−1

4

∫︂
d4xGG+ iθ

g2s
32π2

∫︂
d4xGG̃

)︃
≃ exp

(︃
−8π2

g2s

)︃
eiθ,

(1.55)

where in the last step one considers the semi–classical approximation, taking
only the contribution of a ν = 1 instanton. Finally one should use the
dilute–instanton gas approximation, asking the instantons centers to be well
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separated. One gets

E(θ) = −2Ke
−8π2

g2s cos (θ) , (1.56)

whereK is a positive constant encoding Jacobian factors due to the instanton
zero modes. It turns out that the vacuum energy of QCD is periodic in θ,

and has a global minimum for θ = 0. These results will still be true in the
case of an axion, even with the theory completed with fermions.

1.4 The strong CP problem

General θ ̸= 0 will induce CP violation, or equivalently T violation. The
strength of these violations is known to be miniscule, even by the standards
of weak interaction. A measurable consequence of a non–zero θ is found in
nuclear physics where the CP Violating phase induces directly a permanent
electric dipole moment to the neutron. In the Standard Model nothing is
forcing θ to be zero, as other sources of CP violation are present in the the-
ory, and as such it seems unnatural for it to be so small by chance without
any dynamical reason. Given that θ could be anywhere in [0, 2π] having
θ ≈ 0 is a naturalness problem, the strong CP problem is thus a fine tuning
problem. One might assume that QCD does not violate CP, thus imposing
θ = 0 a priori. This solution is however not stable under higher order elec-
troweak radiative corrections. The problem gets worse in the full SM theory,
as the quark mass matrix itself will shift the value of θ by a finite amount.
This process is a consequence of the diagonalization of the quarks mass ma-
trices after the electroweak symmetry breaking. Indeed when the Higgs field
condenses the Yukawa’s between the doublets and the fermions will generate
mass matrices that are neither diagonal nor CP–invariant. To shift the CP
violating part in the weak mixing matrix and to diagonalize the matrices
one has to perform independent left and right–handed transformations. One
encounters an axial rotation in the diagonalization process and as discussed
before this induces a shift in the value of θ. To recover the contribution to
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the GG̃ operator from the fermionic sector consider the following:

ψL = S†
Lψ

′
L, ψR = S†

Rψ
′
R m = S†

Lm
′SR, (1.57)

where primed quantities are the one in the flavour basis, i.e. non diagonal,
m is thus diagonal and is defined to combine all the mass matrices spanning
the whole flavor group. The U(N) transformations for L and R quarks have
different U(1) factors associated with them that amount to an axial rotation
U(1)A = ei(φR−φL), leading to a change in the θ parameter

θ → θ̄ = θ + 2Nf (φL − φR). (1.58)

More generally the shift is proportional to the phase present in the mass
matrix that one wants to rotate away, as such the role of 2Nf (φL − φR) is
generally played by arg(det(m′)). So the effective parameter regulating CP
violation in the QCD sector is actually θ̄ composed of two unrelated phases
that have to cancel almost exactly without a dynamical reason.

As discussed previously nuclear physics is almost indifferent to θ̄ but a
non–zero value implies a permanent electric dipole moment for the neutron.
In fact the CP–violating low energy operator

H = −dnE⃗ · S⃗ (1.59)

that in relativistic form is

L = − i
2
dnn̄σµνγ5nF

µν , (1.60)

can be experimentally bound to be |dn| < 3 · 10−26e cm [16], while the
theoretical prediction is |dn| = 2.4 ·10−16θ̄e cm. The bound derived from this
simple scenario is

θ̄ < 10−10, (1.61)

which is of course not a natural value. There are three candidates solu-
tions to the problem.

1. mu = 0. If one of the quarks is massless than the flavor group can be
broken down in two pieces, U(N) = U(1) + U(N − 1). The extra U(1)
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factor associated with the massless quark could be used to rotate away
θ̄. Of course there are no massless quarks so this solution is excluded.

2. Spontaneously Broken CP One can assume that CP is a symmetry
of the microscopic fundamental theory, but is spontaneously broken. In
these scenarios θ can be calculable, and sometimes even small [17–19].
In some string theories, CP is an exact gauge symmetry spontaneously
broken in some points of the moduli spaces [20, 21]. This solution is
typically excluded since the density of CP preserving states generated
by flux vacuua in moduli fixed critical string theory is 10−250. This
renders the solution even more unnatural than when we started.

3. Axions: An approximate, global symmetry (Peccei-Quinn (PQ)) with
a QCD anomaly, gets spontaneously broken. The pseudo–Nambu Gold-
stone boson which arises from symmetry breaking (the axion) dynam-
ically drives θ̄ = 0 in a potential minimum.

Of these solutions the most compelling one seems to be the third one.
An introduction of a light scalar particle will prove useful in Cosmology
and in Astro–Particle, moreover there is no shortage of light scalar particles
predicted by String Theory.

1.4.1 The Axion Solution
The Peccei–Quinn solution to the Strong CP problem [22–25] is to include a
new 0− field a(x), denoted as the axion field, with an effective Lagrangian

La = 1

2
(∂µa)

2 +
g2s

32π2

a

fa
GG̃+ L(∂µa, ψ) (1.62)

that is quasi–invariant under the shift a→ a+ cfa. Here and in what follows
fa denotes an energy scale, much like the pion decay constant fπ, that will
be called the axion decay constant. The shift described above will leave the
action invariant up to a term

δS = c
g2s

32π2

∫︂
d4xGG̃. (1.63)
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With this set–up it is easy to see how the connection with pure gauge SU(3)c
could relax the Strong CP problem . Indeed one has:

La + LQCD = Lθ̄=0
QCD + L(∂µa, ψ) +

(︃
a

fa
+ θ̄

)︃
g2s

32π2
GG̃, (1.64)

and after a shift the part proportional to GG̃ would be ( a
fa

+ θ̄ + c) g2s
32π2GG̃.

Choosing c = −θ̄ would solve the Strong CP problem, provided that ⟨a⟩ = 0,

otherwise CP invariance is again ruined. To prove that ⟨a⟩ = 0 one can use
the Vafa–Witten theorem [26]

Z(a) =

∫︂
Da

(︃∫︂
Dφe−S|a=0+iaGG̃

)︃
=

∫︂
Da

⃓⃓⃓⃓∫︂
Dφe−S|a=0+iaGG̃

⃓⃓⃓⃓
≤

≤
∫︂
Da

∫︂
|Dφe−S|a=0+iaGG̃| =

∫︂
DaDφe−Sa=0 ⇒ E(0) ≤ E(a),

(1.65)

meaning that the axion potential naturally drives the classical value of the
field to zero. In the derivation one has to assume the positiveness of the mea-
sure valid only for vector theories, like QCD. The hypothesis is violated in the
presence of chiral fermions such as the ones in the Standard Model. Another
important way to recover ⟨a⟩ = 0 is by computing the axion potential using
Chiral Lagrangian methods. In doing so a number of model independent in-
sights on axion physics are disclosed. Before exploring the chiral realisation
of the theory is somewhat important to know the form of the Lagrangian in
Eq.(1.64), and to clarify what types of couplings are expected once a spon-
taneously broken U(1)PQ is assumed. Consider the associated current JµPQ
conserved up to anomalous terms

∂µJ
µ
PQ =

g2sN

16π2
GG̃+

e2E

16π2
FF̃ , (1.66)

where N and E are the QCD and EM anomaly coefficients. From the Gold-
stone theorem ⟨0| JµPQ |a⟩ = ivapµ, where va is the PQ order parameter. It



28 CHAPTER 1. AXIONS AND AXION–LIKE PARTICLES

follows that the effective axion Lagrangian has to contain a piece

La ⊃ a

va

g2sN

16π2
GG̃+

a

va

e2E

16π2
FF̃ +

∂µa

va
JµPQ, (1.67)

due to Eq.(1.66). The specific form of the Peccei–Quinn current will depend
on the charges of the PQ symmetric fields. E.g. take a chiral Standard Model
field ψL. The anomalous current will be

JµPQ

⃓⃓⃓
ψL

= −ψ̄LχLγµψL, (1.68)

where χL denotes the PQ charge. It is customary to consider the standard
normalization

fa =
va
2N

so that Eq.(1.67) is

La ⊃ a

fa

g2s
32π2

GG̃+
a

fa

e2E

32Nπ2
FF̃ − ∂µa

2Nfa
(ψ̄LχLγµψL + ψ̄RχRγµψR),

=
a

fa

g2s
32π2

GG̃+
a

fa

c0γ
4
FF̃ +

∂µa

2fa
ψ̄c0ψγµγ

5ψ,

(1.69)

where the axion–photon coupling is defined as1

c0γ =
αE

2πN
, (1.70)

and the axion–fermion one is

c0ψ =
χL − χR

2N
. (1.71)

1.4.2 Axion potential

For the sake of simplicity let us consider QCD with only the two lightest
flavors, where q = (u, d)T and Mq is the mass matrix diagonal in mass basis.

1It is customary to indicate the dimensional parameters with ci’s, while the dimension-
less ones are typically referred to as gi = ci/fa.
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The axion effective Lagrangian is

La = 1

2
(∂µa)

2+
a

fa

g2s
32π2

GG̃+
1

4
g0γaF F̃+

∂µa

2fa
q̄c0ψγµγ

5q−q̄LMqqR+h.c.. (1.72)

One can shift away the aGG̃ term via an axial redefinition of the quark fields:

q → eiγ
5a/(2fa)Qaq. (1.73)

This transformation generates a term

δL = −g
2
s Tr(Qa)

32π2

a

fa
GG̃, (1.74)

that exactly cancels the GG̃ dependence in Eq.(1.72), once Tr{Qa} = 1.

Since this transformation is also QED anomalous it will affect the FF̃ term,
and generate different interactions with the quarks. In particular

La = 1

2
(∂µa)

2 +
1

4
gγaF F̃ +

∂µa

2fa
q̄cψγµγ

5q − q̄LMaqR + h.c., (1.75)

where all the parameters are now modified, or axion–dressed. In particular
one has

gγ = g0γ − (2Nc)
α

2πfa
Tr
(︁
QaQ

2
)︁
, where Q = diag(2/3,−1/3)

cq = c0q −Qa,

Ma = eiγ
5a/(2fa)QaMqe

iγ5a/(2fa)Qa ,

(1.76)

where Nc indicates the number of colours. The axial quark current is decom-
posed in an iso–singlet and an iso–triplet component

q̄cqγµγ
5q =

1

2
Tr(cq)q̄γµγ

5q +
1

2
Tr(σacq)q̄γµγ

5σaq. (1.77)
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One substitutes Eq.(1.77) in Eq.(1.75) and maps it onto the Chiral La-
grangian [27, 28]

LaχPT =
f 2
π

4

(︁
Tr
(︁
(DµU)†DµU

)︁
+ 2B0Tr

(︁
UM †

a +MaU
†)︁)︁+ ∂µa

2fa

1

2
Tr[cqσ

a]Jµa ,

(1.78)
where B0 is a constant related to the condensate and the singlet has been
excluded since it refers to the heavy η′. In Eq.(1.78) one identifies the current
coupled to the axion via its transformation properties, in particular it has
to transform under flavor SU(2)L ⊗ SU(2)R as the quark iso–triplet would
transform. One can show that the pionic iso–triplet current is

Jaµ = i
f 2
π

2
Tr
[︁
σa(UDµU

† − U †DµU)
]︁
. (1.79)

The parametrization for the pion field is

U = exp
(︂
iπaσa/fa

)︂
= 1I cos π

fπ
+ i

σaπa

π
sin

π

fπ
, (1.80)

with π =
√︁

(π0)2 + 2π+π−, fπ = 93MeV and DµU = ∂µU + ieAµ[Q,U ].

To get the axion–pion potential expand the non–derivative part of Eq.(1.78),
consider:

2B0
f 2
π

4
Tr
(︁
UM †

a +MaU
†)︁ =B0f

2
π(mu +md)−

1

2
B0(mu +md)π

2

− i

4
B0
f 2
π

fa
aTr(U{Qa,Mq}) + h.c.+ . . .

(1.81)

Usually one takes Qa = M−1
q /Tr

(︁
M−1

q

)︁
. This choice cancels any coupling

between an axion and an arbitrary number of pions. Such a coupling is
generated by the term(︄

i

4
B0
f 2
π

fa
aTr(U{Qa,Mq}) + h.c.

)︄⃓⃓⃓
Qa=M

−1
q /Tr

(︂
M−1

q

)︂
= i

f 2
π

fa
2(mu +md)aTr

[︃
1I cos π

fπ
+ i

σaπa

π
sin

π

fπ

]︃
.

(1.82)
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Substituting Eq.(1.80) in Eq.(1.82) one can see that the whole contribution
is zero, either because Tr[σa] = 0 for odd numbers of π or because the
contribution is purely imaginary and the Hermitean conjugate will put it to
zero. This choice of Qa eliminates the axion–pion mixing from the theory,
while the expansion in Eq.(1.81) makes the SU(2) symmetric pions masses
m2
π = B0(mu+md) at LO in the chiral expansion. The axion–pion potential

can be computed exactly with this choice of Qa:

V (a, π) = −2B0
f 2
π

4
Tr
(︁
UM †

a +MaU
†)︁

= − m2
πf

2
π

mu +md

{︃[︃
mu cos

(︂ md

mu +md

a

fa

)︂
+md cos

(︂ mu

mu +md

a

fa

)︂]︃
cos

(︃
π

fπ

)︃
+
π0

π

[︃
mu sin

(︂ md

mu +md

a

fa

)︂
−md sin

(︂ mu

mu +md

a

fa

)︂]︃
sin

(︃
π

fπ

)︃}︄
.

(1.83)

To obtain the axion mass value expand Eq.(1.83) to order two in a
fa
, the first

order in a
fa

is zero for construction. The axion–pion potential, up to order
two is

V (a, π) = −m2
πf

2
π cos

(︃
π

fπ

)︃
+

1

2

mumd

(mu +md)2
m2
πf

2
π

f 2
a

a2 cos

(︃
π

fπ

)︃
+O

(︃
a3

f 3
a

)︃
(1.84)

Setting the pion field to its ground state, π = 0, yields the axion mass squared

m2
a =

mumd

(mu +md)2
m2
πf

2
π

f 2
a

=⇒ ma ≃ 5.7

(︃
1012GeV

fa

)︃
µeV, (1.85)

so for QCD–axions the mass and the Peccei–Quinn scale are not two inde-
pendent parameters. An alternative expression for the axion–pion potential,
corresponding to the choice Qa =

1
2
diag(1, 1), discussed in [29], gives

V (a, π0) = −m2
πf

2
π

√︄
1− 4mumd

(mu +md)2
sin2

(︃
a

2fa

)︃
cos

(︃
π0

fπ
− φa

)︃
, (1.86)

where tanφa = mu−md

mu+md
tan(a/(2fa)). The minimum now is clearly given by
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the point in field space (a, π0) = (0, 0). Moreover along the pion ground state
π0 = fπφa the axion potential is

V (a, π0) = −m2
πf

2
π

√︄
1− 4mumd

(mu +md)2
sin2

(︃
a

2fa

)︃
. (1.87)

Expanding this solution at leading order and the “single instanton” one, the
cos θ in Eq.(1.56), one sees that for small values of a the approximations are
converging. For larger values of a different non–perturbative effects enter the
potential and the semiclassical dilute–instanton gass approximation breaks
down as topologically non trivial configuration will give non zero contribution
in the path integral.

1.5 UV Complete Axion Models

In Sec. 1.4.1 a number of model independent properties were discussed,
based purely on the structure of QCD, on the anomaly coefficients and on
the matter content of the theory. It is nevertheless important to study some
UV complete axion models to prove that at least one exists and to study how
the coupling of the high energy theory are related to the phenomenological
ones. This section will explore the two benchmarks UV completion for the
axion effective Lagrangian of Eq.(1.72). The simplest implementation of
the Peccei–Quinn symmetry is given by the Weinberg–Wilczek (WW) model
[22, 23], whre the QCD anomaly of the U(1)PQ current is generated by SM
quarks charged under the PQ symmetry. The scalar sector is enlarged with
an extra Higgs doublet carrying the additional U(1)PQ. In the WW model
the axion decay constant is of the order of the electroweak scale v ≃ 246

GeV. Indeed fa is found to be fa = v/6 sin(2β), where β = arctan(vu/vd).
This model was not suppressed enough and was quickly ruled out by beam
dump experiments and rare meson decays [30, 31]. This led to the so called
“invisible axion” models where the PQ symmetry breaking is decoupled from
the electroweak scale via the introduction of a Standard Model singlet scalar
field, acquiring a VEV at very high scales va fa ≫ v. Then the axion’s
interactions are as suppressed as 1

fa
, see Eqs(1.69–1.70).
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UV completion of the axion effective Lagrangian comes down to two
separated classes. The Kim-Shifman-Vainshtein-Zakharov (KSVZ) [32, 33]
type requires new heavy coloured fermions to carry the anomaly, while Dine-
Fischler-Srednicki-Zhitnitsky (DFSZ) [34,35] type embeds the anomaly onto
the Standard Model quarks, similarly to the WW–model.

1.5.1 KSVZ axion

The KSVZ model extends the Standard Model field content with a vector–
like fermion Q = QL + QR in the fundamental of colour, singlet of SU(2)L
and neutral under hypercharge: Q (3, 1, 0), and a Standard Model Singlet
complex scalar Φ (1, 1, 0). The Lagrangian of the KSVZ model is

LKSVZ = |∂µΦ|2 + Q̄i /DQ− (yQQ̄LQRΦ + h.c.)− V (Φ) (1.88)

and it has the U(1)PQ symmetry

Φ→ eiaΦ, QL → eia/2QL, QR → e−ia/2QR. (1.89)

The U(1)PQ symmetric, spontaneous symmetry–breaking–ready potential is

V (Φ) = λΦ

(︂
|Φ|2 − v2a

2

)︂2
, (1.90)

with va as the order parameter. Considering polar coordinates for the scalar
field

Φ =
1√
2
(va + ρa)e

ia/va , (1.91)

the axion field a correspond to the massless, at tree level, Goldstone boson,
while the radial mode ρa picks up a mass mρa =

√
2λΦva. In the condesed

phase the fermions Q will get a mass from the “Yukawa–like” term mQ =

yQva/
√
2. The Lagrangian

L = −mQQ̄LQReia/va + h.c., (1.92)
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is responsable for the generation of the aGG̃ operator. To see this one can
perform an axion dependent chiral rotation of the Q fields

Q → e−i
a

2va
γ5Q. (1.93)

Indeed the transformation in Eq.(1.93) is anomalous under SU(3)c, given
that the Q’s are in the colour fundamental, as such one gets a contribution
from the non–invariance of the path integral measure [6]

δLKSVZ =
g2s

32π2

a

va
GG̃. (1.94)

In this case one can identify fa = va and the only “portal” to SM fields
is the aGG̃ term. Nonetheless such a term can generate radiatively all the
coupling to the SM fields, given that the vector–like fermions can be as many
as one likes, the coupling are not guaranteed to be small, even if they are
loop generated.

1.5.2 DFSZ axion

In DFSZ models the field content includes two Higgs doublets,Hu ∼ (1, 2,−1
2
)

andHd ∼ (1, 2, 1
2
), and a complex scalar Standard Model singlet Φ ∼ (1, 1, 0).

The latter field extends the WW model, allowing the PQ symmetry–breaking
scale to be decoupled from the electroweak scale. The potential of the model
is

V (Hu, Hd,Φ) = Ṽ (|Hu|, |Hd|, |HuHd|, |Φ|) + λHuHdΦ
†2 + h.c.. (1.95)

where Ṽ depends only on the moduli of the fields and it preserves the re–
phasing symmetry. On the contrary the term proportional to λ explicitly
breaks this symmetry to two indipendent U(1) factors, i.e.

U(1)Hu × U(1)Hd
× U(1)Φ → U(1)Y × U(1)PQ, (1.96)

so that one has hypercharge and PQ symmetry left. The action of the PQ
symmetry is taken to be the same for all the generations and is determined
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by the assigning the charges thanks to the following Yukawa Lagrangian, in
the case of DFSZ-I model,

LDFSZ−I = −YU q̄LuRHu − YDq̄LdRHd − YE ℓ̄LeRHd + h.c. (1.97)

Alternatively one can couple H̃u = iσ2H∗
u in the lepton sector, DFSZ-II

model, so that

LDFSZ−II = −YU q̄LuRHu − YDq̄LdRHd − YE ℓ̄LeRHu + h.c. (1.98)

The potential in Eq.(1.95) gives a non–zero VEV to the fields that can be
parametrised, neglecting the radial components, as

Hu =
vu√
2
eiau/vu

(︃
1

0

)︃
, Hd =

vd√
2
eiad/vd

(︃
0

1

)︃
, Φ =

vΦ√
2
eiaΦ/vΦ ,

(1.99)
where vΦ ≫ vu,d in order to escape the WW model’s exclusion. The next
important task is to distinguish the axion field between all the possible com-
binations of the three scalar field defined in Eq. (1.95). To identify the axion
one can use the Goldstone theorem, first build the associated PQ current

JPQ
µ = −iχΦΦ

†←→∂µΦ− iχHuH
†
u

←→
∂µHu − iχHd

H†
d

←→
∂µHd + · · · ⊃

JPQ
µ

⃓⃓
a
=
∑︂

i=Φ,u,d

χivi∂µa,

(1.100)

where the dots are the contributions from the fermionic fields and the χi’s are
the fermion’s–PQ charges. JPQ

µ

⃓⃓
a
is defined to get contributions only from

the DFSZ–model fields. The axion field is defined as

a =
1

va

∑︂
i

χiviai, v2a =
∑︂
i

χ2v2i , (1.101)

so that JPQ
µ

⃓⃓
a
= va∂µa and ⟨0| JPQ

µ

⃓⃓
a
|a⟩ = ivapµ. Note that under a PQ

transformation ai → ai + kχivi the axion field transforms as a → a + kva.

The PQ charges in the scalar sector can be determined by requiring: i) PQ
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invariance of the operator HuHdΦ
†2, which implies χHu + χHd

− 2χΦ = 0,

and ii) orthogonality between JPQ
µ

⃓⃓
a
in Eq.(1.100) and the corresponding

contribution to the hypercharge current JY
µ

⃓⃓
a
=
∑︁

i Yivi∂µai, which implies∑︁
i 2Yiχiv

2
i = −χHuv

2
u+χHd

v2d = 0. The latter condition ensures that there is
no kinetic mixing between the physical axion and the Z boson. All charges
are hence fixed up to an overall normalisation that can be fixed by choosing
a conventional value for χΦ:

χΦ = 1, χHu = 2 cos2 β, χHd
= 2 sin2 β, (1.102)

where we have defined vu/v = sin β, vd/v = cos β, with v ≃ 246 GeV.
Substituting in Eq.(1.101) we obtain:

v2a = v2Φ + v2(sin 2β)2, (1.103)

and given that vΦ ≫ v we have va ≃ vΦ. The axion coupling to SM fermions
can be derived by inverting the first relation in Eq.(1.101) to express au,d in
terms of a and select the a dependent terms. This accounts to the substitu-
tions au/vu → χHua/va, ad/vd → χHd

a/va and yields

LDFSZ−I ⊂ −mU ūLuRe
iχHua/va−mDd̄LdRe

iχHd
a/va−mE ēLeRe

iχHd
a/vah.c.+ · · ·

(1.104)
The axion field can be now removed from the mass terms by redefining the
fermion fields according to the field–dependent axial transformations:

u→ e−iγ
5χHua/(2va)u, d→ e−iγ

5χHd
a/(2va)d, e→ e−iγ

5χHd
a/(2va)e, (1.105)

which, because of the QCD and EM anomalies, induce an axion coupling
to both GG̃ and FF̃ . Let us note in passing that since the fermion charges
satisfy the relations χuL−χuR = χHu , χdL−χdR = χHd

, and χeL−χeR = χHd
,

as dictated by PQ invariance of the Yukawa couplings, the transformations
Eq.(1.105) are equivalent to redifine the LR chiral field with a phase transfor-
mation proportional to their PQ charges. The contribution to the anomalies
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to the DFSZ-I case are

N = ng

(︃
1

2
χHu +

1

2
χHd

)︃
= 3,

E = ng

(︄
3

(︃
2

3

)︃2

χHu + 3

(︃
−1

3

)︃2

χHd
+ (−1)2χHd

)︄
= 8,

(1.106)

where ng = 3 is the number of SM fermion generations while χHu,d
are given

in Eq.(1.102). The anomalous part of the axion effective Lagrangian is

δLDFSZ−I =
αs
8π

a

fa
GG̃+

α

8π

E

N

a

fa
FF̃ , (1.107)

with fa = va/(2N), while E/N = 8/3. The field-dependent axion transfor-
mation do not leave the fermion kinetic terms invariant, and their varia-
tion corresponds to derivative couplings of the axion to the Standard Model
fermionic fields:

δ(ūi/∂u) = χHu

∂µa

2va
ūγµγ5u =

(︃
1

3
cos2 β

)︃
∂µa

2fa
ūγµγ5u, (1.108)

δ(d̄i/∂d) = χHd

∂µa

2va
d̄γµγ5d =

(︃
1

3
sin2 β

)︃
∂µa

2fa
d̄γµγ5d, (1.109)

δ(ēi/∂e) = χHd

∂µa

2va
ēγµγ5e =

(︃
1

3
sin2 β

)︃
∂µa

2fa
ēγµγ5e, (1.110)

at this point one can read out the axion–fermion coupling c0ψ in Eq.(1.71).
Note that they are generation diagonal.

1.6 Axion Quality Problem

In Sec. 1.4.2 the axion potential has been derived. The striking feature of
the model is that the of QCD dynamics will drive the value of θ̄ to zero
in a natural way, given that the periodic potential has a minimum for that
value, solving the strong CP problem. For a particular choice of charges the
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potential for small θ̄ can be take to be

VQCD(θ̄) = (mi
a)

2f 2
PQ(1− cos θ̄), (1.111)

where the θ̄ parameter and the axion field a can be considered interchangable.
For the model to be consistent the vacuum should be stable as one goes to the
UV. It can be argued that higher–dimensional symmetry–violating operators
expected to be induced at the Planck scale by quantum–gravity effects will
spoil the Peccei–Quinn solution [36–40]. Indeed it is believed that Planck–
scale physics will eventually violate all the global symmetries. As an example
a black–hole scattering process with a global charge in the initial state will not
conserve it due to Hawking evaporation [41]. At low–energies, with respect to
the Planck mass, these effects are described by higher–dimensional operators
in an effective field theory of light modes. These effects will in general favour
a solution θ̄ ̸= 0. To avoid reintroducing a non–zero CP violating parameter
the Quantum Gravity effects must be strongly suppressed with respect to the
QCD ones driving θ̄ to zero. To solve this issue one has to consider either:
(1) exponentially small couplings for the symmetry–breaking operators at
the Planck scale or (2) the higher–dimensional potential coincidentally also
has a minimum for θ̄ = 0.

Consider a potential for the U(1)PQ scalar field of the form

V0(Φ) = λ
(︂
|Φ|2 − f 2

a

2

)︂2
. (1.112)

Thanks to dimensional analysis one can asses the scale dependence of higher
dimensional operators. These must be suppressed by positive powers of the
Planck mass. Indeed a general symmetry–breaking operator of dimension
2m+ n with PQ charge n will have the form:

Vg(Φ) =
g

M2m+n−4
Pl

|Φ|2mΦn + h.c.+ c, (1.113)

where g = |g|eiδ is a complex coupling with |g| not necessarily small and c a
constant chosen so that V has a minimum in zero. The complex phase δ does
not need to be generated from additional CP violation induced by Quantum
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Gravitational effects but can be simply come from the chiral rotation in the
mass sector δ ∝ arg det(M). After spontaneous symmetry breaking this term
generates a low–energy contribution:

Vg(θ̄) = (mg
a)

2f 2
a

(︃
1− cos

(︃
n
a

fa
+ δ

)︃)︃
, (1.114)

where the gravitationally induced axion mass is

(mg
a)

2 = |g|2M2
Pl

(︃
fa√
2MPl

)︃2m+n−2

. (1.115)

The total potential will then be

V (a) = f 2
a

[︃
(mg

a)
2

(︃
1− cos

(︃
n
a

fa
+ δ

)︃)︃
+ (mi

a)
2

(︃
1− cos

a

fa

)︃]︃
. (1.116)

Some nuances are not explicitly discussed, e.g. δ should be replaced by δ̄

after the field–dependent chiral transformation to put aGG̃ to zero, and
the coupling g has to run down from the Planck scale gaining a factor
logMPl/ma ≈ 50 that will not be important in what follows. To solve the
strong CP–problem the minimum of the potential in Eq.(1.116) must be for
a ≤ 10−10. To satisfy this bound, put n = 1 for simplicity, one must have

| sin δ|√
1 + r2 + 2r cos δ

≲ 10−10, (1.117)

where r ≡ (mi
a)

2/(mg
a)

2. Therefore, if sin δ is of order one, r is pushed up
to be of order1010. If we demand that the coupling constant |g| < 10−2, and
assumes a symmetry–breaking operator of dimension 5 we find that in order
to consistently solve the strong CP–problem we must have

fa ≲ 10GeV, (1.118)

which corresponds to ma ≥ 100KeV. Axions with such masses coming purely
from the anomaly and strong–interaction physics have been ruled out by
laboratory experiments [42,43]. Since in this regime mg

a ≪ mi
a, the standard
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phenomenology of the axion will remain essentially unaltered by the Planck–
scale physics discussed here and as such the limits extracted from experiments
are perfectly valid. The whole mechanism described essentially forces the
axion theory space to be small and already disallowed by observation. Of
course one can make the couplings of the symmetry–violating operator to be
exponentially small. Consider the Peccei–Quinn mechanism for mi

a ∼ 10−5

eV, corresponding to fPQ ∼ 1012 GeV. Such a symmetry–breaking scale, the
coupling of a dimension–5 symmetry–breaking operator induced by Planck–
scale physics must be

|g| ≲ 10−55. (1.119)

So one exchanges a fine–tuning problem on θ̄ for a fine–tuning problem at
the Planck scale.

The lesson here is that PQ symmetry is quite fragile under the effects
of higher dimensional symmetry–breaking operators, and so it could hope-
fully arise as an accidental symmetry due to a combination of fundamental
principles. In this way the effects of some of the first irrelevant operator
might simply be zero, as it happens for B number violating operators at
d ≤ 5. Without substantial modifications the level of “accidental cancella-
tion” of higher–dimensional operators is concerning as it should be of the
order of d ∼ 10. Many different mechanisms have been put forth to amend
this problematic aspect of the theory of axion.

• Low fa. Lowering the PQ scale to fa ≥ 103 GeV requires the disap-
pearance only of the dim–5 symmetry–breaking operator to preserve a
small enough value of

⟨︁
θ̄
⟩︁
. In this set up the WW model works quite

well as the first gauge–invariant PQ–breaking operator is a dimension
6 one, given by (HuHd)

3. Super–heavy axion models can escape most
of the astrophysical constraints modyfing the QCD relation between
ma and the PQ scale fa. These models can have fa of the order of tens
of TeVs.

• Gauge protection. New local symmetries can lead to an accidental
PQ symmetry protected from higher-order PQ breaking operators, up
to some fixed order. One can look into discrete symmetries, Abelian
and non–Abelian etc... [37, 44–49]
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• Accidentality. It should not be ruled out the case of an accidental
high quality symmetry, similar to the B number violating operators,
but there must be some theoretical mechanism to drive this case.

1.6.1 Axion–like particles
The theory and phenomenology of axions is to a large extent shared with
any other pNGBs which have a low mass and very weak couplings coming
from a spontaneously broken symmetry at very high energy scales. These
Axion–Like particles are light scalars or pesudo–scalar fields arising from
spontaneously broken symmetries at some scale fa, much like the axion, but
are not necessarily tied to the strong CP problem and will not get their masses
from QCD effects but from some other dynamics that break explicitly the
global symmetry. They emerge in GUTs or String Theory models via the
breaking of accidental global U(1) symmetries that appear as low energy
remnants of exact symmetries of the high energy theory. ALPs tipically,
but are not exclusively, emerge as additional pNGBs perpendicular in field
space to the spin–0 particle that couples to the topological charge density in
QCD GG̃, and drives θ̄ to zero. This aspects allows them to be “decoupled”
from some of the required features to solve the strong CP problem, such
as the anti proportionality between their mass and the symmetry breaking
scale. The parameters appearing in an ALP Lagrangian can be taken to be
independent offering an appealing quality in terms of their phenomenological
viability. Nonetheless the pNGBs nature gives some constraints on the form
of the Lagrangian. Shift symmetry must be imposed on the interactions and
symmetry breaking effects are of the soft kind [50]. In a more pragmatic
sense ALPs will have similar interactions and effective Lagrangians as the
ones discussed for axion fields, namely anomalous couplings to gauge fields
and derivative ones to fermions but with the added advantage of having in
principle independent parameters.
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Chapter 2

Effective Lagrangians For
Axions and ALPs

The literature on ALPs searches at colliders at and fixed-target experiments
is rapidly growing and the interested reader is refferred to the seminal papers
[51–58]. Inspired by these works the following Chapter is devoted to the study
of the Effective Field Theory (EFT) of the SM with a new light pseudo–scalar-
Nambu-Goldstone-Boson gauge singlet valid up to the cutoff scale ∼ fa and
truncated at dimension–5. The theory is in the spontaneously broken phase
of a high scale U(1), realised at these energies by the flat direction in the
potential for the Goldstone boson a. This symmetry is also explicitly broken
by the mass term and by the anomalous couplings to the gauge–vectors. The
high scale U(1), the Peccei–Quinn symmetry, can be made anomalous by
construction to solve the Strong CP problem, although this is not necessary
in general to the study of ALP phenomenology. The implementation of the
Effective Theory at this stage is similar to the approach of a SMEFT where
all the model dependence is contained in the higher–dimensional operator’s
coefficients. The leading order correction to the renormalizable Lagrangian is
considered, and so the Laurent effective expansion in the cutoff is truncated
at order f−1

a . From now and in the rest of the manuscript ALPs and axions
will be called ALPs collectively, unless explicitly stated.

43
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2.1 Effective Lagrangian at the UV scale

An Effective Theory is formally defined by the model’s field content and
the symmetry group one imposes onto the theory. In the case of the ALP
Standard Model EFT, field content and gauge–symmetries are inherited from
the SM with the addition of a pseudo–scalar gauge singlet endowed with
the shift symmetry, a → a + c, anomalously broken by the gauge boson’s
couplings of the notorious aXX̃ form, and softly by a mass term. Global
symmetries are to be considered accidental and non–renormalizable operator
might break them. In any practical application the EFT’s Laurent series has
to be truncated at some order and a non–redundant complete operator basis
must be chosen. The word chosen here is critical in the sense that typically
more than a single basis will have these characteristics and a sensible choice
can produce a simpler phenomenological study of the theory.

In this manuscript the Lagrangian will always be considered at NLO in the
inverse fa expansion, i.e. only non–renormalizable operators of dimension–
5 are considered, indeed any operator of dimension higher than 5 will be
suppressed by additional powers of f−1

a . The question of the choice of basis
is instead more involved and requires some attention. A recent review on
the subject, including the complete one–loop corrections of the theory, can
be found in [28, 59–61]. To start, consider the complete and non-redundant
NLO ALP effective Lagrangian [59] defined below the UV scale fa defined
by

LALP = LSM + LCPa + LCPVa . (2.1)

where all the additional CP violating effects are induced by LCPVa . The SM
Lagrangian is

LSM = −1

4
Wα
µνW

αµν − 1

4
BµνB

µν − 1

4
Ga
µνG

aµν + i
∑︂
f

ψ̄f /Dψf + |DµH|† |DµH|

−
[︂
Q̄LYdHdR + Q̄LYuH̃uR + L̄LYeHeR + h.c.

]︂
− V (H†H),

(2.2)

where the Y’s are the SM Yukawa matrices and ψf is the set of chiral fermion
fields {QL, dR, uR, LL, eR} representing 3–dimensional flavor space vectors. H
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is the Higgs doublet, V is its potential and Xaµν are the field strengths asso-
ciated to vectors bosons of the gauge group G = SU(3)c ⊗ SU(2)L ⊗ U(1)Y ,
as customarily defined. Here and in the rest of the manuscript neutrinos are
considered massless and no right–handed neutrino is introduced.

The ALP–fermion operators of mass dimension 5 that preserve the local
symmetry group G and the global Peccei–Quinn symmetry U(1)PQ (here
realised as the shift–symmetry a→ a+ c) are:

Ou ≡
∂µa

fa
(ūRγ

µuR), Od ≡
∂µa

fa
(d̄Rγ

µdR), OQ ≡
∂µa

fa
(Q̄Lγ

µQL),

OL ≡
∂µa

fa
(L̄Lγ

µLL), Oe ≡
∂µa

fa
(ēRγ

µeR),

(2.3)

where the matrix indices are left implicit. In particular all of these operators
are matrices in flavor space and the flavor indices are realised as

Oij
L =

∂µa

fa
Q̄
i
Lγ

µQj
L.

The most general mixed (including bosonic and fermionic couplings) CP
conserving Lagrangian [28] is non unique and depends on the choice of basis.
Many different complete and non redundant bases have been discussed in [59].
A particular choice of basis for the CP conserving Lagrangian, truncated at
the first non trivial order in the Laurent expansion, of the EFT is

LCPa =
1

2
(∂µa)

2 +
m2
a

2
a2 + cW

α2

4π
OW + cB

α1

4π
OB + cG

αs
4π
OG

+
∑︂

f=u,d,e

cfOf +
∑︂
f=Q,L

cfÕf ,
(2.4)

where OW = − a
fa
Wα
µνW̃

αµν
, OB = − a

fa
BµνB̃

µν
, and OG = − a

fa
Ga
µνG̃

aµν are
the shift anomalous gauge couplings, note that in the previous chapter cG was
set to one, as customary when one considers QCD–axions. Nonetheless one
can recover it either by redefining the PQ scale as fa → fa/cG, or e.g. for the
DSFZ-I model by the equation cG

fa
= −N

va
. The next parameter to discuss is

the hermitian flavor matrix cf . Under the CP conserving assumption cf must
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be taken symmetric. The matrix product in Eq.(2.4) is defined element by
element and not as a typical row by column product. Finally in Eq.(2.4) there
is a separation between R–handed operators and L–handed ones. Indeed the
terms indicated by Õf for f = Q,L, involve only L–handed fermionic fields.
The tilde operators are defined to avoid redundancies and are:

ÕL = OL − diag{OL}, ÕQ = OQ − δ11diag{OQ}. (2.5)

In ÕL the diagonal is cancelled while for ÕQ only the element 11 is set to zero.
In general the model described in Eq.(2.4) has a total number of parameters
equal to

3(vectors) + 2(ma, fa) + 5× par(cf )−N (2.6)

where N is the number of redundancies and par(cf ) is the number of real
parameters contained in a single matrix cf . The cf ’s are hermitian and as
such they can be parametrised as

cf = a+ ib, (2.7)

where a is symmetric while b is symmetric and traceless. For a generic num-
ber of flavors ng the dimensions of a and b are ng(ng+1)/2 and ng(ng−1)/2

respectively; adding the CP conserving condition cf = cTf results in b = 0.

The redundancies are taken care by the elimination of the 4 operators dis-
cussed in Eq.(2.5). The total number of CP conserving independent pa-
rameters in the model of Eq.(2.4) is 31. The redundancies associated to the
operators in Eq.(2.3) are related to classical global symmetries of baryon and
lepton family number conservation, these are to be discussed in Sec.2.1.2.

2.1.1 Bases and Field Reparametrizations
The issue of bases and field redefinitions in Effective Field Theories are of
course tied to one another and are a rather delicate subject to discuss. The
equivalence of different choices has been proven in the Equivalence Theo-
rem [62], so the issue of finding a “complete basis”, intended as a minimal
set of gauge–invariant operators closed under renormalization, is an issue of
convenience. Indeed in principle there are no difficulties in considering a
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redundant basis but complete ones will have a reduced number of Wilson
coefficients and are in general simpler to work with. The important lesson of
the theorem is that the local field dependent transformation will modify the
theory’s Lagrangian but leave the physical quantities, i.e. the S–matrix, in-
variant. The theorem states that any transformation φ→ ϕ+ f(φ) between
regulated theories, i.e. without divergences, will not modify the S–matrix
elements. This implies that the specific form of an interaction term in the
Lagrangian can be changed and its physical effect will be distributed else-
where. These field reparametrizations can be used to modify the interactions
term of the Lagrangian, to rearrange or to cancel certain contributions, to
facilitate calculations etc... It is not possible however to render a free–theory
an interacting one or to de–interact completly a theory [63].

As a relevant example consider a unitary ALP dependent transforma-
tion of the Higgs doublet H → Heic

a(x)
fa , under which a generic dimension–5

Effective Lagrangian

LSM(HH
†) +Oa(H,H†), (2.8)

where Oa(H,H†) is a generic higher dimensional operator depending on the
Higgs field unrelated to the operators in Eq.(2.4), will change at linear order
in 1

fa
after the expansion

LSM +Oa + ic
δLSM

δH
H
a(x)

fa
+ ic

a(x)

fa

δO
δH

H + . . . , (2.9)

where the dots are the equivalent term due to the change in H† and any
eventual anomalous effect. The polynomial nature of the Lagrangian pro-
tects gauge invariance and the Equivalence Theorem assures that the physics
description is the same. Consider the ALP–dependent fields redefinitions

ψf → exp

(︃
i
a

fa
Qf

)︃
ψf , H → exp

(︃
i
a

fa
QH

)︃
H, (2.10)

where f describes the set of all the chiral fermions in the theory and Qf ’s
are tensors in flavor space. The field redefinitions in Eq.(2.10) must be uni-
tary, and as such the rotation parameters QH and Qf are real and hermitian
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respectively, it turns out that Qf has to be symmetric to preserve the hermi-
tianity of the Lagrangian. Once these hypotheses are verified any Lagrangian
obtained from the original via the transformation of Eq.(2.4) will have a dif-
ferent form of interaction but will describe the same physical results.

2.1.2 Redundancies and Operators Identities

Sec.2.1.1 tackles the reparametrization freedom of Effective Field Theory and
its consequences. The most notable one is the presence of equivalent repre-
sentations of the theory with an inequivalent number of parameters, or rather
the existence of a class of equivalent Lagrangians by field redefinitions. The
ones that have the minimum number of parameters and are at the same time
closed under renormalization have a special role, they posses a “complete
basis”. In principle when discussing an EFT’s Lagrangian one should in-
clude all possible terms allowed by the symmetry of the model, it is however
clear [28] that there are gauge and shift invariant operators not included in
Eqs.(2.4). These are the three left–handed leptonic operators ∂µa

fa
LiLγ

µLiL,

the left–handed quark operator ∂µa
fa
Q1
LγµQ

1
L and finally the ALP–Higgs in-

teraction
OaH =

∂µa

fa

(︂
H†←→D µH

)︂
. (2.11)

These five gauge and shift invariant operators are not included in Eq.(2.4)
because of their redundancy. But why are these redundant? What is the
formal procedure to remove them starting from a general EFT Lagrangian?
To answer these questions consider the rotations in Eq.(2.10) and their effect
on LSM to first order in the Laurent expansion parameter f−1

a . The net shift
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for the most general rotation is [59]

∆LSM = −QHOaH −
∑︂
f

QfOf +
[︁
(QLYe −YeQe −QHYe)OeH

+ (QQYd −YdQd −QHYd)OdH + (QQYu −YuQu +QHYu)OdH + h.c.
]︁

+
g′2

32π2
OB Tr

[︃
1

3
QQ −

8

3
Qu −

2

3
Qd +QL − 2Qe

]︃
+

g2

32π2
OW Tr[3QQ +QL]

+
g2s

32π2
OGTr[2QQ −Qu −Qd],

(2.12)

where the L and R pedices have been abandoned to lighten the notation and
the operators OeH , OuH and OdH are defined as

OeH = i
a

fa
L̄LHeR, OuH = i

a

fa
Q̄LH̃uR, OdH = i

a

fa
Q̄LHdR (2.13)

Remember that the Lagrangian shift obtained in Eq.(2.12) due to the trans-
formations of Eq.(2.10) comes entirely from LSM while LCP

a is conserved. The
first two terms in Eq.(2.12) come from the kinetic term shift of the Higgs
field and the fermions, respectively. The three terms proportional to OeH ,

OuH and OdH are a consequence of the change of Yukawa interaction terms,
and are sometimes dubbed as chirality–flipping interactions. Finally the last
three operators are generated thanks to the anomalous contributions of the
axial transformations performed. It is easy to recover these contributions
by using Eq.(1.30), where the anomalous current carries the flavor charges
T

(b)
A = {Qf , QH} are given by Eq.(2.10) while the relevant gauge charges T (a)

V

are the well known ones of the gauge group G. The trace is intended over
the flavor space indices. Finally products of matrices are to be performed
following the usual internal product, while product of matrices and operators
are instead defined as

MO = MijOij. (2.14)

At this point one is free to take any value for Qf or QH in Eq.(2.12) and in
doing so it is possible to cancel the redundant operators that appear in LCP

a .

Field dependent rotations allows one to modify the parameters regulating
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the interactions, and in doing so one can choose a particular form of the
Lagrangian without modifying the physics described by the theory. So in
order to remove a contribution in the Lagrangian of the form caHOaH one
is instructed to rotate the Higgs field by a QH = caH amount. The price of
removing the Higgs–ALP interaction is in the introduction of the chirality
flipping operators. In Eq.(2.12) the chirality flipping operators proportional
to QH introduce the identity

OaH = YuOuH −YdOdH −YeOeH + h.c.. (2.15)

The bosonic nature of OaH disallows for any additional Flavor Violation
to be induced by it. As such the flavor structure of the chirality flipping
interactions is determined by the Standard Model’s flavor structure, i.e. by
the Yukawa matrices. At this point one can fix the quantities Qf to exactly
cancel the coefficients of OeH ,OdH and OuH , effectively trading OaH for the
chirality conserving operators of Eq.(2.3). Indeed if one takes only R handed
fields, the coefficients of the chirality flipping operators can be eliminated by
the choice Qd = Qe = −Qu = caH1I. This proves that the operator OaH was
always a redundant one as plugging this choice of parameters in Eq.(2.12)
results in the condition

OaH = Tr[Oe +Od −Ou]. (2.16)

Note that in this particular case the anomalous contributions cancel exactly
but will not be true for other choices of Qf .

Collecting all the terms proportional to Qf in Eq.(2.12) it is possible
to obtain relations between the fermionic operators. Writing flavor indices
explicitly one gets

Oij
Q =

[︁
Oik
dH(Yd)jk+Oik

uH(Yu)jk + (O†)kjdH(Y
†
d)ki + (O†)kjuH(Y

†
u)ki
]︁

+ δij
[︃
g′2

96π2
OB +

3g2

32π2
OW +

g2s
16π2

OG

]︃
,

(2.17)
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Oij
u =

[︁
−Okj

uH(Yu)ki−(O†)ikuH(Y
†
u)jk

]︁
− δij

[︃
g′2

12π2
OB +

g2s
32π2

OG

]︃
, (2.18)

Oij
d =

[︁
−Okj

dH(Yd)ki−(O†)ikdH(Y
†
d)jk
]︁
− δij

[︃
g′2

48π2
OB +

g2s
32π2

OG

]︃
, (2.19)

Oij
e =

[︁
−Okj

eH(Ye)ki−(O†)ikeH(Y
†
e)jk
]︁
− δij g

′2

16π2
OB, (2.20)

Oij
L =

[︁
Oik
eH(Ye)jk+(O†)kjeH(Y

†
e)ki
]︁
+ δij

[︃
g′2

32π2
OB +

g2

32π2
OW

]︃
, (2.21)

where the sum over k is understood. Now consider the sum of Eq.(2.17–2.19)
and take the trace of the result. Unpacking the notation one recognizes the
operator built in this way, i.e.

∂µa

fa
JµB = Tr

[︃
OQ +Ou +Od

3

]︃
=

ng
32π2

(g2OW − g′2OB), (2.22)

the ALP–baryonic current coupling. Finally take the diagonal part of the
sum of Eq.(2.20–2.21). Once more explicitly writing the indices one obtains

∂µa

fa
JµLi

= [OL +Oe]ii =
1

32π2
(g2OW − g′2OB), (2.23)

the ALP–lepton current couplings. The relations in Eqs.(2.22–2.23) provide
one constraint on the diagonal elements of quark currents, and ng constraints
on the diagonal elements of leptonic–currents operator. As such a single
diagonal operator in the quark currents becomes redundant while ng for
leptonic currents. The basis presented in Sec.2.1 has these four redundant
operator removed via the definitions of the ÕL,Q operators.
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2.2 Alternative Bases
The ALP–dependent field redefintions of Eq.(2.10) induce, to order (1/f−1

a ),

the transformation laws in Eq.(2.12). This freedom allows one to change the
Lagrangian and the specific form of the interactions. As such the Lagrangian
LCP
a is not uniquely defined by Eq.(2.4) but rather changes with different

choices of a basis. Any basis is fine as long as the total number of independent
parameters is consistently maintained. A valid option is to include all the
possible operators made out of left–handed fields, including all the diagonal
couplings. To maintain the total number of parameters unchanged one would
have to cancel all the right–handed flavor diagonal couplings in the leptonic
sector and one of the flavor diagonal coupling of right–handed quark currents.

As shown in Eqs.(2.17–2.21) one can trade shift–invariant fermionic op-
erators with a combination of chirality flipping operators and anomalous
ones. Chirality flipping operators are of course not invariant per se under
the required shift symmetry a → a + c. Only in some particular cases the
chirality–flip couplings are tradable for generic chirality–preserving ones (plus
appropriate redefinitions of the anomalous couplings). This happens in Min-
imal Flavor Violation (MFV) Effective Field Theory models where all the
flavor violation stems from the Standard Model Yukawa matrices, where the
chirality–flipping coefficients have to be proportional to the Yukawa Matri-
ces. In general the two descriptions are not equivalent, indeed it is enough
to show that the two description have in general a different number of pa-
rameters. Shift invariant operators have hermitian matrices of coefficients
while chirality-flipping ones have generic ng × ng matrices. In the CP–even
case the number of purely shift invariant fermionic parameters amounts to
ng(5ng+3)/2−1, while for chirality flipping operators the generic number of
parameters is 3n2

g. In practice any shift–invariant operators can be expressed
as a sum of chirality-flipping ones and anomalous ones, but the relation is
not invertible in general.

2.2.1 Anomalous Operators and Anomalous Currents
Naively, considering only classical symmetry invariance, one might expect
to be able to express all the shift–invariance of the theory via the fermionic



2.2. ALTERNATIVE BASES 53

chirality conserving operators. It should be clear that the anomalous operator
are instead required by the quantum effects. This fact must be reflected in
the transformation law of Eq.(2.12) given that a shift can not remove all the
anomalous couplings leaving only the classical chirality conserving operators.
To cancel the anomalous coupling the rotation parameters must satisfy

g′2

32π2
Tr

[︃
1

3
QQ −

8

3
Qu −

2

3
Qd +QL − 2Qe

]︃
= −cB

g2

32π2
Tr[3QQ +QL] = −cW

g2s
32π2

Tr[2QQ −Qu −Qd] = −cG.

(2.24)

These can be solved by the Qf but chirality-flipping operators are introduced
in doing so. To get rid of them one should solve simultaneously the three
conditions in Eq.(2.24) along with the system

QQYu −YuQu = 0,

QQYd −YdQd = 0,

QLYe −YeQe = 0.

(2.25)

It turns out that is is not possible to satisfy the conditions in Eqs.(2.24)–(2.25).
Indeed one can get rid of the anomalous operators but quantum induced
chirality-flipping terms must appear along with classical shift invariant fermionic
operators. A solution for the anomalous operators in terms of fermionic ones
can be obtained as long as one relaxes two of the conditions appearing in
Eq.(2.25). One example is

OB = − 16π2

g′2ng
[TrOe + (YeOeH + h.c.)],

OW =
32π2

g2ng

[︃
Tr

(︃
OL +

1

2
Oe

)︃
−
(︃
Ye

2
OeH + h.c.

)︃]︃
,

OG =
32π2

g2sng

[︃
Tr

(︃
−Od +

1

3
Oe

)︃
−
(︃
Yd

2
OdH −

1

3
OeH + h.c.

)︃]︃
.

(2.26)
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It is important to note that the combination g2OW − g′2OB corresponds to
the results in Eq.(2.22–2.23). Indeed consider the combinations

∂µa

fa
(JµB −

∑︂
i

JµLi
) = 0 (2.27)

and
∂µa

fa
(JµB +

∑︂
i

JµLi
) =

ng
16π2

(g2OW − g′2OB). (2.28)

These last two equations corresponds to the conservation of the U(1)B−L

quantum number and to the non–conservation of the global anomaly associ-
ated to U(1)B+L respectively.

2.3 Phenomenological parameters

The ALP EFT discussed in terms of SU(3)c × SU(2)L × U(1)Y gauge in-
variant operators leads to multiple experimental signals. The ultimate goal
is to detect or to constraint from data the set of fundamental independent
variables

{cW , cB, cG, cf},

which are to be treated as free Lagrangian parameters. The three anomalous
gauge couplings OW , OB and OG induce five distinct physical interactions
with gluons, photons, W and Z bosons. These are typically codified as

La ⊃− cG
αs
4π

a

fa
Ga
µνG̃

aµν − cγ
α

4π

a

fa
FµνF̃

aµν − cγZ
α

2πswcw

a

fa
FµνZ̃

µν

− cZ
α

4πs2wc
2
w

a

fa
ZµνZ̃

µν − cW
α

2πs2w

a

fa
W+
µνW̃

−µν
,

(2.29)

where sw and cw are the sine and cosine of the Weinberg mixing angle re-
spectively, cw is defined at tree-level by

cw =
MW

MZ

.
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Thus the electroweak sector generates four interactions from the two anoma-
lous couplings

{cW , cB} → {cγ, cZ , cW , cγZ}, (2.30)

that are in principle independent. This fact allows one to overconstrain
the electroweak gauge sector of the parameter space by imposing internal
consistency.

In all cases the fermionic sector is instead described directly by the EFT
coupling matrices cf in a complete basis. For practical purposes one can
define vector and axial couplings between the ALP and the fermionic current
instead of chiral ones. To do so consider only quarks for simplicity and write
everything in the vector/axial-vector form

LCP
a ⊃

∂µa

2fa

(︁
ūγµ(1I+ γ5)cuu+ d̄γµ(1I+ γ5)cdd+ Q̄γµ(1I− γ5)cQQ

)︁
=

=
∂µa

2fa

(︁
Q̄γµCVQ+ Q̄γµγ5CAQ),

(2.31)

where CV and CA are defined as

CV = (cu ⊕ cd) + cQ, CA = (cu ⊕ cd)− cQ, (2.32)

where the direct sum is the same as the one used in Eq.(2.31). The diagonal
part of CV is zero because of vector current conservation, while the diagonal
part of CA can be expressed in a basis independent way as

cu ≡ (cu − cQ)
11, cc ≡ (cu − cQ)

22, ct ≡ (cu − cQ)
33,

cd ≡ (cd −V†cQV)11, cs ≡ (cd −V†cQV)22, cb ≡ (cd −V†cQV)33,

ce ≡ (ce − cL)
11, cµ ≡ (ce − cL)

22, cτ ≡ (ce − cL)
33,

(2.33)

where V is the CKM mixing matrix. If one takes the basis discussed in
Sec.2.1 the notation is simpler given that c11Q = ci=jL = 0.
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2.3.1 Minimal Flavor Violation

It is important to discuss what exactly Minimal Flavor Violation (MFV)
means and to some extent what it entails, to do so here we follow the deriva-
tion found in [60]. The MFV Ansatz commands that the flavor violation
stems from the Standard Model parameters and from nothing else. These
means that any flavor–breaking hierarchical structure in the ALP EFT model
has to come from the Yukawa matrices [64]. Under this hypothesis the ma-
trices cf can be expanded to first order in the spurion parameter ϵ as

cQ = c0Q1I+ ϵ
(︂
c1QYuY

†
u + c2QYdY

†
d

)︂
+O(ϵ2),

cu = c0u1I+ ϵc1uY
†
uYu +O(ϵ2),

cd = c0d1I+ ϵc1dY
†
dYd +O(ϵ2).

(2.34)

Similar results are valid for the leptonic sector. To study the effects of the
MFV Ansatz it is instructive to look at the mass–basis. In this basis the
change to the parameter matrices are better expressed by separating up and
down fields in QL. One has

LCP
a ⊃

∂µa

fa
(ŪLγµcQUL + D̄LγµcQDL + ūRγµcuuR + d̄RγµcddR) =

∂µa

fa
(ŪLγµcQUL + D̄LγµV

†cQVDL + ūRγµcuuR + d̄RγµcddR),

(2.35)

where between the first and second line one performs a transformation to
basis for which all the transition matrices are the identity except for the one
associated to DL, i.e. UL

D = V, here Yu is diagonal and Ydiag
d = VYd, where

once again V indicates the CKM matrix. At this stage one needs to separate
up and down coupling matrices for the L–handed fields, sometimes in the
literature these matrices have been called KU and KD. In the case discussed
here KU = cQ, while KD = V†cQV. Finally Eq.(2.34) in this basis with the
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addition of KU becomes

cQ = c0Q1I+ ϵ
(︂
c1Q(Y

diag
u )2 + c2QV(Ydiag

d )2V†
)︂
+O(ϵ2),

KD = c0Q1I+ ϵ
(︂
c1QV

†(Ydiag
u )2V + c2Q(Y

diag
d )2

)︂
+O(ϵ2),

cu = c0u1I+ ϵc1u(Y
diag
u )2 +O(ϵ2),

cd = c0d1I+ ϵc1dV
†(Ydiag

d )2V +O(ϵ2).

(2.36)

In Eq.(2.36) it is clear that any flavor violating effect comes from Standard
Model parameters, in particular from products of Yukawas with elements
of the CKM matrix. Finally one can get a good approximation by taking
Ydiag
d = 0 and Ydiag

u = diag(0, 0, yt). This implies that any flavor violating
effect will be induced by KD, and it will be proportional to yt times elements
of the CKM matrix:

cQ = c0Q1I+ y2t ϵc
1
Q +O(ϵ2),

(KD)ij = c0Qδij + y2t ϵV3jV
∗
3ic

1
Q +O(ϵ2),

cu = c0u1I+ y2t ϵc
1
u +O(ϵ2),

cd = c0d1I+O(ϵ2).

(2.37)

2.4 Renormalization Group Flow
The Effective Field Theory discussed in Sec.2.1 is well defined in the energy
range contained between fa and v. At energies close to fa the EFT approach
breaks down and all the terms in the Laurent series contribute the same
amount. On the other hand at energies below the electroweak phase transi-
tions the effective degrees of freedom describing the interactions are different
than the ones defined at high energies. The obvious example is given by the
Higgs field effectively disappearing from the spectrum below the electroweak
scale. If the energies of experiments are well below the masses of the heavy
bosons mediating the weak interaction the theory can be simplified even fur-
ther by removing the non–propagating particles with a second expansion in
inverse mass scales given by the masses of the weak vector bosons.

In considering processes at different scales than the ones at which the
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theory is defined quantum effects will induce a trajectory in theory space for
the parameters of the Lagrangian. These corrections to the classical scaling
will drive the solution away from the particular perturbative fixed point as
the separation gets bigger. In the case of the ALP Effective Field Theory a
combination of threshold effects and operator running play a role in the low–
energy observables measured in experiments. This has recently motivated
a number of articles on the subject of Renormalization Group flow and one
loop corrections to the ALP coupling [59, 60, 65] that are discussed, in the
needed measure, below.

2.4.1 Non-renormalization theorems

It is well known [66] that CP–odd anomalous gauge couplings within the
SM, i.e. Lagrangian terms of the generic form αXX̃ where X is a generic
gauge field strength and α its fine structure constant, are not multiplicatively
renormalized at any order in perturbation theory. The reason is their topo-
logical character, discussedd in Chapter 1, which ensures anomaly matching
conditions. The combinations α/2πXX̃ appear in the Lagrangian multiplied
by “θ” angles which are periodic variables with periodicity of 2π, and can-
not thus be multiplicatively renormalized. In the case of the ALP–gauge
anomalous couplings, the ratio a

fa
plays the role of the effective angle. The

non-renormalization theorems thus apply as well to ALP couplings of the
form α/2πXX̃, where 2πfa is the periodicity of a. In consequence, no UV
divergent terms can result from corrections to the combinations α1/2πOW ,

α2/2πOB and αs/2πOG, this result has been discussed in [65]. This simply
means that

βcB =
d

d log µ
cB = 0, βcW =

d

d log µ
cW = 0, βcG =

d

d log µ
cG = 0.

(2.38)
Matching effects to the ALP-gluon and ALP-photon couplings cG and cγ

could in principle arise from loop graphs containing top quarks and heavy
electroweak gauge bosons. The corresponding effects were calculated in [67]
and it was shown that for a light ALP these effects decouple like m2

a/m
2
t and

m2
a/m

2
W , respectively. For a light ALP far below the weak scale there are
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thus no matching contributions to the effective low-energy Lagrangian

∆cG = 0, ∆cγ = 0. (2.39)

2.4.2 Renormalization of Fermionic couplings

The case of fermionic couplings is much more involved than that of the
anomalous ones. The beta functions for the ALP–fermion couplings have
been obtained using a variety of bases [60, 65, 68] and a complete one–
loop analysis including finite effects is present for generation diagonal cou-
plings only [59]. While the beta functions and matching have been obtained
with in a redundant basis in [60]. The relevant discussion, at least for the
phenomenological analysis presented in this manuscript, is the one regard-
ing top–induced flavor changing effects. As discussed in [60, 67] these are
the result of top–enhanced penguin type diagrams, and can be mapped, in
the leading log approximation, onto a low–energy flavor violating effective
Lagrangian [69]. This effect is a NLO correction to the 3–point function⟨︂
∂µa

fa
ψ̄iγ

µγ5ψj

⟩︂
mostly relevant for external down–type quarks. Assuming

a large enough separation of scales, fa ≫ v, one can use the leading log
approximation to evaluate the diagram:

a
W ≃− qµ

8fa

GF√
2
Q̄iγ

µγ5

(︄∑︂
k

V ∗
kiVkjC

A
kkm

2
k log

(︃
fa
mk

)︃2
)︄
Qj

(2.40)

where the sum runs over the internal loop quarks and the extra mass term is
from a mass insertion. The dimensionless quantity regulating the magnitude
of the contribution is GFm

2
kV

∗
kiVkj log

(︂
fa
mk

)︂2
, and as such a combination of

mass and Cabibbo suppression will determine the strength of this effect. One
should expect the top–quark to dominate the loop contribution, nonetheless
some interesting phenomenology is induced by internal down–type quarks
too. A through analysis is presented in Sec.5.1 and in Tab.5.1. Consistently
with the literature on ALP–fermion phenomenology and the discussion pre-



60CHAPTER 2. EFFECTIVE LAGRANGIANS FOR AXIONS AND ALPS

sented here, the parameters regulating flavor changing neutral currents me-
diated by the ALP are defined at low energy by the effective Lagrangian

δLaeff = −cij
∂µa

fa
d̄iγ

µPLdj + h.c. (2.41)

with an analogue for external up–type quarks. The parameter cij is typically
defined by equating Eqs.(2.40) and (2.41) to each other.

2.5 Phenomenological parameters below the
electroweak scale

It is necessary to choose a complete set of phenomenologically viable parame-
ters, similarly to what have been discussed in Sec.2.3, viable at low–energies.
Indeed Eq.(2.31) is a perfectly good starting point. As discussed in Sec.2.4.1
the gauge anomalous parameters do not run nor receive matching contribu-
tion from integrating out the heavy chiral fermion fields tL,R neither from
the heavy gauge bosons W and Z. The fermionic case, discussed in Sec.2.4.2
is different and requires some more careful considerations. A perfectly fine
way to discuss the low–energy theory is to define the couplings and the pa-
rameters that one measures at the scale at which one measures them. This
eliminates the issue of quantum–induced running and the matching proce-
dure altogether. As a relevant example consider the Lagrangian in Eq.(2.31),
a complete set of couplings is {cγ, cG,CV ,CA}. Of course in Eq.(2.31) the top
field t is still considered dynamical. To simplify the theory further consider
the construction of Sec.2.3.1 along with the discussion in Sec.2.4.2, i.e. con-
sider a Minimal Flavor Violation Ansatz for the theory. This will ensure that
all the flavor violation is proportional to the top Yukawa times a combination
of elements of the CKM. The Lagrangian considered in the phenomenological
analysis of Chapters 4 and 5 is defined as

LCP
a =− cG

αs
4π

a

fa
Ga
µνG̃

aµν − cγ
α

4π

a

fa
FµνF̃

aµν

+
∂µa

2fa

(︁
Q̄γµCVQ+ Q̄γµγ5CAQ),

(2.42)
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where CV and CA have been discussed in Sec.2.3 and are to be considered
in the mass basis. Following [69] and Sec.2.4.2 the RG effect is captured in a
logarithm dependence introduced in the down–quarks off–diagonal couplings.

2.5.1 Weak Chiral Lagrangian Couplings

In Sec.1.4.2 we obtained an expression for the Chiral Lagrangian for the
QCD–Axion, the same can be done for ALPs too without changing much.
Following what has been pointed out in a recent paper [61] where the authors
discuss a contribution that has been missed in the literature one can recover
the terms that mediate flavor–changing non-leptonic decays in the Kaonic
sector. The problem arises in the first place if one argues that having no
coupling in the partonic phase between the W bosons and the L–handed
current would yield no coupling in the condensed phase. The reasoning
seems sound at face value but once the fields condense the L and R part are
mixed via the mass term, thus inducing an ALP–meson coupling even when
only the R–handed fermions couple with the ALP in the partonic phase.

The Lagrangian responsable for flavor–changing non-leptonic decays in
s→ d transitions is

Lχ = −4GF√
2
V ∗
udVus

(︂
g8O8 + g

1/2
27 O

1/2
27 + g

3/2
27 O

3/2
27

)︂
(2.43)

where the effective chiral operators are classified according to their transfor-
mation properties under SU(3) and isospin. The SU(3) octet operator O8

mediates weak transitions with isospin change ∆I = 1
2
, while the 27–plet

operators O1/2
27 and O3/2

27 mediate the transitions with ∆I = 1
2
and ∆I = 3

2
,

respectively. These operators can be expressed in terms of products of the
left–handed operators Jaµ , corresponding to the chiral representation of the
chiral quark currents q̄iγµPLqj. One finds that the operators are:

O8 =
∑︂
i

(Ja)3i(J
a)2i,

O1/2
27 =(Ja)32(J

a)11 + (Ja)31(J
a)12 + 2(Ja)32(J

a)22 − 3(Ja)32(J
a)33,

O3/2
27 =(Ja)32(J

a)11 + (Ja)31(J
a)12 − (Ja)32(J

a)22,

(2.44)
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where the contraction over Lorentz indices is implied. The coefficient of the
octet operator |g8| ≈ 5 [70], is larger than the coefficient |g3/227 | by about a
factor of 30, and in the SU(3) symmetry limit the coefficient |g1/227 | is smaller
than |g3/227 | by a factor of 5. The enhancement of the ∆I = 1/2 transition is
known as the ∆I = 1/2 selection rule.

2.6 CP–violating ALP couplings

A surprisingly less explored sector of light pseudo–scalar particles phenomenol-
ogy are the CP–Violating ALP interactions. To introduce CP violation in
the PQ broken phase one is simply required to consider the operators:

LCPV = cCPVγ

α

4π

a

fa
FF + cCPVG

αs
8π

a

fa
GG+ gSafφHf̄f. (2.45)

These terms can introduce new–forces, such as scalar–scalar (monopole–
monopole) and scalar–pseudo-scalar (monopole–dipole) interactions [71]. The
non–relativistic limit of the scalar–scalar interaction in Eq.(2.45) for two nu-
cleons N1 and N2 can be computed as in the inverse Born approximation

V (r) = −
gSN1

gSN2

4πr
e−mar. (2.46)

For light–ALPs the couplings are subject to strong limits, as one can test
precise Newton’s inverse square law. Instead monopole–dipole interactions
can test combination of couplings of the type gSaNgaN , that will be tested
in the ARIADNE and QUAX experiments [72, 73]. It has been shown [74]
that CPV signatures at low–energy require shift and CP symmetry–breaking
effects in the UV. These effects will be inherited to the IR dynamics via some
mechanism that is yet to be specified. An interesting parallel can be found
in mesonic interactions where the π0 is the analogue of the ALP, mediating
CP conserving and CP violating interactions whenever θ ̸= 0.

CP-violating scalar ALP couplings to nucleons are generated whenever
the potential does not exactly relax the ALP VEV to zero. In the presence of
extra sources of CP violation in the UV it is expected that θeff = ⟨a⟩ /fa ̸= 0
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and one can pose a limit on the scalar coupling

gSaN = θeff

(︃
17MeV

fa

)︃
. (2.47)

For a recent discussion on the subject, one is referred to [74, 75].
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Chapter 3

Experimental Searches and
Results

In the following we give a brief review of the different possible Axion and
ALP parameter bounds extracted from experiments focusing on Beam Dump
searches and flavor factories. Nonetheless, as one can see from Fig. 3.1,
the ALP parameter space has been explored in many different ways, often
with non zero overlap. This joint effort of astrophysical, cosmological and
terrestrial probes gives the best chance of exploring the theory space in a
meaningful way. For the sake of completeness a brief discussion is carried
on the primary arguments of the different searches, along with a concise
review of the indirect constraints on axions and ALPs from cosmology and
astrophysics, for an in–depth look at these issues see [77–79]. Typically the
bounds extracted from cosmological searches are often model–dependent and
come from early–universe, inflation, reionisation, dark matter, dark radiation
etc... Axions and ALPs might sometime improve the matching of observation
with theoretical expectations, in this case one might see these results as hints
towards a preferred model. With these highly indirect observations claiming
a discovery is very hard due to the difficulty in establishing observational and
systematic errors. The strategy is to accumulate hints of axion and ALPs
existence from different searches to increase their individual significance.

65
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Figure 3.1: In the figure its presented a review of the overall constraints in
the (ma, gγ) plane. The yellow/orange area represents the allowed parameter
space of QCD–axion models while the rest is the theory space of ALPs. The
bounds are colour coded: black/gray for purely laboratory results, bluish
colors for helioscope experiments or bounds depending on stellar physics,
and greenish for haloscopes or cosmology-dependent arguments. The picture
is taken from the rewiew [76].
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3.1 Cosmological Bounds

ALPs and axions are pseudo–Nambu–Goldstone–Bosons of a symmetry spon-
taneously broken at some high scale fa. At energies higher than that scale
ALPs are nowhere to be found, instead a different degree of freedom, typi-
cally identified with some scalar field S, would be dynamical and evolving.
As the energy of the field S reaches scales that are comparable to fa a phase
transition must occur with the field VEV freezing to some value. Below the
critical temperature of this transition a new degree of freedom, associated
with a flat direction in the potential emerges, this is the QCD axion/ALP.
Any deviation from a completely flat direction are associated with explicit
breaking of the global shift symmetry of the ALPs, in particular the mass
operator. Of course as long as the ALP mass is small with respect to the
scale fa at the phase transition the ALP will be in a state of indifferent stabil-
ity, meaning that in different causally disconnected “patches” of the Universe
different equivalent vacuua will be occupied. If the ALP field is periodic than
one cannot avoid string formation due to the Kibble mechanism [80]. In the
string cores, the order parameter cannot break the PQ symmetry restricted
by topology and a huge energy density is stored ∼ f 4

a . The string network
eventually evolves emitting low–momentum ALPs and decreasing its length.
At the phase transition ALP interactions to the thermal bath are not ex-
pected to be small, and so a thermalized ALP populations is expected on
top of the smooth field. The VEV will have a wavelength the size of the
horizon t, while the thermal fluctuations are t(T/MPl) ≪ 1 where T is the
temperature. In this picture one has T ∼ fa ≪ MPl so that there is a huge
separation of scales between the long-wavelength ALPs and the thermal ones.

The picture that emerges up to this point is completely general and the
main take away should be the fact that there are at least two ALP pop-
ulations, cold and hot. Their role in the history of the Universe is well
separated and un–correlated. The important separation is that cold ALPs
are a candidate for cold dark matter, while hot ALPs population can account
for hot dark matter and hot dark energy. In particular the effects due to the
ALP–SM couplings can always be as small as one can push fa in the UV,
while some other constraints are harder to avoid, e.g. its gravitational sig-
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nature. Suppose that the ALP production takes place during the radiation
dominated era, where the production rate are high thanks to high temper-
ature, and suppose that the ALP thermalizes with the SM bath. Under
this assumption is possible to compare the ALP radiation density to today’s
CMB photon density. Depending on the masses one can distinguish either
cold or hot dark matter, and eventually dark radiation for very light ALPs.
Hot dark matter threshold is typically at 10KeV. The latter scenario affects
structure formation and can be constrained via CMB anisotropies. There is
also the possibility of non–thermal production where Dark Radiation ALPs
and Hot DM ALPs are produced in galaxy clusters producing soft–X–rays
by photon conversion. In this case a strong bound on photon coupling can
be enforced gγ ∼ 10−12. If the ALPs/Axions are light enough their preferred
decay channel has to be via photons and will induce signatures based on
when the DM ALP decays. If the decay happens before the CMB decoupling
the huge photon injection can distort the predicted spectrum. If one consid-
ers DM decaying after recombination there should be some monochromatic
line broadened by cosmic expansion, that can be constrained by the flux of
extragalactic background light (EBL in Fig.3.1) or by direct line searches in
the X-ray and gamma-ray region. At high energies the UV cross section of
H photoionisation is so large that these photons can alter the history of the
Hydrogen ionisation fraction is modified. If one then assumes a high enough
reheating temperature one has the constraints shown as BBN, CMB, X–rays
and xion [78]. Assuming that ALPs account for all the observable cold DM,
the ensuing constraints are shown in Fig. 3.1 labelled as “Telescopes”.

Another interesting way of implementing bounds in the ALP parameter
space is via inflation. The ALP potential is flat and to have UV validity it
has to be protected by radiative corrections and higher order effects. Some
models have been proposed, called “natural–inflation” with interesting po-
tentials such as Λ4(1 − cos θ). Given the nature of inflation the low–energy
phenomenology is typically decoupled from the specific of the UV theory.
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3.2 Astrophysics

Thanks to their couplings with light matter fields ALPs can be thermally
produced inside stars. The dense and hot surrounding along with the possi-
bility of emission from the whole star, core included, compensates well the
weakness of these parameters. It is well known that the total emission can
compete with photon surface emission and with thermal neutrino emission.
This means that stars are the best ALPs and axions factories in the Universe
and effects of such a huge production should yield some kind of signature
of their presence, unless their couplings are extremely small. In this sense
astrophysical bounds are perfect for probing the light ALPs theory space
via a number of mechanisms. Particular attention is dedicated to the ALP
coupling to photons in the literature, the coefficient of the operator aF F̃ .

In the contest of stellar evolution, the most relevant process is the Pri-
makoff conversion. This consist in the conversion of thermal photons, due to
external electrostatic fields, into ALPs:

γ + Ze→ a+ Ze. (3.1)

It turn out that the energy–loss rate per unit mass via ALPs radiation of
a star becomes relevant for low density and high temperature cores. These
conditions are found in the Horizontal Branch (HB) evolution phase of a Red
Giant. The indirect limit extracted from these observation can be seen in
Fig. 3.1 denominated as “HB”. The data has been collected on 39 Globular
Clusters (GCs) [81, 82] and measures the ratio of Horizontal Branch to Red
Giants in the GC. The ratio decreases as the HB phase is accelerated due to
ALPs overproduction. The Sun is also a great laboratory for ALP–photon
coupling, and its proximity allows one to be very sensitive to these light
particles flux. In particular the bounds extracted from Sun physics are due to
neutriuno flux and helioseismology [83]. Another, more “direct” way of using
the Sun’s Axion flux to probe the ALPs parameter space is via Helioscopes.
These work using the inverse Primakoff effect where an ALP interact with
an external magnetic field and is converted to a photon. These Helioscopes
have mass ranges of ma [meV,eV], and essentially are concerned with Dark
Radiation ALPs. Limits have also been extracted from the Supernova data
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SN1987A.
As discussed in Sec.2.6 the introduction of CPV couplings can induce

monopole–monopole forces between baryons that can compete with gravity at
distances 1/ma. These have been studied in highly precise experiments. The
direct measurements on dipole–dipole interactions are much weaker than the
astrophysical limits on the same parameters, both for nucleons and electrons
couplings.

3.3 Bounds from Flavor Physics
This section finally introduces the main argument of the manuscript: flavor
induced bounds on ALP–fermion couplings. These searches are relevant in
virtually any model in which the ALP is implemented. As discussed in [60]
the PQ–symmetry can exhibit flavor–violation at the UV scale or not, the
low–energy couplings will always get a radiatively induced flavor–violating
part. Flavor violation opens up the possibility to study ALPs in rare, flavor–
changing processes that are among the most sensitive tests for light new–
physics. The nature of pseudo–Nambu-Goldstone-Bosons provide a window
into energy scales well beyond the capabilities of LHC with machines that
operate at a fraction of the energy.

Flavor violating processes are typically, but not exclusively, mediated
by couplings to fermionic fields, and provide powerful and sensitive tools in
the exploration of the ALP theory–space. Among the 5–dimensional portal
between ALPs and SM the most important structure, in this context, is
the ALP–fermion coupling in Sec2.3.1. In what follows model–independent
couplings are considered and no UV structure is assumed. In this sense all
the limits derived are, if not explicitly said so, on the low–energy parameters
of the theory.

This theoretical picture allows one to look at Flavor Factories and Beam
Dump data, taken at energies up to a few GeV’s, and project limits on
ALP–fermion interactions from flavor–violating processes. Quark flavor phe-
nomenology of Axion–Like Particles has mesonic decays in its primary roles,
for a recent review see [84, 85]. Indeed most of the studies and the advances
in this sector come from Kaon physics or B-physics.
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Figure 3.2: Flavor bounds on universal ALP couplings to quark doublets
with cQ = cQ1I, and all other coefficients set to zero at the scale fa = 1TeV.
The picture is taken from the review [84].

As a simplifying model–dependent case study take all the ALP couplings
as Universal and to the quark doublets. The constraint from flavor physics
are shown in Figure 3.2. In this scenario any isospin conserving ALP cou-
pling comes from the running and matching from the high energy scale to
the low–energy one. Moreover isospin breaking ALP couplings enhance the
ALP–photon couplings and in this hypothesis the final visible state γγ will
experience suppression. The strongest bounds are from invisible channels or
muonic signatures.

The flagship process of flavor searches for ALPs is the K → πa signature.
It arises from a s→ d a quark level transition, with the new physics particle
escaping the detector. Kaon physics is thus in the spotlight and many differ-
ent current and future experiments are probing these rare Kaon decays. In
particular the NA62 experiment at CERN is looking for a signal of the type
K+ → π+a. The experiment has collected 3×1016 pot in Run 1 and is aiming
for 1018 pot by the end of Run 2. Using the complete Run 1 dataset, the
NA62 experiment established upper limits on B(K → πa) with a invisible at
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the level of 10−11 in the mass ranges of 0–110 MeV and 155–260 MeV [86,87]
The search represents a direct extension of the K+ → π+ν̄ν measurement,
which determines the range scanned for ma. The event selection requires a
K+ in the initial state and a π+ in the final state, in the absence of any other
in–time activity in the detector. The largest (and irreducible) background is
due to the K+ → π+ν̄ν decay. The two-body decay of these channel is char-
acterised by a peak in the reconstructed missing mass distribution, with a
width of O (10−3) GeV2 determined by the experimental resolution, on top of
the contiuous K+ → π+ν̄ν spectrum. The NA62 experiment has also estab-
lished upper limits on B(K → πa) with invisible a, at the level of O (10−9) in
the 110–115 MeV mass range, in the vicinity of the π0 mass, from a dedicated
analysis based on the 10% of the Run 1 minimum bias dataset [88]. Measure-
ments of the KL → π0ν̄ν decay naturally provide limits on O (KL → π0a) .

Once again the dominant background is given by the πν̄ν final state. In this
experiment no missing mass reconstruction is performed, so there is no reduc-
tion in the acceptance for the ALP to be in the π0 mass region. The KOTO
experiment [89] has reported a limit on B(K0 → π0a) down to 2.4× 10−9 at
90% CL with the 2015 dataset. Recently new preliminary results have shown
three signal candidate over a 50% predicted background. In the short term
KOTO sensitivity is expected to improve.

The B physics sector has also a fundamental impact on flavor searches
limiting the ALP–fermion couplings space. LHCb [90, 91] BaBar and Belle
[69, 92–99] have studied visible and invisible signatures of b–decays. Belle
experiment had conducted searches for B → hν̄ν for many different mesonic
states. These searches are conducted with the full Belle data sample produced
by the KEKB collider at the Υ(4S) center-of-mass energy with an integrated
luminosity of 711 fb−1, (772±11)×106 BB̄ pairs. The three–body B → hν̄ν

decay, with two invisible particles in the final state can not convey enough
kinematic information. Indeed the experiment has to fully reconstruct the
accompanying B meson in the semileptonic decay channels decaying to D’s
or D∗ and a lepton–neutrino couple.

Another class of decays usefull in probing ALP–fermion physics is given
by monogamma final states. Υ resonant searches exploiting decays such as
Υ(nS) → Υ(1S)π+π− can be used to directly probe Υ(1S) decays [100].
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Also low background channels like B0 → γa or K0
L → γa can be used to

probe quark couplings at low–energies. These searches have been carried on
at BaBar [101] and at the Belle [102] experiment.
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Chapter 4

Hadronization Techniques

It will be useful to spend some time discussing hadronization and composite-
object couplings to ALP current (a(a)µ = (∂µa)/fa) to understand the approx-
imation considered and build some physical intuition. Such a discussion, to
the authors knowledge, is missing in the literature at least for the case of a
massive ALP, while a general discussion can be found in [103–105]. For ele-
mentary particles the coupling is a model dependent parameter coming from
a “charge” matrix sometimes denoted CQ. For extended objects, exactly
like the case of protons form factors, it will be replaced by a momentum-
dependent function reflecting the distribution of the masses and velocities of
partons, and in turn the bound state’s internal structure [106, 107]. Once
again in the case of elementary particles coupling to ALPs it is understood
that the current will couple to fermions proportionally to their momenta,
or in an equivalent base, to their masses. In a similar fashion one expects
extended objects to have a sort of effective coupling mass that will depend on
the total momentum and on its distribution between the internal degrees of
freedom. Finally the nature of the hadronic state will play a fundamental role
in its relativistc behaviour. The perturbative treatment of these processes
assumes a partonic description of the hadrons involved in the transition. The
general discussion is very similar to that of inclusive hadron processes, such as
deep–inelastic scattering, with the premise that in some limit the amplitudes
can be written as a product of three probabilties that separate long–distance
and short-distance physics.

75
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Figure 4.1: The valence quark state of a pion interacting with an external
current carrying momentum Q. The valence couple must be localized in 1/Q
in the transverse direction while in the longitudinal one Lorentz contraction
assures the particles to be close. The picture is taken from [105].

Despite the fact that in their rest frame mesons are complex non-static
objects, a highly relativistic particle would ony see the dominant valence
quark content justifing a simplified description of these non–perturbative
states [103–105]. In the case at hand1 the important observation is that the
final state particles recoiling back to back, the ALP and the daughter meson,
must have a nearly light-like relative velocity, i.e. they must be emitted in
a highly relativstic state. Under this condition the strong quantum effects
that bind the constituents of the involved meson are highly time-dilated in
the rest frame of the escaping ALP. Moreover the lifetime of these states
are stretched and the partonic content looks frozen to the escaping particle.
For relative speeds near the speed of light the two recoiling particles are in
contact for very short times decreasing as 1/γ = (1− v2/c2)1/2. The relevant
interactions can only happen on small time scales and short distances, rel-
ative to typical mesonic sizes and masses, where QCD is perturbative. As
such the short–distance dynamics and the long–distance ones will have no
interference. This incoherence between soft and hard physics implies that
one can consider each meson to consist of a definite partonic state during
the entire interaction, allowing for the simplification discussed at the start
of the section. The long time dynamics of the initial state are described by

1A version of the hadronization technique discussed here with a massless ALP was
discussed first in [108].
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the valence quarks distribution φin, these quarks undergo a short–distance
process described by a hard–scattering skeleton diagram. At a later time,
they reform the outgoing meson via a wave function φout. The amplitude is
written as the product of three probabilities: 1) the probability of finding the
valence quarks of the incoming meson with a certain momentum distribution,
namely φin, 2) the hard amplitude TH for the partons to emit an ALP and
undergo a flavour change producing the quarks in the final state, see Fig.4.4,
and finally 3) the amplitude for that same final state to recombine in the
meson, given by φout. These three pieces are then convoluted into a single
amplitude describing the process in this approximation. At energies well
below the electroweak symmetry breaking the process appears as if a flavor
changing external ALP current, proportional to GFV

CKM∂µa/fa, induces the
hadronic process considered. In this sense the analogy with an electroweak
form factor is saturated. From a more practical point of view the amplitudes
are represented by the product∫︂ 1

0

dxδ

(︄
1−

∑︂
i

xi

)︄∫︂ 1

0

dyφ∗
out(yi, µ)TH(xi, yi, Q, µ)φin(xi, µ)δ

(︄
1−

∑︂
i

yi

)︄
,

(4.1)
where TH is the hard scattering computed perturbatively, Q is the exchanged
momentum and µ is the renormalization scale (entering via the couplings).
The µ dependence in the φ’s is induced to render Eq.(4.1) independent of
the particular value of the renormalization scale. A natural choice is Q = µ

making perturbative calculation consistent as long as αs(Q) is perturbative,
i.e. for large Q’s. The length associated to this momentum exchange is
b = 1/Q and it represents the localization of the valence quarks couple in
the transverse plane, relative to the mesons motion as shown pictorically in
Fig.4.1. If the partons are separated more than b = 1/Q that particular state
will not contribute to the amplitude. So the information needed is on the
state is of the order Q/MM where MM is the meson mass. Three particle
states, e.g. with an extra gluon, will be suppressed by extra factors of 1/Q,
since as Q grows the probability of finding more than the minimum number
of particles bunched up in 1/Q decreases. The classical dimension of TH is
of (mass)−2 and since the dependence has to come from external momenta
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the approximate form can be TH ∼ 1/(xyQ2) + 1/((1 − x)(1 − y)Q2). The
extremes x, y ≃ 0, 1 known as “end–points” are problematic as they violate
the localization assumption and generate unphysical singularities. Indeed in
the limit x, y ≃ 0, 1 the hard scattering function TH spreads out in transverse
space and it will not be concentrated around 1/Q. One has to finally define
the position space equivalent of the wave function. The definition is carried
in the light–cone coordinates for a mesonic state. The amplitude for the
valence quark of such a state to annihilate in the vacuum in position space
is,

Ψ(z · p, z2) = ⟨0| q̄(0)γ+γ5Q(z) |M(p)⟩ , (4.2)

where p is taken in the plus direction, γ± = 1√
2
(γ0±γ3), z are the light–cone

coordinate and the distance between the valence quark fields z2 is taken as
space–like. The Dirac structure γ+γ5 projects out the zero helicity combi-
nation of the valence quarks. For φ(x, µ) the convention is to fix the quark
momentum fraction to be xp along the mesonic direction of motion and to
integrate freely on the rest transverse momenta. The coordinate system is
then fixed to have z+ = zT = 0, and the Fourier transform taken with respect
of z−,

φ(x, µ) =

∫︂ ∞

−∞

dz−

2π
eiz

−p+xΨ(z−p+, z2 → 0), (4.3)

here the limit onto the light–cone, z2 = 0, is singular and a dependence on
the renormalization scale is introduced, remember that if one chooses µ to
be of the order of Q and Q is the inverse of typical size of the localization
of the valence couple, Q ∼ 1/b, it follows that the renormalization scale is of
the order of transverse momenta of the valence couple.

4.1 Brodsky–Lepage prescription

It is instructive to construct the zero–th order Brodsky–Lepage prescription,
some times called the leading–twist wave functions, for the pion and the D
meson distribution amplitude, to compute them one can follow [103,109–111].
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Figure 4.2: The D meson Distribution Amplitude φD(x, µ2) at 1 GeV. The
dotted, the dashed, the dash-dot and the solid lines are for different values
of the Gegenbauer momentum BD = 0, 0.20, 0.40 and 0.60 respectively. The
numerical results obtained in the manuscript will always consider BM = 0,
i.e. Eq.(4.7). The plot is taken from [109].

Consider the spatial part of pion Wave–Function

Ψπ(x,p⊥) = Aπϕπ(x) exp

(︃
−

p2
⊥ +m2

q

8β2
π(1− x)x

)︃
, (4.4)

where Aπ is an normalization constant and βπ is a mass scale regulating the
spread in the transverse plane of Ψ. Integrating out the transverse momen-
tum down to the scale µ, or otherwise up to distances ∼ 1/Q, produces the
pion’s distribution amplitude:

φπ(x, µ
2) ∝ βπAπ

√︁
x(1− x)ϕπ(x)

×

(︄
Erf

[︄√︄
m2
q + µ2

8β2
πx(1− x)

]︄
− Erf

[︄√︄
m2
q

8β2
πx(1− x)

]︄)︄
,

(4.5)
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where ϕπ(x) =
(︂
1 +BπC

3/2
1 (2x− 1)

)︂
is defined in terms of the Gegenbauer

expansion. A similar expression can be obtained for the D meson with the
substitution in Eq.(4.4) for the argument of the exponential function

k2
⊥ +m2

q

8β2
π(1− x)x

→
k2
⊥ +m2

q

8β2
π(1− x)

+
k2
⊥ +m2

Q

8β2
πx

. (4.6)

The resulting wave functions φH,L(x, µ) describing the meson’s quark mo-
menta distribution for heavy and light mesons are very well approximated
by their asymptotic form, i.e. the limit µ ∼ Q→∞, respectively by:

φH(x) ∝
[︃

ξ2

1− x
+

1

x
− 1

]︃−2

, φL(x) ∝ x(1− x) . (4.7)

The parameter ξ in φH(x) is a small parameter typically of O(mq/mQ), being
q and Q the light and heavy quark in the meson. The mass function gP (x)
is usually taken to be a constant varying from gH(x) ≈ 1 and gL(x) ≪
1 for a heavy or a light meson. This is a theorem for Q high enough to
completely decouple QCD running effects [103, 104, 112], while it must be
taken as a model for lower2 values of Q. Unless stated differently in the rest
of the paper this model is assumed. The exceptions are the kaonic sector, a
detailed discussion dedicated to the subject of the employed model can be
found in [115] and in Sec.5.2, and for lighter D mesons. Coming back to
regular gamma matrices one can extend Eq.(4.2) and define the meson decay
constants fM as:

⟨0| q̄ γµ γ5Q |P ⟩ = ifPP
µ
P , (4.8)

⟨0| q̄ γµQ |V ⟩ = fVMV ϵ
µ(PV ) , (4.9)

where the vector structures on the RHS are forced by Lorentz invariance.
Finally one has to define the spin structure of the Wave–Functions for the

2The so-called Sudakov resummation [113,114] allows one to formulate precise predic-
tions for even lower values of Q.
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ground state of a meson M [103, 108, 116, 117]:

ΨP(x) =
φ(x)

4
γ5(/P P +MPgP (x))

ΨV(x) =
φ(x)

4
(MV γ

α + iσαβPV β)ϵα(PV )

(4.10)

while φ(x)’s here are to be considered normalized to 1. In Eq. (4.10), with x
one typically denotes the fraction of the momentum carried by the heaviest
quark in the meson. In Eqs. (4.7–4.13), a slightly different notation with
respect to the referred literature is used. In particular the functions φ(x)
have been normalized to one, in such a way that in Eq. (4.13) the mesonic
form factor can be explicitly factorized.

4.1.1 Limits and Criticalities

An essential part of the discussion of the results obtained has to do with
their limitations and their applicability. Although an in–depth discussion
regarding the validity of the approximation used throughout this work has
been presented in Sec.4 and 4.1 there are still some interesting points to raise.
The most important one is probably the so called end–point behaviour of the
distribution amplitude. This is the asymptotic form of the probability dis-
tribution in Eq.(4.3) as one of the valence quark gets all the available energy
in the system, signaled by xi → 1. It has been shown in [118, 119] that the
xi → 1 limit that as long as 1−xi ≫ δM the partonic distribution amplitude
vanishes with a power law (1− xi)ν with ν > 1, assuring the convergence of
the distribution. Consequently the integrations in the variables xi, represent-
ing the fraction of the meson’s 4–momenta carried by the i–th valence quark,
are well behaved, as long as 1 − xi ≫ δM . The region where 1 − xi ≤ δM
has to be analyzed separately. Here δM is defined as a process dependent
cutoff, excluding the unphysical bare singularities. These end–point effects
are under control if the emitted ALP is massless but introduce non–trivial
complications in amplitudes where the emitted particle has a non–zero mass.
The role of this cutoff is discussed in Sec.5.2 and its numerical impact on
the results is negligible. Contributions from these regions can be taken into
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account, and are typically more suppressed than bulk contributions, but re-
quire a modification of the distribution amplitudes, e.g. Drell–Yan–West did
it for the first time [118] and considered (1 − xi)

3 in the limit x → 1, in
accord (roughly) to experiments and theoretical expectations3.
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Figure 4.3: End–point behavior for both the heavy (pink) and light (blue)
contributions to the hadronized amplitudes discussed in Eq.(5.11). In (a) the
Ds → µν̄a process with ma = 0 is shown to be regular and integrable, while
in (b) the Ds → µν̄a process is discussed in the case ma = 0.1 GeV. The
shaded area correspond to the allowed values for the Mandelstam variable u.
The dotted curve corresponds to its mean value.

The lesson one can learn here is that the issue of end point singularities,
xi, yi → 1 in Eq.(4.1), has to be discussed process by process. Some processes
will have regular and integrable functions, e.g. emission of a massless particle,
while other processes can develop simple poles near the boundaries of the
integration interval4. This exact situation is encountered in the Φ

(Q,q)
M (m2

a)

discussed in Eq.(5.11). The form of the cutoff should clarify that this effect
in the present context is generated only if a massive particle is emitted in
the final state. These poles have been addressed [103, 118] by modifying
the mesonic Distribution Amplitudes in the x → 1 limit. To reabsorb these

3A more comprehensive discussion on the asymptotic behavior for x→ 1 can be found
in [119]

4In the case presented here the issue seems related to the emitted particle mass but in
general this is not true as the same problems emerge in the context of DIS.
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Figure 4.4: Tree-level s-channel of a charged (q̄Q)–meson decaying into a
charged (Q̄

′
q′) meson and an ALP. Diagrams where the ALP is emitted from

the final state meson can be easily obtained.

simple poles, generated by the appearance of extra (1−x) in the propagators
of the internal valence quarks, one is instructed to add a term (1− x) in the
numerator, thus curing the simple pole.

4.2 Factorization in the s–channel
Following the Brodsky Lepage method the factorization of an amplitude go-
ing through a mesonic vacuum state is discussed. This is the simplest non–
trivial possible application of the techniques discussed in Sec.4. The process
studied is shown in Fig.4.4. Looking at the picture the factorization emerges
naturally. The amplitude is a product of two uncorrelated vector currents
obtained by cutting the diagram along the weak boson leg connecting the
hadronic external states. One of the two currents gives a trivial hadroniza-
tion contribution given by Eq.(4.8) while the other has to be calculated using
Eq.(4.1) but with a trivial “out” state. Let the initial mesonic state be q̄Q
and the final one Q̄′

q′ and consider that, thanks to the intermediate vacuum
state, one can factorize the contributions as

⟨0| (q̄Γ(i)
µ Q) |MI⟩ ⟨MF | (Q̄

′
γµPLq

′) |0⟩+⟨0| (q̄γµPLQ) |MI⟩ ⟨MF | (Q̄
′
Γ(f)
µ q′) |0⟩ .

(4.11)
where i, (f), stand for initial, (final), state production and MI and MF are
the initial and final mesonic states. One is tasked with the computation of
⟨0| (q̄Γi,fµ Q) |M⟩ , where (q̄Γi,fµ Q) is the hard scattering process that has to
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be extracted from the Feynman diagrams depicted in Fig.4.4. The diagram
where the ALP is emitted from the W internal line automatically vanishes,
being the W+W−–ALP coupling proportional to the fully antisymmetric 4D
tensor. The hard-scattering calculation produces the result

Γ(i)
µ =

4GF√
2fa

V CKM

(︃
cqmq

γ5/kγµPL
m2
a − 2k · Pq

− cQmQ
γµPL/kγ

5

m2
a − 2k · PQ

)︃
Γ(f)
µ =

4GF√
2fa

V CKM

(︃
cQ′mQ′

γ5/kγµPL
m2
a + 2k · PQ′

− cq′mq′
γµPL/kγ

5

m2
a + 2k · Pq′

)︃
.

(4.12)

where cq and cQ are the ALP–fermion coupling of the q and Q quarks. Now
one applies Eq.(4.1) with a single mesonic out state:

⟨0|(q̄ΓµQ) |M⟩ = ifM

∫︂ 1

0

dxTr[ΨM(x)Γµ]. (4.13)

The different possible nature of the mesonsM are implemented via ΨM . Here
are presented the cases of pseudo–scalar and vector mesons in all the possible
permutations. It is convenient to divide the results in Initial State Production
(ISP) and Final State Production (FSP). Indeed such a choice will facilitate
the evaluation of relative magnitudes, based on the masses of the emitting
mesons, and the general computation of the signal due to the set up proposed
in Section 4. One should start by looking at the familiar pseudo-scalar to
pseudo-scalar decay, where quantities with I and F subscript are relative to
initial and final state mesons respectively. This class of transitions has been
thoroughly studied in ALP phenomenology [69,94,115] due to the importance
of the NA62 search on the rare decay K → πνν̄ [87, 120] and the Belle and
BaBar searches for the equivalent B physics signal [121]. These processes
have been associated to 1-loop effective observables but in a recent analysis
[115] the authors have shown the potential information loss in choosing to
ignore tree-level contribution to these observables, in particular one can have
correlations between the parameters of the amplitude, and even bound the
lighter quarks coupling constants. Here are presented the pseudo–scalar to
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pseudo–scalar transitions:

A(s)
ISP =

GFfIfFk · PF√
2fa

VMI∫︂
dxgI(x)

[︃
cqmq

m2
a − 2k · PI(1− x)

− cQmQ

m2
a − 2k · PIx

]︃
φI(x)

(4.14)

and

A(s)
FSP =

GFfIfFk · PI√
2fa

VMF∫︂
dxgF (x)

[︃
cQ′mQ′

m2
a + 2k · PFx

− cq′mq′

m2
a + 2k · PF (1− x)

]︃
φF (x).

(4.15)

The next interesting channel is pseudo-scalar to vector. An important ex-
ample is the search for B → K∗a [121]. Once again we separate in ISP and
FSP. Here we have for the s–channel

B(s)
ISP = i

GFfIfFkµϵ
µ(PF )√

2fa
VMIMF∫︂

dxgI(x)

[︃
cqmq

m2
a − 2k · PI(1− x)

− cQmQ

m2
a − 2k · PIx

]︃
φI(x)

(4.16)

and

B(s)
FSP =

GFfIfF√
2fa

V ϵα(PF )P
β
FP

µ
I

∫︂
dx×[︂ cQ′mQ′

m2
a + 2k · PFx

(εαβµρk
ρ + ikβgαµ − ikαgβµ)

+
cq′mq′

m2
a + 2k · PF (1− x)

(εαβµρk
ρ + ikαgβµ − ikβgαµ)

]︂
φF (x).

(4.17)

Finally the results on the other possible channels, vector-to-pseudo–scalar
and vector-to-vector, are presented. Once again in the following Initial State
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Emission (ISP) and Final State Production are discussed (FSP):

C(s)ISP = −GFfIfF√
2fa

V ϵα(PI)P
β
I P

µ
F

∫︂
dx×[︂ cqmq

m2
a − 2k · PI(1− x)

(εαβµρk
ρ + ikαgβµ − ikβgαµ)

+
cQmQ

m2
a − 2k · PIx

(εαβµρk
ρ − ikβgαµ + ikαgβµ)

]︂
φI(x).

(4.18)

and FSP

C(s)FSP =− iGFfIfF√
2fa

V ϵα(PF )kαMIMF∫︂
gF (x)dx

[︂ cQ′mQ′

m2
a + 2k · PFx

− cq′mq′

m2
a + 2k · PF (1− x)

]︂
φF (x).

(4.19)

Finally one has the vector-to-vector amplitudes:

D(s)
ISP = −iGFfIfF√

2fa
V ϵµ(PF )ϵ

α(PI)MFP
β
I∫︂

dx
[︂ cqmq

m2
a − 2k · PI(1− x)

(εαβµρk
ρ + ikβgαµ − ikαgβµ)+

cQmQ

m2
a − 2k · PIx

(εαβµρk
ρ + ikαgβµ − ikβgαµ)

]︂
φI(x).

(4.20)

and

D(s)
FSP = −iGFfIfF√

2fa
V ϵµ(PI)ϵ

α(PF )MIP
β
F∫︂

dx
[︂ cQ′mQ′

m2
a + 2k · PFx

(εαβµρk
ρ + ikβgαµ − ikαgβµ)+

cq′mq′

m2
a + 2k · PF (1− x)

(εαβµρk
ρ + ikαgβµ − ikβgαµ)

]︂
φF (x).

(4.21)

4.3 Factorization in the t–channel
The same study done for the s–channel can be done for the t–, in the con-
text of neutral processes. In this case the relevant diagrams are the ones
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Figure 4.5: Tree-level t-channel of a neutral (q̄Q)–meson decaying into a neu-
tral (Q̄′

q′) meson and an ALP. Diagrams where the ALP is emitted from the
final state meson can be easily obtained. Similar diagrams can be depicted
for the CP conjugate process.

depicted in Fig.4.5. Once again the diagram where the ALP is emitted from
the W internal line automatically vanishes, being the W+W−–ALP coupling
proportional to the fully antisymmetric 4D tensor. To condense the compu-
tation one separates the emission based on the line it originates from, either
fermionic or antifermionic. In this fashion the channel’s factorization will be

⟨MF | (Q̄
′
Γ(Q)
µ Q)(q̄γµPLq

′) |MI⟩+ ⟨MF | (Q̄
′
γµPLQ)(q̄Γ

(Q̄)
µ q′) |MI⟩ , (4.22)

where Γ(Q,Q̄) stand for either particle or anti–particle emission. Note that
this process, unlike what happens for the s–channel, does not present any
trivial external state and so the full Brodsky–Lepage machinery is required
to make sense of the amplitude. As before the hard scattering is computed
perturbatively with the diagrams depicted in Fig.4.5, resulting in

Γ(Q)
µ =

4GF√
2fa

V CKM

(︃
cQ′mQ′

γ5/kγµPL
m2
a + 2k · PQ′

− cQmQ
γµPL/kγ

5

m2
a − 2k · PQ

)︃
Γ(Q̄)
µ =

4GF√
2fa

V CKM

(︃
cqmq

γ5/kγµPL
m2
a − 2k · Pq

− cq′mq′
γµPL/kγ

5

m2
a + 2k · Pq′

)︃
.

(4.23)
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Finally one recovers Eq.(4.1) for the process at hand

⟨MF | (Q̄
′
ΓµQ)(q̄Γ

′µq′) |MI⟩ = −
fMF

fMI√
2

∫︂
dxdyTr[ΨMI

(x)Γ′µΨMF
(y)Γµ],

(4.24)

where the nature of the meson will modify the amplitudes via the ΨM ’s. Once
more let us consider the different set of processes available with a combination
of pseudo–scalar and vector external states. The pseudo–scalar to pseudo–
scalar, where ISP and FSP refer to Initial State Production and Final State
Production (of an ALP), are

A(t)
ISP =

GFfIfF
2fa

k · PFVMI×∫︂
dxgI(x)

[︃
cQmQ

m2
a − 2k · PIx

− cqmq

m2
a − 2k · PI(1− x)

]︃
φI(x)

(4.25)

and

A(t)
FSP =

GFfIfF
2fa

k · PFVMF×∫︂
dxgF (x)

[︃
cq′mq′

m2
a + 2k · PF (1− x)

− cQ′mQ′

m2
a + 2k · PFx

]︃
φF (x).

(4.26)

The pseudo–scalar to vector t–channel instead reads:

B(t)
ISP = i

GFfIfF
2fa

VMIMV ϵ
α(PF )kα×∫︂

gI(x)dx

[︃
cQmQ

m2
a − 2k · PIx

− cqmq

m2
a − 2k · PI(1− x)

]︃
φF (x),

(4.27)
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and

B(t)
FSP =− GFfIfF

2fa
V ϵα(PF )P

β
F×∫︂

dx
[︂ cQ′mQ′

m2
a + 2k · PFx

(εαβµρk
µP ρ

I + ikαP β
I − ik

βPα
I )+

cq′mq′

m2
a + 2k · PF (1− x)

(εαβµρk
µP ρ

I − ik
αP β

I + ikβPα
I )
]︂
φF (x).

(4.28)

Finally the results on the other possible channels, vector-to-pseudo–scalar
and vector-to-vector, are presented. Once again in the following Initial
State Emission (ISP) and Final State Production are discussed (FSP). the
t–channel vector-to-pseudo–scalar ISP is:

C(t)ISP =− GFfIfF
2fa

V ϵα(PI)P
β
I ×∫︂

dx
[︂ cQmQ

m2
a − 2k · PIx

(εαβµρk
µPFρ+ ikβPα

F − ikαP
β
F )+

cqmq

m2
a − 2k · PI(1− x)

(εαβµρk
µP ρ

F + ikαP β
F − ik

βPα
F )
]︂
φI(x).

(4.29)

and FSP

C(t)FSP =i
GFfIfF
2fa

MIMFV ϵ
α(PF )kα×∫︂

gF (x)dx
[︂ cq′mq′

m2
a + 2k · PF (1− x)

− cQ′mQ′

m2
a + 2k · PFx

]︂
φF (x).

(4.30)

Finally one has vector-to-vector amplitudes in the t–channel

D(t)
ISP =i

GFfIfF
2fa

V ϵα(PI)ϵ
δ(PF )MFP

β
I∫︂

dx
[︂ cQmQ

m2
a − 2k · PIx

(εαβδρk
ρ − ikβgαδ + ikαgβδ)+

cqmq

m2
a − 2k · PI(1− x)

(εαβδρk
ρ − ikαgβδ + ikβgαδ)

]︂
φI(x).

(4.31)
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and

D(t)
FSP =i

GFfIfF
2fa

V ϵδ(PF )ϵ
α(PI)MIP

ρ
F∫︂

dx
[︂ cQ′mQ′

m2
a + 2k · PFx

(εαδρνk
ν + ikρgαδ − ikδgαρ)+

cq′mq′

m2
a + 2k · PF (1− x)

(εαδρνk
ν + ikδgαρ − ikρgαδ)

]︂
φF (x).

(4.32)

4.4 Penguin Hadronization
Some of the meson decays will receive contributions at one–loop level [67,69,
94] by the flavor diagonal part of the fermion–ALP interactions of Eq. (2.31)
from the diagrams shown in Fig. 4.6. In the following only the contribution
arising from fermion–ALP interaction will be considered. In this kind of

Figure 4.6: One-loop penguin contributions

processes, one quark line participates to the ALP emission while the other
quark is a spectator. Customarily the hadronization of a matrix element
between two pseudo-scalar meson mediated by a vector current, where one
of the quark does not interact can be factorised as

⟨MF | q̄1γµQ2 |MI⟩ = f+(q
2)(PMI

+ PMF
)µ + f0(q

2) qµ (4.33)

with q = PMI
− PMF

. The form factors f+,0(0) = 1 in the isospin symmetric
limit, while the non approximated, q2 dependent, form factors are obtained
from LQCD calculation [122]. Consider only the flavor diagonal part of
the Lagrangian in Eq.(2.31), where all the parameters are zero except the
diagonal ones defined in Eq.(2.33). Using only this flavor conserving part
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one can induce at one loop, via the processes depicted in Fig.4.6, an effective
flavor violating coupling. Indeed from Eq. (4.33) the amplitude for theMI →
MF a decay mediated by the 1–loop effective flavor–violating part is:

ML
Ps→Ps =

GF m
2
t

4
√
2π2

M2
I

fa

(︃
1− M2

F

M2
I

)︃[︃
f+(q

2) +
q2

M2
I −M2

F

f−(q
2)

]︃ ∑︂
f=u,c,t

c
(f)
ij

(4.34)

where the coefficient

c
(q)
ij = VqiV

∗
qj

[︃
3 cW

g(xq)

xt
− cq xq

4xt
ln

(︃
f 2
a

m2
q

)︃]︃
(4.35)

opportunely normalized in order to factorize out all the relevant scale depen-
dences, is the induced effective coupling at 1–loop. The process mediating the
decay in the UV regime has been discussed in Sec. 2.4.2 and. The penguin
with the ALP emitted from the internal W line is included for completeness,
even if in the following phenomenological analysis cW = 0 will be assumed.
If the quark changing its flavour is a down type quark than the dominant
contribution coming from this amplitude is proportional to ct, but in general
one needs to look at it case by case, e.g. for the K meson decay, the charm
contribution roughly accounting for 10% of the total contribution. One-loop
diagrams, with the ALP emitted from the initial/final quarks can be safely
neglected being suppressed by at least a factor m2

i /m
2
W with respect to the

penguin contributions, as they arise at third order in the external momenta
expansion. Therefore, no sensitivity on the ALP–quark couplings from the
external legs can emerge in the decays from one loop diagrams.

In the case of a Vector to Pseudo-scalar transition the factorisation in
terms of Form Factors is different [123, 124], namely

⟨VF | q̄1γµ(1− γ5)Q2 |MI⟩ = P µ
1 V1(q2)− P

µ
2 V2(q2)− P

µ
3 V3(q2)− P

µ
PVP (q

2).

(4.36)
If one couples the Left-Handed current in Eq.(4.36) with the ALP the only
non zero term is the one proportional to VP . Finally one can use the con-
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ventions found in [123] to obtain

ML
Ps→V = ic

(f)
ij

GFm
2
t

2
√
2π2fa

MVA0(q
2)ϵ(PV ) · q, (4.37)

where conventionally one takes VP (q2) = −2MV A0(q2)
q2

, and q is the momentum
transferred.



Chapter 5

Invisible ALP Bounds From
Flavor Physics

Meson to meson processes are the well-known protagonists in bounding the
quarks–ALP couplings in the MeV–GeV mass range, mainly thanks to the
Kaonic sector [86, 87, 89, 120, 125–128]. It is natural to ask if there are other
potential candidates in this class of processes that may improve, or at least
supplement, the limits discussed in Sec. 3.3. In this chapter a number
of interesting results are presented to answer this question. At first the
focus will be on ALP searches via rare meson decay of the form M → M ′a.

Here the most promising candidates appear to be B–factories and B–physics
in general [90, 91, 93, 96]. Recently many results and analysis have been
published [61,68,69,94,99,115,129] on the subject but it is clear that B meson
decays do not produce bounds as dominant as the ones from kaon rare decays.
A thorough analysis shows that the difference is in the experimental precision
achived. Another interesting mesonic sector is the D–sector, here any bound
extracted would truly be “orthogonal” to the ones deduced in the other cases.
Indeed D–mesons decays are typically are free from any ct presence, and as
such they probe directly the couplings to the valence quarks. Even though
the signals are very weak these channels are intrinsically interesting. Finally
light vector mesons provide a unique laboratory to test interferences and
correlations between loop and tree level in the signal, similarly to the kaon
channel. In general when tree-level and loop contributions are separated by

93
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Channel Tree–Level Loop
B±
c → D±

s a 1× 10−8 7× 10−3

B±
c → D±a 1× 10−9 7× 10−3

B±
c → K∗±a 8× 10−9 n.a.
B±
c → ρ±a 3× 10−8 n.a.

B±
c → K±a 2× 10−9 n.a.
B±
c → π±a 4× 10−9 n.a.

B± → D±
s a 1× 10−9 n.a.

B± → D±a 1× 10−10 n.a.
B± → K∗±a 1× 10−9 4× 10−3

B± → ρ±a 1× 10−9 5× 10−4

B± → K±a 1× 10−10 6× 10−3

B± → π±a 5× 10−10 1× 10−3

D±
s → K∗±a 3× 10−7 3× 10−9

D±
s → ρ±a 2× 10−7 n.a.

D±
s → K±a 1× 10−8 3× 10−8

D±
s → π±a 1× 10−8 n.a.

D± → K∗±a 3× 10−7 n.a.
D± → ρ±a 3× 10−7 3× 10−9

D± → K±a 3× 10−9 n.a.
D± → π±a 2× 10−9 2× 10−8

K∗± → ρ±a 3× 10−8 4× 10−7

K∗± → K±a 3× 10−8 4× 10−6

K∗± → π±a 7× 10−9 4× 10−7

ρ± → K±a 6× 10−8 5× 10−7

ρ± → π±a 2× 10−7 5× 10−8

K± → π±a 7× 10−9 4× 10−7

Table 5.1: Order of magnitude of charged amplitudes.

a factor between1 10−2 ≈ 10−3 one can extract some interesting correlation
between the couplings. Such a big window is justified by the hierarchical
limits extracted on the parameters associated with the different channels,

1To be relevant the bigger amplitude must be the one associated with the more con-
strained parameter.
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in [115] the authors discuss these features in the relevant case of the analysis
of the NA62 signal.

5.1 Bounds from mesonic final states

Using the formulas discussed in Sec.4.1 and 4.4 a number of predictions on
the order of magnitude of amplitudes is presented in Tab.5.1, where these re-
sults are obtained in the massless limit, and in units of the relevant coupling,
i.e. having ci = 1 and fa = 1 TeV, using the form factors [122–124,130–139],
and the relevant Clebsch–Gordan decompositions. The channels considered
in Tab.5.1 represent a sample of interesting processes where the approxima-
tion discussed in Chapter 4 has meaning, namely the particles produced in
the final state are emitted at high relative velocities. In the CM frame the
3–momentum of the final state particles is

|p⃗fin| =
√︁

(M2
M −M2

P )
2 +m4

a − 2ma(M2
M +M2

P )

2MM

, (5.1)

and as long as the relative velocity of the final particles is relativistic the
approximation we are in is well defined. In the following the biggest in mag-
nitude are discussed in descending mass order of the mother particle. The
B±
c → D±

s (D
±)a channel appears clear from any correlation due to the small-

ness of its tree level. Moreover it has the biggest amplitude of the computed
ones thanks to the smallness of the Cabibbo suppression, and has a decently
large parameter space. Of course processes involving these exotic resonances
are typically harder to control experimentally, nonetheless it is important to
point out that a measurement of a Branching ratio < 10−5 would be compet-
itive with the bounds from the kaonic sector, with a much larger available
parameter space. The dashed black line in Fig.5.1 is the expected limit from
this scenario. Another important channel is the B±

c → V a for both the
final vector states considered as this decay appears to be dominated by tree-
level contribution. Moreover the small ratio MBc/Mρ,K∗ allows one to forget
about final state emission producing a very clean, but somewhat small, sig-
nal proportional to down-type quarks coupling. One could potentially reach
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NA62

BELLE

KOTO

Expected Bc→Dsa

fa=1 TeV
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Figure 5.1: Summary on ct bounds in the GeV ALP mass range.

perturbativity bounds with BR < 10−5. Descending in mass one encounters
B–physics and B factories with data from BaBar and BELLE [93, 96, 140]
close to reaching the Kaon sector bounds but with branching ratios orders of
magnitude higher. The bound in Fig. 5.1 is obtained using BELLE data on
B → Ka. As mentioned above the Ds/D–sector has unique and interesting
properties. The NLO contribution for these channels are not top enhanced
as the quarks running inside the loop correction are down–type. This pro-
duces interference in the signal, present in particular in D+

s → K+a and in
D+ → π+a, where naive considerations suggest correlation between cc and
cb. It is clear that these and the other channels in this sector allow for mea-
surement on a typically difficult contribution to isolate, the one coming from
the charm quark. Although the amplitudes are not the largest they offer
an interesting window on charm quark physics otherwise precluded in the
meson to meson ALP decays. The lighter mesonic resonances K∗ and ρ can
be considered in the same category due to similar Cabibbo suppressions and
mass scales. All the processes allow simultaneous presence of tree level and
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loop with similar magnitudes. This will produce a non zero interference be-
tween the two, offering a possible analysis of light couplings. The combined
signal entering the measures has to be studied carefully in a fashion similar
to that of the kaonic sector. The last channel present in Tab. 5.1 is the most
important one and deserves a dedicated discussion postponed to Sec.5.2.

For neutral channels one has a similar story and all the results are shown
in Tab.5.2. The most promising are of course B0 → K∗0a for loop couplings
and D0 → K∗0a for tree-level couplings and finally a couple of channels will
have strong correlations between the parameters. In particular K∗0 → K0a,

ρ0 → K0a and ρ0 → π0a exhibit the largest correlation out of every channel
considered in the analysis. Unsurprisingly it emerges even in the neutral
sector, that the best way to probe tree-level channels is to look at the D
sector where the penguins contributions are mediated by down type quarks
and will experience large m2

b

m2
w
suppression. On the other hand these tree-level

channels will have contributions coming from ISP, typically a charm quark or
a lighter down type quark emission, in the former case additional suppression
might be introduced depending on the model of the ALP-fermion coupling
(e.g. if one chooses a up-type, down-type coupling as done in [115] or a
universal coupling).

5.2 Kaonic sector

The kaonic sector deserves a special treatment for a number of reasons. It is
without a doubt the channel with the most precise data and most number of
studies. The extreme precision reached by terrestrial experiments allows for
the most stringent bounds it and presents correlation effects between loop
and tree–level. Nevertheless the amplitude associated with this process is
not the biggest. The most interesting aspect, beside the potential to bound
ct, are the correlation effect discussed by the author in [115] and that will
be shortly reviewed in Sec.5.2.2. Another interesting feature of this process
is the non–trivial hadronization required, if one wants to keep track of both
tree level and penguin contribution. Following what has been discussed in
Sec.4.1 one obtains the tree level decay amplitude of the K+ → π+a for
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Channel Tree–Level Loop
B0
s → D0

sa n.a. 1× 10−3

B0
s → D0a 2× 10−6 n.a.

B0
s → K∗0a n.a. 8× 10−6

B0
s → ρ0a 1× 10−7 n.a.

B0
s → K0

La n.a. 9× 10−4

B0 → K∗0a n.a. 8× 10−6

B0 → D0a 7× 10−7 n.a.
B0 → ρ0a 4× 10−8 1× 10−6

B0 → K0
La n.a. 4× 10−3

B0 → π0a 3× 10−8 9× 10−4

D0 → K∗0a 5× 10−6 n.a.
D0 → ρ0a 4× 10−6 2× 10−12

D0 → K0
La 1× 10−7 n.a.

D0 → π0a 1× 10−8 2× 10−10

K∗0 → K0a 2× 10−8 4× 10−8

K∗0 → π0a 5× 10−9 2× 10−9

ρ0 → K0a 5× 10−8 7× 10−9

ρ0 → π0a 1× 10−7 5× 10−10

K0
L → π0a 6× 10−12 5× 10−9

Table 5.2: Order of magnitude of neutral amplitudes.

initial and final state ALP emission, namely Eqs.(4.14) and (4.15), to be:

A(s)
ISR =

GF√
2
(V ∗

usVud) fK fπ (ka · Pπ)
MK

fa∫︂ 1

0

{︂ csms θ(x− δKa )
m2
a − 2x ka · PK

− cumu θ(1− x− δKa )
m2
a − 2 (1− x) ka · PK

}︂
φK(x) gK(x) dx,

(5.2)

and

A(s)
FSR =

GF√
2
(V ∗

usVud) fK fπ (ka · PK)
Mπ

fa∫︂ 1

0

{︂ csms

m2
a + 2x ka · Pπ

− cumu

m2
a + 2 (1− x) ka · Pπ

}︂
φπ(x) gπ(x) dx

(5.3)
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with δKa = ma/(2MK) an explicit cutoff introduced in the fractional momen-
tum to remove the unphysical singularities appearing in the integrals. The
most compelling aspect of Eqs.(5.2) and (5.3) is that for universal, or diag-
onal couplings, say cs = cu = c, a parametric cancellation appears in the
amplitude. This is a general feature of all tree level process and does not
depend on the particular channel parameters, masses decay constants etc.
As a rule, if present the tree–level will always have a parametric cancellation
for same signs couplings. Of course the individual signs are arbitrary and one
might choose a different convention, but Eq.(2.31) looks like the most natural
choice for a phenomenological model. The second interesting observation has
to be that kaons are not properly heavy mesons nor light ones. The “heavy-
ness” of a meson, in this context, is determined by the parameter ξ = mq/mQ

defined in Eq.(4.7) and measures how much of the total momentum distri-
bution of the meson should be assigned to the heaviest parton. Small values
of ξ indicate a large skew in the momentum distribution amplitude, typical
of heavy meson, while ξ ≃ 1/2 suggests a light meson, with a symmetric dis-
tribution of momenta among the valence quarks. These correspond to two
extreme cases that have an immediate approximated form. One can consider
either, SU(3) symmetry (ms ≈ mu) thus consider the Kaon as light , or the
opposite heavy meson treatment wherems ≫ mu. At this point one has to
assign a low–energy value to the valence quarks and introduce some level of
model dependency. When ξ = 1/2 quarks in the valence state are assigned
the same mass, namely m̂s = m̂u = MK/2, and in the massless ALP limit
one gets:

ML
K+ ≈ −

3GF fK fπ

4
√
2

(V ∗
usVud)

M2
K

fa
gLK (cs − cu) . (5.4)

Conversely, in the heavy meson approximation, one can assume m̂u = ξMK

and m̂s = (1 − ξ)MK , with ξ = mu/ms. Moreover, approximating φK(x) ≈
δ(1− x− ξ) as suggested in [141], one obtains, in the ma = 0 limit:

MH
K+ ≈ −

GF fK fπ

2
√
2

(V ∗
usVud)

M2
K

fa
gHK (cs − cu) . (5.5)
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This simple example highlights the criticalities discussed below Eq.(5.3). The
approximate formulas of Eq. (5.4) and (5.5) cancel completely when a univer-
sal coupling is chosen maximizing the parametric cancellation. This cancel-
lation is still partially at work even when the full φK(x) is used and indicates
a possible underestimation of theMK amplitude (and consequently on the
ALP-quark coupling limits) in the “universal” ALP–SM quark coupling sce-
nario compared to the general case2. Moreover one can see the difference
that considering a heavy or light meson in this model brings, in particular
the ratio of these casesML

K+/MH
K+ = (3/2)(gLK/g

H
K). From the approximate

formulas of Eq. (5.4) and (5.5) one can estimate roughly the order of magni-
tude of the uncertainties introduced in the calculation by the hadronization
procedure for the K meson. To reproduce the numerical results of the follow-
ing section, an intermediate approach will be, instead, considered: the heavy
meson function will be used, assuming3 gHK = 1, and with the two partons
defined as m̂u = mu + Λ and m̂s = ms + Λ with Λ = (MK −mu −ms)/2 a
parameter of order ΛQCD. Conversely, for the estimation of theMπ ampli-
tude, one can safely assume to parametrize the pion using the light meson
wave-function. If one take gπ(x) ≈ 0, as customarily suggested in the litera-
ture, the pion contribution automatically vanishes. A conservative estimate
can however be obtained by setting, for example, gπ/gK ≈ Mπ/MK , which
predicts the following upper bound to the ratio

RπK =

⃓⃓⃓⃓
Mπ+

MK+

⃓⃓⃓⃓
≲

(︃
Mπ

MK

)︃3

≃ 1.× 10−2 .

For this reason, even in the numerical calculation one can neglect the ALP-π
emission as expected on a general ground, once same order ALP couplings
to u, d and s quarks are assumed. Looking at Tab.5.1 one can see that
the dominant part of the amplitude comes from the top enhanced loop. To
compute it one follows Sec.4.4 to find the loop amplitude for the K+ → π+ a:

2Being the sign of the ALP–fermion couplings completely arbitrary, depending on the
conventions used this parametric cancellation can occur for cs = cu, when the Lagrangian
in Eq. (2.31) is used, as done for example in [68,99,108].

3In the following section it will be commented on how to adapt the numerical results
to account for different choices of gK .
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ML
K+→π+a =

GF m
2
t

4
√
2π2

M2
K+

fa

(︃
1−

M2
π+

M2
K+

)︃
[︃
f+(m

2
a) +

m2
a

M2
K+ −M2

π+

f−(m
2
a)

]︃ ∑︂
q=u,c,t

c
(q)
sd

(5.6)

with the coefficient

c
(q)
sd = VqiV

∗
qj

[︃
3 cW

g(xq)

xt
− cq xq

4xt
ln

(︃
f 2
a

m2
q

)︃]︃
(5.7)

opportunely normalized in order to factorize out all the relevant scale de-
pendences. The penguin with the ALP emitted from the internal W line is
included for completeness, even if in the following phenomenological analysis
cW = 0 will be assumed. The dominant contribution from the penguin dia-
gram is mostly proportional to the ct coupling. For the K meson decay, with
the charm contribution roughly accounting for 10% of the total contribution.
One-loop diagrams, with the ALP emitted from the initial/final quarks can
be safely neglected being suppressed by at least a factor m2

s/m
2
W ≈ 10−6

with respect to the penguin contributions, as they arise at third order in the
external momenta expansion. Therefore, no sensitivity on the ALP–down
quark couplings can emerge in the K → π a decays from one loop diagrams.
An order of magnitude of the tree vs loop amplitude ratio is obtained from
comparing Eqs. (5.4) and (5.6), giving:

RT/L =

⃓⃓⃓⃓
MT

K+

ML
K+

⃓⃓⃓⃓
≈ 2 π2fK fπ

m2
t

⃓⃓⃓⃓
V ∗
us Vud
V ∗
ts Vtd

⃓⃓⃓⃓
≃ 1.× 10−2 (5.8)

showing the expected level of suppression. Even if the tree vs loop ratio
is at the per cent level, the tree level diagrams may have a non negligible
impact in the measurement of the K → π a decays, as in principle they
depend on different and less constrained, down quark–ALP couplings. The
corresponding neutral amplitudes are obtained in a similar fashion using the
appropriate results shown in Sec.4.3 and 4.4. The only subtlety is that the
mass eigenstates of the neutral Kaon are misaligned with the flavour ones.
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This requires a particular combination of amplitudes in the flavour basis to
be considered as the experimental signal. The authors discuss this particular
issue at length in section 3.3 in [115]. Moreover one can check in Tab. 5.1
that the one can safely ignore tree–level in the case of the K0

L decay.

5.2.1 Phenomenology of the K → πa channel

Armed with the tree–level and one–loop, charged and neutral, K → π a de-
cays amplitudes, one can bound the ALP-fermion couplings using the experi-
mental limits provided by the NA62 [86–88], E949 [125–127] and KOTO [89]
experiments. The main assumption underlying the following phenomeno-
logical analysis is that the ALP lifetime is sufficiently long for escaping the
detector (i.e. τa ≳ 100 ps) or alternatively the ALP is mainly decaying in a,
not better specified, invisible sector. Visible ALP decays have been studied,
for example, in [67, 69, 75, 142]. The tree–level amplitudes of charged and
neutral channels depend on the ALP couplings with s, d and u quarks, while
the one–loop ones are typically dominated by the ALP coupling with the
heaviest quark running in the loop, the t quark, being the c, u contributions
suppressed by the mu,c/mt mass ratio. Being the focus of this paper on ALP-
fermion couplings, for the rest of the section cW = 0 will be assumed. The
interplay between the simultaneous presence of cW and ct has been discussed
in detail in [69]. An analysis of the K → π a decay with completely gen-
eral, but flavor conserving, ALP-quark couplings, would require to consider
a five-parameters fit, (cu, cd, cc, cs, ct) beside the ALP mass ma. In order to
obtain meaningful information about the ALP-fermion couplings different
simplifying assumptions have to be introduced. To study the phenomenol-
ogy only two independent family universal ALP-fermion couplings, c↑ for the
up quarks and c↓ for the down ones, will considered, for sake of simplicity4.
Under this assumption, the interplay between the tree–level and loop contri-
butions to the K → π a decay will be thoroughly discussed. Limits for the
universal ALP–fermion coupling caΦ can be then obtained straightforwardly.
As stated in the discussion above, the following results have been obtained

4The authors refer to [115] for a more detailed study of the contributions considered
here.
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using the heavy meson approximation for theK meson with gHK = 1, but with
a modified parton mass definition, e.g. a value gK = 1/2 could be reasonable
considered the mixed nature of the K-meson. However, different assumptions
on gK can be simply obtained by accordingly rescaling the showed bounds
on ci: i.e. c′i = ci/gK .

5.2.2 Interplay between tree–level and one–loop con-
tributions

E949

NA62

KOTO expected

0.005 0.010 0.050 0.100
5.×10-5

1.×10-4

5.×10-4

0.001

0.005

�� [���]
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Figure 5.2: Excluded parameter regions for an universal ALP–up quark cou-
pling c↑ derived from NA62 (pink), E949 (cyan) and KOTO expected (dashed
line) experiments.

To constrain, simultaneously, tree–level and one–loop contributions to the
K → π a decay one has to adopt simplified frameworks. Following [69], one
can consider the scenario of universal ALP-quark coupling, caΦ. From the
analysis of Sec. 4 one easily realizes that in this scenario, the top-penguin
loop contribution dominates the charged and neutralK decay, once cW = 0 is
assumed. The full cyan and pink lines in Fig. 5.2, represent the limits on caΦ
obtained from E949 and NA62 respectively as function of the ALP mass ma.
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The dashed gray line represents, instead, the caΦ limits from the expected
KOTO upgrade. These results are in agreement with the bounds presented
in [69] and show that K meson decays typically constrain caΦ ≲ 10−3 in the
sub-GeV ALP mass range.

In general MFV ALP frameworks, however, it may not be unconceivable
to assign different, but flavor universal, PQ charges to the up and down quark
sectors, see for example [143–145], that in the following will be denoted as c↑
and c↓, respectively. In this scenario, one–loop amplitudes only depend from
c↑ while the tree–level amplitudes are practically proportional to a linear
combination of c↑ and c↓, as evident for example in the simplified amplitudes
of Eqs. (5.4) and (5.5). Indeed, to study the interplay between tree–level
and one–loop the reference value c↓ = ±0.05 has been chosen, somehow
in the ridge of the parameters allowed from previous analysis on tree–level
contributions [115]. The blue and brown shaded regions showed in Fig. 5.2
represent the variability of NA62 and E979 bounds on c↑ once c↓ is let varying
in the [−0.05, 0.05] range. The presence of the tree-level contribution can
modify the bounds on c↑ extracted from penguin diagrams of roughly one
order of magnitude, in all the ma range. The expected KOTO limits on the
K0
L → π0 a decay is reported in Fig. 5.2 as a black dashed line, giving a

practically constant bound c↑ ≲ 1 × 10−3 over all the ma range of interest,
yet not competitive with the charged sector one. Notice that, however, the
neutral K decay sector does not suffer from any relevant interference from
the tree–level processes, largely suppressed from the CP violating parameter
ϵ̃. A simultaneous measurement of the charged and neutral K → π a decays,
may thus in a not too far future may give independent indications on the
relative size of the ALP–light quark couplings. Finally, in Fig. 5.3, a summary
on the combined bounds on (c↑, c↓) is presented for two reference values of
the ALP mass ma = 0 GeV and ma = 0.2 GeV. For the two upper plots
sign(c↓) = sign(c↑) has been taken. In the lower plots, where sign(c↓) =

−sign(c↑) has been considered, a partial cancellation between one–loop and
tree-level contributions takes place. In this second scenario, the c↓ constraint
from the Υ(ns) decays at Babar and Belle (full vertical black line) derived
by [99] can contribute to close this flat direction.
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Figure 5.3: Excluded parameter regions for universal ALP–up and down
quark couplings c↑ and c↓ derived from NA62 (cyan) and KOTO (pink and
dashed pink line) and Y (ns) → γ a (full vertical black line) experiments.
The upper plots refer to the sign(c↓) = sign(c↑) case, while in the lower ones
sign(c↓) = −sign(c↑) has been chosen.

5.3 Leptonic Final States

In this section the authors consider the detailed analysis of pseudo–scalar
meson leptonic decays, M → ℓ νℓa, with an ALP escaping the detector or
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Figure 5.4: Tree level contributions to the M → ℓ νℓ a amplitude, with the
ALP emitted from the M meson. The diagram where the ALP is emitted
from the charged lepton is straightforward.

decaying into an “invisible” sector. These decay channels were previously
analyzed in [108] for a massless ALP and for a universal ALP–fermion cou-
pling, here instead the ALP mass and the fermion couplings are going to be
considered generic and flavour–conserving. Therefore it will be possible to
extract independent limits to both quarks and leptons couplings to ALP. The
bounds obtained for the couplings of ALPs to leptons are the most stringent
to date. Using the effective Lagrangian of Eq. (2.31) one can calculate the
leptonic decay rates of pseudo–scalar mesons, M → ℓ νℓ a, with the ALP suf-
ficiently long-lived to escape the detector without decaying (or decaying into
invisible channels). In such a case the only possible ALP signature is its miss-
ing energy/momentum. In the following, MM and PM will denote the mass
and 4–momentum of the decaying meson, while leptons and ALP masses and
4–momenta will be indicated with mℓ, ma, pℓ, pν and pa respectively. Neutri-
nos will be assumed massless. These decays have a single allowed topology
shown in Fig. 5.4, where only the diagrams where the ALP is emitted from
the M–meson are shown. The diagram where the ALP is emitted from the
charged lepton follow straightforwardly, while the one with the ALP emitted
from the W+ internal line automatically vanishes, being the W+W−–ALP
coupling proportional to the fully antisymmetric 4D tensor. In the following,
the derivation of the decay amplitude for the channel in which the ALP is
emitted from the initial quarks or from the final charged lepton are discussed
separately, as they need two different hadronization treatments. The two
diagrams depicted in Fig. 5.4 represent the contributions to the M → ℓ νℓ a

decay in which the parent meson constituent quarks emit the ALP and then
annihilate into a virtual W boson, producing the final leptons. The corre-
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sponding amplitude5 can be written as:

Mh = ⟨0| q̄ ΓµhQ |M⟩
(︁
ℓ̄ γµPL νℓ

)︁
,

with Γµh given by

Γµh = −4GF√
2
VqQ

(︂cqmq

fa
γµPL

/pa − /pq +mq

m2
a − 2pa · pq

γ5

− cQmQ

fa
γ5
/pa − /pq −mQ

m2
a − 2pa · pQ

γµPL

)︂
.

(5.9)

In Eq. (5.9) pq and pQ are the initial quarks momenta, with cq and cQ
the corresponding ALP-fermion couplings. Using the methods introduced
in Eqs.(4.13–4.7) one obtains the following decay amplitudes for the meson
ALP–emission process:

Mh =
4 i GF VqQ√

2

fM
fa

M2
M

2 pa · PM

[︂
cQ
mQ

MM

Φ
(Q)
M (m2

a)

− cq
mq

MM

Φ
(q)
M (m2

a)
]︂ (︂
ℓ̄ /pa PL νℓ

)︂
.

(5.10)

where the functions Φ(q,Q)
M (m2

a) contain the integrals over the quark momen-
tum fraction and are defined respectively as:

Φ
(q)
M (m2

a) =

∫︂ 1−δM

0

pa · PM
m2
a − 2 (1− x) pa · PM

φM(x) gM(x) dx

Φ
(Q)
M (m2

a) =

∫︂ 1

δM

pa · PM
m2
a − 2x pa · PM

φM(x) gM(x) dx . (5.11)

The presence of the kinematical cutoff δM = ma/(2MM) prevents the appear-
ance of unphysical bare singularities. The leptonic decay amplitude for the
lepton ALP–emission process can be easily obtained by using the definition

5For definiteness, the leptonic current is written assuming a negative charged meson
M = q̄Q state, being q a light up-type quark and Q an heavy down-type one.
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of the meson form factors of Eq. (4.8), giving

Mℓ = ⟨0| q̄ γµPLQ |M⟩
(︁
ℓ̄Γµℓ νℓ

)︁
,

with

Γµℓ = −4GF√
2
VqQ

(︃
cℓmℓ

fa
γ5
/pa + /pℓ +mℓ

m2
a + 2pa · pℓ

γµPL

)︃
. (5.12)

In Eq. (5.12) pℓ dubs the momentum of the final charged lepton. By making
use of all the Dirac matrices relations one obtains:

Mℓ = −4 i GF√
2
VqQ

fM
fa

[︃
cℓmℓ

(︁
ℓ̄ PL νℓ

)︁
− cℓm

2
ℓ

m2
a + 2 pa · pℓ

(︂
ℓ̄ /pa PL νℓ

)︂]︃
.

(5.13)

5.3.1 Differential Decay Rate

For the 3-body decay at hand, and assuming a massless neutrino, one can
define the following Mandelstam variables:

s = (PM − pℓ)2 = (pν + pa)
2 =M2

M +m2
ℓ − 2MMωℓ (5.14)

t = (PM − pν)2 = (pℓ + pa)
2 =M2

M − 2MMων (5.15)
u = (PM − pa)2 = (pℓ + pν)

2 =M2
M +m2

a − 2MMωa (5.16)

with the energy conservation providing the identity:

s+ t+ u =M2
M +m2

ℓ +m2
a .

The differential 3-body decay rate of any scalar particle in its rest frame
can be simply written as function of two independent final energies ωi, or
equivalently of the two independent Mandelstam variables, as

(dΓM)RF =
1

(2π)3
1

8MM

|MM |2 dωℓ dωa =
1

(2π)3
1

32M3
M

|MM |2 ds du (5.17)
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withMM =Mℓ +Mh. The Feynman amplitude squared reads:

|Mℓ|2 = CM c2ℓ
m2
ℓ

M2
M

{︃
pℓ · pν
M2

M

− m2
ℓ

M2
M

(︂ pa · pν
m2
a + 2 pa · pℓ

+m2
a

pν · (pa + pℓ)

(m2
a + 2 pa · pℓ)2

)︂}︃ (5.18)

|Mh|2 = CM

[︂
cQ
mQ

MM

Φ
(Q)
M (m2

a)−cq
mq

MM

Φ
(q)
M (m2

a)
]︂2

× 2(pa · pℓ)(pa · pν)−m2
a pℓ · pν

(pa · PM)2

(5.19)

MhM∗
ℓ = CM cℓ

m2
ℓ

M2
M

[︂
cQ
mQ

MM

Φ
(Q)
M (m2

a)−cq
mq

MM

Φ
(q)
M (m2

a)
]︂

× m2
a (pa · pν + pℓ · pν)

(m2
a + 2 pa · pℓ)(pa · PM)

(5.20)

with the overall constant factor defined as:

CM = 4G2
F |VqQ|2M4

M

f 2
M

f 2
a

.

One can notice from Eq. (5.20), that the mixed product is proportional
both to the ALP and the charged lepton masses and, consequently, can be
neglected either for a massless ALP or for meson decays to a light charged
lepton. The total decay rate, for a general ALP mass, can be obtained
by numerically integrating the differential decay rate of Eq. (5.17) in the
kinematically allowed region. On the other hand, the massless ALP limit
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can be easily integrated analytically. By setting ma = 0 one obtains:

ΓM→ℓνℓa =

{︄
G2
F |VqQ|2M5

M

384π2

f 2
M

f 2
a

{︂
c2ℓ
(︁
2ρ2 + 3ρ4 + 12ρ4 log ρ− 6ρ6 + ρ8

)︁
+
[︂cQmQ

MM

Φ
(Q)
M (0)− cqmq

MM

Φ
(q)
M (0)

]︂2(︁
1− 6ρ2 − 12ρ4 log ρ+ 3ρ4 + 2ρ6

)︁}︄
.

(5.21)

For cℓ = cq = cQ = 2 one recovers an agreement with the leptonic part of
the decay rate in Eq. (17) of Ref. [108], while the hadronic part is wrong
and 1/4 of the result in Eq. (5.21), consistently with what obtained from the
Feynman amplitude check.

5.3.2 Bounds from Leptonic Final States

Pseudo–scalar leptonic decay experiments can be used to constraint flavour–
diagonal ALP-fermion couplings of Eq. (2.31) via the ALP (invisible) decay
rate derived in Sec.5.3.1 in Eqs.(5.17–5.20). Leptonic B-decays have been
measured at B-factories, latest BELLE data for electron, muon and tau chan-
nel can be found in [146–148], respectively. Charmed meson decays have been
measured at BESS (see [149–151] for D and [152, 153] for Ds decays respec-
tively) and at BELLE [154]. Leptonic Kaon decays have been measured by
KLOE and NA62 [155–157]. In Tab. 5.3 available experimental determina-
tions for the leptonic pseudo–scalar decay branching ratios are summarized
and the lowest order SM predictions are shown for comparison.

It is once again important to stress that the following phenomenological
analysis assumes an ALP lifetime sufficiently long to escape detection (i.e.
τa ≳ 100 ps) or alternatively that the ALP is mainly decaying into a, not
better specified, invisible sector. In both cases, the ALP signature is a missing
energy/momentum, just as for neutrinos. In this scenario, the simplest way
to constrain ALP–fermion couplings is then to saturate the 1–σ experimental
limits on the corresponding leptonic branching ratio adding the leptonic ALP
decay to the leptonic SM amplitude. No kinematical constraint (2-body vs
3-body decay) is used in the analysis at this stage. The derived bounds



5.3. LEPTONIC FINAL STATES 111

Channel SM Branching Ratio Experiment Ref.
B± → e±ν̄e 8.37× 10−12 < 9.8× 10−7 [146]
B± → µ±ν̄µ 3.57× 10−7 (5.3± 2± 0.9)× 10−7 [147]
B± → τ±ν̄τ 7.95× 10−5 (7.2± 2.7± 1.1)× 10−5 [148]
D± → e±ν̄e 9.51× 10−9 < 8.8× 10−6 [149]
D± → µ±ν̄µ 4.04× 10−4 (3.71± 0.19± 0.06)× 10−4 [150]
D± → τ±ν̄τ 1.08× 10−3 (1.2± 0.24± 0.12)× 10−3 [153]
D±
s → e±ν̄e 1.24× 10−7 < 8.3× 10−5 [154]

D±
s → µ±ν̄µ 5.28× 10−3 (5.49± 0.17)× 10−3 [151]

D±
s → τ±ν̄τ 5.15× 10−2 (4.83± 0.65± 0.26)× 10−2 [152]

K± → e±ν̄e 1.62× 10−5 (1.582± 0.007)× 10−5 [157]
K± → µ±ν̄µ 0.629 0.6356± 0.0011 [157]

Table 5.3: Lowest order SM predictions and experimental constraints on the
considered M → ℓν decay branching ratios.

on the U(1)PQ breaking scale fa are shown in Tab. 5.4. These values have
been obtained by setting the relevant ALP-fermion coupling to one, with all
the others vanishing. The results are provided for two reference values of
the ALP mass ma = 0 GeV and ma = MM/2 GeV, showing the variability
range that should be expected for a massive vs (almost) massless ALP. As an
example, the first row in Tab. 5.4 should be read as follows: the “up–quark”
columns represent the fa limits obtained by setting cu = 1 and cb = ce = 0

for the two reference values of ma, the “down–quark” columns represent the
limits obtained by setting cb = 1 and cu = ce = 0, and finally the values in
the “lepton” columns are obtained by setting ce = 1 and cu = cb = 0.

For the heavy pseudo–scalar mesons, such as B, D and Ds, the formulas
discussed in Sec.4.1 can be readily applied. These mesons are very well
described by the heavy wave function φH(x) in Eq. (4.7), with gM = 1.
Constituent quark masses should be used for partons, instead of bare masses,
i.e. MM = m̂Q + m̂q (being m̂Q ≈ mQ) with Q and q the heavy and light
quark in the meson, respectively. The Kaon sector is more delicate as Kaons
cannot be treated fully consistently neither as heavy or as light mesons [110].
The specifics of these contribution have been discussed in detail in Sec.5.2.

One can immediately realize that the fa bounds shown in Tab. 5.4 from
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Channel fa [GeV] u-quark fa [GeV] d-quark fa [GeV] lepton
ma=0 ma=

MM

2
ma=0 ma=

MM

2
ma=0 ma=

MM

2

B±→e±ν̄e 2.8 0.079 4 1.3 5·10−4 1.3·10−4

B±→µ±ν̄µ 6 0.16 8.3 2.7 0.2 0.06
B±→τ±ν̄τ 0.38 0.006 0.5 0.065 0.2 0.05
D±→e±ν̄e 6 2.1 5.7 0.86 0.02 5.3·10−4

D±→µ±ν̄µ 4 1.3 3.7 0.56 0.27 0.070
D±→τ±ν̄τ 0.007 0.007 0.006
D±
s→e±ν̄e 8 3 8.2 1.9 0.002 6.6·10−4

D±
s→µ±ν̄µ 5.5 2 5.7 1.3 0.3 0.09

D±
s→τ±ν̄τ 0.02 0.01 0.02

K±→e±ν̄e 249. 87 170 10 0.243 0.06
K±→µ±ν̄µ 1.7 0.5 1.2 0.05 0.32 0.06

Table 5.4: Limits on the U(1)PQ scale fa derived from leptonic pseudo–scalar
meson decays, setting the relevant ALP-fermion coupling equal to one, with
all the other couplings vanishing.

up-type and down-type ALP-quark sectors are far from being competitive
with the ones derived from FCNC processes, presented in Sec.5.2 in Figs.
(5.1–5.3). For example, from Fig.5.2, one can read off a limit fa ≳ 1010 MeV
stemming from the top-enhanced penguin contribution, assuming ct = 1.
Tree–level diagram contributions to FCNC processes can provide constraints
on lighter quark sectors, Fig.(5.3) or Ref. [115], giving limits on fa in the
range fa ≳ 106 − 107 MeV. From Υ(ns) decays on can obtain a constraint
of the same order for the bottom sector [99]. The only pseudo–scalar meson
leptonic channel that provide almost comparable bounds on the quark sector
is the K± → e±ν̄e decay, while most the other pseudo–scalar leptonic decays
provide limits in the ballpark fa ≳ 103− 104 MeV for the light lepton decays
and fa ≳ 101 − 102 MeV for the τ ones.

Nonetheless, pseudo–scalar meson leptonic decays can be still very useful,
as they provide the best present limits on the ALP–lepton sector for an ALP
with ma in the (sub)–GeV range, bounding fa ≳ 102 − 103 MeV for most of
the available channels. Typically, the muon sector gives better limits on fa
as it combines experimental data with relatively smaller errors and a not too
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Figure 5.5: Limits on the coupling (a) cu/fa and (b) cd/fa derived from the
leptonic meson decay indicated in the legend, as function of the ALP mass
ma.

large lepton mass suppression of the amplitude in Eq. (5.18). The electron
sector suffers from a larger mass suppression and typically provides bounds
on fa ≳ 105 − 106 MeV, with the only exception of the K± → e±ν̄e chan-
nel benefiting from its highly precise determination6. Furthermore, in this
ALP mass range, the results presented here on the electron coupling ce can
be complementary with present and future ALP-DM searches like EDEL-
WEISS [158] and LDMX [159] and reactor searches at CONNIE, CONUS,
MINE, and ν-cleus [160].

The same information can be visually obtained from the plots in Fig. 5.5
and Fig. 5.6, where the dependence of the ci/fa bounds on the ALP mass is
shown for the ALP couplings to up-type and down-type quarks (Fig. 5.5 (a)
and Fig. 5.5 (b) respectively) and for the ALP couplings to charged leptons
(Fig. 5.6 (a)). As previously noticed, the K± → e±ν̄e channel is the most
promising one, putting bounds on cu,s/fa ≲ 5 TeV−1, while most of the other

6Recall, however, that caution should be used when handling K data as a larger
hadronic uncertainty has to be accounted for, unavoidably.
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channels are providing limits cu,c,s,b/fa ≲ 102 − 103 TeV−1, still far from the
perturbativity region for fa = 1 TeV. Concerning the ALP-charged lepton
coupling notice that the best limits come form µ decay channels, bounding
cµ/fa ≲ 103 − 104 TeV−1. Measurements of cτ are still limited by worse
experimental resolution providing bounds cτ/fa ≲ 105 TeV−1. Sensitivity
to the ALP-electron coupling ce is obviously suppressed by the tiny electron
mass giving ce/fa ≲ 106 − 107 TeV−1.

The results presented here represent an improvement of at least one order
of magnitude compared with limits obtained in Tab. III of [108]. Three
main reasons can be advocated: i) first of all, since the publishing of [108],
experimental determination of pseudo–scalar leptonic decays has typically
improved by roughly a factor ten, leading to more stringent bounds on fa,
ii) moreover, one has to recall that the leading hadronic contribution in Eq.
(17) of [108] underestimates by 1/4 the ALP branching ratio, resulting again
in lower fa bounds, iii) finally, assuming a universal ALP-fermion coupling
results in a parametric cancellation, clearly shown in Eq. (5.10) once cq = cQ
is assumed, causing a lost in sensitivity that numerically can be estimated in
the 50%–70% range7.

5.3.3 Spectrum analysis

All the bounds shown up to now have been extracted using exclusively infor-
mation inferred from the total decay rate. One may think that stronger con-
straints should be derived from the differential decay rate dΓ/dωℓ (or equiva-
lently dΓ/ds) obtained integrating Eq. (5.17) over the ALP energy ωa (or over
the Mandelstam variable u), thus exploiting the different leptonic energy dis-
tribution characterizing two–body vs three–body decays. The SM two-body
decay distribution is peaked around vanishing missing mass s = m2

ν ≈ 0,
and therefore any excess of events with s > 0 could be an indication of a
three-body decay, once SM backgrounds (like Ds → µ νµ γ with ωγ below
the detection energy threshold) have been opportunely accounted for. As an
example, in Fig. 5.6(b), the comparison between the limits on the ci/fa coef-
ficients obtained from the differential decay rate analysis for the Ds → µ νµ

7A detailed and more qualitative discussion of this effect can be found in [115]
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Figure 5.6: Limits on the coupling cℓ/fa (a) derived from the leptonic meson
decays indicated in the legend, as function of the ALP mass ma. Figure
(b) shows the limits obtained on all the couplings from the analysis of the
Ds → µ νµ a decay using the experimental BR (full lined) and the missing
mass distribution (dashed line).

decay observed by BESIII [151] (dashed lines) and the bounds from the
branching ratio (solid lines) are shown. The two methods give comparable
bounds, with limits obtained from the differential decay rate analysis being
somehow less stringent, showing that no clear improvement is obtained, with
present data, by adding the available spectral information.

The reason can be easily understood by looking at Fig. 5.7. The red
continuous line represents the experimentally smeared SM two body decays
rate, dΓSM/ds, here shown only for s > 0, as shown in Fig. 2 of [151].
The dΓSM+NP/ds distributions obtained including the three body decay
Ds → µ νµ a for ci/fa = 200 TeV−1 and different values of the ALP mass, ma

are shown as blue curves. BESSIII collaboration provides data (dots with
error bands) on the missing mass distribution only for s < 0.2 GeV2/c4, while
most of the NP signal lies above s > 0.5 GeV2/c4. Consequently, less strin-
gent limits on ci/fa can be obtained by using available spectral information.
Same conclusions can be extrapolated from the other few analysis with pub-
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Figure 5.7: Missing mass squared distribution for the Ds → µ νµ decay
from BESSIII collaboration [151]. The red solid line corresponds to the SM
smeared two–body differential decay rate dΓ/ds. Blue curves represent the
predicted distributions once the three–body Ds → µ νµ a decay is included,
plotted for different values of the ALP mass, ma.

lic missing mass squared distributions. An improvement to the bounds on
the ALP-fermion couplings obtained from the total decay rate would require
to have access to the complete experimental data of signal and background
distributions, and is beyond the reach of this letter. Nevertheless one can
clearly see from Fig.5.7 that, at least for small values of ma, the difference
in the signals between 2–body and 3–body justifies a dedicated analysis on a
bigger M2

miss range, as the signal is well separated from the background and
from the smeared SM 2–body.

From Fig.5.7 one sees that asma increases the distribution for the 3–body
signal gets increasingly smaller in fashion that is far from the usual kinemati-
cal suppression “1− Ratio of masses”. Looking at the results one might think
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Figure 5.8: Decrease in the available integration region as ma ∈ [0.1, 1] in
the case of a Ds → µa.

that the culprit for such an unnatural suppression is in the model presented
by the authors, perhaps the integrals cut–off in Eq.(5.11) is too harsh and as
a result part of the contribution is getting excluded resulting in an unphysical
suppression of the amplitude. This interpretation might be appealing but in
reality this suppression effect comes directly from the Dalitz plot shrinking
very rapidally under changes of ma, as shown in Fig.5.8.

5.4 Monogamma Final States
Recently some interesting low background channels have been studied by the
BELLE collaboration [161], namely the processes are B0 → INV and B0 →
INV+ γ, with a reported Branching Ratio of 7.8 and 1.6 ×10−5 respectively.
The study of the background can be found in [162, 163], showing plenty
of room for NP measurements. The techniques developed in the present
manuscript are well suited to study a process of the type M → γa, or in
general any mesonic process with the vacuum as a final state. Processes like
the one studied by the BELLE collaboration in [161] have been proven to be
useful in bounding the ALP couplings, see [99], and represent a promising
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opportunity to look into the ALPs parameter space.

5.4.1 Weak Effective Theory and ALP induced Flavor
Violation

In the Standard Model Flavor Violation can only be mediated by the W ’s.
Below the EW phase transition FV is induced in low–energy weak processes
via higher order corrections to the effective interactions involving only light
fermions. These effective interactions we are interested in were discussed
by Inami and Lim in a seminal paper [164]. In BSM with ALPs one can
induce change in flavor by having the ALP mediate the interaction, either
via direct FV or, in a similar way to what happens with weak interactions, via
higher order processes. In the Minimal Flavor Violation Ansatz the former
is excluded while the aforementioned higher order corrections are exactly the
top–enhanced penguin loop discussed in Sec.4.4.

Consider the process B0 → γa, where the energies are the ones typical of
B–factories. To describe the process one has to consider the Weak Effective
Theory (WET). WET induces flavor change with the emission of a photon,
at lowest order an on–shell one. From [164,165] one recovers the form of the
effective vertex associated to the gamma mediating a change in flavor:

d̄iΓµdj =
eGF

4
√
2π2

V ∗
kiVkj d̄i

(︂
F1(p

2
γγµ − /pγpγµ)PL + iF2σµνp

ν
γ(mdiPL +mdjPR)

)︂
,

(5.22)
where F1 and F2 are mass dependent loop functions and pγ is the photon mo-
mentum. Given that the contribution will be mediated by an on–shell photon
the part proportional to F1 will always be zero, so the effective vertex one
has to consider is the one in Eq.(5.22) with F1 put to zero. As mentioned
above the other way of inducing FV is via the top–enhanced 1-loop pen-
guin diagram. The effective Lagrangian associated with this term is, in the
“Yukawa” basis

d̄iΓ
′dj =

GFm
2
t

4
√
2π2

c
(t)
ij

a

fa

(︁
mj d̄iPRdj −mid̄iPLdj

)︁
. (5.23)

The prescription to hadronize the contribution are the ones discussed in Sec.4
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and thanks to the nature of the process and the fact that we are considering
only fermionic ALP couplings the amplitudes will always reduce to the first of
Eq. (4.13). There are two effective vertices, Eqs.(5.22) and (5.23), contribut-
ing to this process that one needs to consider. If the photon is mediating
the flavor violating interaction then the amplitude will be proportional to
light quarks ALP–fermion couplings while if the ALP is mediating the flavor
violation then the amplitude will be proportional to ct. If both are present
one will have interference in the final signal. Consider the effective vertex in
Eq.(5.22) mediating a process M0 → γ + INV where M ′s partons are Q and
q̄, both down type quarks. The two possible amplitudes, from either Q or q̄
emission, are given by

AWET = e
GFF2

4
√
2π2fa

V ∗
kiVkjp

ν
γϵ
µ∗(pγ)q̄

[︂
cqmq

γ5/kσµν(mQPR +mqPL)

m2
a − 2pq · k

− cQmQ
σµν(mQPR +mqPL)/kγ

5

m2
a − 2pQ · k

]︂
Q.

(5.24)

As discussed before to hadronize correctly the contribution one takes the
first of Eq.(4.13). One can easily show that applying Eq.(4.13) to Eq.(5.24)
will give exactly zero as a consequence of the Ward–Identity and momentum
conservation. Therefore any M0 → γ + INV amplitude under the MFV
and invisble ALP assumptions is generated only by the vertex in Eq.(5.23).
Therefore one has to compute the hard scattering process mediated by a
Flavor Violating ALP with the effective vertex of Eq.(5.23). The sum of the
two contributions, due to the possible exchange of the outgoing particles is

AFV = −ie GFm
2
t

4
√
2π2

c
(t)
ij

fa
ϵ∗µ(pγ)q̄

[︂
QQ

mQPR −mqPL
2pQ · k

(/pQ − /k +mQ)γ
µ

+Qqγ
µ(/pq − /k +mq)

mQPR −mqPL
2pq · k

]︂
Q.

(5.25)

Once again the relevant technique to hadronize theM0 → γa amplitude is to
project the operator regulating the process applied to initial state onto the
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vacuum in the final state. The result for the operator found in Eq.(5.25) is:

⟨0| AFV

⃓⃓
M0(PM)

⟩︁
= i

GFm
2
t

4
√
2π2

caijfM

2fa

Qqe(mq +mQ)

M2
M −m2

a

× (gM(x)MMk
ρ− (mQ −mq)P

ρ
M)

∫︂
dxφM(x)

(︃
x− (1− x)
x(1− x)

)︃
ϵρ(Pγ).

(5.26)

It is important to stress once again that in the case of an Invisible ALP with
Minimal Flavor Violation, the only non zero contribution to these decays
comes from the Pseudo–scalar annihilation of a neutral meson mediated by
the term in Eq.(5.23), i.e. the FC penguin induced vertex of the ALP with an
internal emission of a γ, and as such depends only on the ct contribution. This
setup produces a theoretically clean signal dependent only on the coupling
between the top and the ALP through the Flavor Violating effective vertex.

5.4.2 Bounds From Monogamma final states

A single variable fit onto the BELLE data [161] for the monogamma final
state allows one to extract a limit of ct < 2. Therefore at the moment the
measurement does not saturate the perturbativity bound. Nevertheless the
rare decays M0 → γINV and M0 → INV provide low background alterna-
tives to measure ct outside the K sector. In the present analysis the purely
missing energy final state has been neglected since the limit it would pro-
duce is smaller than the one derived in Fig.5.9 from the monogamma data,
mainly due to worse experimental resolution. In the future increasing atten-
tion should be given to these as typical Standard Model M0 → INV are of
order 10−14, i.e. realistically any potentially observed signal would indicated
NP. In Fig.5.9 the limits identified as “BELLE” and “Expected BELLE”
are extracted by BELLE data and by BR< 10−6 respectively. Moreover in
Fig.5.9 the bound from BaBar’s own monogamma is shown. The observed
process is Υ(ns)→ γ+INV, that in our MFV invisible ALP scenario bounds
cb rather then ct. This is due to the bb̄ composition of the Upsilon, allowing
an annihilation to the vacuum without requiring loops or FV ALP couplings,
for a complete and in depth study the authors refer to [99]. Finally the limits
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Figure 5.9: BELLE and BaBar limits extracted from monogamma signals.
BELLE measures B0 → γINV while BaBar looks at Υ(ns)→ γ + INV. The
two experiments bound different couplings. The NA62∗ limit is obtained by
fitting only the tree level contribution on the experimental data.

obtained on cs via the K → πa channel, if the loop is turned off are shown
in the plot. These provide the strongest bounds on the parameter in the
considered mass region.



122CHAPTER 5. INVISIBLE ALP BOUNDS FROM FLAVOR PHYSICS



Chapter 6

Conclusions

The present manuscript is a brief, self–contained study of the phenomenol-
ogy of ALPs in the fermionic sector, under the “Invisible Axion” assumption.
The Standard Model is embedded with an ALP via an Effective Field Theory
truncated at the lowest non–renormalizable order in the Laurent expansion.
The field content and the symmetry group are minimally extended adding a
single pseudo–scalar light resonance to the Standard Model, that is the Gold-
stone boson of an anomalous global U(1)PQ symmetry spontaneously broken
at some high energy scale fa. The Effective Field Theory is then evolved along
its Renormalization Group flow from this Ultra–Violet scale down to the per-
turbative limit of QCD. Some attention is dedicated to the non–perturbative
regime of Strong Interactions with the QCD–Chiral Lagrangian.

A brief discussion on the cosmological and astrophysical implications of
this light resonance is presented along with the possible signatures on the rela-
tive observables. Direct and indirect limits on the ALP parameter space from
terrestrial experiments and non– are reviewed with some future prospects in
the observation and search for light resonances. Particular attention is de-
voted to fixed target experiments such as NA62, KOTO, BELLE and BaBar.
The phenomenology is then studied with the aid of the Brodsky–Lepage fac-
torisation and Lattice QCD results. Short–range perturbative physics and
long–range hadronic physics are supposed to be incoherent with each other in
some limit and a model of meson ALP–interaction is recovered. A discussion
on the issues and the successes of the approximation is given throughout the
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manuscript in a number of different decay scenarios. An encouraging feature
is given by the QCD Chiral Lagrangian results giving the same amplitudes
and parametric dependences of the ones recovered in this manuscript within
10−3 accuracy.

Weak annihilation-induced ALP emissions generated by flavor conserving
couplings and weak mesonic decays induced by flavor violating ALP couplings
are studied in the framework of a single experimental signature. This allows
to extract important bounds and correlation information on the low–energy
ALP–fermion couplings from flavor factories data. ALP–leptonic final state
decays are also studied, a correction on the massless ALP limit and the full
mass dependence of the decay width is recovered. This opens up the study
for a plethora of signals able to project limits onto ALP–leptons and ALP–
quarks parameters. A discussion on the importance of 2–body vs 3–body
kinematics is presented along with the analysis on leptonic final states. Fi-
nally an analysis of ALP–mono-photon final states is presented in light of
the strong results obtained from BaBar data in the context of quarkonia res-
onances. A similar final state signature can be obtained from neutral meson
decays and some encouraging results are discussed.

An important part of the research work summarized in this thesis is the
systematic computation and study of meson-to-meson with ALP emission
form factors presented here for the first time. Most of the discussed phe-
nomenology is obtained via these formulas either at with tree–level contri-
butions or effective 1–loop ones.

Future prospects in the line of research are numerous and not always
tied to experimental results. One pressing matter is the projection onto the
UV theory of the limits obtained and discussed in the manuscript, with an
implementation of the UV flavor structure. A second possibility might be to
include visible ALP signatures, opening up searches where final states do not
contain missing energy. Finally an interesting possibility is to include Flavor
Violating coupling at tree level and study their one–loop contributions to the
ALP parameters.

The lesson one can learn from the phenomenology discussed in this the-
sis, beyond the pure exploration of the ALP theory space, has to do with
the potential correlation and subsequent modification on the limits projected
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onto the ALP–fermion parameters. Indeed in the manuscript it is studied
how some particular flavor structure in the coefficients can radically modify
the phenomenological bounds projected onto the parameters of the model.
Ignoring these effects, induced by a combination of the coefficients flavor
structure and the specific nature of the form factors, potentially leads to re-
sults that are off by orders of magnitude. Moreover the technology developed
to compute and study meson-to-meson ALP decay can be recasted to any
current with a similar Lorentz structure and has shown a promising way to
connect measurements to theory via the hadronization routes explored here.

To conclude the results derived in this work show a correlated ALP–
parameter space that is increasingly bounded and explored. In this picture
the role of flavor physics and precision observables is critical and perpendicu-
lar to astrophysics and cosmological studies. As such form factors calculation
are valuable and unavoidable if one wants to hunt for light physics in terres-
trial facilities. These give process independent results and are useful beyond
ALP exploration opening up the possibility to recast them to study different
kinds of new physics in processes involving bound states.
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Appendix A

Matter Fields and Higgs
quantum numbers

SU(3)c SU(2)L U(1)Y

Qi
L =

(︃
uL
dL

)︃ (︃
cL
sL

)︃ (︃
uL
dL

)︃
3 2 1

6

(uc)iL = (uc)L (cc)L (tc)L 3̄ 1 −2
3

(dc)iL = (dc)L (sc)L (bc)L 3̄ 1 1
3

LiL =

(︃
νeL
eL

)︃ (︃
νµL
µL

)︃ (︃
ντL
τL

)︃
1 2 −1

2

(dc)iL = (dc)L (sc)L (bc)L 1 1 1

H =

(︃
H+

H0

)︃
1 2 1

2

Table A.1: The Standard Model Higgs and fermion fields and their associated
gauge quantum numbers.
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Appendix B

Low–Energy Feynman Rules

In this appendix we present a resource for the low–energy Feynman rules
used in this work1. We start by discussing the propagators for fermions

fi = i
/p+mi

p2 −mi + iε
, (B.1)

ALPs
a =

i

p2 −ma + iε
, (B.2)

photons
γ

= − igµν
q2 + iε

, (B.3)

and W ’s

W =
−i
(︂
gµν − qµqν

m2
W

)︂
q2 −m2

W + iε
. (B.4)

At the energies the measurements are taken it is customary to consider
the vertex of the Weak Effective Theory (WET)

δLWET = 4
GF√
2
V ∗
ijVkl (JLµ)ij (J

µ
L)

†
kl , (B.5)

1All the results are discussed in the Unitary gauge. The Rξ gauge case is discussed
in [166]
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where (JLµ)ij = d̄jγµPLui. The 4–fermions contact interaction between L–
handed chiral fermions is then described by:

ui

uk

d̄l

d̄j

= i
4GF√

2
V ∗
ijVkl. (B.6)

The ALP–fermion interaction is given by

q

a

fj

f̄ i

=− 1

2fa
qµγ

µ(Cij
V +Cij

Aγ
5) (B.7)

where the parameters discussed in Sec.2.3 and 2.5. For completeness, the
anomalous ALP–photon vertex is

q1

q2

a

γ,ν

γ,σ

=
α

4π

cγ
fa
ϵµνρσq

µ
1 q

ρ
2 , (B.8)

a similar result can be obtained for the W ’s when they are considered dy-
namical.



Appendix C

ALP Couplings to Nucleons

The most reliable way to derive the axion and ALP coupling to nucleons is via
an effective theory at energies≪ ΛQCD, relevant for light ALP masses, where
the nucleons are non–relativistic. One uses the chiral effective Lagrangian
discussed in [27] with a non–relativistic ALP–nucleons effective Lagrangian.
This approach turns out to yield a more reliable approximation than current
algebra techniques [167] or the chiral EFT for nucleons [28, 168]. The idea
is to use iso–spin as an active flavor symmetry and the ALP as an external
current:

LN = N̄vµ∂
µN + 2gA

cuu − cdd
2

∂µa

2fa
N̄Sµσ3N

+ 2gud0
cuu + cdd

2

∂µa

2fa
N̄SµN + · · · =

N̄vµ∂
µN + 2gA

cuu − cdd
2

∂µa

2fa
(p̄Sµp− n̄Sµn)+

2gud0
cuu + cdd

2

∂µa

2fa
(p̄Sµp+ n̄Sµn) + · · ·

(C.1)

where N = (p, n)T is the is–spin doublet field, vµ is the four–velocity of the
non–relativsitc nucleon and Sµ is the spin operator. The gA, and gud0 cou-
plings are the axial iso–vector and axial iso–scalar combinations. To match
the two effective Lagrangians, one takes a single nucleon–matrix element, e.g.
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⟨p| La |p⟩ = ⟨p| LN |p⟩ , taking the lowest order in isospin breaking effects:

cuu ⟨p| ūγµγ5u |p⟩+ cdd ⟨p| d̄γµγ5d |p⟩ =

gA
cuu − cdd

2
⟨p| p̄Sµp |p⟩+ 2gud0

cuu + cdd
2

⟨p| p̄Sµp |p⟩
(C.2)

where one defines

2p̄Sµp = p̄γµγ5p,

⟨p| ūγµγ5u |p⟩ = sµ,

⟨p| ū(d̄)γµγ5u(d) |p⟩ = sµ∆u(d).

(C.3)

With these substitution one gets

gA = ∆u−∆d,

gu,d0 = ∆u+∆d.
(C.4)

This way one can substitute back in Eq.(C.1) and recover the nucleon–ALP
interaction:

∂µa

2fa

{︄
cuu − cdd

2
(∆u−∆d)(p̄γµγ

5p− n̄γµγ5n)

+
cuu + cdd

2
(∆u+∆d)(p̄γµγ

5p+ n̄γµγ
5n)

}︄
,

(C.5)

or in a more compact way

∂µa

2fa
N̄γµγ5caNN (C.6)

where caN is a diagonal 2× 2 matrix defined by Eq.(C.5).
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