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A B S T R A C T

Self-driving vehicles and autonomous ground robots require a reliable and accurate method to analyze the
traversability of the surrounding environment for safe navigation. This paper proposes and evaluates a real-time
machine learning-based traversability analysis method that combines geometric features with a pyramid-polar
space representation based on SVM classifiers. In particular, we show that by fusing geometric features with
information stemming from coarser pyramid levels that account for a broader space portion, as well as
integrating important implementation details, allows for a noticeable boost in performance and reliability.
The main goal of this work is to demonstrate that traversability analysis is possible with effective results
and in real-time even on cheaper hardware than expensive GPUs, e.g. CPU-only PCs. The proposed approach
has been compared with state-of-the-art deep learning approaches on publicly available datasets of outdoor
driving scenarios, running such algorithms both on GPU and CPU to compare runtimes. Our method can
be fully executed on CPU and achieves results close to the best-in-class methods, runs faster, and requires
fewer and less expensive hardware resources, consuming less than 30% electrical power with respect to deep
learning models on embedded processing units. We release with this paper the open-source implementation of
our method.
1. Introduction

Traversability analysis is a fundamental task in the fields of robotics
and autonomous driving. It acts as a guideline, or reference, for au-
tonomous vehicles to effectively navigate through all kinds of scenarios.

The ability to correctly detect non-traversable regions of the terrain
is closely related to the type of vehicle on which the analysis is per-
formed, and, according to [2], its computational complexity increases
with the diversity of the surrounding terrain. As in [3], a grid cell is said
to be Non-traversable if its characteristics exceed certain thresholds for
the vehicle specification: sizes, workloads, risk awareness and so on.1

A binary terrain classification that discriminates between
Traversable and Non-traversable areas needs to be reliable and efficient.
The reliability requirement is essential, it affects how much the vehicle
is able to move in the environment, and it is strictly connected to the
robot’s safety. At the same time, the real-time requirement is critical for
this task, since a delayed detection may negatively affect the vehicle’s
reaction speed.
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In this paper, we propose a real-time machine learning-based polar
grid segmentation method, in which point clouds acquired from a
3D LiDAR (Light Detection and Ranging) are used for traversability
analysis. The focus of our work is to bring the traversability analysis
task also on CPU-only devices, such as simple, cheap and light PCs. The
goal is to obtain a method whose accuracy and other important metrics
are comparable to modern state-of-the-art deep learning approaches.
Deep learning solutions have cutting-edge performances but require
expensive hardware as powerful GPUs that are not always available in
many practical applications. On the other hand, not all modern deep
learning approaches are able to run in real-time, not even on powerful
GPUs. Our method instead, enables real-time traversability analysis on
CPU.

In our approach, a point cloud is arranged in buckets of 3D points,
creating a 2D polar grid centered on the origin of the LiDAR coor-
dinate system. Compared to a uniform squared grid, the polar grid
naturally takes into account the non-uniform density of point clouds
captured with 360-degree 3D LiDARs commonly used in robotics and
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Fig. 1. Overview of the pyramid-polar space representation used in our method. The input point cloud acquired by a 360-degree 3D LiDAR is arranged on a multi-level grid,
in the figure three example levels are reported from left to right in a coarse-to-fine progression. The left circle represents the coarsest level (level 0). The point cloud is further
subdivided into fine-grided cells at higher levels. The figure also illustrates the employed feature sharing policy: all four magenta cells located on the right-most circle, which
represents the level 2 grid, inherit features from the corresponding magenta cell at the upper level, level 1, depicted in the center of the image. Similarly, the four light-yellow
cells highlighted at level 1 inherit features from the light-yellow cell at level 0, illustrated on the leftmost part of the image. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
automotive. A grid-based approach is suitable for getting immediate
traversability feedback, at the price of a low cloud density. In our
method, we aim to classify each cell of the collected polar grid: we
compute a set of features representing the group of points in each cell
by using a coarse-to-fine approach that integrates multi-scale informa-
tion (Fig. 1) , then by using such features we evaluate the level of
traversability of the cells using a binary classifier. Another challenge
of this work is to use only geometric elements in a mixed urban
environment: roads, sidewalks, mixed vegetation (e.g., trees, near-road
vegetation, urban parks, forests), dynamic agents, and many other
urban elements that make the classification of the 3D cloud more
difficult and ambiguous.

1.1. Contributions

The contributions of this work can be summarized as follows:

1. The development of a geometric-based approach for a Support
Vector Machine (SVM)-based traversability analysis and a fea-
ture fusion module on a pyramid-polar space representation, that
are able to run in real-time on CPU-only devices;

2. The comparison of the proposed approach with state-of-the-art
semantic segmentation based methods on large publicly avail-
able datasets;

3. An open-source implementation of the proposed method is re-
leased for public usage.2

2. Related work

The concept of traversability is one of the pillars of autonomous
driving. Even so, there is no explicit formulation of traversability,
but usage of this concept can be found in the motion planning con-
text where ‘‘traversability maps’’ are used for the classification of
a cell-divided map into Traversable or Non-traversable categories [4–
7]. Following this definition, traversability analysis can be achieved
by processing the outputs of sensors such as LiDARs, radars and/or
cameras to infer which areas of the surrounding environment can or
cannot be traversed. The traversability analysis problem can also be
interpreted as a subclass of the generic multiclass semantic segmenta-
tion problem, in which the classes of interest for an element (e.g. pixel,

2 Code available at: https://github.com/Bender97/TraversabilityAnalysis.
2

voxel, etc.) are essentially two: traversable and non-traversable. On
the other hand, many multiclass semantic segmentation approaches,
especially those based on deep learning, can be easily converted to
traversability analysis by reducing the number of classes or simply by
re-mapping the original classes. For this reason, in this literature re-
view, we report also many semantic segmentation approaches designed
for outdoor applications.

2.1. Traditional approaches

Early algorithms for traversability analysis were based on ML (Ma-
chine Learning) techniques and relied mainly on handcrafted,
geometric-based features extracted from point clouds. In [8] the point
cloud is transformed into a new 2D histogram-based representation. In
this new domain, a road line estimation algorithm is applied to obtain
the actual road, distinguishing between traversable areas and obstacles
by means of a linear classification task in 2D space. In [9] the point
cloud is voxelized and these voxels were clustered based on their type
(geometric or appearance) and classified using a Random Forest, then
the predicted labels were fed to a Conditional Random Field (CRF)
to refine the segmentation. [10] proposes a semi-supervised learning
approach for traversability analysis which is able to learn compact
feature vectors to infer cells’ traversability in a 2D occupancy grid with
a Naive Bayes classifier, starting from a small set of positive samples
(traversable) and unlabeled data. A traversability mapping method
that uses Bayesian Generalized Kernel inference can be found within
the LeGO-LOAM framework [11]. This work proposes an approach for
solving the traversability analysis problem by producing 2.5D elevation
grid maps from LiDAR scans. It exploits Bayesian Generalized Kernel
(BGK) inference to solve the sparse data problem encountered during
terrain mapping. Then, the traversability analysis is performed on those
locations intersected by the current LiDAR scan points, and elsewhere it
is estimated by BGK traversability inference. In [12], authors train an
SVM classifier that uses both geometric-based and appearance-based
local descriptors. Experimental results show that purely geometric-
based features already provide enough accuracy, but the integration of
different types of features, i.e., descriptors taken from 2D camera image
processing, increases the robustness of the classifier and improves its
classification accuracy.

https://github.com/Bender97/TraversabilityAnalysis


Robotics and Autonomous Systems 170 (2023) 104524D. Fusaro et al.
2.2. Deep learning-based approaches

With the rise of deep learning, also traversability analysis moved
towards deep architectures, with a strong focus on image-based meth-
ods. These methods usually rely on effective and ready-to-use CNNs
(Convolutional Neural Networks) designed for multiclass semantic seg-
mentation.

In OFFSEG [13] semantic segmentation is performed on RGB im-
ages, then regions predicted as traversable are further classified in
terms of color clusters to determine sub-classes like mud, puddle, grass,
water, etc., that are very useful information when dealing with off-
road scenarios. GONet [14] leverages a Generative Adversarial Network
(GAN) to predict from the input image whether the surrounding area
is traversable or not. The GAN, trained on traversable examples only,
aims to generate an image similar to the input image only if this last
depicts a traversable area; a classification module, trained with both
positive and negative examples, is used to decide whether the area
is traversable by comparing the input and generated images. In [15]
traversability estimation is addressed for dynamic environments by
proposing a deep network that requires the last two acquired images
and a virtual navigation command, i.e., a linear and angular velocity.
The network is composed of two CNNs: the first one predicts how the
static elements will propagate in the future frame, while the second
one predicts how the dynamic elements will behave and change the
scene. Finally, the predicted image will be fed to GONet [14] to predict
the traversability map. In [16] the traversability prediction is further
divided into categories based on the movement modalities of the robots
(e.g. legged, wheeled). In [17] the authors present a semi-supervised
learning framework for Mars terrain segmentation, which will be used
for studying the traversability of the inspected area. The proposed
method employs a deep network trained in an unsupervised manner
to learn an effective representation. This network will serve as the
backbone for the subsequent network that will be trained on a limited
number of labeled images. Instead of explicitly learning a segmentation
mask for traversability analysis, the authors in [18] propose a network
that learns a function that maps images to scores representing terrain
traversability. This function is then incorporated as a term into the
path planner’s cost function, enabling the consideration of terrain
traversability during path planning.

Deep learning architectures are also used to segment point clouds,
e.g., acquired with 3D LiDARs. A first category of methods relies on
a 2D representation of the point cloud by projecting it into a surface.
For instance, in SqueezeSeg [19] the point cloud is projected onto a
sphere and then a point-wise encoder–decoder CNN performs an initial
prediction on the points that will be then refined by a CRF. In order to
obtain higher accuracy, SqueezeSeg has been improved by integrating
an unsupervised domain adaptation pipeline that trains the network
on synthetic data and improves its performance on real data [20] and
by exploiting Spatially-Adaptive Convolution (SAC), a technique for
tailoring convolutional filters to process different parts of the image
according to the input data [21]. In [22] a top-view image extracted
from the input point cloud is fed into a fully convolutional neural
network (FCN) to distinguish between the two ‘‘road’’ and ‘‘non-road’’
classes. PolarNet [23] addresses the more general multiclass semantic
segmentation problem in urban scenarios by using Bird-Eye-View to
project a point cloud into a grid, that is expressed in polar coordinates,
which alleviates the problem of uneven distribution of the points due
to the LiDAR sensor. They employ a Ring CNN to process the polar
grid in order to share information between neighboring ring segments.
On the opposite side, SalsaNet [24] and its evolution SalsaNext [25]
claim that the type of projection, cartesian or polar, does not bring any
type of advantage to the segmentation in their work. RangeNet++ [26]
uses range images as the intermediate representation and then projects
the 2D classification results into the original point cloud by k-nearest
neighbors interpolation.
3

A second category of methods tries to work directly on the raw point
clouds. PointNet [27], a seminal work in 3D perception on unordered
point clouds, obtains permutation invariance of the input points by
exploiting a learned, approximated symmetric function defined in the
point set. In RandLA-Net [28] the point cloud is first subsampled to effi-
ciently process large amounts of data. Random sampling is paired with
a feature aggregation step to avoid losing relevant information using
an attention mechanism. KPConv [29] introduced a new convolution
operation that works directly on point clouds, eliminating the need for
an intermediate representation. Another approach is to regularize the
data in a point cloud using a voxel grid, in order to capture spatial
relations with 3D convolutions. In [30] an encoder–decoder model is
used to voxelize the point cloud, which will be then processed by a
3D convolutional network to output per-point labels. The key features
of this approach are an attentive feature fusion module which is able
to aggregate local and global context from the voxel grid and an
adaptive feature selection module to better extract global context at
different scales. In [31], the input is still a voxelized version of the
point cloud, but the label predictions on the voxels are then refined
to a per-point level using trilinear interpolation and a CRF module.
Cylinder3D [32], uses a cylindrical grid to partition the space, instead
of the classical uniform grid, to avoid the LiDAR point cloud density
variance. A tailored 3D convolutional network is used to predict labels
for the voxels and a further point-wise refinement module is introduced
to improve the coarse voxel predictions. In [33], we proposed a hybrid
approach that combines geometric and appearance-based features for
training deep encoder–decoder architectures to detect the traversability
score of a uniform planar grid. The method uses both point clouds and
RGB camera images. Point clouds are firstly integrated using odometry
estimation, then sorted into the cells of the grid. Geometric features
are computed for each cell and then appearance-based features are ex-
tracted from RGB by projecting each cell to the image plane. Then, the
geometric and appearance feature vector is fed to an encoder–decoder
model that outputs the traversability score of each cell.

Another way of representing a point cloud is by using the super-
point representation, in which points in the cloud are clustered and the
clusters (called super-points) are then connected in a graph representa-
tion, which can be processed by Graph Convolutional Neural Networks
(GCNNs). In [34] points in the point cloud are clustered together
based on geometric similarities, and then a GCNN is used in order
to perform segmentation on the super-points. The points belonging
to a cluster will share its label. In [35] the GCNN uses a structure-
aware loss function that exploits the structure information contained
in the super-points, while in [36] the super-point generation is done
automatically by using an encoder–decoder architecture that performs
both depth-wise and point-wise graph convolutions. Other works try
to improve classification accuracy by using information from more
than one sensor or by using different representations of the same 3D
data at the same time. In [37–39] both images and point clouds have
been fed to deep networks in order to extract as much information
from the environment to obtain a more robust traversability analysis.
In fact, in [37] this approach has been shown to be effective even
in unstructured environments. 2DPass [40] still uses both images and
point clouds. During training, two independent parallel networks are
trained on the task of semantic segmentation, one on the point cloud
and one on the related image. Knowledge distillation and feature fusion
from the image branch to the point cloud branch are used as a form
of regularization. At inference time, the image branch is completely
discarded and inference is performed on the point cloud only. Another
method leveraging both point clouds and images is [41], where super-
points are used as an intermediate representation to connect 3D and
2D features and super-point-based pooling fuses the two features for
joint learning. Lastly, RPVNet [42] designs a novel fusion network to
merge information coming from point clouds, voxel grids, and range
images. The three data representations are processed with parallel

networks that share information at multiple levels. In the end, the
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network processing the point cloud outputs the final segmentation,
after receiving the results from the voxel and range networks.

A recent trend is to use Deep Inverse Reinforcement Learning in
order to learn implicitly the traversability map, that will manifest
from the navigation behavior of the vehicle. In [43] a behavior-based
method to solve traversability analysis in an off-road scenario has
been proposed, in which the cost function is extracted from experts’
demonstrations, and then that cost function is used in order to learn
an optimal policy. Meanwhile, in [44], Deep Inverse Reinforcement
Learning is used to predict the trajectories of the other agents in the
scene and to produce a traversability map that also takes into account
dynamic elements that are in the scene for safer and more robust
navigation.

This work builds upon our previous work [45], with substantial
improvements, among others: (i) A more difficult traversability analysis
task, in which the boundary region between road and sidewalk is con-
sidered as non-traversable; (ii) The introduction of a polar grid, instead
of a uniform grid, to better exploit the point cloud spatial distribution
around the 360-degree spinning LiDAR frame; (iii) The design of a
pyramid-polar feature sharing mechanism, which enables the model to
take into account a wider spatial region for inferencing the traversabil-
ity of a cell; (iv) The development of a pure-geometric approach, in
contrast with the previous work that employed also appearance-based
features; (v) Our approach relies on a single point cloud, which is
not dependent on odometry estimators. This means that our approach
does not need to integrate multiple point clouds together in order to
generate a comprehensive representation of the world. This simplicity
is beneficial because it reduces the complexity of our model, allowing
for faster predictions of the environment.

3. Method

The proposed approach leverages handcrafted geometrical-based
features, Principal Component Analysis (PCA), and SVM models. In
machine learning and pattern recognition, a feature is an individual
measurable property or characteristic of a phenomenon [46]. A geo-
metric feature is calculated based on geometric properties. Features
can be manually designed or self-learned as in deep learning mod-
els, where they are often hierarchically organized in layers in order
to capture both local and global representations of the input. The
self-learned features have proven to substantially outperform the hand-
crafted counterpart. However, this is achieved by using models with a
very large number of parameters to train, so using powerful GPUs is
often an essential requirement, even at the inference stage. Handcrafted
features, on the other hand, have typically reduced footprints and are
well-suitable for general-purpose hardware and/or embedded devices.
Furthermore, the working mechanisms of the kernels of the hidden
layers of deep neural networks are not so easily interpreted [47], and
they usually need a large amount of annotated data to properly gener-
alize, whereas handcrafted features can be quickly and easily tailored
to specific cases. In this work we run in defense of the latter, proving
that in the specific case of traversability analysis, with a hierarchical
polar grid organization and with important implementation details,
handcrafted features can still represent a valid alternative to deep
models in low-cost hardware or when real-time requirements are strict.

In the following, a feature vector of a set of points 𝑆 = {𝑝1, 𝑝2,… , 𝑝𝑛}
with 𝑝𝑖 ∈ R3 is expressed in the form of a vector of features

(𝑆) = [𝑓1, 𝑓2,… , 𝑓𝑘]𝑇

here 𝑘 is the number of features. This vector of fixed dimension
s used to train an SVM model. SVMs are popular decision models
sed in classification and regression problems. As stated in [46], an
mportant property of SVMs is that the determination of the model
arameters corresponds to a convex optimization problem, and so any
ocal solution is also a global optimum. For the sake of brevity, the
4

etails on SVM models can be found in [48]. It is sufficient to say
that training an SVM model means finding an optimal decision rule
to assess the label of a feature vector. The so-called kernel trick helps
in finding such a decision rule by transforming the original data into a
higher dimensional space. By experimental results, we have found that
RBF (Radial Basis Function) kernel is the best-performing kernel with
respect to Linear and Polynomial kernels in our case. For this reason,
we apply RBF in this work.

We employ Principal Component Analysis (PCA) to reduce the di-
mensionality of the dataset, increasing interpretability but at the same
time minimizing information loss [49].

3.1. Pyramidal-polar representation

We assume that the point cloud of the surrounding space is pro-
duced by a 3D scanning LiDAR. The traversability of the environment
is then evaluated using a polar-based space representation which parti-
tions the point cloud into cells whose size depends on the distance from
the sensor frame. A point cloud is better organized using this coordinate
system than a Cartesian one since the resulting cells will have a more
balanced number of points (it is reasonable to say that points far away
from the sensor frame will be sparser than points very close to it).
We decided to fix a minimum distance 𝑅𝑚𝑖𝑛 and a maximum distance
𝑅𝑚𝑎𝑥 from the sensor frame and ignore all points that lie outside this
distance interval. The first one is set based on the size of the vehicle
that captured the dataset, the second is set according to the size of the
area to be analyzed.

In order to let the system get more information than the content
of the current cell, we propose a pyramidal-polar representation (see
Fig. 1). We divide the point cloud into multiple-resolution polar grids,
from coarser to finer. Let us say that the coarser level is level 0.
Then, if we use 𝑛 different polar representations, the level 𝑛 − 1 will
e the finest. If we compare two cells at the same distance from the
ensor frame, a cell at level 0 will be greater in area, hence it will
ontain possibly more points than a cell at level 𝑛 − 1. We can define
elations between cells at different levels, in particular between finer
ells that are completely contained in a coarser cell. We can expect
enefits from including coarser features in the features of finer cells as
he back-end ML model can integrate higher-level information from the
eighborhood of the finer cell. To this end, in our system the features
ector of each cell 𝑐𝑖,𝑙 at level 𝑙 > 0 is expanded by including the
eatures vector of the corresponding cell 𝑐𝑗,𝑙−1 at level 𝑙−1, i.e. the one
hat contains 𝑐𝑖,𝑙. Included features can be the predicted label or the
ull geometric feature vector of the containing cell. Recursively, a cell
an include all the features of the containing cell, so also the features
hat the containing cell derived from its containing cell.

.2. Geometric-based feature extraction

The geometric-based features 𝑔(𝑆) = [𝑓1, 𝑓2,… , 𝑓𝑟]𝑇 of a polar grid
cell are computed based on the geometrical properties of the set of 3D
points that lie in it, where 𝑟 is the number of geometrical features. Most
of these features are computed using the eigenvalues and eigenvectors
of the correlation matrix of the points in 𝑆. This matrix is computed
based on the relative space coordinates of the points in 𝑆 and expresses
the dependency between them. It is a 3 × 3 symmetric positive semi-
definite matrix with all real elements, so all of its eigenvalues are real
and non-negative. Listing the eigenvalues in descending order 𝜆1 ≥
𝜆2 ≥ 𝜆3, the corresponding eigenvectors 𝑣1, 𝑣2 and 𝑣3 assume a spatial
significance. As explained in [12], the eigenvector 𝑣1 represents the
direction of the maximum variance of the points in 𝑆 and 𝑣2 represents
the direction of the second maximum variance of the points. On the
contrary, 𝑣3 represents the smallest direction of variance but, at the
same time, assuming that the points are arranged in a smooth plane
in the space, 𝑣3 is also normal to that plane. In the context of terrain
traversability analysis, where roads are generally planar, this assumes
a certain relevance. Thus, assuming that 𝜆1 ≠ 0, among others we use

some of the features proposed in [12] and reported in Table 1, where:



Robotics and Autonomous Systems 170 (2023) 104524D. Fusaro et al.

t

f
d
p
g
d
a
e
p

𝑝

L
l

𝑧

T
t
s
n
a

𝑓

T
t
d
t

3

l
l
d
e
d
v
w
𝑐

𝑅
g
𝛾
𝑟
𝑟

f

𝑐

Table 1
Geometric features of a point set 𝑆 computed by the proposed approach to infer the
raversability analysis.

linearity =
𝜆1 − 𝜆2

𝜆1
sphericity =

𝜆3
𝜆1

planarity =
𝜆2 − 𝜆3

𝜆1
omnivariance = 3

√

𝜆1𝜆2𝜆2

anisotropy =
𝜆1 − 𝜆3

𝜆1
eigenentropy =

3
∑

𝑖=1
𝜆𝑖 log 𝜆𝑖

sum of eigenvalues =
3
∑

𝑖=1
𝜆𝑖 curvature =

𝜆3
∑

𝜆

angle = arccos(𝑛 ⋅ 𝑧̂) goodness of fit = min(𝜎𝑖(𝐶))

roughness = 1
|𝑆|

|𝑆|
∑

𝑖=1
(𝑧𝑖 − 𝑧̄)2 normal vector = 𝑛

inverse cardinality = 1
|𝑆|

surface density =
|𝑆|
𝑑2

• 𝑛 = 𝑣3 is the normal vector to the plane fitted to 𝑆;
• 𝑧̂ is the versor in the 𝑧 direction in the LiDAR coordinate system;
• 𝑧𝑖 is the 𝑧-coordinate of the 𝑖-th point in 𝑆, with 𝑧̄ the average of

the 𝑧-coordinate of all points in 𝑆;
• 𝜎𝑖 is the 𝑖-th singular value of the covariance matrix 𝐶 of 𝑆;
• 𝑑2 is the area of the cell that contains 𝑆, with 𝑑 being the side

length.

In our approach, another geometric feature is used. The Zeta Dif-
erence feature represents the maximum difference along the elevation
irection, expressed by the normal 𝑛𝑝 to the plane fitted to the whole
oint cloud. This is particularly relevant because non-traversable re-
ions (e.g., obstacles) tend to have a wide variation along the normal
irection, while points in traversable regions (e.g., roads) tend to have
very small height difference. In order to obtain a consistent metric,

ach point inside a cell is projected to the scene’s normal vector 𝑛𝑝. The
rojection 𝑝𝑝 of a point 𝑝 is obtained as follows:

𝑝 = ⟨𝑝, 𝑛𝑝⟩𝑛𝑝 (1)

et 𝑀 and 𝑚 be the points of a cell whose projections have higher and
ower values of the z-coordinate. Then:

𝑑𝑖𝑓𝑓 = |𝑀𝑧 − 𝑚𝑧| (2)

he feature vector is not fed to the SVM model directly. It is firstly
ransformed by taking the absolute value of each feature, adding a
mall quantity to avoid taking the log of zero, and then performing a
atural log transform. More formally, each feature 𝑓 transforms to 𝑓𝑡
s follows:

𝑡 = ln (|𝑓 | + 0.0001) (3)

hen 𝑓𝑡 is normalized to zero mean and unit variance. The normaliza-
ion process is essential to avoid different features having completely
ifferent scales, and it allows the SVM model to train better as it helps
o improve the signal-to-noise ratio and remove any bias from data.

.3. Point clustering and feature extraction

Each point of the point cloud is assigned to the cell it belongs to by
ooking at the radius and the yaw of the point’s 2D coordinates. If it
ies outside the polar grid distance interval, it is ignored. For a detailed
escription of this process, refer to Algorithm 1. A cell is then consid-
red unpredictable if it contains fewer points than a threshold value, let’s
efine it 𝜏, otherwise it is considered predictable. At this stage, a feature
ector is computed for each predictable cell and eventually expanded
ith other features derived from coarser cells. For each predictable cell
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𝑖,𝑙 at level 𝑙, a feature is calculated as described in Algorithm 2.
Algorithm 1: Bin points in polar grid cells at level 𝑙
Input:
𝑃 ⊂ R3: set of points of the point cloud;
𝑙 ≥ 0: cylinder’s level;
𝑚𝑖𝑛, 𝑅𝑚𝑎𝑥: minimum and maximum radius ranges of the polar
rid at level 𝑙;
𝑛: number of yaw steps;
𝑛: number of radius steps ;

𝑠 =
𝑅𝑚𝑎𝑥−𝑅𝑚𝑖𝑛

𝑟𝑛
: radius step range (in meters)

Result: The set of point sets {𝑆(𝑖, 𝑙)}, ∀ cell 𝑐𝑖 at level 𝑙 ≥ 0
or each cell 𝑐𝑖 at level 𝑙 do

𝑆(𝑖, 𝑙) ← ∅ ;
end
for each point 𝑝 ∈ 𝑃 do

𝜌 ←
√

𝑝2𝑥 + 𝑝2𝑦 + 𝑝2𝑧;
if 𝑅𝑚𝑖𝑛 ≤ 𝜌 ≤ 𝑅𝑚𝑎𝑥 then

𝑝𝛾 ← arctan(𝑝𝑥, 𝑝𝑦) + 𝜋 ;
𝑟𝑜𝑤 ← ⌊

𝜌−𝑅𝑚𝑖𝑛
𝑟𝑠

⌋ ;

𝑐𝑜𝑙 ← (⌊ 𝑝𝛾 ⋅𝛾𝑛
2𝜋 ⌋ + 𝛾𝑛

2 ) mod 𝛾𝑛 ;
𝑖𝑑𝑥 ← 𝑐𝑜𝑙 ⋅ 𝑟𝑛 + 𝑟𝑜𝑤 ;
𝑆(𝑖𝑑𝑥, 𝑙) ← 𝑆(𝑖𝑑𝑥, 𝑙) ∪ 𝑝 ;

else
ignore point 𝑝 ;

end
end

Algorithm 2: Compute features for each cell, at each level
Input:
𝐿: number of levels ;
𝑆(𝑖, 𝑙): set of points of cell 𝑐𝑖 at level 𝑙 ;
𝜏: minimum number of points for a cell to be considered predictable;
r: number of geometrical features computed for each cell ;
𝑖̂: cell at level 𝑙 − 1 that contains cell 𝑐𝑖 at level 𝑙, in other words
𝑐𝑖 ∈ 𝑐𝑖 ;
𝐹𝑔(𝑐): set of geometric features of cell 𝑐 ;
𝐹𝑖𝑛(𝑐): set of features that cell 𝑐 has inherited from cell 𝑐 ;
𝐹𝑙𝑎𝑏(𝑐): predicted label of cell 𝑐 (only available at levels 𝑙 > 0) ;
Result: The set of feature sets {𝐹 (𝑖, 𝑙)}, ∀ cell 𝑐𝑖, level 𝑙 ≥ 0
for l ← 0 to 𝐿 − 1 do

for each cell 𝑐𝑖 at level 𝑙 do
if ‖𝑆(𝑖, 𝑙)‖ ≥ 𝜏 then

compute 𝐹𝑔(𝑆(𝑖, 𝑙)) ← [𝑓1, 𝑓2, ..., 𝑓𝑟] ;
if 𝑙 ≥ 1 then

compute 𝐹𝑖𝑛(𝑐𝑖) ← {𝐹𝑖𝑛(𝑐𝑖), 𝐹𝑔(𝑐𝑖), 𝐹𝑙𝑎𝑏(𝑐𝑖)} ;
else

𝐹𝑖𝑛(𝑐𝑖) ← ∅ ;
𝐹 (𝑖, 𝑙) ← {𝐹𝑔(𝑆(𝑖, 𝑙)), 𝐹𝑖𝑛(𝑐𝑖)}

else
label cell 𝑐𝑖 at level 𝑙 as unpredictable

3.4. PCA reduction of geometric features

In order to understand the impact of each geometric feature in the
computed features vector we decided to apply Principal Component
Analysis. We aimed to explore the possibility that the classifier would
be able to take advantage of a feature vector projection into a lower
dimensional space. Benefits of this reduction include an analysis of
which geometric features really matter for the task, a simplification
of the model (a too complex model with many parameters tends to
overfit), and a reduced runtime of the system.
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3.5. A-priori positive detection

In our approach, we tried another technique, which we refer to
as a-priori positive detection. If a cell at coarser levels is classified
as traversable, then, as per the definition of traversable cells (for the
definition, refer to Section 4.2), we can be reasonably sure that all
the cells at the finer levels that are contained into this cell will be
traversable too. This can have several advantages in terms of runtime
since we can skip many computations. In CPU-only applications with
very strict runtime constraints, this technique may boost performance.
Of course, it requires SVM models at coarser levels to be as accurate as
possible. As shown in Section 5.1, the coarser level accuracy and the
F1 score are not good enough to support the prediction of finer levels
a-priori for traversability analysis. We report results for comparison in
Table 8.

4. Experiments

We implemented our method in C++3 and performed all the CPU-
only experiments on a Laptop PC equipped with an AMD Ryzen 7
5800H CPU (3.2 GHz), 16 GB of RAM, and Linux OS (the internal GPU
has not been used). All the deep learning-based approaches were tested
on a Desktop PC with an Intel Core i9-10920X CPU (3.50 GHz), 32 GB
of RAM, an Nvidia Titan RTX GPU, and a Linux OS As described in
Section 4.8, we also run experiments on a Jetson AGX Xavier with an 8-
core Nvidia Carmel CPU, a 512-core Nvidia Volta GPU, 16 GB of RAM,
and Linux OS.

4.1. SemanticKITTI dataset

To evaluate the performance of the proposed approach, we used the
SemanticKITTI dataset [50], a publicly available dataset for semantic
scene understanding using point cloud sequences acquired with a 3D
LiDAR. This dataset is based on the KITTI Odometry Benchmark [51].
It comes up with 11 different segmented scenarios, named scenario00-
scenario10, in which a fully sensorized vehicle is driven within an urban
context, in low traffic conditions. There are sometimes dynamic agents
(other vehicles moving around, people, etc.) and natural elements
(grass, parks, trees, etc.).

4.2. Traversability ground truth extraction

The point clouds in the SemanticKITTI dataset are not labeled
with the traversable and non-traversable labels. Indeed, the definition of
traversability is in itself quite ambiguous. In order to obtain a ground
truth dataset to evaluate the tested methods we pre-processed the point
labels and propagated them to the polar grid cells they belong to.
We considered as traversable the points having the label corresponding
to one of the following classes of the SemanticKITTI dataset: road,
sidewalk, parking, lane marking, other ground. All the other point labels
are considered non-traversable. The label of a cell is calculated by
looking at the LiDAR points that fall inside each polar grid cell. Let 𝜏 be
the minimum number of points for a cell to be considered predictable:
in all our experiments we set 𝜏 = 4. If a cell contains less than 𝜏
points, it is labeled as unpredictable, while if it contains at least 𝜏 non-
traversable points, it is labeled as non-traversable. Otherwise, it is labeled
as traversable. This is done because the SemanticKITTI dataset includes
some wrong labels: sometimes a fully traversable cell (e.g., a road cell)
contains an outlier marked as non-traversable. By filtering out based on
at least 𝜏 non-traversable points, we get rid of such outliers. An exception
is done to make the task more suitable for real-world application: since
a vehicle should not cross the roadside up to a sidewalk area, we
decided to set some cells as non-traversable when they belong to the

3 Code available at: https://github.com/Bender97/TraversabilityAnalysis
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Table 2
Parameters list of the best performing SVM model.

Level 0 1 2

radial steps 8 16 64

yaw steps 16 32 128

𝜈 - nu 0.2028 0.1805 0.1838

𝛾 - gamma 0.098 0.0765 0.1003

C 1.0 1.0 1.0

best method geom Geom-L Geom-L

PCA dimension 17 17 17

boundary region including both road and sidewalk areas, i.e. if the cell
contains both road and sidewalk points.

The ground truth collected in this way (an example is reported in
Fig. 2(a)) comes with some consequences:

• A number of 𝜏 = 4 points is sometimes not sufficient for some
geometric properties to completely discriminate cells. This rep-
resents a challenge for our method which classifies each cell
independently.

• To compare our approach with point-wise segmentation methods,
we need to propagate output point labels to cell labels, in the
same way we did for SemanticKITTI’s ground truth.

4.3. Training and test protocols

The experiments on the SemanticKITTI dataset were performed
following the standard procedure which involves testing the approaches
on Scenario 08 while all the remaining ten scenarios are used for
model training. For our method, we selected the SVM hyperparameters
by using the grid search algorithm. We have designed a 𝑛 = 3 level
pyramid-polar space representation, based on empirical experiments
using alternative strategies (see Section 4.4). Each level has its own
dedicated SVM model. The final SVM hyperparameters used for each
level are listed in Table 2.

We start by partitioning each SemanticKITTI point cloud into a
pyramid-polar space representation. For each level 𝑙 = 0,… , 𝑛 − 1,

e assign the points to the corresponding polar cells 𝑐𝑖,𝑙, where 𝑖 is
he index of a cell at level 𝑙. For each predictable cell 𝑐𝑖,𝑙, we assign

the ground truth label as described in Section 4.2 and compute the
geometric features vector 𝑔(𝑆𝑖,𝑙) as described in Section 3.2, with 𝑆𝑖,𝑙
the set of points that belong to 𝑐𝑖,𝑙. At level 𝑙 = 0, we train the SVM
model by using only the geometric features and the corresponding
ground truth labels. For 𝑙′ > 0 we also keep track of the predicted
label, geometric features, and inherited features 𝑖𝑛(𝑆𝑗,𝑙′−1) computed
at the previous level for the coarse-grained cell 𝑐𝑗,𝑙′−1 that contains
𝑐𝑖,𝑙′ , i.e., 𝑐𝑖,𝑙′ ∈ 𝑐𝑗,𝑙′−1 (see also Fig. 1). This additional information can
be concatenated to 𝑔(𝑆𝑖,𝑙′ ) to contribute to the cell’s features vector
in some variants of our approach (see Section 4.4). The composed
features vector is then used to train a different SVM model for each
level 𝑙′ = 1,… , 𝑛 − 1. The same point cloud partitioning and features
computation strategies are performed in testing. After the inference,
the labels estimated at each level of the pyramid are compared with
the ground truth labels to compute the metrics reported in Table 3.

4.4. Approaches for feature fusion

We investigate several feature fusion approaches, where for each
level features are possibly augmented with coarser levels of informa-
tion, possibly after PCA re-projection. Please recall that feature sharing

is available only at levels 𝑙 > 0.

https://github.com/Bender97/TraversabilityAnalysis
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Fig. 2. Example results of polar grid-based traversability analysis applied to a scan of the SemanticKITTI’s test Scenario 08: (a) ground truth; (b) our approach; (c) RangeNet++; (d)
Point-Voxel KD. Cells correctly classified as traversable and non-traversable are colored in white and red, respectively. Cells incorrectly classified as traversable and non-traversable
are colored in orange and blue, respectively. Unknown and unpredictable cells are colored in gray. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
• Geom: For each cell, we only use geometric features computed at
the current level, so the resulting feature vector will be made of
the 17 features described in Table 1 plus Eq. (2).

• Geom-label, or Geom-L: For each cell, we use the geometric fea-
tures (Geom) computed at the current level 𝑙 augmented with the
predicted labels of the related coarser cells at levels 𝑙−1, 𝑙−2,… , 0.
Adding the label information is expected to enhance the informa-
tion available for the inference since it provides a broader look at
the neighborhood of each cell. This can be particularly relevant
for cells with very few points or belonging to the boundary region
between road and sidewalk. The resulting feature vector will be
long 17 + 𝑙 features, with 𝑙 being the level.

• Geom-all, or Geom-A: For each cell, we use the geometric features
computed at the current level 𝑙 augmented with the predicted
labels and the geometric features computed for the related coarser
cells at levels 𝑙−1, 𝑙−2,… , 0. The resulting feature vector will be
long 17 ⋅ (𝑙 + 1) + 𝑙 features, with 𝑙 being the level.

• Each of the three previous approaches is tested using the PCA
reduction technique, to investigate both the usefulness of all the
features and also if a re-projection to a different vector space can
enhance the performance of the method.
7

4.5. Metrics

To compute the metrics we used the number of True Positives (TP),
True Negatives (TN), False Positives (FP), and False Negatives (FN).
The performance is measured using the metrics detailed in Table 3. In
particular, with the accuracy metric we can get an easily interpretable
value representing the percentage of input samples that were correctly
classified, but it is strongly biased by imbalances in the number of
samples per class; the Intersection over Union - Traversable (IoUT),
instead, measures the overlap between the set of ground truth positive
samples and the set of predicted positive samples, giving a measure for
single-class accuracy; accordingly, the Intersection over Union - Non-
traversable (IoUN), measures the overlap between the set of ground
truth negative samples and the set of predicted negative samples. When
the dataset is dominated by negative samples, a more reliable metric
can be found in the F1 score, which balances precision with the rate
of detection for the positive class. The F1 score ignores true negatives
and can thus be misleading if the dataset is positive-dominant; the
Cohen’s kappa metric, which in the binary classification case measures
fractional improvement over the random classifier, is symmetric and
assesses both directions of predictability. True Positive Rate (TPR),
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Fig. 3. Qualitative results of the proposed approach applied to a scan from test set Scenario 08. Correctly inferred cells (true positives and true negatives) are colored in green
cells, while false positives and false negatives are colored in dark-red and blue, respectively. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Table 3
Metrics used for the quantitative evaluation of the models.

Metric Definition

Accuracy 𝑇𝑃+𝑇𝑁
𝑇𝑁+𝐹𝑁+𝑇𝑃+𝐹𝑃

IoUT 𝑇𝑃
𝐹𝑃+𝐹𝑁+𝑇𝑃

IoUN 𝑇𝑁
𝐹𝑃+𝐹𝑁+𝑇𝑁

F1 score 2𝑇𝑃
2𝑇𝑃+𝐹𝑃+𝐹𝑁

Cohen’s kappa 2⋅(𝑇𝑃 ⋅𝑇𝑁−𝐹𝑁 ⋅𝐹𝑃 )
(𝑇𝑃+𝐹𝑃 )⋅(𝐹𝑃+𝑇𝑁)+(𝑇𝑃+𝐹𝑁)⋅(𝐹𝑁+𝑇𝑁)

TPR 𝑇𝑃
𝑇𝑃+𝐹𝑁

TNR 𝑇𝑁
𝑇𝑁+𝐹𝑃

or sensitivity, and True Negative Rate (TNR), or specificity, are also
reported. A high TPR means that the model rarely misses positive cases,
and conversely, a high TNR means that the model rarely misclassifies
negative cases as positive. This is particularly important in traversabil-
ity analysis, where the cost of False Positive is high as obstacles are not
identified as non-traversable cells.

4.6. Comparison

The experiments carried out aim to emphasize the performance
brought by the contributions of this work, in particular the use of the
pyramid-polar space representation, the geometrical features, and the
low runtime due to the SVM models.

We tested our framework (referred to as P-SVM below and in
the tables) against different recent semantic segmentation methods:
RangeNet++ (RN++) [26], Cylinder3D (Cyl3D) [32] and Point-Voxel
KD (PVKD) [52]. At the time of this work being carried out, Point-
Voxel KD ranked second on SemanticKITTI Leaderboard for semantic
segmentation task but was the first among the open-source approaches
that do not exploit the RGB images. Cylinder3D is the second. In-
terestingly, our approach is the only one of these approaches that
does not use the remission values of LiDAR scans and, despite this,
achieves similar results. We plan to leverage remission values in our
approach in future work. Each deep learning method had to be trained
by remapping the original classes into the 3 (+1) classes used for the
traversability analysis: unknown (not learned and not used in the com-
putation of the loss function), traversable (road, parking, lane marking,
and other-ground), sidewalk (for the detection of the boundary region)
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Table 4
Average results on SemanticKITTI Scenario 08. The runtime value (Rt) is expressed in
milliseconds (ms).

Exp Acc IoUN IoUT F1 Co TPR TNR RtCPU RtGPU

% % % % % % % ms ms

P-SVM 91.7 87.4 80.4 89.2 82.4 89.0 93.4 49 –

RN++ 95.4 92.8 88.6 94.0 90.3 93.2 96.8 1605 30

Cyl3D 96.8 95.0 91.9 95.8 93.2 95.3 97.7 6300 110

PVKD 96.9 95.1 92.2 95.9 93.4 95.6 97.7 27000 480

and non-traversable (all the other classes). The traversability of a cell is
then computed based on the predicted label of each point of the cloud.
This is done using the exact same method used for determining the
polar grid traversability ground truth starting from the segmented point
cloud, but this time using the predicted point cloud labels.

None of the deep learning methods were trained from scratch.
Instead, we fine-tuned the models from publicly available pre-trained
models available on each method’s GitHub repository page. We paid
close attention to the fact that the models were not trained on the test
scenario (scenario08).

We report in Table 4 the quantitative results in terms of the metrics
from Table 3, while we present some qualitative results in Figs. 2–4.
The results of the proposed method are comparable to the other tested
methods. Deep learning-based methods generally achieve better results,
with PVKD as the clear winner followed by Cyl3D. Despite not utilizing
remission values, P-SVM gets close to the other methods in terms of
accuracy, F1 score, IoUN, TPR, and TNR. Our approach demonstrates a
good balance between sensitivity (89.0%) and specificity (93.4%). This
means that it performs reasonably well in both correctly identifying
positive cases and accurately identifying negative cases, ensuring a
reliable classification outcome overall. This is also confirmed by a
consistent F1 score, that describes how the model can balance be-
tween false positives and false negatives. P-SVM exhibits decent IoUN
(87.4%) and IoUT (80.4%) scores, which measure the overlap be-
tween predicted and ground truth traversable/non-traversable regions,
respectively. These scores suggest that P-SVM is capable of handling
class imbalance, a common challenge in binary classification tasks. In
general, all the models exhibit relatively high Cohen’s kappa values,
indicating good agreement beyond chance. Cyl3D, PVKD, and RN++
particularly demonstrate excellent levels of agreement, while P-SVM
also shows a substantial level of agreement.



Robotics and Autonomous Systems 170 (2023) 104524D. Fusaro et al.
Fig. 4. From left to right, the qualitative results are respectively: our approach, RangeNet++, Cylinder3D, and Point-Voxel KD. Each row in the figure corresponds to different
scenes, specifically arranged from top to bottom: a scene where all the methods perform well, the worst-case scenario for our method, and the worst-case scenario for all approaches.
Please refer to Fig. Fig. 3 for the color legend.
However, the slightly better performance of deep learning-based
methods comes at the cost of a higher runtime despite requiring expen-
sive GPUs in order to achieve acceptable execution times. Only RN++
on GPU slightly outperforms P-SVM on CPU, and both are suitable
for real-time scan processing, whereas both PVKD and Cyl3D are not.
We also tested all approaches on the same CPU: P-SVM takes 3%
of the runtime required by RN++, the fastest deep-learning method,
and a mere 0.18% of the runtime required by PVKD. Overall, our
method provides effective results that are close to the tested deep
learning approaches while demanding nearly two orders of magnitude
less computational overhead.

4.7. Generalization

To assess the generalization capability of our approach, we report
a set of experiments performed on another publicly available dataset,
PandaSet [53], a large-scale collection of data for autonomous driving
in urban environments. It consists of multiple types of sensor data,
e.g. Cameras, LiDARs, and IMUs. For our purposes, we used the point
clouds coming from the main LiDAR, an Hesai Pandar64, as well as
the corresponding annotated labels. Its specifications are the following:
360◦ horizontal FOV, 10 Hz, 64 channels. This sensor is very similar to
the Velodyne HDL-64E used in SemanticKITTI.

We directly tested on PandaSet the models previously trained solely
on SemanticKITTI. The PandaSet test set includes 6080 annotated
point clouds. As reported in Table 5 and qualitatively in Fig. 5, our
method generalizes well alongside PVKD and Cyl3D, while outperform-
ing RN++, which is affected by a significant performance drop. This
probably can be explained by the fact that, differently from the LiDAR
used in SemanticKITTI, in PandaSet a LiDAR with non-uniform vertical
scan distribution has been exploited, partially invalidating the standard
projection function used in RN++.
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Table 5
Average of the results obtained on PandaSet.

Exp Acc IoUN IoUT F1 Co TPR TNR RtCPU RtGPU

% % % % % % % ms ms

P-SVM 81.0 71.2 64.0 78.1 61.5 71.8 89.2 50 –

RN++ 66.4 58.6 36.1 53.1 30.9 40.3 89.8 1800 35

Cyl3D 86.2 76.5 75.1 85.8 72.5 87.9 84.7 6700 115

PVKD 87.9 78.6 78.4 87.9 75.9 92.6 83.9 30000 490

The runtime of our method on CPU is 50 ms, which is still very low
when compared to the other methods’ runtime, both on CPU and GPU.
Only RN++, on GPU, is faster than P-SVM.

4.8. Performance on embedded devices

We also assess the runtime and power consumption performance of
all methods on a Jetson Xavier board, an embedded device equipped
with a small but powerful GPU specifically designed for navigation and
perception tasks for autonomous vehicles [54]. The results, reported
in Table 6, include the runtime, in milliseconds (ms), and the power
consumption, in Watts (W), of each method. P-SVM runs on CPU while
the deep learning methods also use the GPU. P-SVM outperforms, in
both runtime and power consumption, the other methods. The runtime
is very close to the real-time constraint (100 ms), while none of the
deep learning methods are able to get close to this constraint even in
GPU. Similarly, P-SVM’s power consumption is less than 30% of the
energy needed to run deep learning approaches.

5. Ablation study

In this section, we evaluate the different variants of feature fusion
of our method (see Section 4.4) to select the best-performing one. In
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Fig. 5. Qualitative results of the proposed approach in a frame from PandaSet dataset. In the left Fig. 5(a), in white are cells classified as Traversable, in red as Non-traversable,
in dark gray unknown cells. In the right Fig. 5(b), green cells are correctly classified cells (TP and TN), dark-red cells are FP and blue cells are FN. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Table 6
Runtime and power consumption measurements of the different methods on a Jetson
Xavier board.

Method RtCPU RtGPU Power Consumption

ms ms W

P-SVM 110 – 8.260

RN++ 3700 320 28.250

Cyl3D 12000 1020 27.570

PVKD 33600 3950 31.700

particular, we compared the Geom, Geom-L, and Geom-A variants, with
and without PCA feature projection/dimensionality reduction. In all
cases, at level 0 we start with Geom. Table 7 reports the results in
terms of all metrics presented in Table 3. The PCA column reports the
dimension of the transformed space, which in some cases could have
the same dimensionality as the input space. For the sake of brevity, for
𝑙 > 0 we only report the best-performing PCA dimension.

The best results at level 𝑙 = 0 are obtained using a PCA projection
on a vector space having the same dimension, 17. This model obtains
the best Accuracy, F1, and IoU scores, and thus it is the most suitable
for sharing its features to the finer levels. The runtime of each model
is very low, usually ≤ 4 ms.

At level 𝑙 = 1 the best performing model is Geom-L with a PCA pro-
jection to the same number of dimensions, being 17. Similar but worse
results are obtained by methods Geom, projected to 17 dimensions, and
Geom-L, without any PCA reduction. It is worth noting how the use
of label inheritance and PCA projection both contribute substantially.
Also, we can appreciate how all the geometric features are meaningful
for the inference of the cells’ labels. The runtime of each model is still
very low, usually ≤ 7 ms.

At level 2 the best-performing model is Geom-L with a PCA pro-
jection to the same number of dimensions, 17. Very similar results
are obtained by Geom-L without any PCA projection and by Geom
followed by PCA projection to 17 dimensions. Methods exploiting label
inheritance with or without PCA reduction show lower false positives,
which is an important metric when dealing with Autonomous Driving
applications, and better overall accuracy. These augmented methods
outperform the pure-geometric methods. This can be explained by the
fact that the predicted labels largely depend on the goodness of the
10
Table 7
Comparison of the different feature fusion variants. For a description of each method,
refer to Section 4.4. For each one, we report the best results obtained using grid-search
for parameter tuning.

Model PCA Acc IoUN IoUT F1 Co TPR TNR

% % % % % % %

Level 0

Geom – 97.4 97.3 55.6 71.5 70.2 66.7 98.9

Geom 17 97.5 97.4 56.1 71.9 70.6 66.7 98.9

Geom 15 97.4 97.3 55.5 71.4 70.0 66.7 98.9

Geom 13 97.4 97.3 56.1 71.9 70.5 68.8 98.8

Level 1

Geom – 94.0 93.2 67.5 80.6 77.1 81.6 96.3

Geom-L – 94.1 93.2 67.3 80.4 76.9 79.7 96.6

Geom-A – 93.6 92.7 65.6 79.3 75.5 80.4 95.7

Geom 17 94.1 93.2 67.3 80.5 77.0 80.3 96.6

Geom-L 17 94.2 93.4 67.8 80.8 77.4 79.6 96.8

Geom-A 34 93.8 93.0 66.6 80.0 76.3 80.4 96.2

Level 2

Geom – 91.1 86.4 79.5 88.6 81.3 90.1 91.7

Geom-L – 91.5 87.2 80.0 88.9 82.1 88.3 93.5

Geom-A – 90.8 85.9 78.9 88.2 80.6 90.3 91.1

Geom 17 91.3 86.7 79.7 88.7 81.6 89.6 92.4

Geom-L 17 91.7 87.4 80.4 89.2 82.4 89.0 93.4

Geom-A 51 90.6 85.6 78.6 88.0 80.3 90.6 90.6

coarser levels, so the model seems to learn to not trust entirely the ear-
lier levels’ prediction but instead to focus on the whole feature vector.
In the end, the integration of the two types of inherited features results
in better predictions than those of the pure-geometric approaches. The
runtime of the models having less than 20 features is usually around
30–50 ms, and accordingly the best model has a runtime of 49 ms.
Instead, we have noticed that the more features, the higher the runtime.
In particular, the Geom-A methods can reach runtimes of more than
200 ms. In all experiments, we use the Geom-L variant for all levels 𝑙 > 0.

5.1. Evaluation of the a-priori positive classifier

To evaluate the A-Priori Positive Classifier described in Section 3.5,
we report in Table 8 the results of the best-performing SVM method
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Table 8
Average results on SemanticKITTI Scenario 08 by P-SVM using the A-Priori technique
described in Section 5.1. Runtime is improved (43 ms) at the cost of a slight drop in
performance.

Level Method Acc IoUN IoUT F1 Co TPR TNR

% % % % % % %

0 Geom 97.5 97.4 56.1 71.9 70.6 66.7 99.0

1 Geom-L 94.2 93.4 67.7 80.8 77.3 80.6 96.7

2 Geom-L 91.5 87.0 80.0 88.9 82.0 89.3 92.9

when also applying this technique. Such a technique obviously requires
well-performing coarse classifiers since a false positive cell has an
avalanche effect on every finer cell. Results show a small degradation
of the performance with respect to the full method with results reported
in Table 4, and a runtime reduced to 43 ms.

6. Discussion

Our method has proven to be competitive against state-of-the-art
deep learning approaches: it gives slightly worse results but with a
lower runtime and power consumption. In relation to navigation risk,
our approach yields slightly lower results in terms of the True Negative
Rate compared to deep learning-based methods. However, as depicted
qualitatively in Figs. 4 and 5, it exhibits minimal drawbacks while
maintaining a high level of segmentation quality. Typically, critical
regions are accurately classified, and any errors that occur can be
corrected through post-processing techniques such as outlier removal
filters or filters that leverage successive grid integration.

The scalability to multi-class segmentation represents the main
limitation of our approach. While our method performs well in seg-
menting two classes, specifically Traversable and Non-traversable, it is
not suitable for general semantic segmentation tasks with several target
classes. In contrast, deep learning methods can be easily adapted to
multi-class segmentation by simply adjusting the number of classes in
the outer layer, while our method would require a new design process
for handcrafted feature engineering.

7. Conclusions

In this paper, a real-time machine learning-based method for
traversability analysis has been proposed. The method runs completely
on CPU and combines geometric features and a pyramid-polar space
representation that fuses multiple levels of features for fast and robust
execution. An extensive evaluation on public datasets of urban and
city-like scenarios has been done. The evaluation has been conducted
against state-of-the-art methods that can be run on both CPUs and
GPUs, and execution times were compared for both execution modes.
The results demonstrate that the proposed method gets close to the
state-of-the-art in terms of traversability analysis performance, while
being faster and cheaper in terms of hardware resources since it runs
completely on CPU without the need for high-end GPUs like the other
methods. Power consumption measurements demonstrated that our
method consumes over 70% less power compared to the deep learning
approaches it was compared against. Additionally, performance eval-
uations done on a Jetson Xavier board have demonstrated that our
method is well-suited for embedded devices with limited CPU capa-
bilities, enabling quasi-real-time execution. In contrast, other methods
fail to meet real-time constraints even when exploiting the provided
embedded GPU. The paper proposes an ablation study to support the
choices we made to select a suitable feature set. As a first step in
future work, we plan to use also the remission values of the LiDAR
scans, designing suitable features for them. Further improvements
can be obtained with the integration of self-learning subsystems, in
particular integrating image-based scene understanding techniques, to
better utilize the color information, when available.
11
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