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ABSTRACT

An Ansatz for the Poincaré metric on compact Riemann surfaces is proposed. This im-

plies that the Liouville equation reduces to an equation resembling a non chiral analogous of

the higher genus relationships (KP equation) arising in the framework of Schottky’s problem

solution. This approach connects uniformization (Fuchsian groups) and moduli space theo-

ries with KP hierarchy. Besides its mathematical interest, the Ansatz has some applications

in the framework of quantum Riemann surfaces arising in 2D gravity.
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1 Schottky Problem And KP Hierarchy

Let us consider a genus h compact Riemann surface Σ. A fundamental object defining the

complex structure of Σ is the Riemann period matrix

Ωij ≡
∮

βi

ωj, (1.1)

where the ωk’s denote the h holomorphic differentials with the standard normalization
∮
αi
ωj = δij . By means of the Riemann bilinear relations it can be proved that Ωij is

symmetric and has positive definite imaginary part (see for example [1]). Let us consider

the Siegel space

Ah = Hh/Sp(h,Z), (1.2)

where Hh denotes the Siegel upper-half plane, that is the space of symmetric h×h matrices

with positive definite imaginary part. To recognize the locus in Ah of the Riemann period

matrices is the famous Schottky problem. This problem has been solved essentially by

Dubrovin, Mulase and Shiota [2–4]. The solution is based on the proof of the Novikov

conjecture stating that

u(x, y, t) = 2∂2x logΘ(Ux+ V y +Wt+ z0|Ω), (1.3)

satisfies the KP equation if and only if Ω is the period matrix of some Σ. The corresponding

equations on Ω (see eq.(2.15)) were derived in [2] where it was proved that they determine

an algebraic variety with a component given by the matrices of the β-periods. In [4] Shiota

pointed out that if u in eq.(1.3) satisfies the KP equation, then there are vectors Uk, such

that the function

u(t1, t2, . . .) = 2∂2t log Θ

(
∞∑

k=1

Uktk|Ω

)
, t1 = x, t2 = y, t3 = t, (1.4)

determines solutions of the KP hierarchy
[
∂

∂tj
− Lj ,

∂

∂tk
− Lk

]
= 0, (1.5)

where the order k differential operators Lk have coefficients depending on ~t ≡ (t1, t2, . . .) and

are determined by the equation (∂tk − Lk)ψ(~t, z) = 0, ψ being the Baker-Akhiezer function

on Σ. Since the space of vectors Uk is h-dimensional, there are two commuting operators of

coprime order which are linear combinations of the Lk’s. Therefore one can apply the results

in [5] to show that Ω is the Riemann matrix of the surface defined by these operators.
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2 The Ansatz

Let Σ be a compact Riemann surface of genus h > 1. It is well-known that the Liouville

equation on Σ

∂z∂z̄ϕ(z, z̄) =
1

2
eϕ(z,z̄), (2.1)

is uniquely satisfied by the Poincaré metric (with Gaussian curvature −1). This metric can

be written in terms of the inverse map of uniformization

J−1
H : Σ −→ H, (2.2)

where H = {w|Imw > 0} denotes the upper half plane. The Poincaré metric on H is

ds2 =
|dw|2

(Imw)2
, (2.3)

so that on Σ ∼= H/Γ (here Γ is a hyperbolic Fuchsian group)

eϕ(z,z̄) =
|J−1

H (z)
′
|2

(Im J−1
H (z))2

, (2.4)

which is invariant under SL(2,R) fractional transformations of J−1
H . Unfortunately no one

has succeeded in writing down J−1
H in terms of the moduli of Σ.

Here we consider the following Ansatz for the Poincaré metric1

eϕ =
h∑

i,j=1

ωiAijωj . (2.5)

To get the inverse map one has to solve the Schwarzian equation

{J−1
H , z} = T F (z), (2.6)

where

T F (z) = ϕzz −
1

2
ϕ2
z, (2.7)

is the classical Liouville stress tensor (or Fuchsian projective connection). By (2.5) we have

T F (z) =
2
∑h

i,j=1 ω
′′
i Aijωj − 3

(∑h
i,j=1 ω

′
iAijωj

)2

2
(∑h

i,j=1 ωiAijωj

)2 . (2.8)

1Notice that a possible choice for the matrix to be positive definite is to set Aij = Ω
(2)
ij

−1
, in this case

(2.5) coincides with the Bergman metric.
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Observe that eq.(2.1) implies that

∂z̄T
F (z) = 0. (2.9)

Eq.(2.6) can be reduced to the linear equation

(
2∂2z + T (z)

)
ψ = 0. (2.10)

Actually it turns out that, up to SL(2,C) linear fractional transformations,

J−1 = ψ1/ψ2, (2.11)

with ψ1 and ψ2 two linearly independent solutions of (2.10) (see [7] for a discussion on this

point).

Inserting (2.5) in (2.1), the Liouville equation becomes

h∑

i,j,k,l=1

ω2
l ∂z (ωi/ωl)AijAlkω

2
k∂z̄ (ωj/ωk) =




h∑

i,j=1

ωiAijωj




3

. (2.12)

This equation has a strict similarity with the relations between the periods of holomorphic

differentials on Riemann surfaces [2]. Thus one should expect that Aij depends on the moduli

through the Riemann period matrix. To show this similarity, we write down the fundamental

relations given in [2]. Let us introduce the following notation

Uk = −ωk(P ),

Vk = −ω′
k(P ),

Wk = −
1

2
ω′′
k(P )−

1

2
c(P )Uk, (2.13)

where c(P ) is a projective connection [2] and P is an arbitrary point on Σ. In [2] Dubrovin

proved that the function (1.3) is a solution of the KP equation

uyy = (4ut − 6uux − uxxx)x, (2.14)

if and only if the following relations between U, V,W,Ω and an additional constant d are

satisfied (see [2] for notation)

h∑

i,j,k,l=1

UiUjUkUlΘ̂ijkl[n] +
h∑

i,j=1

(
3

4
ViVj − UiWj

)
Θ̂ij[n] + dΘ̂[n] = 0, n ∈ Zh

2 . (2.15)

We emphasize that this result is a fundamental step to solve Schottky’s problem.
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Our remark is that eq.(2.12) looks like a non chiral generalization of (2.15). In the

notation introduced above eq.(2.12) reads

h∑

i,j,k,l=1

(UlVi − UiVl)AijAlk

(
UkV j − U jV k

)
=




h∑

i,j=1

UiAijU j




3

. (2.16)

We stress that solving this equation is equivalent to solving crucial questions arising in

uniformization theory, Fuchsian groups and related subjects. In particular, Weil-Petersson’s

2-form ωWP can be recovered using the fact that the classical Liouville action evaluated at

the classical solution is the Kähler potential of ωWP [6].

Another aspect that should be investigate is whether eq.(2.16) furnishes conditions on

the period matrix in a more manageable form than KP equation (2.14)-(2.15).

A possible approach to study eq.(2.12) is using Krichever-Novikov’s differentials ψ
(n)
j [8].

These differentials are holomorphic on Σ\{P+, P−} with prescribed behaviour at P±. In

particular, in terms of local coordinates z± vanishing at P± ∈ Σ, we have

ψ
(n)
j (z±)(dz±)

n = a
(n)±
j z

±j−s(n)
± (1 +O(z±)) (dz±)

n , s(n) =
h

2
− n(h− 1), (2.17)

where j ∈ Z + h/2 and n ∈ Z. By the Riemann-Roch theorem, ψ
(n)
j is uniquely fixed by

choosing the value of a
(n)+
j or a

(n)−
j . In the following we set a

(n)+
j = 1.

These differentials can be written in terms of theta functions2 [9]

ψ
(n)
j (z) = C

(n)
j Θ

(
I(z) +Dj;n|Ω

) σ(z)2n−1E(z, P+)
j−s(n)

E(z, P−)j+s(n)
, (2.18)

where

Dj;n = (j − s(n)) I(P+)− (j + s(n)) I(P−) + (1− 2n)∆,

and constant C
(n)
j is fixed by the condition a

(n)+
j = 1.

Let C be a homologically trivial contour separating P+ and P−. The dual of ψ
(n)
j is

defined by
1

2πi

∮

C
ψ

(n)
j ψk

(n) = δkj , (2.19)

which implies

ψj
(n) = ψ

(1−n)
−j . (2.20)

Note that (2.17) provides a basis for the 1−2s(n) = (2n−1)(h−1) holomorphic n-differentials

on Σ (h ≥ 2)

H(n) =
{
ψ

(n)
k |s(n) ≤ k ≤ −s(n)

}
, n ≥ 2. (2.21)

2In the appendix we illustrate the method to construct differentials in higher genus Riemann surfaces.
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Furthermore, from

H̃(m) =
{
ψ

(m)
k |1− s(m) ≤ k ≤ s(m)− 1

}
, m ≤ −1, (2.22)

one can define the space of generalized Beltrami differentials. They are vanishing everywhere

on Σ except in a disk where coincide with [7]

B̃(m) =
{
∂z̄ψ

(m)
k |1− s(m) ≤ k ≤ s(m)− 1

}
, m ≤ −1, (2.23)

(for m = −1 one gets the Beltrami differentials considered in [9]). Observe that the differ-

entials in (2.22) have poles both in P+ and P−. In particular, H̃(1−n) is the dual space of

H(n).

We now expand the holomorphic 3-differentials in (2.12) in terms of the basis introduced

above. We have

ω2
i ∂z(ωj/ωi) =

5h−5∑

p=1

apijψ
(3)
p+s(3)−1, apij =

1

2πi

∮

C
ψ

(−2)
−p−s(3)+1ω

2
i ∂z(ωj/ωi), (2.24)

ωiωjωk =
5h−5∑

p=1

bpijkψ
(3)
p+s(3)−1, bpijk =

1

2πi

∮

C
ψ

(−2)
−p−s(3)+1ωiωjωk. (2.25)

Inserting these expansions in (2.12) we get the ‘Liouville relations’

h∑

i,j,k,l=1

apijAikAjla
q
kl =

h∑

i,j,k,l,m,n=1

bpijmAikAjlAmnb
q

kln. (2.26)

Let us notice that the coefficients aqkl and b
q
kln are functionals of the holomorphic differentials

and their derivatives computed at P+ and coincide with the vectors of β-periods of second-

kind differentials.

The above expansions provide relations involving the holomorphic differentials, theta

functions and their derivatives. To see this it is sufficient to notice that the coefficients apij

and bpijk are vanishing for p < 1 and p > 5h − 5. The reason is that in this range the

ψ
(−2)
−p−s(3)+1’s are holomorphic in P− or P+. This implies that for p < 1 and p > 5h − 5, the

contribution to apij and b
p
ijk coming from the poles at P− or P+ add to zero. Notice that this

‘residue formula’ is crucial to get important relations such as Hirota’s formulation of the KP

hierarchy (see for example [10]).
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3 The Accessory Parameters

Here we consider some aspects concerning the Fuchsian accessory parameters. First of all

we introduce the projective connection

T S(z) =
{
J−1
Ω , z

}
, (3.1)

where JΩ : Ω → Σ denote the Schottkian uniformization map. Here Ω denotes the region of

discontinuity in Ĉ = C ∪ {∞} of the Schottky group S and Σ ∼= Ω/S. Let us introduce the

following notation for the Krichever-Novikov vector fields and quadratic differentials

ek ≡ ψ
(−1)
k , Ωk ≡ ψ

(2)
−k. (3.2)

Let TΣ be the holomorphic projective connection on Σ obtained from the symmetric bidif-

ferential of the second-kind with bi-residue 1 and zero α-periods. The Fuchsian accessory

parameters λ
(F )
1 , ..., λ

(F )
3h−3 and the Schottkian accessory parameters λ

(S)
1 , ..., λ

(S)
3h−3 are defined

by

T F = TΣ +
3h−3∑

k=1

λ
(F )
k Ωk+1−h0, T S = TΣ +

3h−3∑

k=1

λ
(S)
k Ωk+1−h0, h0 ≡

3

2
h. (3.3)

In order to write TΣ explicitly we consider an arbitrary nonsingular point f of the theta

divisor, that is Θ(f) = 0 and gradΘ(f) 6= 0. We define

Hf(z) =
h∑

k=1

Θk(f)ωk(z), (3.4)

Qf (z) =
h∑

j,k=1

Θjk(f)ωj(z)ωk(z), (3.5)

Tf (z) =
h∑

i,j,k=1

Θijk(f)ωi(z)ωj(z)ωk(z). (3.6)

The holomorphic projective connection is [11]

TΣ(z) =
{∫ z

P0

Hf , z
}
+

3

2

(
Qf (z)

Hf(z)

)2

− 2
Tf(z)

Hf(z)
. (3.7)

At a zero of Hf we have

Qf(z0) = ±H ′
f (z0), Tf (z0) = −H ′′

f (z0)±
3

2
Q′

f (z0), (3.8)

with the sign ± chosen accordingly as Θ(z − z0 ∓ f) ≡ 0, ∀z ∈ Σ.

6



Besides T F and T S, also TΣ can be expressed as a Schwarzian derivative. To do this we

simply note that according to the general rule described above the equation
(
∂2

∂z2
+

1

2
TΣ(z)

)
φ(z) = 0, (3.9)

has as solutions two linearly independent −1
2
-differentials φ1, φ2, satisfying the equation

TΣ(z) = {φ2/φ1, z} . (3.10)

Note that the Fuchsian accessory parameters are given by

λ
(F )
k =

1

2πi

∮

C

({
J−1
H (z), z

}
−
{
J−1
Σ (z), z

})
ek+1−h0 , (3.11)

where

J−1
Σ (z) = φ2/φ1. (3.12)

It is interesting to note that the integrand resembles the chain rule for the Schwarzian

derivative

{w(t(z)), z}(dz)2 − {t(z), z}(dz)2 = {w(t), t}(dt)2, (3.13)

in particular

{
J−1
H

(
J−1
Σ (z)

)
, z
}
−
{
J−1
Σ (z), z

}
=
{
J−1
H

(
J−1
Σ

)
, J−1

Σ

} (
∂zJ

−1
Σ (z)

)2
. (3.14)

We stress that the accessory parameters can be written as a line integral of a one-form

written in terms of theta functions and holomorphic differentials. In particular for the

Fuchsian accessory parameters we have

λ
(F )
k =

1

2πi

∮

C



2
∑h

i,j=1 ω
′′
i Aijωj − 3

(∑h
i,j=1 ω

′
iAijωj

)2

2
(∑h

i,j=1 ωiAijωj

)2 −
{∫ z

P0

Hf , z
}

−
3

2

(
Qf (z)

Hf (z)

)2

+ 2
Tf (z)

Hf(z)


 ek+1−h0. (3.15)

In the second reference in [6], where the results for the punctured Riemann sphere are

generalized to higher genus Riemann surfaces, a relationship has been established between

c
(h)
k = λ

(F )
k − λ

(S)
k , the Liouville action evaluated on the classical solution and the Weil-

Petersson metric. In particular it turns out that

1

2

∂S
(h)
cl

∂zi
= c

(h)
i ,

∂c
(h)
i

∂z̄j
= −

1

2

〈
∂

∂zi
,
∂

∂zj

〉

WP

, (3.16)

7



where the brackets denote the Weil-Petersson metric on the Teichmüller space Th projected

onto the Schottky space whose coordinate are z1, ..., z3h−3. Since the difference

Θ(z) = T F (z)− T S(z) =
3h−3∑

k=1

c
(h)
k Ωk+1−h0(z), (3.17)

is a holomorphic quadratic differential (i.e. a section of T ⋆Th), the formulas in eq.(3.16) are

equivalent to

∂S
(h)
cl = 2Θ, ∂∂S

(h)
cl = −2iωWP , (3.18)

where d = ∂ + ∂ is the exterior differentiation on the Schottky space and ωWP is the

Weil-Petersson 2-form on this space. Because the Schottky projective connection depends

holomorphically on the moduli we have

∂T F = −iωWP , (3.19)

that by (2.8) gives

ωWP = i∂
2
∑h

i,j=1 ω
′′
i Aijωj − 3

(∑h
i,j=1 ω

′
iAijωj

)2

2
(∑h

i,j=1 ωiAijωj

)2 . (3.20)

Similar results have been derived by Fay [12]. In particular it turns out that

{
J−1
H , z

}
= TΣ − 24πi

h∑

j,k=1

(
∂

∂Ωjk
log c0

)
ωj(z)ωk(z), (3.21)

where

c0 =

[
8π2det′∆

det ImΩ

]−1/2

, (3.22)

is the anomaly in the spin-1/2 bosonization formula computed with respect to the Poincaré

metric eϕ.

The connection with the Weil-Petersson metric on Th arises if we consider the quasi-

conformal mapping

∂z̄f
ρ = ρ∂zf

ρ, ρ = t1ν1 + t2ν2. (3.23)

It turns out that

− 24π∂∂ log c0 = 〈ν1, ν2〉WP , (3.24)

where 〈ν1, ν2〉WP =
∫
Σ e

ϕν1ν2 and

∂ = ∂t(p) =
h∑

j,k=1

∂

∂Ωjk

δΩjk, (3.25)
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is the Schiffer variation (see [12] for details).

Another possible way to investigate eq.(2.5) is by noticing that both the first and second

variations vanish for the deformation of the complex structure induced by the harmonic Bel-

trami differentials [13,14]. Applying this condition to (2.5) should give further informations

on the form of matrix Aij .

As a final remark, we observe that, besides any mathematical interest, the solution for

the Poincaré metric is crucial to get explicit expressions for correlators in string theory.

In particular in the ‘uniformization approach’ to 2D quantum gravity [7, 15] one needs the

explicit expression for the Liouville action evaluated at the classical solution to compute the

‘VEV of quantum Riemann surfaces’ 〈Σ〉 (see [16, 17]).

A Appendix

Let us introduce the theta function with characteristic

Θ [ab ] (z|Ω) =
∑

k∈Zh

eπi(k+a)·Ω·(k+a)+2πi(k+a)·(z+b), Θ (z|Ω) ≡ Θ
[
0
0

]
(z|Ω) , (A.1)

where z ∈ Ch, a, b ∈ Rh. When ak, bk ∈ {0, 1/2}, Θ [ab ] (z|Ω) is even or odd depending on

the parity of 4a · b. The Θ-function is multivalued under a lattice shift in the z-variable

Θ [ab ] (z + n + Ω ·m|Ω) = e−πim·Ω·m−2πim·z+2πi(a·n−b·m)Θ [ab ] (z|Ω) . (A.2)

An important object to construct differentials in higher genus is the prime form E(z, w). It

is a holomorphic −1/2-differential both in z and w, vanishing for z = w only

E(z, w) =
Θ [ab ] (I(z)− I(w)|Ω)

h(z)h(w)
. (A.3)

Here h(z) denotes the square root of
∑h

k=1 ωk(z)∂uk
Θ [ab ] (u|Ω) |uk=0; it is the holomorphic

1/2-differential with non singular (i.e. ∂uk
Θ [ab ] (u|Ω) |uk=0 6= 0) odd spin structure [ab ]. The

function I(z) in (A.3) denotes the Jacobi map

Ik(z) =
∫ z

P0

ωk, z ∈ Σ, (A.4)

with P0 ∈ Σ an arbitrary base point. This map is an embedding of Σ into the Jacobian

J(Σ) = Ch/LΩ, LΩ = Zh + ΩZh. (A.5)
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By (A.2) it follows that the multivaluedness of E(z, w) is

E(z + n · α+m · β, z) = e−πim·Ω·m−2πim·(I(z)−I(w))E(z, w). (A.6)

In terms of E(z, w) one can construct the following h/2-differential with empty divisor

σ(z) = exp

(
−

h∑

k=1

∮

αk

ωk(w) logE(z, w)

)
, (A.7)

whose multivaluedness is

σ(z + n · α +m · β) = eπi(h−1)m·Ω·m−2πim·(∆−(h−1)I(z))σ(z), (A.8)

where ∆ is (essentially) the vector of Riemann constants [11]. Finally we quote two theorems:

a. Abel Theorem [1]. A necessary and sufficient condition for D to be the divisor of a

meromorphic function is that

I (D) = 0 mod (LΩ) and degD = 0. (A.9)

b. Riemann vanishing theorem [11]. The function

Θ

(
I(z)−

h∑

k=1

I(Pk) + ∆

∣∣∣∣Ω
)
, z, Pk ∈ Σ, (A.10)

either vanishes identically or else it has h zeroes at z = P1, . . . , Ph.

We are now ready to explicitly construct the differential f (n) defined above. First of all

note that

f̃ (n) = σ(z)2n−1

∏p
k=h+1E(z, Pk)

∏p−2n(h−1)
j=1 E(z, Qj)

, (A.11)

is a multivalued n-differential with Div f̃ (n) =
∑p

k=h+1 Pk −
∑p−2n(h−1)

k=1 Qk. Therefore we set

f (n)(z) = g(z)f̃ (n), (A.12)

where, up to a multiplicative constant, g is fixed by the requirement that f (n) be singlevalued.

From the multivaluedness of the E(z, w) and σ(z) it follows that, up to a multiplicative

constant

g(z) = Θ (I(z) +D|Ω) , (A.13)

with

D =
p∑

k=h+1

I(Pk)−
p−2n(h−1)∑

k=1

I(Qk) + (1− 2n)∆. (A.14)
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By Riemann vanishing theorem g(z) has just h-zeroes P1, . . . , Ph fixed by D. Thus the

requirement of singlevaluedness also fixes the position of the remainder h zeroes. To make

manifest the divisor in the RHS of (A.12) we first recall that the image of the canonical line

bundle K on the Jacobian of Σ coincides with 2∆ [11]. On the other hand, since

[Kn] =




p∑

k=1

Pk −
p−2n(h−1)∑

k=1

Qk


 , (A.15)

by Abel theorem we have3

DivΘ (I(z) +D|Ω) = DivΘ

(
I(z)−

h∑

k=1

I(Pk) + ∆

∣∣∣∣Ω
)
, (A.16)

and by Riemann vanishing theorem

DivΘ (I(z) +D|Ω) =
h∑

k=1

I(Pk). (A.17)
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