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A B S T R A C T

Recognizing human actions is crucial for an effective and safe collaboration between humans and robots. For
example, in a collaborative assembly task, human workers can use gestures to communicate with the robot,
and the robot can use the recognized actions to anticipate the next steps in the assembly process, leading to
improved safety and productivity. In this work, we propose a general framework for human action recognition
based on 3D pose estimation and ensemble techniques, which allows to recognize both body actions and hand
gestures. The framework relies on OpenPose and 2D to 3D lifting methods to estimate 3D joints for the human
body and the hands, feeding then these joints into a set of graph convolutional networks based on the Shift-
GCN architecture. The output scores of all networks are combined using an ensemble approach to predict the
final human action. The proposed framework was evaluated on a custom dataset designed for human–robot
collaboration tasks, named IAS-Lab Collaborative HAR dataset. The results showed that using an ensemble of
action recognition models improves the accuracy and robustness of the overall system; moreover, the proposed
framework can be easily specialized on different scenarios and achieve state-of-the-art results on the HRI30
dataset when coupled with an object detector or classifier.
1. Introduction

Human–robot collaboration (HRC) aims to a close and direct col-
laboration between robots and humans to reach higher productivity
and ergonomics thanks to the synergy between human intelligence and
robot mechanical power [1–3]. In such scenario, the robot must always
be aware of the location and intentions of the human worker to prevent
any potential dangerous situations and ensure the safety of the human
partner. Additionally, by understanding the process step the human is
working on, the robot can plan its actions properly, such as moving to
a different area of the workspace or preparing parts and tools for the
next stage of the assembly process.

Human action recognition (HAR) has been widely investigated in
the literature to provide such awareness to the robot [4–6]. The actions
typically considered are steps in an assembly sequence (e.g., picking up
a part, placing a part, or screwing) or general actions like interacting,
walking or standing still; all these actions involve various parts of the
body and can be easily distinguished from each other. Some works
instead, address human action recognition focusing on gestures, which
are typically small movements of a few body parts, such as hands,
used to convey information to the robot (e.g. move left, move right,
stop). Given the difference in the parts involved, the problem of action
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recognition and gesture recognition are generally tackled separately
with specialized methods and setups, such as using a camera that only
frames the human hands in case of gesture recognition.

In this work, we address the problem of human action recognition
in collaborative scenarios by proposing a general framework capable
of recognizing both hands gestures and full-body actions (i.e., general
movements involving the whole body). The framework was designed to
be easily applied in various collaborative robotics scenarios, thus trying
to meet two main requirements: (i) being general with respect to the set
of actions to be recognized and (ii) being robust with respect to possible
usage scenarios. For example, the same HAR system should recognize
the actions of the human worker in different collaborative cells that
may differ in viewpoint of the perception system or the tools employed
by the worker during various stages of the assembly process.

Our framework relies on skeleton-based action recognition mod-
els, where 3D human pose (i.e., skeleton) is used as an intermediary
representation between the action classifier and the raw image data.
This allows to easily generalize on different scenarios and collaborative
tasks, thanks to the robust representation of the 3D skeletons, which
are independent on the viewpoints and unaffected by the scene con-
text such as external objects, illumination and aesthetic differences of
vailable online 16 September 2023
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people such as clothes or skin color. Moreover, by using skeletons, the
action classifier can focus on sequences of body poses that only describe
human movements to learn a more general and robust representation
of the actions of interest. Consider for example actions such as ‘‘picking
up a piece to be assembled’’ or ‘‘grabbing a hammer from a toolbox’’,
both actions share the same movements and could be considered a
‘‘pick’’ action despite the specific object being picked up, which could
be classified separately using an object detector. Unlike other works in
the literature, we did not restrict the action set to a specific application
(e.g., take part A, place part B, take hammer from the toolbox), but
we tried to generalize the most recurrent body actions and gestures
in order to create a system capable of recognizing common actions in
several collaborative tasks.

In a previous version of this work [7], the 3D human pose was
estimated from 2D pose and RGB-D data by means of projection.
Although this approach is commonly used in the literature [8–10] to
obtain the 3D pose information of the person’s body, in our previous
work we pointed out that it is a very inaccurate solution to obtain the
3D pose of the hands, leading to many incomplete 3D skeletons due to
missing hand joints. To alleviate such problem, our framework relies on
an ensemble of different skeleton-based classifiers, each one trained to
recognize actions on a subset of skeleton joints (e.g., body joints, hands
joints); the use of dedicated classifiers allows to be robust to partial
skeleton inputs with missing joints, and to handle together body actions
and hand gestures. In this work, we further improve the robustness and
generalization capabilities of the proposed HAR system by investigating
different approaches to compute a more robust 3D pose information
for the hands joint, such as ‘‘2D to 3D lifting’’ [11], and monocular 3D
Human Shape estimation [12]. The result is an even more robust and
flexible action recognition system, applicable even in scenarios where
depth is not available but only RGB data.

The proposed system has been trained and evaluated on a dataset
acquired on purpose in our laboratory, namely the IAS-LAB Collabo-
rative HAR dataset,1 which includes RGB-D videos of several subjects
executing typical collaborative actions between human and robot. The
system was further validated on the HRI30 dataset [13], a dataset of
RGB videos acquired in a collaborative setting which includes many
actions describing human movements coupled with tools and objects.
The experiments demonstrated that our system is able to generalize to
novel scenarios, even with no depth information and changes in the
scene background and viewpoint; in addition, we proved that when
coupled with a simple object classifier, the proposed HAR system is
able to outperform state-of-the art methods on the HRI30 dataset.

Summarizing, the work presents the following main contributions:
(i) a unified framework for human action and gesture recognition in a
human–robot collaboration scenario; (ii) an experimental comparison
of different ensembling techniques to improve the overall accuracy and
robustness of the system; (iii) an experimental comparison of different
3D pose estimation methods to alleviate the missing joints problem
for the hands; (iv) a novel RGB-D dateset for action recognition in
a human–robot collaboration scenario, including both general actions
and hand gestures, to further drive research in this field.

The remainder of the paper is organized as follows. Section 2 re-
views the works related to action recognition, with a focus on human–
robot collaboration scenarios. In Section 3 the main elements of our
system are described in details. In Section 4 we present the action
recognition dataset acquired in our laboratory, used to thoroughly
evaluate the proposed system in Section 5. In Section 6 the system
is further evaluated on the HRI30 dataset, proving its robustness on a
different collaborative scenarios. Finally, in Section 7, conclusions are
drawn and future directions of research identified.

1 Available at http://robotics.dei.unipd.it/.
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2. Related works

Human action recognition (HAR) is generally defined as the pro-
cess of identifying and analyzing the movements of one or several
parts of the human body, with many applications related to video
surveillance, such as public events [14] and home monitoring [15,
16], human–robot interaction [5,17], and safety monitoring in in-
dustry [18]. Human action recognition systems can be divided into
two main categories: contact-based and vision-based methods. Contact-
based methods involve physical interaction with sensors and devices
such as accelerometers, multi-touch screens, body-mounted sensors,
and wearable sensors [16,17,19]. Vision-based methods, on the other
hand, use images or videos to recognize activities [20–22], and can
utilize a single camera or a network of cameras to handle occlusions.
Vision-based systems are considered non-intrusive as they do not re-
quire users to wear multiple devices, making them more suitable for
real-world scenarios.

A significant challenge in vision-based action recognition is han-
dling both the spatial and temporal dimensions, as actions are typ-
ically considered as a series of consecutive movements over time.
Several methods have been proposed to address this challenge, includ-
ing LSTMs [23,24], 3D-CNNs [25,26], and multi-stream 2D-CNNs [27,
28]. 3D-CNNs use a sequence of RGB frames as input and employ 3D
convolution kernels to analyze the temporal information. On the other
hand, multi-stream CNNs have two branches in the network that ana-
lyze spatial and temporal information separately, using RGB frames and
optical flow information as inputs, respectively. Recently, human body
pose estimation models, like OpenPose [29], have achieved high perfor-
mance, leading to an increasing number of researchers using 3D human
body pose as input for graph convolutional networks (GCNs) [30–
32]. Body pose is a more compact representation of both spatial and
temporal information than images, resulting in GCN models like the
Shift-GCN architecture [30] outperforming other methods on popular
action recognition datasets [33,34].

It is particularly challenging to recognize actions when they are
captured from different angles because there are so many variations
in their representations. In [35] authors propose the use of dense
optical flow as a local feature descriptor to maker their method robust
under a wide range of viewpoint changes. Another commonly used
approach to be robust to viewpoint change is the use of skeleton-based
action recognition model [36,37], since they rely on compact data
that are less affected by complex backgrounds and viewpoint changes
representation.

2.1. Human 3D pose estimation

Human Pose Estimation (HPE) aims to estimate the position of
human joints in an image or in the 3D space. Despite many recent
works achieved impressive results for 2D HPE [29,38], 3D HPE is still
an open challenge. The most common approach to obtain 3D pose
information involves the use of RGB-D sensors, which provide RGB
and depth frames. For each joint predicted by a 2D pose estimator
(e.g., OpenPose [29]) on the RGB image, the corresponding 3D coordi-
nates are computed by means of re-projection using the sensor intrinsic
parameters and the depth information. However, this method is very
sensitive to the quality of depth information, returning invalid or very
inaccurate values in the case of hands or when only one side of the
human body is visible.

Recently, researchers focused on monocular HPE, which estimates
the 3D coordinates of human body joints from RGB images only.
A notable solution is MeTRAbs [39], that uses volumetric heatmaps
invariant to scale and truncation for directly estimating 3D poses
without using prior knowledge on camera distance or anthropomorphic
measures. A different approach to monocular HPE is the ‘‘2D to 3D
lifting’’ [11,40–42], which computes the 3D pose by means of 2D pose
only, without requiring any depth information. The core idea is that
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2D HPE solutions are more robust to changes (e.g., light variation
or pose variation), and they contain enough information to predict
a good approximation of 3D poses. For example, VideoPose3D [41]
makes use of sequences of 2D poses to resolve ambiguous human poses
(i.e., poses sharing the same 2D projection). Li et al. [42] followed
the same approach replacing temporal convolutions with vanilla trans-
formers and proposing a transformer based module, called ‘‘strided
transformer’’, to refine the predicted 3D poses. All the approaches just
described do not explicitly consider any anthropometric parameters,
which leads many researchers to tackle the 3D pose estimation problem
by fitting a parametric model of the human body. SMPL [43] is a
parametric model that maps shape, pose parameters, into mesh points
of a person. SMPLify [12] fits SMPL models minimizing the distance
between keypoints provided by a 2D pose estimator and the projected
keypoints of the model. The same procedure is inherited by SMPLify-
x [44], where authors improve the hands and the face expression
incorporating respectively MANO [45] and FLAME [46] models.

2.2. Action recognition for human–robot collaboration

Human action recognition is widely used in various human–robot
interaction settings such as social robotics and manufacturing indus-
tries. Typically, in social robotics the set of actions that needs to be
recognized includes hand gestures and facial expressions to facilitate
easy and efficient interaction with robots [4,47]. In [4], the authors
proposed six gestures to enable communication between a human and
a collaborative robot, which are recognized by fusing three different
modalities such as speech command (using a CNN), hand motion (using
a LSTM), and body motion. In an industrial setting instead, the actions
of interest may include either general actions (e.g., walking, standing)
or specific actions and gestures, depending on the main objective of the
action recognition. For example, action recognition can be used to en-
sure human safety in HRC by monitoring what people are doing within
the robot’s workspace. In [5], authors monitor people moving near a
robotic arm and recognize actions such as passing, observing, dangerously
observing, interacting. The recognition system follows a multi-modal
approach: a 3D-CNN extracts features from sequences of RGB frames,
while signals from haptic sensors are used to detect collisions between
humans and the robot using a 1D-CNN.

When tasks involve close collaboration between humans and robots,
human action recognition can be used to enhance productivity by
monitoring different stages of the collaboration. In this case, the set
of actions to be recognized typically includes different operations that
the human needs to fulfill for completing the overall assembly task.
For example, in [17] the set of actions included grab a tool from a
toolbox, insert a screw, tight the screw, put back the tool in the toolbox;
uthors proposed an action recognition classifier based on a CNN
rained on a combination of skeleton features and signals from EMG
nd IMU sensors. In [6], similar activities were considered such as
aking a product or a component, move a product, grab a tool, put on
crews, hold a product, tighten the screws, check product and place product ;
n such case authors focused on hands information only, proposing

system that combines hands’ pose and images cropped around the
ands. In [27] the assembly actions include instead cleaning, hammering,
olishing, smearing, installing, screwing and marking, all recognized using
two-stream CNN.

Despite sharing some common high-level actions and gestures,
any of the human–robot collaboration systems presented in this

ection consider a very specific set of actions related to a particular
ask; in many cases, the datasets used for these systems are often not
ublished or are too task-specific to be useful in other contexts. In
ddition, action recognition is generally addressed by focusing on either
ody or hand information. To the best of our knowledge no work
as attempted to recognize actions using body and hands information
3

ogether. i
In this work we address both problems, namely the lack of a
eneral dataset and the recognition of actions involving either the
ody or the hands. On one hand, we propose a general framework
o recognize both body actions and hands gestures in a collaborative
cenario; on the other hand the system is developed using a novel action
ecognition dataset acquired on purpose, including common actions of
collaborative task so as to be generalizable to various scenarios and

pplications.

. Methods

In this section, we provide a detailed description of the main parts
f our general framework for human action recognition in collaborative
cenarios. The framework follows a skeleton-based action recognition
pproach, since skeletons provide a robust representation of the hu-
an movements free of any disturbances such as external objects and

llumination; this is important especially for collaborative scenarios,
here both the human and the robot are moving and the human worker

hould interact with many objects and tools. A schematic representation
f the proposed system is shown in Fig. 1, highlighting the main steps
nvolved. Our system takes as input a sequence of RGB-D frames and
redicts the corresponding action performed according to a given set
f actions of interest.

In the first stage, we estimate human poses in a sequence of RGB
rames by means of 3D pose estimation methods. In particular, we focus
n estimating the pose information of both the body and hands, since
any collaborative gestures could be executed by using only the hands.
ommon approaches based on projection from 2D to 3D using depth

mages work well for body joints, but can be very inaccurate regarding
ands joints, leading to invalid 3D coordinate values. To handle such
roblem, in the 3D pose estimation stage a ‘‘2D to 3D lifting’’ method
s also considered, in order to estimate valid 3D joints when the 3D
rojection method fails. The estimated 3D joints are then fed to a set
f graph convolutional HAR networks derived from Shift-GCN [30],
state-of-the-art action recognition architecture. Indeed, for the final

ction recognition stage, we rely on an ensemble of classifiers, each one
rained to recognize actions from a different set of joints (e.g., body,
eft hand and right hand). The final output of the system is a weighted
verage of the output scores of all the classifiers, which according to our
xperiments in Section 5 proves to be more accurate and robust with
espect to a single model trained on body and hands poses together.

.1. 3D pose estimation

In a previous version of the proposed framework [7], the 3D pose
stimation stage was mainly based on the projection from estimator
utput, the 2D pose, by means of depth information. Although this
s a common approach to obtain 3D pose information of a person’s
ody, it proved to be very inaccurate to obtain the 3D pose of the
ands, leading to many incomplete 3D skeletons with missing hand
oints. To address such limitation, in this work we investigate different
lternative methods to compute a complete 3D skeleton composed of
ody and hands joints. In particular, we consider ‘‘2D to 3D lifting’’
nd monocular 3D Human Shape estimation approaches to estimate
alid 3D hand joints and alleviate the problem of incomplete 3D
keletons. In the following, each of these approaches is described in
etail, highlighting their pros and cons.

.1.1. 3D pose estimation based on 2D to 3D projection
For 2D pose estimation we rely on the OpenPose architecture [29],

hich provides different pretrained models for multi-person pose es-
imation, allowing to estimate in real-time either 15, 18 or 25 body
eypoints, 42 hand keypoints and 70 face keypoints. The output of
penPose is a 2D skeleton describing the pose of each person in the
nput image. From this information we compute a 3D skeleton by means
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Fig. 1. Overview of the proposed action recognition system. In the first stages, 3D skeletons including body and hand joints are estimated from sequences of RGB-D frames by
means of 3D pose estimation. In the last stage, the classification step, actions are predicted using an ensemble of skeleton-based action recognition models, each one trained to
recognize actions from a particular set of 3D joints.
of projection, in order to have a more standard and general represen-
tation to be used as input for the action classifiers. In this work, we
highlighted that this is not an optimal solution, but we still considered
it since there are many applications exploiting direct projection. Given
a calibrated RGB-D camera and its extrinsic parameters, it is possible to
transform the depth image by aligning it to the RGB image, obtaining a
direct mapping for each pixel; for each 2D keypoint (𝑥𝑃 , 𝑦𝑃 ) estimated
by OpenPose in the input image, we use the information in the aligned
depth image to compute the keypoints coordinates in the 3D space
using re-projection and the intrinsics parameters of the camera. The
depth information acquired with a RGB-D sensors is usually inaccurate
around borders and for small objects, like the fingers of the hand in
our case. Therefore, to improve accuracy and robustness of the 3D
keypoints, we do not consider the raw depth value, but we take instead
the median value in a 5 × 5 window centered at coordinates (𝑥𝑃 , 𝑦𝑃 )
in the depth image. Nevertheless, the 2D to 3D projection method is
heavily affected by the depth information leading to inaccuracies and
missing joints when the subject is far from the camera or partially
occluded; this is especially true for the joints of the hands, which can
be easily occluded during interactions with objects. To alleviate such
problem, we consider a simplified skeletal representation composed of a
subset of OpenPose joints by removing the joints which are missed more
frequently; in particular, as shown in Fig. 2 our choice for the hand
joints is limited to: the wrist, three joints each for the thumb, index
and middle finger, and two joints for the ring finger; for a total of 12
joints for each hand. The rest of the joints are omitted, being in general
more difficult to be estimated and less useful for the action recognition
process. For what concerns the body, some keypoints such as the ones
corresponding to eyes, ears and feet are not considered either, leading
to a 15 joints body model comprising head, neck, shoulders, elbows,
wrists, pelvis, hips, knees and ankles.

3.1.2. 3D pose estimation based on 2D to 3D lifting
Although many works have attempted to predict the 3D pose di-

rectly from just an RGB image, information obtained by 2D pose
estimation is still important to achieve accurate 3D predictions about
the human pose. For example, the MeTRAbs architecture [39] can
predict a relative 3D pose from a single 3D image up to arbitrary
translation; by also providing 2D pose predictions it is then possible
to disambiguate the relative pose estimated and obtain the absolute
pose. MeTRAbs takes in input a RGB image and computes the relative
3D predictions exploiting a volumetric heatmaps representation. The
absolute pose is then computed through a differentiable reconstruction
module, based on a linear least squares formulation derived from the
pinhole camera model. The networks use a detector to isolate human
4

instances, meaning that it can work with multiple people.
However, MeTRAbs was developed to predict only body joints,
meaning that no information on hand joints is provided. In order to
obtain a 3D skeleton complete of body and hands joints, we tried to
pair MeTRAbs with another model capable of estimating the 3D pose
of the hands such as InterNet [48], but from some early tests this model
proved to be unreliable and unable to generalize to images other than
those on which it was trained. We then focused on ‘‘2D to 3D lifting’’
approaches, based on a two-stage procedure that first translate the
image into 2D human pose and then convert the 2D human pose to 3D
human pose. Inspired by [42], where authors showed that using a trans-
former layer is beneficial for lifting 2D body keypoints, we replicate
the same idea to lift hands keypoints provided by OpenPose from 2D
to 3D. Our version is first trained on InterHand2.6 dataset [48], a large
scale dataset containing images of hands from multiple point of view,
using the ground-truth hand poses projected on the image coordinates
as input to the transformer.

3.1.3. 3D pose and human shape estimation
Differently from the previous methods, SMPLify-X [44] aims to

recover 3D pose by fitting a parametric model. This is the union of three
state-of-the-art models for body, face and hands, namely SMPL [43],
FLAME [46] and MANO [45]. The new model is named SMPL-X and
is defined by the function 𝑀(𝛽, 𝜃, 𝜓) ∶ 𝑅|𝛽|×|𝜃|×|𝜓| → 𝑅3𝑁 , where
𝜃 ∈ 𝑅3(𝐾+1) contains the 𝐾 pose parameters for body, hands and face,
plus the parameters for the global rotation; the 𝛽 ∈ 𝑅|𝛽| the shape
parameters and the 𝜓 ∈ 𝑅|𝜓| the expression parameters. SMPLify-X
fits the SMPL-X model given only an RGB image and the 2D keypoints
for body, hand and face, which can be easily estimated by means
of OpenPose as discussed in Section 3.1.1. It minimizes the objective
function:

𝐸(𝛽, 𝜃, 𝜓) = 𝐸𝐽 + 𝜆𝜃𝑏𝐸𝜃𝑏 + 𝜆𝜃𝑓𝐸𝜃𝑓 + 𝜆𝑚ℎ𝐸𝑚ℎ + 𝜆𝛼𝐸𝛼 + 𝜆𝛽𝐸𝛽

+ 𝜆𝜀𝐸𝜀 + 𝜆𝐶𝐸𝐶 (1)

where 𝐸𝜃𝑓 , 𝐸𝜀, 𝐸𝑚ℎ , 𝐸𝛽 and 𝐸𝜃𝑏 , are face pose, expression, hand pose,
shape and body pose priors, respectively. 𝐸𝐶 avoids self interpenetra-
tion. 𝐸𝛼 avoids extreme bending for elbow and knees. Finally, 𝐸𝐽 is
the distance between the 2D input joints and the estimated 3D points
projected to the image. The body prior is computed by a variational
autoencoder [49]. The 𝜆 are scalars to help optimization, which is
performed with the limited-memory BFGS [50] optimizer.

In this work, we are not interested in the facial expression or the
shape parameters and only the 3D joints locations for body and hands in
the fitted model are considered. Note that the computation of the whole
SMPL-X model is slow and could not be used in real case scenarios, such
as human–robot collaboration; nevertheless we investigate also this
kind of methods to obtain an interesting benchmark when compared

with the other 3D pose estimation methods.
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Fig. 2. Body and hand joints considered in the proposed framework, together with their associated ID. We consider a total of 15 joints describing the body, and 12 joints to
describe each one of the hands.
3.2. Action and gesture recognition

The action recognition module in our framework is based on the
Shift-GCN architecture [30], a graph convolutional network which
achieved state-of-the-art performance on the NTU RGB+D dataset [33].
Compared to other architectures, Shift-GCN is more efficient and re-
quires less computational power, due to the use of graph shift convo-
lution operations. This was one of the main aspects that guided our
choice, since in human–robot collaboration scenarios a quick recogni-
tion of human actions is essential to obtain a smooth and responsive
collaboration.

The Shift-GCN input is a sequence of skeletons, (i.e., a sequence of
3D joints coordinates), and its architecture is composed of 10 blocks,
each one including a spatial graph shift convolution operation and an
adaptive temporal shift operation. The final output layer contains 60
nodes to match the number of actions in the NTU RGB+D dataset.
As generally done for graph convolutional networks, the length of the
skeleton sequence is a hyperparameter of the network used. Specifi-
cally, such types of networks require a fixed-length input such as a
sequence of a predefined number of skeletons (e.g., a sequence of 125
skeletons corresponding to a 5-s video sequence with pose estimation
at 25 FPS); if the sequence contains less skeleton than the required
number, a padding strategy is used to add ‘‘skeletons’’ to the sequence.

Unlike the NTU dataset, where actions were classified based only on
the body pose information, in this work we aim to develop a general
framework capable of recognizing both actions and gestures which can
occur during the collaboration between a human worker and a robot.
In collaborative scenarios, many actions and gestures are limited to
hand movements while the worker’s body remains still (e.g., ‘‘stop’’
and ‘‘confirm’’ signals). To achieve this, we propose various action
recognition networks that are based on the Shift-GCN architecture and
are tailored to recognize specific collaborative actions from a specific
set of joints. In particular, we consider the following set of joints:

• wholebody, which includes the 39 joints shown in Fig. 2 describ-
ing the pose of both the body and the hands;

• body, including the 15 joints which describe the pose of the body;
• hands, including the 24 joints which describe both hands to-

gether;
• single hand, including the 12 joints of a hand (i.e., wrist and

fingers’ joints).

Although the methods presented in Sections 3.1.2 and 3.1.3 are capable
of estimating all the hand joints, the different Shift-GCN architec-
tures have been developed using the subsets of joints identified in
Section 3.1.1 to alleviate the missing joints problem of the 2D to 3d
5

projection-based method, in order to have a direct comparison of the
performance obtained by the various methods.

As in the original Shift-GCN architecture, the input sequences of
skeleton joints go through some pre-processing steps before being fed
into the network. These steps include translating the joint coordinate
reference frame to a central joint of the skeleton and normalizing
the joint coordinates. These operations let the network consider body
movements with respect to the body, which makes the input more
suitable for the network and easier to generalize to different scenarios.
For our networks, we choose the neck joint as the origin of the new
reference frame (i.e., Joint 1 in Fig. 2). The 𝑧-axis of the new reference
frame is taken parallel to the segment connecting the pelvis (i.e., Joint
8) and neck joints, while the 𝑥-axis is considered parallel to the segment
connecting the shoulder joints (i.e., Joints 2 and 5). For the networks
that consider only the hand joints, we use the same convention for
the reference frame’s axes, but placing its origin on the wrist joint
(i.e., Joint 0) of each hand, or the right hand wrist when both hands
are considered. This allows the network to express hand movements
with respect to a local reference frame while maintaining their relative
orientation with respect to the rest of the body.

3.3. Ensemble averaging of the classifiers predictions

As the last step of our proposed framework, all the outputs of the
action recognition models are combined together by means of ensemble
techniques to compute the final prediction. Ensemble is a common
technique in the machine learning field that combines several base
models in order to produce one optimal predictive model, improving
the overall accuracy and robustness.

We propose two main ensemble approaches: an ensemble of the
body and hands models, and an ensemble of the body model with
both single hand models (i.e., left_hand and right_hand models). In both
approaches, the information is combined at the score-level, namely
the output of the softmax activation function in the last layer of the
networks. Considering for example the first approach (i.e., 𝑏𝑜𝑑𝑦+ℎ𝑎𝑛𝑑
models), we compute the final score as a weighted sum of the score of
each model. The predicted action 𝑙𝑝𝑟𝑒𝑑 is then obtained by taking the
argmax of the final score,

𝑙𝑝𝑟𝑒𝑑 = 𝑎𝑟𝑔 𝑚𝑎𝑥
(

𝛼𝑏 𝐨𝑏 + 𝛼ℎ 𝐨ℎ
)

, with 𝛼𝑏 + 𝛼ℎ = 1 (2)

where 𝑁 is the number of actions of interest, 𝐨𝑏 ∈ [0, 1]𝑁 is the output
score of the body network, 𝐨ℎ ∈ [0, 1]𝑁 is the output score of the hands
network and 𝛼𝑜, 𝛼ℎ are the corresponding weights.

In the second approach (i.e., body + left_hand + right_hand models)
we take into account also the fact that some actions or gestures can be

performed using only one hand (e.g., confirm, left, right, stop) while
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Table 1
Analysis of the most common actions and gestures considered in the literature for
human–robot collaboration applications.

Action Works Gesture Works

Walk [5,13,51] Stop [4,51–55]
Rest [51,56,57] Ok/Confirm [4,54,55]
Pick [6,17,51,52,54,56–60] Up [4,54,55]
Place [6,52,54,60–62] Down [4,54,55]
Screw [6,27,58,60,61,63] Forward [55]
Insert/Join [17,61,62] Backward [53,55]
Hammer [27,56,57,63] Left [4,54,55]
Hand To [17,51,59,64] Right [4,54,55]
Require [61,64] Point [51]

the other one remains still or even not visible. The final score is still
computed as a weighed sum of the models’ score, but considering a
weight 𝛼𝑖ℎ = 0 if the hand 𝑖, 𝑖 ∈ {𝑙𝑒𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡} is the only one not visible
or in a rest position. We assume in this case that the hand whose action
is labeled as ‘‘rest’’ falls in a group of actions in which only one of
the two hands is actively moving, while the other one stands still; the
actual action is therefore related to the moving hand and the other one
is irrelevant in terms of action recognition.

4. IAS-lab collaborative HAR dataset

As highlighted in Section 2, a variety of actions are commonly used
in human–robot collaborative applications. In order to create a general
framework that fits many different collaborative settings, we trained
our models on a set of actions and gestures that are representative
of those commonly found in the literature. For example, many works
include actions such as ‘‘Grab a tool’’, ‘‘Pick a piece’’ or ‘‘Pick the
hammer’’ which can be generalized as a ‘‘Pick’’ action if we only focus
on the human movements; the specific object to be picked can then be
identified using a dedicated object detector.

With this in mind, we investigated in the literature what types
of human actions are most common in human–robot collaboration
applications, focusing only on the type of movement while ignoring any
specific tool or object. The result of this analysis is shown in Table 1,
which highlights how the main actions and gestures considered in the
literature for collaborative scenarios can be described by means of 9
actions and 9 gestures: actions mainly include movements of the whole
body or some parts (e.g., arms) that occur in collaborative assembly
tasks, whereas gestures include many commands performed with the
hands to give feedback to the robot.

The set of actions shown in the Table 1 thus represents a general set
of actions suitable for many human–robot collaboration applications.
We used this set of actions as the basis for our dataset, introducing
a further classification into four main categories, as reported in Ta-
ble 2. The first category includes general movements that a person
can make within the robot’s workspace, such as Walk which includes
all movements of a worker moving around the workspace and Rest
indicating that the human operator is not working. The second category
includes the most common assembly actions performed by the human
worker, whereas the third category includes all signals that the human
can use to request or pass objects to the robot during collaboration.
Finally, the fourth category includes all gestures used to communicate
instructions to the robot, including directions of movements and signals
of confirmation or halting.

The set of selected actions was chosen to be generic, and can gener-
ally be distinguished without the need to pair them with specific objects
or tools. It can be observed that many of the actions involve an active
use of the hands and that hand movements can be a significant factor
in recognizing the action being performed, particularly for gestures and
collaborative actions.

Based on the set of actions reported in Table 2, we collected a new
dataset of people performing such actions in our laboratory. Six differ-
6

ent participants were asked to perform each of the 18 actions selected
Table 2
Actions and gestures in the IAS-Lab Collaborative HAR dataset.

Group Actions

Spatial movements Walk, Rest
Assembly actions Pick, Place, Screw, Insert/Join, Hammer
Collaborative actions Hand To, Require

Communication gestures Stop, Ok/Confirm, Up, Down, Forward,
Backward, Left, Right, Point

5 times, resulting in a total of 540 samples. Each sample is a sequence
of RGB-D frames lasting approximately 5 s, recorded using an Intel
Realsense L515 camera. The camera was placed at a distance of around
2.5 m from the subjects to capture the entire body during all actions.
Some samples from the acquired dataset are illustrated in Fig. 3. During
the collection of the dataset, the subjects were only provided with the
name of the action to be performed, without receiving any additional
guidance on how to execute it. This approach increased the variability
of the dataset as subjects performed the same actions in different ways
as shown in Fig. 4. The goal is to recognize actions and gestures that
are performed as naturally as possible, without creating a rigid set of
movements and having to provide detailed instructions to users. This
ensures easier, more immediate, and natural communication between
people and robots.

5. Experimental results on IAS-lab dataset

The evaluation of the proposed Human-Action Recognition (HAR)
framework was conducted using the IAS-Lab Collaborative HAR dataset.
However, this dataset is not large enough for training deep learning
models from scratch, as mentioned in Section 4. Therefore, the action
recognition models were first trained on a larger dataset, such as the
NTU RGB+D dataset, and then fine-tuned using the IAS-Lab Collabo-
rative dataset. This approach allows for the utilization of the larger
dataset to learn various features related to human movements, which
can then be specialized for the human–robot collaboration scenario
through fine-tuning. All the models discussed in the following sections
were based on the official Shift-GCN architecture,2 and trained using
the hyper-parameters suggested by the Shift-GCN authors, using a
NVIDIA® Titan RTX 2080 GPU.

5.1. Pre-training on the NTU RGB+D dataset

The NTU RGB+D dataset [33] is a large collection of RGB-D frames
with pose annotations for multiple individuals performing 60 different
actions, recorded using a multi-camera setup. The original dataset
includes pose annotations with 25 joints that describe body poses, but
they do not include hand joints. Moreover, the joints in the skeleton
model are slightly different from those estimated by the OpenPose
architecture used in our framework. Therefore, to make use of both
body and hand pose information in our framework, we recreated the
pose annotations for the NTU RGB+D dataset using the OpenPose
network to predict both body and hand joints. For each RGB frame
in the NTU RGB+D dataset, we run the OpenPose pose estimator to
predict the 2D poses of the people in the images. Then, by using the
associated depth frame, the corresponding 3D pose is computed by
means of re-projection as described in Section 3.

The authors of the NTU RGB+D dataset proposed two benchmarks,
one where subjects are split into training and testing groups (cross-
subject benchmark), and another where data from different cameras
are used as train and test data (cross-view benchmark). However, in
this work, the primary objective is to use the NTU dataset to train
models on a large collection of actions; for this reason, we did not

2 https://github.com/kchengiva/Shift-GCN.

https://github.com/kchengiva/Shift-GCN
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Fig. 3. Some samples from the IAS-Lab Collaborative HAR dataset, together with the skeletons outputs estimated dataset by means of OpenPose architecture.
Fig. 4. Examples of variability in the IAS-Lab Collaborative HAR dataset. Each subject performed the requested action (e.g. Left) in a different manner.
Table 3
Experimental results on the NTU RGB+D dataset for each proposed model. Results are
provided in terms of accuracy using the skeleton sequences extracted with OpenPose.

Model #Joints Top1% Top5%

wholebody 39 59.44 81.34
body 15 90.40 97.68
hands 24 36.25 67.63
left hand 12 21.12 49.38
right hand 12 31.90 62.68

follow any of the proposed divisions but used it as a training set with
the highest number of images. In particular, we considered all the data
from cameras 2 and 3 as the training set and also added the data from
camera 1, which is reserved for training in the original NTU RGB+D
cross-subject benchmark. The remaining data, namely the test data in
the cross-subject benchmark acquired with camera 1, was used as a
validation set to monitor the training and prevent overfitting.

Using the dataset division described above, the models outlined in
Section 3 were trained on sequences of 3D skeletons obtained from
OpenPose outputs, considering the subset of the most important joints
shown in Fig. 2. Specifically, a separate model was trained for each
set of joints e.g., body joints, left hand and right hand joints) and a
whole_body model considering all the available joints (i.e., body and
hand joints). Results for each trained model on the NTU RGB+D dataset
are presented in Table 3. The models were evaluated in terms of
accuracy, utilizing both Top1 accuracy and Top5 accuracy metrics. The
former represents the percentage of correctly predicted actions in the
test set, while the latter is the percentage of actions whose correct
prediction falls within the five highest softmax scores estimated by the
network.

As shown in Table 3, the highest accuracy was achieved by the
model trained only on the 15 selected body joints, while models trained
on the hand joints had a low accuracy. This outcome was somewhat
expected given that the NTU RGB+D dataset includes a wide range of
daily actions (e.g., drinking, eating, reading) that involve minimal use of
the hands. Many of these actions are primarily differentiated by body
posture, and the hands provide only minimal information that is not
enough for a model trained only on hand joints to distinguish between
such a wide range of actions.
7

Even the wholebody model trained on both body and hand joints has
a lower accuracy than the model trained on only body information.
This suggests that including hand information may even harm the
model, causing it to misinterpret more actions than when using body
information alone. Out of the 39 input joints, only 15 describe the body
pose, while more than the half represent hand information that does not
provide enough knowledge to recognize actions.

It is worth noting that Shift-GCN architecture achieved a Top1
accuracy of 96.5% on the original NTU RGB+D dataset with body
pose annotations, while our ‘‘body’’ model performed slightly worse
with a Top1 accuracy of 90.4%. A direct comparison between the two
results is not possible due to the use of slightly different train and test
sets. However, the decrease in performance may be partly due to the
new pose annotations and how the network handles partial inputs. If
some of the required joints are missing from the input, the entire input
skeleton is discarded. This occurred on several occasions when using
the skeletons estimated by OpenPose (especially for hands when not
clearly visible or partially occluded by objects), which caused entire
sequences to be discarded when too many skeletons were missing.

5.2. Fine-tuning on the IAS-lab collaborative HAR dataset

Using the NTU RGB+D dataset, several action recognition models
were trained to classify a wide range of daily activities. The large size of
the dataset enabled the models to learn various low-level and mid-level
features that can be useful also for action recognition in collaborative
scenarios. All the models were fine-tuned on the IAS-Lab Collaborative
HAR dataset described in Section 4, by changing the final layer of 60
nodes to a layer of 18 nodes to match the size of the new set of actions.
To preserve the low-level and mid-level features learnt, all weights
of the layers were frozen except for the last ones during fine-tuning.
Specifically, denoting with 𝓁𝑖, 𝑖 ∈ [1, 10] the 10 blocks of the Shift-GCN
architecture, all the blocks were frozen except the final ones reported
in Table 4 for each model. For models that achieved low accuracy on
the NTU RGB+D dataset (e.g., hand models), more blocks were allowed
to be retrained as low accuracy suggests that poor mid- and high-level
features were learned, and more weights should be updated.

When fine-tuning the models on the IAS-Lab dataset, a cross-subject
benchmark was applied, where the first five subjects were used for
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Fig. 5. Confusion matrices for the models fine-tuned on the IAS-Lab Collaborative HAR dataset. On the left, the confusion matrix for the body model. On the right, the confusion
matrix for the hands model.
Table 4
Experimental results on the IAS-Lab Collaborative HAR dataset for each proposed
model. Results are provided in terms of accuracy using the models pre-trained on the
NTU RGB+D dataset.

Model #Joints Valid inputs Top1% Top3% Learnable blocks

wholebody 39 45% 44.00 54.00 𝓁7, 𝓁8, 𝓁9, 𝓁10
body 15 100% 62.22 86.67 𝓁9, 𝓁10
hands 24 45% 50.00 64.00 𝓁8, 𝓁9, 𝓁10
left hand 12 75% 59.42 73.91 𝓁6, 𝓁7, 𝓁8, 𝓁9, 𝓁10
right hand 12 70% 59.42 71.01 𝓁6, 𝓁7, 𝓁8, 𝓁9, 𝓁10

training and the sixth subject was used for validation. The fine-tuned
models were evaluated in terms of Top1 and Top3 accuracy and the
results are presented in Table 4. Given the smaller number of actions in
this case compared to the NTU dataset, the Top3 accuracy was chosen
instead of the Top5 accuracy used in the previous case.

As seen in Table 4, the best results were still obtained with the
model trained on body joints, which achieved a Top1 accuracy of
62.22%. Notably, the models trained on hand joints performed better
on the IAS-Lab dataset compared to the NTU dataset, especially for
models that consider each hand separately. In many sequences of the
IAS-Lab dataset, the subjects performed actions with one hand while
the other hand was at rest. These situations are ambiguous for a model
that recognizes actions using information from both hands, resulting in
a reduction of its overall accuracy.

However, none of the models were able to correctly classify all
actions in the test set data, which highlights the complexity of the
recognition task assigned. As mentioned in Section 4, the IAS-Lab
dataset includes a variety of typical actions in human–robot collabo-
ration scenarios, including general actions (e.g., pick, place) and hand
gestures (e.g., confirm, stop). General actions are large movements
that involve many body parts, such as walking or hammering. Hand
gestures, on the other hand, are frequently used to communicate with
the robot and involve only movements of the worker’s hands while the
rest of the body remains mostly still. Both the body model and the single
hand models are highly accurate in classifying only one type of action,
but perform poorly in the other one due to the lack of information. For
example, as illustrated in Fig. 5, the body model accurately predicts
actions such as place, hammer or walk, but has difficulty recognizing
all gestures based on hand movements (e.g., hand to).

Intuitively, a model trained on both body and hands information
should be the best one to recognize all the given actions and gestures,
8

but in our experiments we found the opposite to be true, with the whole-
body model achieving the lowest accuracy among the results reported
in Table 4. This is mainly due to the fact that in several sequences
the skeletons found were not complete with all joints, resulting in
these sequences being discarded from the model’s training set, and thus
limiting the model ability to learn to recognize all actions of interest.
The percentage of valid training sequences available for each model
is reported in Table 4, which highlights how the available data was
particularly limited for training the wholebody model.

5.3. Comparing different 3D pose estimation approaches

As noted in the previous section, 2D to 3D projection methods are a
good approach for estimating 3D body joints but show many limitations
when dealing with hand joints as well. Indeed, in many cases it is
not possible to estimate the correct 3D position of hand joints due to
invalid depth values or occlusions (e.g., a hand-held object), leading
to incomplete skeletons and reducing the amount of data useful for
training and testing the action classification networks.

This problem led us to investigate alternative methods for obtaining
a 3D pose, capable of predicting a correct and complete skeleton of all
joints even if the depth information is not reliable. In particular, we
considered two main approaches: ‘‘2D to 3D lifting’’ and 3D human
shape estimation. Both approaches infer the 3D pose from the output
of a 2D pose estimator. In the former case the 3D pose is obtained by
means of regression, while in the latter case the 3D pose is obtained
by fitting a parametric human model on the 2D pose. For each of these
methods, we first estimated the corresponding 3D poses on the IASLAB
Dataset and then trained a Shift-GCN-based classifier on each subset of
joints considered in the previous experiments. This allows a fairer com-
parison of the performance of the classifiers based on the new 3D pose
results with the previous results obtained using the 2D to 3D projection
method. Moreover, since in the previous experiment the presence of
many incomplete skeletons caused several sequences to be discarded
from the training and test set, in comparing the performance of the
classifiers when varying the 3D pose estimation method two different
evaluation settings were considered: in Table 5 all the classifiers are
evaluated on the subset of valid test sequences where the 2D to 3D
projection method computes enough complete 3D skeletons, while in
Table 6 the classifiers are evaluated on all the IASLAB dataset test

sequences.
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Table 5
Experimental results on the IAS-Lab Collaborative HAR dataset for each proposed model on the subset of common test sequences. Results are provided in terms of accuracy using
the models pre-trained on the NTU RGB+D dataset.

Method Body Hands Left hand Right hand Wholebody

Top1 Top3 Top1 Top3 Top1 Top3 Top1 Top3 Top1 Top3

OpenPose 3D 62.22 86.67 50.00 64.00 59.42 73.91 59.42 71.01 44.00 54.00
Metrabs + 2D lift 67.78 83.33 69.39 79.59 60.87 72.46 66.18 76.47 63.27 81.63
SMPLify-x 55.56 71.11 71.43 85.71 72.46 84.06 67.65 75.00 53.06 67.35

OP + 2D lift 65.56 91.11 61.22 83.67 63.77 76.81 64.71 77.94 69.39 89.80
OP + SMPLify-x 67.78 87.78 67.35 87.76 73.91 79.71 64.71 79.41 69.39 91.84

Test sequences 90 49 69 68 49
Table 6
Experimental results on the IAS-Lab Collaborative HAR dataset for each proposed model on all test sequences. Results are provided in terms of accuracy using the models pre-trained
on the NTU RGB+D dataset.

Method Body Hands Left hand Right hand Wholebody

Top1 Top3 Top1 Top3 Top1 Top3 Top1 Top3 Top1 Top3

OpenPose 3D 62.22 86.67 30.00 35.56 51.11 56.67 51.11 62.22 24.44 33.33
Metrabs + 2D lift 65.56 91.11 65.56 84.44 52.22 67.78 64.44 77.78 64.44 83.33
SMPLify-x 55.56 71.11 70.00 87.78 63.33 78.89 66.67 76.67 57.78 75.56

OP + 2D lift 67.78 83.33 68.89 87.78 55.56 72.22 64.44 78.89 68.89 86.67
OP + SMPLify-x 67.78 87.78 70.00 87.78 63.33 74.44 66.67 80.00 71.11 88.89

Test sequences 90 90 90 90 90
In both tables the results of the following 3D pose estimation
ethods are reported: 2D to 3D projection from 2D poses estimated by
penPose (Openpose3D); 2D to 3D lifting using Metrabs for the body
nd our version of [42] for the hands (Metrabs+2Dlift); 3D human
hape estimation by means of parametric models (SMPLify-x). Since
or body joints the result of projection from 2D to 3D still gives an
ccurate result, we also considered ‘‘hybrid’’ methods, where we keep
penpose3D body joints and integrate missing hand joints using one of

he other methods: in OP+2Dlift hand joints are provided by lifting
penPose 2D predictions to 3D using our version of [42], while in
P+SMPLify-x hand joints are provided by the parametric model fitted
n OpenPose 2D joints by SMPLify-X.

As shown in Table 5, the action classifiers trained on the 3D poses
btained by the new methods considered outperform the previous
esults achieved using 2D to 3D projection (Openpose3D). Indeed, by
eing able to always predict a complete 3D skeleton (i.e., both body
nd hands joints), with 3D pose obtained by such methods, it is possible
o train action classifiers for each body part on a larger amount of data
mproving the ability to then generalize over test sequences.

This observation is further confirmed by the results shown in Ta-
le 6, where the various action classifiers are evaluated on the whole
est set. In this case, Openpose3D has a performance drop due to
equences with incomplete skeletons, especially in the case of hands and
holebody action classifiers; in contrast, there are no major differences

n the performance of the other methods, an indication that the various
ction classifiers obtained with the new 3D poses are robust across the
ntire test set.

In summary, the introduction of alternative methods for 3D pose
stimation has alleviated one of the main problems related to missing
D hand joints, allowing for more robust action classifiers. In particular,
he SMPLify-x method is the one that achieves the best results regarding
ands, while for body joints it proves to be less robust than the Open-

pose3D method. Indeed, by investigating the 3D skeletons estimated
by SMPLify-x, it can be seen that on several occasions it predicts an
incorrect pose for the body (e.g., one leg forward instead of being
backward), while the pose of the hands is always consistent with the
real pose. This is confirmed in the results of method OP+SMPLify-x,
where the body joints estimated by SMPLify-x are replaced with those
obtained by means of 2D to 3D projection, which in fact obtains the
best results for each subset of joints.

The time required to predict a 3D pose using SMPLify-x is about
9

0 s per frame, which makes this method difficult to apply in scenarios
where real-time performance is required. Given such requirement, as in
a human–robot collaboration scenario, a better solution is the OP+2Dlift
method that in Table 6 achieves the second best results on all joint
configurations; in that case, the 3D body joints are computed by means
of 2D to 3D projection, while the 3D hand joints are estimated by lifting
the 2D joints provided by Openpose.

5.4. Ensemble results using body and hands models

Body posture and hand posture are complementary information
that, if properly combined, can greatly improve action recognition. As
highlighted in previous experiments, combining this information when
training a network has generally proven to be of little use or even
inefficient: on the one hand, more sequences are required to learn the
various relationships that may exist between body and hands during
the actions of interest; on the other hand, the majority of hand joints
over body joints may lead networks to focus more on hands than body
information.

For these reasons, we developed our action recognition system
by combining information at the score level by means of ensemble
techniques: we run in parallel the models fine-tuned on the IAS-Lab
dataset, and combine together their score predictions (i.e. the predicted
probability for each actions) by means of a weighted sum. In particular,
we investigated two main approaches: an ensemble of the body and
hands models, and an ensemble of the body model with the models for
each hand considered separately. In the former case we found that best
results were obtained when weighting equally the contribution of the
two hands, that is, using weights 𝛼𝑏 = 𝛼ℎ = 0.5 in Eq. (2). Instead, when
using a separate model for each hand we found that less importance
should be given to the scores of the left_hand model, probably due to the
fact that the majority of the subjects in the dataset were right-handed
and tended use their right hand to perform the requested actions; the
final weights we selected for this approach are 𝛼𝑏 = 𝛼𝑟ℎ = 0.358 and
𝛼𝑙ℎ = 0.284.

The results obtained using the two ensemble strategies proposed
are reported in Table 7. In general, both strategies lead to an im-
provement of the Top1 accuracy with respect to the previous results,
showing how in general combining body and hands information helps
classifying actions. The best results were obtained with the ensemble
of the body model with the single models for each hand, achieving a
good improvement with respect to the results obtained by each model

in Table 6. The major improvement is for the Openpose3D method,
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Table 7
Experimental results on the IAS-Lab Collaborative HAR dataset using different
ensembles of the fine-tuned models.

Method Body + Hands Body + Single hands

Top1 Top3 Top1 Top3

OpenPose 3D 65.56 87.78 66.67 90.00
Metrabs + 2D lift 65.56 91.11 67.78 88.89
SMPLify-x 66.67 85.56 70.00 84.44

OP + 2D lift 68.89 90.00 75.56 88.89
OP + SMPLify-x 71.11 93.33 75.56 91.11

Table 8
Inference time in milliseconds for each proposed model considering different GPU
hardware.

Hardware Body Hands Left hand Right hand Wholebody

NVIDIA GeForce 2080 6.18 6.28 6.14 6.22 6.43
NVIDIA GeForce 3060 3.45 3.41 3.40 3.40 3.61

where 3D skeletons are obtained by means of 2D to 3D projection.
In this case, the main advantage of the ensemble strategy is to help
alleviate the missing joints problem: a sequence is considered a valid
input if at least the body or a hand is detected, reducing the number
of overall frames and sequences discarded. But even in the case where
all skeletons are complete with all joints, the ‘‘body + single hands’’
ensemble strategy allows a better action classification. In particular,
OP+2Dlift and OP+SMPLify-x methods achieve the best result on the
IASLAB dataset, with a respective accuracy improvement of +7% and
+4% with respect to the corresponding wholebody action classifier.

5.5. Run-time analysis

In this section we provide an analysis of the execution time of
the main module of the proposed system. In particular, the modules
requiring most of the computational time can be identified in the 3D
pose estimation module and the ensemble of graph convolutional net-
works. For the 3D pose estimation module, different variations has been
considered in the previous experiments in Tables 5 and 6. OpenPose3D
can predict 3D body and hands joints with an approximate speed of
25 FPS on a NVIDIA GeForce 2080 GPU, where the computational
time is almost entirely due to the 2D pose estimator (i.e., OpenPose)
since the 3D projection step using depth images is irrelevant in terms
of execution time. The ‘‘Metrabs+2D lift’’ is composed of two main
parts: Metrabs body pose estimator and a 2D lifting method to estimate
3D hand joints: Metrabs runs an approximate speed of 25 FPS on a
NVIDIA GeForce 2080 GPU, while the 2D lifting method computes 3D
hand joints from 2D hand joints of OpenPose with an execution time
of 95 FPS on a NVIDIA GeForce 2080-Ti. Finally, SMPLify-x allows to
estimate an accurate 3D skeleton composed of body and hand joints,
but its execution time is about 50 s per frame. Regarding the ensemble
of graph convolutional networks, an analysis of the inference time of
each network is reported in Table 8 for different GPU models. The only
difference between the networks considered is the number of skeleton
joints considered in the input sequence, as described in Table 3. As
shown in Table 8, the networks are all capable of running at a very high
frame rate on today’s very common hardware (e.g., NVIDIA GeForce
2080 and NVIDIA GeForce 3060). Moreover, all models occupy just
under 2 GiB of GPU memory, and it is therefore possible to run the
different models needed for the ensemble (e.g., body, lefthand and
righthand models) in parallel on the same midrange GPU.

6. Experimental results on HRI30

To prove the robustness and the generalization capabilities of our
action recognition framework, a series of experiments has been per-
formed also on the HRI30 dataset [13], proposed for action recognition
10
in industrial human–robot interaction scenarios. The HRI30 dataset
contains 30 categories of industrial-like actions like Pick Up Drill or
Walking with Polisher. For each category 98 video clips have been
collected, for a total of 2940 video clips; each video clip has been
recorded with a Realsense D435i camera framing a large working area,
and then manually cut to contain only the performed action.

The HRI30 dataset has several differences from the IASLAB dataset
considered in the previous sections: it contains only RGB information,
with only one person per frame but viewed in profile and at a much
greater distance from that considered in the IASLAB dataset acquisition.
An example of the scene differences from the two datasets is shown in
Fig. 6. Moreover, the action categories to be recognized in the HRI30
are generally composed of both human movements (e.g., Move Back-
wards, Move Right) and objects (e.g., Drill, Polisher), while the IASLAB
dataset addresses general collaborative actions which only depends on
human movements.

In this section, our framework is evaluated on the HRI30 dataset to
demonstrate how it can easily generalize on different scenarios, even
with only RGB data and a very different viewpoint. Moreover, we will
show that by coupling the proposed framework with an object classifier
it is possible to predict all the HRI30 action classes outperforming
existing methods.

6.1. Generalization on the HRI30 dataset

Our proposed framework relies on skeleton-based action classifiers,
with 3D skeletons providing a robust representation of the human
movements free of any disturbances such as external objects and illu-
mination. This allows our system to learn actions classification from
joints movements alone, thus generalizable to different scenarios. On
the contrary, methods for action recognition based on RGB images
or video analysis struggle with new scenes, since they are strictly
dependent on training data. A proof to the hypothesis can be inferred
from the HRI30 dataset. As shown in Fig. 6, this dataset presents a very
different scenario from that found in the IASLAB dataset, constituting
an interesting test case on which validating generalization capabilities.

Since the IASLAB dataset has been built considering general actions
which could occur in an human–robot collaboration, the 30 categories
proposed in the HRI30 dataset can be easily mapped in the IASLAB
dataset actions. In particular, most of the HRI30 categories describe a
Move action in some direction, which can be mapped into a Walk action
onsidering the IASLAB dataset set of classes reported in Table 2; the
emaining classes in the HRI30 dataset have a direct counterpart in the
ASLAB dataset, namely Pick, Place, Hand To for the Deliver category

and Rest for the No Collaborative category. With such mapping, we
evaluate the model trained on the IASLAB dataset directly on the HRI30
dataset, in order to demonstrate how the skeletal representation allows
to easily generalize on a new scenario. Note that the HRI30 dataset does
not contain depth information but only RGB data, so only monocular or
lifting models, namely Metrabs+2Dlift and SMPLify-x, were tested. The
esults of this validation are shown in Table 9 together with state-of-
he-art action classifier based on video analysis. The table highlighting
ow our skeleton-based action classifiers maintain good performance
hen applied to different collaborative scenarios.

.2. Evaluation on the HRI30 dataset

Our proposed framework has been designed to be general and
irectly usable in various scenarios for recognizing a general set of com-
on collaborative actions. Such a framework, thus, constitutes a large

nowledge base that can be further specialized on a more specific set of
uman actions to deal with specific tasks and applications. Consider, for
xample, the HRI30 dataset, which includes many collaborative actions
elated to movements within the working area such as ‘‘Move Backwards
hile Drilling’’, ‘‘Move Backwards While Polishing’’ or ‘‘Move Diagonally

orwards Left with Drill’’. According to the analysis made in Section 4, all
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Fig. 6. A comparison between the IAS-Lab Collaborative HAR dataset (left) and the HRI30 dataset (right).
Table 9
Experimental results of the models trained on the IASLAB dataset when tested on the
HRI30 dataset. All reported inference times are obtained as the average inference time
of the networks on each test sequence of the IASLAB dataset on a Nvidia Titan RTX
2080 GPU.

Method IASLAB HRI30 Inference

Top1 Top3 Top1 Top5 time [s]

SlowOnly [20] 64.44 81.11 29.05 52.98 1.13
C2D [65] 46.67 74.44 25.00 41.19 0.15
I3D [65] 47.78 81.11 18.81 32.23 0.22
VideoSwin [66] 64.44 86.67 10.36 32.26 0.59
TimeSformer [67] 54.44 78.89 18.21 51.79 0.14
STGCN++ [68] 58.89 83.33 48.81 32.23 0.02

Ours (Metrabs + 2Dlift) 67.78 88.89 84.12 90.48 0.008
Ours (SMPLfy-x) 70.00 84.44 80.95 85.71 0.008

these actions fall under the general action category Walk which can be
easily predicted by our framework as shown in Section 6.1. However, in
a particular application it may be important to recognize not only that a
person is walking but also the direction in which he/she is moving. This
motivates the need to have a framework capable of recognizing general
actions, but at the same time easy to be specialized on a specific set of
actions related to a given task.

The 30 action categories included in the HRI30 dataset include
various combinations of 3 main objects (i.e., Drill, Polisher, Object)
and 14 main body actions: ‘‘Deliver’’, ‘‘MoveBackwards’’, ‘‘Move Diago-
nallyBackwardLeft’’, ‘‘MoveDiagonallyBackwardRight’’, ‘‘MoveDiagonally-
ForwardLeft’’, ‘‘MoveDiagonallyForwardRight’’, ‘‘MoveForward’’,
‘‘MoveLeft’’, ‘‘MoveRight’’, ‘‘NoCollaborative’’, ‘‘PickUp’’, ‘‘PutDown’’, ‘‘Us-
ing’’ and ‘‘Walking’’.

Using the official train/test splits provided in the HRI30 dataset
[13], we fine-tuned our action classifiers on such 14 body actions.
In particular, we fine-tuned the action classifier based on ‘‘2D to 3D
lifting’’ pose estimation (i.e., Metrabs+2Dlift), which does not rely
on depth information and provides in general more accurate results
for actions based on body joints. For fine-tuning we kept the hyper-
parameters suggested by the Shift-GCN authors [30], changing the
number of nodes in the final layer and lowering the initial learning
rate to 0.01 so as not to change the previous training too much; all
the training procedures have been performed using a NVIDIA® Titan
RTX 2080 GPU. Results have been reported in Table 10, which shows a
very good performance in terms of Top1 and Top5 accuracy for the fine-
tuned action classifier. This result demonstrates the possibility and ease
of specializing our framework in human–robot collaboration scenarios
with a different set of action of interests.

Recognizing people’s actions from a skeletal representation allows
our framework to be very robust in recognition and easily generalizable
to different scenarios. However, by discarding the RGB information the
action recognition framework has no way to differentiate any objects
with which the person interacts. When the actions to be recognized
also include objects, as in the case of HRI30 dataset, it is then possible
11
to extend the framework by coupling it with an object detector or
classifier. For example, we trained an object classifier derived from [69]
to recognize the 3 objects included in the HRI30 categories by analyzing
images cropped around the human body. In particular, we extracted
the person 2D pose for the frames in the train set of each split; given
such 2D pose, we then computed a bounding box that encapsulates
the whole person and cropped the image around such bounding box
to build a training set for the object classifier. The object classifier has
been trained considering also a 4th class corresponding to a No object
to handle cases in which the person is picking or placing the object. The
performance of this object classifier are reported in Table 10 for each
HRI30 split, showing that in almost all the cases it is able to correctly
recognize the object handled by the person.

Coupling together the action and the object classifiers, it is possible
to predict the original categories included in the HRI30 dataset. We
combine the predictions of the two classifiers at the score-level (i.e., the
output of the last softmax layer), by computing their joint probability
under the assumption that action and object are independent events:

𝑍 = 𝑃 (𝑎𝑐𝑡𝑖𝑜𝑛, 𝑜𝑏𝑗𝑒𝑐𝑡) = 𝑃 (𝑎𝑐𝑡𝑖𝑜𝑛) ⋅ 𝑃 (𝑜𝑏𝑗𝑒𝑐𝑡)

Table 11 shows the results obtained by our action framework and
object classifier in terms of Top1 and Top5 accuracy for each split. In
the same Table we also reported the state-of-the-art methods evaluated
on the HRI30 dataset by the respective authors. As marked in bold,
our approach outperforms all the other methods achieving the best
performance in terms of Top1 accuracy on all the splits.

7. Conclusions

In this work, we propose a unified framework for action recognition
in human–robot collaboration scenarios. Our framework is based on
skeleton-based action classifiers which can recognize various body
movements and hand gestures commonly used in collaborative tasks,
making it a versatile solution for various real-world applications. Differ-
ent 3D pose estimation methods have been considered and investigated
to develop the proposed system, since the quality and completeness of
the 3D pose plays a crucial role in the action classifiers performance.
Our experiments showed that 2D to 3D lifting methods provide a more
robust 3D pose than 2D to 3D projection methods commonly used in the
literature. The system has been evaluated on a novel dataset including
general actions of human–robot collaboration scenarios, which could
be used as a benchmark to further drive research in this field. Our
experiments showed that using an ensemble of action classifiers, each
trained to recognize actions from different joints, has several benefits:
it improves the overall accuracy and makes the system more robust to
possible missing joints in the estimated 3D skeletons. Considering also
the HRI30 dataset, we demonstrate that the proposed framework can
be easily specialized on more detailed human actions and achieve state-
of-the-art results when coupled with an object detector or classifier.
Some limitations of the proposed system are the fixed length of the

input sequence, and the fact that the ensemble classifier assumes as
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Table 10
Experimental results on the HRI30 dataset, considering classifiers for human movements and objects
separately.
Classifiers Split 1 Split 2 Split 3

Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5

Actions 88.33 99.05 99.76 87.62 99.84 99.84 87.52 98.95 99.81
Objects 97.74 99.05 100 97.30 98.89 100 98.00 99.05 100
Table 11
Experimental results on the HRI30 dataset with respect to the 30 action
classes.

Method Split 1 Split 2 Split 3

Top1 Top5 Top1 Top5 Top1 Top5

SlowOnly [20] 86.55 99.76 83.49 99.84 82.43 99.90
TSN [21] 74.05 97.20 73.98 99.05 73.71 98.86
IRCSN [22] 79.17 99.88 74.64 99.84 77.67 99.62
VideoSwin [66] 82.62 99.88 81.90 100.00 82.67 99.81
TimeSformer [67] 61.90 98.33 72.70 97.62 63.24 98.38

Ours 88.10 98.81 87.30 98.99 88.00 99.05

the subject’s dominant hand the right hand. As future development
of the system we would like to remove this assumption and make
the system capable of inferring the subject’s dominant hand thorough
the analysis of several consecutive actions of a same subject during
a complex assembly task; in this scenario, the weights 𝛼𝑟ℎ and 𝛼𝑙ℎ in
he ensemble module could be adjusted periodically over time based
n a statistic of recognized left- or right-handed actions (e.g., using
ayes’ rule to update the belief about the dominant hand in the light of
he obtained statistic). To address the limitation with fixed size input
equences, we will consider the use of warping techniques to be more
obust to the same actions done at different speeds (and thus different
urations). As future research directions, we also plan to evaluate the
ramework in a real human–robot collaboration task to monitor human
ovements during an assembly process. Moreover, we will further

nvestigate the robustness of the framework to different viewpoints
onsidering a multi-camera setup.
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