
1. Introduction
The Late Miocene-Early Pliocene was an interval of major changes in global tectonics, climate, and oceanogra-
phy (Haywood et al., 2009; Steinthorsdottir et al., 2021). Significant events include the closing of the Isthmus of 
Panama, primary and renewed uplift of the Andes and Himalayas respectively, isolation of the Mediterranean, 
expansion of Antarctic ice, spreading of C4 vegetation, intensification of monsoonal activity, and a general cool-
ing of surface and deep ocean water masses (Cerling et al., 1997; Herbert et al., 2016; Holbourn et al., 2018; 
Molnar et al., 1993; Prell & Kutzbach, 1992; Quade & Cerling, 1995; Steinthorsdottir et al., 2021; Westerhold 
et al., 2020; Zachos et al., 2001; Zhisheng et al., 2001).

A notable paleoceanographic phenomenon also occurred across this time interval, generally referred to as the 
“Late Miocene to Early Pliocene Biogenic Bloom” (Farrell et  al.,  1995). At numerous locations, especially 
beneath upwelling regions of the Pacific (Berger et al., 1993; Farrell et al., 1995; Lyle et al., 2019) and Indian 
Oceans (Peterson et  al.,  1992), mass accumulation rates of CaCO3 and other biogenic components (e.g., Si, 
P, Ba) to the seafloor increased significantly between 9.0 and 3.5 Ma (Dickens & Owen, 1999; Diester-Haass 
et al., 2005; Farrell et al., 1995). Furthermore, at multiple locations, diatom assemblages associated with high 
productivity thrived, while benthic foraminiferal assemblages dominated by suboxic and dysoxic taxa (e.g., 
uvigerinids and buliminids) and sediment geochemistry (e.g., decreased Mn/Sc) point to low dissolved oxygen 
concentration at intermediate water depths (Dickens & Owen, 1994; Farrell et al., 1995; Gupta & Thomas, 1999; 
Lyle et al., 2019; Nomura, 1995).
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The Biogenic Bloom presents a paleoceanographic puzzle: marine sedimentary records strongly suggest a major 
increase in primary productivity across several widely separated low-latitude oceanic regions; however, such 
production is limited by the availability of nutrients, whose residence times are fairly short in the global ocean 
(<10 5  years; Delaney & Filippelli,  1994; Toggweiler,  1999). How therefore can widespread elevated ocean 
productivity be maintained for several millions of years? Two basic end-member explanations emerge although 
both may have transpired: (a) a greater supply of nutrients entered the ocean, or (b) nutrients within the ocean 
were more heterogeneous relative to present-day (and to the Late Pliocene). Within the framework of the first 
explanation, uplift of the Himalayas and intensification of monsoon-related weathering might have enhanced 
nutrient delivery to the oceans (Berger & Stax, 1994; Berger et al., 1993; Delaney & Filippelli, 1994; Farrell 
et al., 1995; Filippelli, 1997; Hermoyian & Owen, 2001). The second explanation refers to an extensive reorgani-
sation of ocean circulation, which might have focused nutrients toward the photic zone in certain areas, even more 
than at present-day. For example, deep-water formation in the North Pacific and active Pacific meridional over-
turning circulation (PMOC), which no longer exist, occurred in the past (Burls et al., 2017; Shankle et al., 2021). 
Previous works highlight regional diversity in the duration and expression of the Biogenic Bloom (Dickens & 
Owen, 1999; Liao & Lyle, 2014; Lyle et al., 2019; Sutherland et al., 2019), and high-resolution studies at diverse 
locations are needed to more fully understand the phenomenon.

In this study, we investigate the expression of the Biogenic Bloom at International Ocean Discovery Program 
(IODP) Expedition 371 Site U1506 located in the central Tasman Sea (Sutherland et al., 2019). The area is a 
target for late Neogene paleoceanographic studies (e.g., Grant & Dickens, 2002; Kennett & Von der Borch, 1986; 
Sutherland et al., 2022) due to its relatively shallow water depth above the CCD and its position under the return 
flow of the South Pacific Gyre. Recent work at Site U1506 shows that linear sedimentation rates (LSRs) peaked 
between 8 and 3 Ma (Sutherland et al., 2019, 2022).

Here, we build an age model based on a high-resolution bio-astrochronological framework that enables precise 
dating of sediment deposited between 7.4 and 4.2 Ma at Site U1506. A crucial source of information is deep-sea 
sediments, which preserve benthic foraminifera that are proxies of ancient nutrient availability and oxygen condi-
tions at the seafloor (Murray, 2006) and, hence reveal the evolution of productivity during the Biogenic Bloom. 
We carried out quantitative analyses of benthic foraminiferal assemblages, combined with other independent 
proxies, to understand the regional and global imprint of the Biogenic Bloom.

2. Materials and Methods
2.1. Location and Study Material

Site U1506 (28.66°S, 161.74°E; 1,505 m water depth) comprises a single hole (Hole 1506A) located on the 
northern part of Lord Howe Rise (LHR), a broad bathymetric high and submerged part of the northern Zealandia 
(Mortimer et al., 2017) (Figure 1). The primary rationale for drilling Site U1506 was to determine the compo-
sition of a buried ∼100 m high structure identified on seismic reflection lines (Figure 2). Drilling showed this 
basement structure to be composed of basalt (Sutherland et al., 2018, 2019), but also retrieved much of the over-
lying 265 m sediment column.

The sedimentary sequence recovered at Site U1506 was divided into units and subunits based on lithology. 
Samples analyzed in this work come from Subunit Ia, the uppermost 258 m of “homogenous white nannofossil 
ooze/chalk with foraminifera” (Sutherland et al., 2019). Because of time and goals, this sequence was recovered 
by rotary core barrel (RCB) drilling methods. This drilling method resulted in incomplete recovery of Site U1506 
cores (typically 60%–80%) and somewhat limits the precise comparison of sedimentation rates and mass accu-
mulation data with those at other locations.

The depth scale adopted in this work is meters CSF-A (https://www.iodp.org/policies-and-guidelines), which 
assumes all cores (even if incomplete) tie to the top of each drilled interval (Sutherland et al., 2019). The top 
48 m (Cores 1R through 6R) are variably soupy and disturbed by drilling, whereas the underlying 195 m (Cores 
8R through 26R) are moderately biscuited and fractured. We focus on a ∼140 m thick interval from Core 10R 
to Core 25R (81.75–233.50 m), which spans from the Late Miocene to the Early Pliocene. Sediments consist of 
white to greyish-white ooze and chalk with a carbonate content ranging between 88% and 95%, containing some 
black opaque minerals identified as pyrite. Deposition was in a lower bathyal environment, similar to that of 
present-day (Sutherland et al., 2019, 2022).
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2.2. Oceanographic Setting

Present-day surface circulation above Site U1506 is highly influenced by the East Australian Current (EAC), 
a subtropical western boundary current in the southwest Pacific that flows south along the eastern edge of 
Australia and branches eastward towards northern New Zealand at 30°–35°S latitude (Baird et al., 2008; Hassler 
et al., 2011). This “eastern extension of the EAC” (Oke et al., 2019) which flows between Australia and northern 
New Zealand, is referred to as the Tasman Front. The Tasman Front is a divergence zone, characterized by the 
presence of many anticyclonic eddies and by upwelling (Marchesiello & Middleton, 2000; Stanton, 1981).

At intermediate depths between 700 and 1,500 m, two water masses enter the Tasman Sea (Figure 1). The main one 
is the Antarctic Intermediate Water (AAIW), entering from the northeast through the Coral Sea. This water mass 
is a component of the South Pacific subtropical gyre and is distinguished by low temperatures, low salinity, high 

Figure 1. Circulation patterns in the Tasman Sea at present-day. Red arrows show the surface water circulation, including 
East Australian Current, Tasman Front and Subtropical Front; thin blue arrows indicate the intermediate waters flowing 
into the Tasman Sea from the north (AAIW N) and the south (AAIW S); thick blue arrows show deep waters (Circumpolar 
Deep Water and Antarctic Bottom Water), which enter the Tasman Sea from the south. Upper left: light blue arrows show 
the surface circulation in the South Pacific Ocean and in the Southern Ocean (the South Pacific Gyre and the Antarctic 
Circumpolar Current, respectively).
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dissolved oxygen levels, and high δ 13C of dissolved inorganic carbon. The second most important influence comes 
from intermediate waters entering from the south Tasman Sea and is characterized by higher salinity. Bostock 
et al. (2004) distinguished the two intermediate water masses, naming them respectively AAIW N and AAIW S.

Below the AAIW, two deep-water masses enter the Tasman Sea from the south, the shallower Circumpolar Deep 
Water (CPDW) and the deeper Antarctic Bottom Water (AABW). The AABW has lower temperatures and higher 
dissolved oxygen concentrations than the CPDW (Bostock et al., 2004; Tomczak & Godfrey, 1994).

2.3. Micropaleontological Studies

Calcareous nannofossil samples were prepared using the standard “smear slide” method (Bown & 
Young, 1998), and biostratigraphic results are based on semi-quantitative analyses of 56 samples between 
233.50 and 81.75 m (Table S1), with an average sampling resolution of 2.8 m, which equals to 86 kyr reso-

Figure 2. Seismic reflection images of local stratigraphy in the vicinity of Site U1506 (after Sutherland et al., 2022), which is located near the top of Lord Howe Rise 
in ∼1,500 m water depth. The relatively thick Biogenic Bloom sequence has clear reflectors at its top and base (dashed black lines). A positive polarity reflector (orange 
dotted line) with onlapping surface above is identified with age 6.7 Ma and correlates with significant changes in faunal composition in cores (see main text).
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lution (Text S1 in Supporting Information  S1). The biostratigraphic schemes adopted are the traditional 
biozonations of Martini (1971), Okada and Bukry (1980), and the one more recently proposed by Backman 
et al. (2012).

Quantitative studies on benthic foraminifera were carried out on 55 samples between 221.75 and 82.01 m (Text 
S2 in Supporting Information S1), with an average sampling resolution of 2.2 m, which represents ca. 40 kyr reso-
lution. Bulk sediment samples were dried in an oven at 40°C and weighed to obtain bulk dry sample mass. Then 
they were disaggregated in water with diluted (NaPO3)6 and washed through a sieve to isolate the greater than 
63 μm size fraction. Resulting residues were dried in an oven at 40°C. For each sample, approximately 300 spec-
imens of benthic foraminifera larger than 63 μm were picked and mounted on microslides for permanent record.

We performed a morphogroup analysis to infer probable microhabitat preferences of benthic foraminifera as well 
as environmental conditions at the seafloor (nutrient availability, bottom-water oxygen, and seasonality) (e.g., 
Bernhard, 1986; Fontanier et al., 2002; Jorissen et al., 1995). Species were grouped additionally according to their 
particular paleoecological affinities: suboxic-dysoxic taxa (Bernhard, 1986; Kaiho, 1991), opportunistic species 
(Boscolo-Galazzo et al., 2015; Dias et al., 2018; Eichler et al., 2019; Erbacher et al., 1999; Fontanier et al., 2002; 
Hayward et al., 2005; Smart et al., 1994), and phytodetritus exploiting taxa (PET) (Gooday, 1988, 1993; Jorissen 
et al., 2007; Suhr et al., 2003) (Table S4).

The diversity of the assemblages (Fisher-α, Fisher et al., 1943) and the percentage of agglutinated and calcare-
ous taxa were calculated. Benthic foraminiferal accumulation rates (BFAR) were calculated using the equation 
proposed by Herguera and Berger (1991):

BFAR = (nr∕gr > 63𝜇𝜇m ∗ %wt > 63∕100) ∗ LSR ∗ DBD 

CFAR = %wt > 63𝜇𝜇m ∗ LSR ∗ DBD 

where BFAR is expressed as counts cm −2 kyr −1: nr/gr >63 μm is the number of benthic foraminifera per gram 
of sediment from the >63 μm size fraction; %wt > 63 μm is the weight percentage of the >63 μm size fraction; 
LSR is the linear sedimentation rate (cm/kyr), and DBD is the dry bulk density (g cm −3). The latter was inter-
polated from measurements of moisture and density (MAD) samples taken during Expedition 371 (Sutherland 
et al., 2019). The coarse fraction accumulation rate (CFAR) was determined by multiplying the %wt >63 μm size 
fraction by the LSR and the DBD. The CFAR often can be a proxy for current strength as well as an approxima-
tion of planktonic foraminiferal accumulation rates (Diester-Haass, 1995).

Multivariate analyses on the relative abundance of benthic foraminiferal taxa were performed using PAST soft-
ware v. 3.04 (Hammer et al., 2001), as a tool to evaluate the response of benthic foraminiferal assemblages to 
environmental changes. These analyses were based on a data set of species with a relative abundance >5% in at 
least one sample, the unweighted pair-group average algorithm (UPGMA) and the Pearson correlation were used 
as similarity coefficients. A hierarchical cluster analysis of species (n = 20) (Figure S2 in Supporting Informa-
tion S1; Table S3), and Detrended Correspondence Analyses (DCA) in R-mode (species; Figure S3 in Supporting 
Information S1), and Q-mode (samples; Figure S4 in Supporting Information S1) were carried out on the same 
data set to investigate the environmental variables that may have controlled the distribution patterns of benthic 
foraminifera.

Species-specific stable isotopes (δ 13C) were analyzed on 221 collections of Cibicidoides mundulus from samples 
between 221.75 and 85.31 m (Table S6), and on 161 collections of Trilobatus sacculifer from samples between 
221.77 and 82.41 m CSF-A, using standard procedures (Text S3 in Supporting Information S1).

3. The Late Miocene-Early Pliocene at Site U1506
3.1. Calcareous Nannofossil Biostratigraphy

Calcareous nannofossils are commonly abundant and moderately well-preserved across all the samples. Generally, 
taxonomic identification can be made at the species level. Despite the low abundance and sporadic occurrence 
of some taxa, we were able to apply the adopted biozonations performing counts on 2 mm 2, which were then 
normalized to the standard area of 1 mm 2 proposed by Backman and Shackleton (1983). The selected bioho-
rizons are listed in stratigraphic order in Table 1. In summary, the studied interval spans from 7.4 to 4.5 Ma, 
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from Zone NN10 to Zone NN12 (Martini, 1971), Subzone CN8b to Subzone CN10 (Okada 
& Bukry, 1980), and Zone CNM15 to Zone CNM20 (Backman et al., 2012) (Figure S1 in 
Supporting Information S1).

3.2. Carbon Stable Isotopes

The analyses of C. mundulus (δ 13Cbenthic) cover ca. 3 Myr of deposition, from 7.4 to 4.6 Ma. 
Across this time interval, δ 13Cbenthic ranges between 0.06 and 1.37‰ (Figure  3a). The 
δ 13Cbenthic record displays an initial decrease in values between 7.4 and 6.8 Ma, followed by an 
increase between 0.6 and 1.37‰ until 5.9 Ma when the trend changes. Two marked δ 13Cbenthic 
minima are observed at 5.9 Ma (0.06‰) and 4.9 Ma (0.16‰). Although the δ 13Cbenthic data 
have a lower sampling resolution in the upper part of the record, a 1.01‰ increase is observed 
between 5.9 and 5.5 Ma, preceding a decline of −0.91‰ in 0.6 Myr, between 5.5 and 4.9 Ma.

The planktonic foraminiferal δ 13C record (δ 13Cplank; T. sacculifer) ranges between 1.06 and 
2.80‰ throughout the study interval (Figure 3b). The record exhibits gradually decreasing 
δ 13Cplank values from the older to younger sediment, but with three stepped declines. The first 
and most prominent drop occurs at ca. 6.8 Ma, where a 0.97‰ decrease in δ 13Cplank happened 
within 60 kyr. The second drop occurred at ca. 6.05 Ma, where δ 13Cplank shows a decrease of 
0.92‰ in 150 kyr, and the last δ 13Cplank decline takes place at ca. 5.5 Ma, with a decline of 
0.83‰ in 90 kyr. From 5.3 until 4.5 Ma the record shows an overall decrease and low values, 
in this interval the average δ 13Cplank values decline to ca. 1.87‰.

From the benthic and planktonic foraminiferal δ 13C records, we calculated the vertical δ 13C 
gradient at Site U1506 (Figure 3c). The Δδ 13C (planktonic-benthic) ranges between 1.02‰ 
and 2.00‰ with the minimum and maximum at 4.9 Ma and 6.8 Ma, respectively. The record 
shows an initial increase in δ 13C values of ca. 0.90‰ between 7.4 and 6.8 Ma, followed by a 
decrease toward the end of the studied interval. A shift towards more positive values is pres-
ent at ca. 6.1 Ma, where the record shows a positive peak (1.99‰). The average value of the 
entire record is 1.52‰, similar to that calculated in the 7.4–6.8 Ma interval, and the values 
decrease to 1.24‰ between 5.5 and 4.5 Ma.

The δ 13C datasets have been compared to those generated at IODP Site U1338 in the Eastern 
Equatorial Pacific Ocean (Drury, Lee, et al., 2018; Drury, Westerhold, et al., 2018; Drury 
et al., 2016) to strengthen our age model, to date with precision all the observed changes 
(Figure  3), and to distinguish the regional and global components of the isotopic signal. 
Stable isotopes analyses at Site U1506 have been carried out on the same planktonic and 
benthic species used in Drury et al.  (2016); Drury, Lee, et al.  (2018), Drury, Westerhold, 
et al. (2018).

There is an offset of ca. 1‰ between the two δ 13C records of C. mundulus, Site U1338 
δ 13Cbenthic ranges between −1.48 and 0.73‰, while Site U1506 shows more positive values 
(0.06–1.37‰). The δ 13C records of T. sacculifer from Site U1506 and U1338 exhibit similar 
overall long-term (million-year) trends. The planktonic record ranges between 1.06‰ and 
2.80‰ at Site U1506, and between 1.08‰ and 2.53‰ at Site U1338. Both records show 
decreasing δ 13Cplank values towards the younger ages, but the most negative δ 13Cplank value 
is located at 5.0 Ma (1.06‰) at Site U1506, and 7.01 Ma at Site U1338. This offset is likely 
due to the different water masses that bathe the two sites. Site U1338 is at 4,200 m water 
depth and bathed by deep water masses, while Site U1506 (1,505 m water depth) is bathed 
by intermediate water masses. Despite the offset and the lower resolution of Site U1506, the 
records show a very similar long-term trend.

3.3. Integrated Age Model and Sedimentation Rates

We refined the shipboard biostratigraphic age-control by compiling a higher resolution 
calcareous nannofossil biostratigraphy (Table  1). The obtained biochronology is in good Ta
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agreement with the age model of Sutherland et al. (2019), and allows for an implementation of the tuned age 
model from Cores U1506-10R to 25R (Figure 4; Table S7). We refined the age model for Site U1506 for the sedi-
ment interval spanning from 7.4 to 4.2 Ma based on orbital tuning of the Natural Gamma Radiation (NGR) and 
color reflectance shipboard data (Sutherland et al., 2019) to the daily insolation at 65°N on 21st June (summer) 
from the Laskar 2004 orbital solution (Laskar et al., 2004).

Before the tuning process, we investigated the phase relationship between the data and the target curve. More 
positive benthic foraminifera oxygen isotope values correlate with higher XRF core scanning iron (Fe) and silica 
(Si) elemental abundance values (Table S9), higher NGR, and lower color reflectance a* values (red/green ratio) 
in Core 19R (Figure S6 in Supporting Information S1). Benthic foraminifer oxygen isotope values are higher 
within minima in summer insolation at 65°N, which correspond to glacial periods. Assuming that the phase rela-
tionship is constant, NGR maxima should correspond to daily summer insolation minima at 65°N. To test if and 
which astronomically driven cycles are present in the NGR and reflectance data of Site U1506, spectral analysis 
in the depth domain was carried out (Figure S7 in Supporting Information S1).

The updated sedimentation rates show that the dominant cycles occur with a frequency of ∼1.1 cycles/meter 
(∼90 cm-long cycles; Figure S7 in Supporting Information S1), and relate to precession cycles. Longer cycles 
on the order of ∼0.2 cycles/meter (5 m-long cycles) relate to short eccentricity. Using the biostratigraphy as a 
starting point, prominent NGR maxima then were tuned to minima in summer insolation at 65°N on 21st June 
(Figure 5; Figure S8 in Supporting Information S1). We extrapolated the ages for the base (221.75 m CSF-A) and 
top (82.01 m CSF-A) of our studied interval to 7.4 and 4.5 Ma.

We compared the pattern in the benthic stable carbon isotope record of Site U1506 to the Cenozoic Global Refer-
ence benthic foraminifer carbon and oxygen Isotope Data set (CENOGRID; Figure S5 in Supporting Informa-
tion S1) (Westerhold et al., 2020), and from the good agreement, we conclude that a robust astrochronology has 
been developed for Site U1506, even though the hole was rotary drilled.

Linear sedimentation rates were calculated based on the bio-astrochronological age model, from 7.4 to 6 Ma 
LSRs values are around 4.7 cm/kyr, then increase up section to a maximum of 7.6 cm/kyr at 6.7 Ma. Between 
6.6 Ma and the top of the interval at 4.5 Ma, LSRs show a slight decrease but with values still high, around 
5.0 cm/kyr, showing an abrupt decrease after 3 Ma. The shipboard results show that calcium carbonate content 

Figure 3. Stable carbon isotope records at IODP Site U1506 (this study), IODP Site U1338 (Drury et al., 2016; Drury, Lee, 
et al., 2018, Drury, Westerhold, et al., 2018) and ODP Site 590 (Elmstrom & Kennett, 1986; Grant & Dickens, 2002) plotted 
against age (Ma).

 25724525, 2023, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022PA

004565 by U
niversity O

f Padova C
enter D

i, W
iley O

nline L
ibrary on [07/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Paleoceanography and Paleoclimatology

GASTALDELLO ET AL.

10.1029/2022PA004565

8 of 21

varies between 88 and 95 wt% and generally increases with depth, with the highest values between 200 and 
228 m (Sutherland et  al.,  2019). Carbonate contents were derived by linear interpolation from the shipboard 
data between Core 27R and Core 1R (247.18–0 m) and used to calculate the carbonate mass accumulation rates 
(MARCarb) for each sample according to:

MARCarb = %wt CaCO3 ∗ LSR ∗ DBD 

MARCarb is expressed as (g cm −2 kyr −1), LSR is the linear sedimentation rate (cm/kyr) calculated from the age 
model and DBD is the dry bulk density (g/cm 3). The DBD was interpolated from the MAD samples and the data 
were normalized using the Z-score Normalization in Excel (Table S8). MARCarb older than 7.4 Ma have values 

Figure 4. Age model and sediment accumulation rates over time at IODP Site U1506. Black line: shipboard age model; Orange line: this study. Left: core recovery and 
image. Bottom: compacted linear sedimentation rates and total mass accumulation rate. Orange circles are new calcareous nannofossil data from this study (modified 
after Sutherland et al., 2019).
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between 0.5 and 1 g cm −2 kyr −1, and values increase up-hole to reach a maximum at 6.7 Ma (8.21 g cm −2 kyr −1). 
Between 6.7 and 4.5 Ma, MARCarb varies between 4 and 8 g cm −2 kyr −1, then drop below 4 g cm −2 kyr −1 in sedi-
ments younger than 4.5 Ma.

3.4. Paleoenvironment: Benthic Foraminiferal Assemblages

Benthic foraminifera are well preserved and strongly dominated by calcareous and infaunal taxa such as Bulimina, 
Globocassidulina, or Uvigerina (Table S2). Assemblages are diverse, and Fisher-α values (Alegret et al., 2021) 
range between 20.8 and 33.2, with higher values (>27.9) between 192.91 and 150.84 m CSF-A (Figure 6). Species 
with similar paleoecological affinities were placed into three groups: suboxic-dysoxic taxa, opportunistic species, 
and PET (Table S2). Suboxic-dysoxic taxa make up between 22% and 59% of the assemblages, with minimum 
values in the lower part of the study interval. Opportunistic taxa make up 10%–56% of the assemblages, and the 
abundance of PET taxa ranges between 2.59% and 40.33%. Both opportunistic taxa and PET show high relative 
abundance in the lower part of the study interval and a secondary peak between 4.9 and 4.8 Ma (from 101.41 to 
95.05 m CSF-A; Figure 6). Benthic foraminiferal accumulation rates (BFAR) show an upward decreasing trend, 
and the coarse fraction (>63 μm) accumulation rates (CFAR) show overall high values and an upward decreas-
ing trend between 7.4 and 5.8 Ma (from 221.75 to 144.17 m CSF-A), followed by another increase that peaks at 
4.5 Ma (82.01 m CSF-A; Figure 6).

In the R-mode DCA analysis (Figure S3 in Supporting Information S1), species are grouped into four subclusters 
that are also differentiated in the hierarchical cluster analysis (Figure S2 in Supporting Information S1). Among 
other species, Cluster A includes various representatives of the genera Cibicidoides and Uvigerina. Subcluster A1 
falls within low values along both Axis 1 and Axis 2, while Subcluster A2 dominates at high values along Axis 2. 
Subcluster B1 (Bulimina elongata, Ehrenbergina carinata, Oridorsalis umbonatus) falls in intermediate values 

Figure 5. Detailed plot of tuning strategy spanning from U1506A Core 9R to Core 24R. Given are the core images, benthic stable carbon isotope data (this study), 
lightness a* values, and Natural Gamma Radiation (NGR) data (both shipboard) versus depth. In the upper part plotted is the 65° North insolation at 21st of June 
(Laskar et al., 2004), the CENOGRID carbon isotope record (Westerhold et al., 2020), and the U1506A carbon isotope data versus age. The numbers mark the tie-points 
between NGR data and the insolation target curve.
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along Axis 1 and low values in Axis 2. Subcluster B2 includes PET taxa such as Epistominella exigua, Globocas-
sidulina crassa, and Globocassidulina subglobosa, and it shows high values along Axis 1 and low values along 
Axis 2. Axis 1 is likely related to continuity of the food supply, with more continuous food supply at low values 
and more pulsed food input towards higher values along this axis. The disparity in distribution does not allow for 
an accurate interpretation of Axis 2, as species are generally clustered horizontally and have less variable vertical 
spread, except for Cibicidoides wuellestorfi and Spiroplectammina spectabilis. The quantitative and statistical 
analyses of the assemblages allowed for differentiation of two intervals with paleoenvironmental significance.

Interval 1 spans from 7.4 to 6.7 Ma (from 221.75 to 194.75 m CSF-A; Figure 6) and is characterized by a high 
abundance of Subcluster B2, high BFAR values, small-sized benthic foraminifera, and high percentages of PET 
(e.g., E. exigua, G. crassa) and opportunistic taxa (e.g., G. subglobosa, Osangularia culter). High abundance of 
PET has been related to pulsed seasonal delivery of phytodetritus to the seafloor (Boscolo-Galazzo et al., 2015; 
De Almeida et al., 2015) and probably to an opportunistic life strategy and rapid reproduction, which is consistent 
with the small-sized benthic foraminifera observed in this interval. Since PET reproduce rapidly and build large 
populations, such rapid increases in population size likely lead to increased test counts per gram of sediment, 
which may account for the high BFAR values in this interval (Smart et al., 2007). Corliss et al. (2009) speculated 
that these abundance peaks, and the consequent rapid flux of organic carbon to the seafloor, are the results of 
changes in the environmental conditions in the upper part of the water column. The transport of phytodetritus to 
the ocean floor could then explain the rapid proliferation of small, opportunistic taxa (Gooday, 2002).

The lowermost diversity values are recorded in Interval 1, as expected for an interval with abundant opportunist 
taxa (e.g., Murray,  2006). Seasonal food input and low abundance of dysoxic taxa point to well-oxygenated 
bottom waters, likely related to an intensified current strength. This is further supported by high CFAR and a 
high abundance of G. subglobosa and G. crassa, which are common in areas with high current activity (Schmiedl 
et al., 1997). This hypothesis is also in agreement with the low percentage of suboxic-dysoxic taxa and with the 
interpretation of Axis 1 of the DCA R-mode (species) plot.

All these observations and the relatively low values of δ 13Cbenthic during Interval 1 point to high productivity, and 
the combination of high BFAR, small specimens, and peaks in PET and opportunistic taxa possibly indicate a 
high seasonal surface primary productivity by phytoplankton blooms.

Figure 6. Benthic and planktonic stable carbon isotope records, BFAR, CFAR, diversity (Fisher-α index), relative abundance of phytodetritus exploiting taxa, 
opportunistic taxa, suboxic-dysoxic taxa, and subclusters plotted against age (Ma). Highlighted Interval 1 (orange), Interval 2 (blue) indicate the productivity regimes.
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Interval 2 spans from 6.7 to 4.5 Ma (from 194.75 to 82.01 m CSF-A; Figure 6) and is dominated by infaunal 
morphogroups and thin-walled suboxic-dysoxic indicators (e.g., Bolivina, Bulimina, Chilostomella, Fursenkoina, 
Uvigerina species; Kaiho, 1994) that indicate high productivity. Subcluster A1 dominates from 6.7 to 5.1 Ma 
(from 194.75 to 110.81 m CSF-A), and its main components (Bulimina truncana, and Uvigerina proboscidea) 
consist of infaunal species that are linked to high productivity conditions and low oxygen levels. In the R-mode 
(species) DCA, Subcluster A1 falls at low values along Axis 1, indicating a continuous high food supply to the 
seafloor. Between 5.1 and 4.5 Ma (from 110.81 to 82.01 m CSF-A), Subclusters A2 and B2 dominate the interval 
with high percentages of S. spectabilis and G. crassa, which coincide with peaks in both PET and opportunistic 
species, pointing to a short phase of high productivity likely driven by phytoplankton blooms. Overall, Interval 2 
is characterized by abundant “high-productivity taxa” such as Bolivina, Bulimina, Melonis, and Uvigerina (Smart 
et al., 2007). Diversity oscillates during this interval and normal-sized benthic foraminifera have been observed, 
in contrast to the small-sized specimens from Interval 1. Suboxic-dysoxic species also dominate this interval 
showing an increased abundance from 6.7 Ma upward.

The BFAR shows a decreasing trend and low values until 4.5 Ma, which is inconsistent with the interpreted high 
productivity conditions, however, the interpretation of BFAR as a paleoproductivity proxy in low oxygen envi-
ronments is not always straightforward (Naidu & Malmgren, 1995). Productivity was high during Interval 2, but 
in contrast to Interval 1, the dominance of low oxygen foraminiferal taxa indicates a continuous and high food 
supply to the seafloor and oxygen deficiency during Interval 2. These conditions were probably associated with 
a decrease in current strength, supported by the decrease in CFAR during this interval.

4. Disentangling the Biogenic Bloom: Insights From the Tasman Sea
4.1. Biogenic Bloom Basics Beyond and Within the Tasman Sea

Increases in MARCarb and changes in benthic foraminiferal assemblages mark the Biogenic Bloom at numerous 
locations. Examples from locations in the Atlantic, Indian and Pacific highlight these basic observations.

In the Atlantic Ocean, reconstructions at Sites 982, 925, and 1088 show increased MARCarb and food supply to 
the benthos between 8.2 and 5.4 Ma, with peaks between ca. 6.4 and 6.0 Ma (Diester-Haass et al., 2005). At ODP 
Sites 1085, 1086 and 1087, Diester-Haass et al. (2004) identified the Biogenic Bloom based on MARCarb and 
total organic carbon mass accumulation rates and inferred a sharp increase in paleoproductivity using BFAR and 
Uvigerina counts at ca. 6.7 Ma, associated with increased MARCarb. Drury et al. (2021) produced an astronom-
icallytuned record of the Biogenic Bloom at ODP Site 1264, and identified high MARCarb between ca. 7.8 and 
3.3 Ma, with peak values between 7.2 and 6.6 Ma.

In the Indian Ocean, Dickens and Owen (1999) summarized previous work at ODP Sites to suggest high MARCarb 
at multiple locations between 9 and 3.5 Ma, with a general maximum between 6.0 and 5.0 Ma. A contempora-
neous expansion of the intermediate water oxygen minimum zone (OMZ) is evidenced at several sites from a 
decrease in Mn/Sc ratio (Dickens & Owen, 1994) or benthic foraminifera assemblages dominated by Bolivina 
spp. and Uvigerina spp. (Hermelin, 1992). Benthic assemblages from ODP Site 752 point to oxygen deficiency 
and high variability (in productivity or changes in ocean currents) between 9 and 4.5 Ma (Singh et al., 2012).

The Biogenic Bloom was first emphasized in summaries of results from DSDP and ODP drill sites in the East-
ern Equatorial Pacific (EEP), whereby elevated MARCarb characterized upper Miocene-lower Pliocene sediment 
(Farrell et al., 1995; Van Andel et al., 1975). Since this recognition, six astronomically tuned sites in this region 
provide refined timing: the high MARCarb fingerprint manifests between ∼8 and 4.4 Ma, with a peak at ca. 7 Ma 
(Lyle et al., 2019). At another orbitally tuned site, ODP Site 846, Diester-Haass et al. (2006) documented concur-
rent peaks in MARCarb and BFAR at 7.4 , 6.4, 5.6, and 4.9 Ma, with a paleoproductivity reconstruction using 
BFAR and elemental ratios that points to enhanced productivity between 6.4 and 4.5 Ma. In the far north Pacific, 
sediment mass accumulation rates peak between 8.1 and 3.5 Ma (Dickens & Owen, 1999; Rea et al., 1995), but 
this is mostly caused by excess diatom burial.

Previous research within the Tasman Sea identified the Biogenic Bloom at ODP Site 1172, located on the 
East Tasman Plateau (Diester-Haass et al., 2006), and at Deep Sea Drilling Project (DSDP) Site 590 (Grant & 
Dickens, 2002) and Sites U1506, U1508 and U1510 on the LHR (Sutherland et al., 2022, Figure 2). At Site 1172, 
MARCarb peaks at 7 and 5.5 Ma and paleoproductivity based on the BFAR shows two peaks, at ca. 7.2 and after 
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6.0 Ma. Uvigerina becomes more abundant during these paleoproductivity peaks, indicating an enhanced flux of 
organic matter to the seafloor. At DSDP Site 590, there is evidence for elevated primary productivity between 9 
and 3.8 Ma; however, MARCarb peaks at 5 Ma, while elemental ratios (Ca/Ti, Ba/Ti, and Al/Ti) peak at 6.5 Ma. A 
2 Myr offset was documented between δ 13C records of bulk sediment and surface-dwelling planktonic foraminif-
era (both showing a similar ca. 1 ‰ decrease), possibly due to variations in the composition and depth habitats of 
coccolithophorids, and alterations in the upwelling rate at the Tasman Front (Grant & Dickens, 2002).

At Site U1506, MARCarb display high values throughout the investigated interval (ca. 5–7 g cm −2 kyr −1 between 
7.4 and 4.5 Ma) with a peak at ca. 6.7 Ma (ca. 8.5 g cm −2 kyr −1), and benthic foraminifera and stable carbon 
isotopes point to increased paleoproductivity between 7.4 and 4.5 Ma. Our integrated data set, provides a new 
astronomically constrained record of part of the Biogenic Bloom in the Tasman Sea, spanning from 7.4 to 
4.5 Ma. The accuracy of the implemented age model, and consequently of the LSRs, is supported by the general 
consistency with the CENOGRID carbon isotope record (Figure S5 in Supporting Information S1, Westerhold 
et al., 2020) and by the high correlation of δ 13C values between Sites U1506 and U1338 (Drury et al., 2016; 
Drury, Lee, et al., 2018; Drury, Westerhold et al., 2018).

Most studied locations in the Tasman Sea show evidence of the Biogenic Bloom, yet no clear and uniform pattern 
emerges for the region. The three sites highlighted here show asynchronous MARCarb peaks (Figure 7b), and the 
apparent diversity in the proxy records for increased sediment accumulation and productivity from the Tasman 
Sea emphasizes the role of local and regional conditions. The complex system of eddies and gyres of the Tasman 
Front, the local topography, and the strong current activity inferred from benthic foraminifera could account for 
the differences in MARCarb peaks. Variability between the datasets of the Tasman Sea sites could also originate 
from the age control, as Site U1506 is the only one with an astronomically tuned age model, while Sites 1172 
and 590 have a biostratigraphic and paleomagnetic age control. In the next sections, we compare the new produc-
tivity data from Site U1506 with other records of the Biogenic Bloom to explore how local, regional and global 
processes influenced the expression of the Biogenic Bloom in the Tasman Sea.

4.2. Diverse Expression of the Biogenic Bloom on Lord Howe Rise

If carbonate dissolution was minimal, which seems likely at the relatively shallow depths of LHR (1,000–3,000 m), 
changes in MAR can be used to evaluate changes in surface water productivity and to infer the presence of the 
Biogenic Bloom. Data from Sites 590 and U1506 confirm elevated primary productivity associated with the 
Biogenic Bloom during the Late Miocene-Early Pliocene. We quantitatively compare MARCarb at Site U1506 and 
590 (Grant & Dickens, 2002) with the broader Tasman Sea region (Sutherland et al., 2022). There is a general 
MAR peak in the Tasman Sea at around 5 Ma (Figure 7b), and this is observed at Site 590 between 5 and 4.3 Ma. 
A second peak at 8 to 6 Ma is documented for northern LHR and northern New Caledonia Trough, but this second 
peak is not present at Site 590 (Figure 7b) and is not synchronous with high MARCarb documented between 7 
and 6 Ma at Site U1506. The asynchrony between the U1506 data and other datasets could either be the result of 
different datums used to construct age models, local settings, or lower resolution of other age models, or it could 
be a real difference in MARCarb between sites.

Integrating MARCarb with other paleoproductivity proxies allows us to have a deeper understanding of the 
Biogenic Bloom. We compared planktonic and benthic δ 13C records from Sites U1506 and 590 (Elmstrom & 
Kennett, 1986; Grant & Dickens, 2002). They show similar overall trends. The most notable difference is found 
in the planktonic record between 7.4 and 6.7 Ma. Site U1506 shows positive and increasing values that could 
be interpreted in terms of higher surface productivity by phytoplankton primary producers, while δ 13C values 
display a decreasing trend at Site 590.

The interval between 7.4 and 6.7 Ma corresponds to the final stage of the Late Miocene Carbon Isotope Shift 
(LMCIS; e.g., Hodell & Venz-Curtis, 2006; Drury et al., 2017). Site 590 shows a large stepped change in plank-
tonic δ 13C between 8 and 6.5 Ma, which is consistent with other global records (Figure 7c). A similar shape of 
planktonic and benthic δ 13C records during the LMCIS is documented at Site U1338 (in the EEP). The variation 
in δ 13C observed over time typically results from a carbon partitioning between organic and carbonate reservoirs 
(e.g., Berner, 1990; Kump & Arthur, 1999; Vincent et al., 1980). The scenario proposed for this relatively long-
term shift is likely a signal of a global shift in the oceanic δ 13C reservoir rather than related to a shift in produc-
tivity tout court (Drury, Lee, et al., 2018; Drury, Westerhold, et al., 2018). The LMCIS is partially blurred by the 
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Figure 7. Local (orange arrows), regional (green arrows), and global (red arrows) events during the Late Miocene-Early Pliocene. (a) Normalized MARCarb of 
Site U1506 (purple), 1264 (light blue) and EEP (yellow); (b) normalized MARCarb of Site U1506 (purple), 590 (green) (Grant & Dickens, 2002), 1172 (orange) 
(Diester-Haass et al., 2006), and MAR of Northern Lord Howe Rise (pink) (LHRN, Sutherland et al., 2022); (c) planktonic δ 13C of Site U1506 (purple), Site U1338 
(yellow) and 590 (green) (Grant & Dickens, 2002); Site U1506 BFAR (pink) and relative abundance of phytodetritus exploiting taxa (dark blue).
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local productivity signal at Site 590, but the δ 13C planktonic record mostly reflects global seawater δ 13C changes 
with only a minor influence due to local productivity changes. At Site U1506 the general decline in δ 13C is not 
observed, with values increasing up-section or, at least remaining stable with high-amplitude short-term fluc-
tuations. We suggest that the LMCIS imprint at Site U1506 was overwhelmed by the local productivity signal. 
Between 6.5 and 5 Ma, the planktonic to benthic Δδ 13C at Site 590 and U1506 decreased (Figure 3c). Grant and 
Dickens (2002) suggested this could either indicate a decrease in surface water productivity or a reduction in 
water column density stratification. This Δδ 13C decrease is not present at Site U1338 (Figure 3c), and it could 
indicate that Sites 590 and U1506 were more heavily influenced by local productivity signals after the LMCIS.

Grant and Dickens (2002) suggested that divergence in the δ 13C of different biogenic carbonate phases observed 
at Site 590 could be related to changes in water mass structure. Differences observed in MARCarb and δ 13C 
between Sites U1506 and 590 are possibly related to the complexity of the local oceanography, specifically the 
interactions between the Tasman Front, intermediate waters, and topography of LHR.

4.3. Regional Impact of the Biogenic Bloom Signal in the Tasman Sea

The Biogenic Bloom can be traced from LHR to other sites in the Tasman Sea. Sutherland et al. (2022) reported 
elevated MAR values between ca. 9 and 4 Ma in 11 boreholes, from LHR to Reinga Basin and New Caledonia 
Trough. MAR data from the northern LHR (Sutherland et al., 2022) are continuous and have high values but local 
peaks in MAR do not always correlate well between sites. Between 7.4 and 4.5 Ma, MARCarb at Site U1506 show 
an articulated pattern, and this is also reflected in benthic foraminiferal data. Our results from Site U1506 indicate 
a significant local paleoceanographic change at 6.7 Ma, from seasonal food supply in the form of phytodetritus, 
to more continuous high productivity associated with less intense bottom water currents.

The change in productivity regime observed at 6.7 Ma at Site U1506 coincides with a prominent stratigraphic 
change identified on seismic profiles, switching from complex bedform beneath, to a more layer-cake pattern 
above (Figure 2; Sutherland et al., 2022). This change in bedform geometry is consistent with a local reduction 
in bottom current strength after 6.7 Ma. Benthic foraminifera and CFAR suggest strong bottom currents in Inter-
val 1 (Figure 6). In contrast, the layer cake patterns observed after 6.7 Ma point to weaker currents, with lower 
oxygen levels but a more stable supply of organic matter to the seafloor, which agrees with the interpretation of 
Interval 2. The Tasman Sea presents a complex oceanographic setting and is in a key location, right in the middle 
of the return flow of the South Pacific Gyre. During the Late Miocene, the Pacific Ocean went through a major 
reorganization. Shankle et al. (2021) observed a decoupling between the zonal sea surface temperature gradient 
and biological productivity, and an increase in zonal pH gradient between 6 and 3 Ma in the tropical Pacific. They 
suggested that the enhanced ocean acidity in the east Pacific relative to the west Pacific could be related to the 
upwelling of older waters in the east associated with a large-scale reorganization of Pacific circulation. Models 
show that during this time interval, there was deep water formation in the North Pacific and an active PMOC, 
both of which are not present in the Pacific Ocean today (Burls et al., 2017). Moreover, the intensification of 
the Hadley and Walker circulation, due to the increased equator to pole temperature gradient, and the northward 
migration of the Westerlies and the ITCZ during this interval could have affected precipitation and river runoff, 
causing upwelling and ocean fertilization (Groeneveld et al., 2017; Herbert et al., 2016). Additionally, the global 
ocean cooling and the formation of sea ice around Antarctica would also have impacted the atmospheric circu-
lation in the Southern Hemisphere, and this process must also have influenced and strengthened the Westerlies 
(Fan et al., 2014; Groeneveld et al., 2017).

These large-scale oceanographic changes, associated with the shift in the Westerlies must have influenced the 
EAC return flow into the southwest Pacific. Today, Site U1506 is located north of the eastern extension of 
the EAC, outside its area of influence. Groeneveld et al.  (2017) suggested that during the Late Miocene (ca. 
12–8 Ma) the Westerlies migrated northward reaching 30ᵒS to 40ᵒS, leading to wet conditions in Australia. We 
suggest that the northward migration of the Westerlies, and the consequent migration of the Hadley cell, led to 
the strengthening of the EAC and shallow-intermediate currents in the Tasman Sea during the Late Miocene, 
placing Site U1506 close to, or under, their influence. This process could explain the hydrographic conditions 
and strong bottom currents inferred in Interval 1 from the benthic foraminiferal assemblages and the seismic 
data. Such shorter-term frontal movements of western boundary currents related to shifting Westerlies have been 
documented for the Pliocene (e.g., Abell et  al.,  2021; Lam et  al.,  2021), and Pleistocene (e.g., Kawahata & 
Ohshima, 2002; Taylor et al., 2022).

 25724525, 2023, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022PA

004565 by U
niversity O

f Padova C
enter D

i, W
iley O

nline L
ibrary on [07/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Paleoceanography and Paleoclimatology

GASTALDELLO ET AL.

10.1029/2022PA004565

15 of 21

The subsequent southward displacement and weakening of the Westerlies and Hadley cell could have led to a 
return to pre-Late Miocene oceanographic conditions, and thus weaker current activity at Site U1506, as docu-
mented in Interval 2. Additionally, the cooling and drying of the Asian landmass and the resulting intensification 
of the Asian winter monsoon during the Late Miocene could have increased the supply of nutrients, as reflected 
in conditions of increased productivity observed in Interval 2 (Holbourn et al., 2018). The strengthening and 
subsequent weakening of this subtropical western boundary current and of the intermediate waters during the 
Late Miocene explains the diverse expression of the Biogenic Bloom documented at Sites U1506 and 590.

4.4. The Biogenic Bloom: Tasman Sea Insights to a Global Perspective

The widespread nature of the Biogenic Bloom indicates that this event was not the result of unusual preser-
vational artifact, and two models have been proposed to explain the increased primary productivity, although 
multiple factors may have played a role.

According to the first model, enhanced nutrient supply could have been related to increased runoff from land and 
nutrient availability in the oceans. Uplift of the Himalayas and intensification of the Asian monsoon-related weath-
ering is one such mechanism suggested (Berger et al., 1993; Berger & Stax, 1994; Delaney & Filippelli, 1994; 
Farrell et al., 1995; Filipelli, 1997; Hermoyian & Owen, 2001).

Low estimates for uplift rates of the Himalayas after 10 Ma (Tada et al., 2016), however, partially weaken this 
hypothesis as decreased uplift rates would lead to decreased weathering and nutrient delivery. The role of the 
Indian and Asian monsoon, however, must not be overlooked as increased monsoonal activity may have affected 
ocean productivity, increasing nutrient input through rivers or strengthening seasonal winds and hence dust deliv-
ery and ocean upwelling (Filippelli, 1997; Holbourn et al., 2018; Kroon et al., 1991; Yang et al., 2019; Zhisheng 
et al., 2001).

The second model relies upon a major redistribution of nutrients within the oceans, related to changes in the 
ocean/atmosphere dynamics (Dickens & Owen, 1999). For example, Rind and Chandler (1991) linked the inten-
sification of deep water formation in the north Atlantic between 9.0 and 3.0 Ma (Wright & Miller, 1996), and the 
high-latitude warming between 6.0 and 5.0 Ma (Koizumi, 1986) to an acceleration of the deep water conveyor. 
Moreover, high-latitude processes such as the silicic acid leakage could have moved silicic acid-rich Antarctic 
waters to the low latitudes and led to blooms of diatoms during cooling events and increased nutrients in surface 
waters (Brzezinski et al., 2002; Matsumoto et al., 2002; Matsumoto & Sarmiento, 2008). Early studies proposed 
a shift of nutrients from low to high-productivity regions caused by changes in ocean circulation. However, 
enhanced productivity conditions have also been recorded in oligotrophic regions of the Indian Ocean and the 
South Atlantic Ocean (Diester-Haass et al., 2005; Drury et al., 2021; Hermoyian & Owen, 2001). The global 
nature of the Biogenic Bloom challenges the hypothesis of redistribution of nutrients from the Atlantic Ocean into 
the Indian and Pacific oceans, even if ocean circulation changes likely played an important role in the Biogenic 
Bloom.

The widespread signal of this event suggests global forcing during the Late Miocene, but regional mechanisms 
account for differences in the expression and timing of the Biogenic Bloom. The common patterns and global 
nature of the Biogenic Bloom have been attributed to increased nutrient influx due to enhanced dust and/or 
increased weathering input, while the regional variability in the timing and amplitude of the event may arise from 
regional Late Miocene differences in sea surface temperatures, continental aridification and/or ocean circulation 
(Drury et al., 2021).

For instance, the reorganization of the climate-carbon cycle system with a reduction of Arctic continental carbon 
reservoirs during cooling intervals after 6 Ma (De Vleeschouwer et al., 2020), the expansion of C4 grassland 
(Behrensmeyer et al., 2007; Cerling et al., 1997; Tauxe & Feakins, 2020; Uno et al., 2016), evidence for atmos-
pheric pCO2 decrease around ca. 8 to 7 Ma (Bolton & Stoll, 2013; Herbert et al., 2016; Tanner et al., 2020), 
the decrease in terrestrial and sea surface temperatures between 7 and 5  Ma (Herbert et  al.,  2016; Pound 
et al., 2011, 2012), and global changes in ocean circulation (Drury et al., 2017; Drury, Lee, et al., 2018; Reghellin 
et al., 2015, 2020) are examples of changes in the Late Miocene climate system that could have played a role in 
the Biogenic Bloom.

Recently, a global compilation of productivity records also indicated that a significant decrease in productivity ca. 
4.6–4.4 Ma coincided with an orbital configuration that likely caused a decrease in East Asian Monsoon intensity 
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and nutrient input into the ocean, thereby bringing the main phase of Biogenic Bloom productivity to a close 
(Karatsolis et al., 2022). Due to low sediment recovery at Site U1506, it is difficult to resolve whether the main 
productivity phase of the event also ends ca. 4.6–4.4 Ma. However, LSRs and MARCarb dropped at Site U1506 
at ca. 4.5 Ma and then just after ca. 3 Ma. The first drop in MARCarb around 4.5 Ma is in line with the global 
decrease in productivity documented by Karatsolis et al. (2022). But with MARCarb significantly declining again 
after 3 Ma, there is some indication that the Biogenic Bloom may continue into the Late Pliocene at U1506, which 
is also observed at Site 1264 (Figure 7a).

The onset of the Biogenic Bloom at ca. 7.8 Ma appears synchronous based on the increase in MARCarb at Site 
1264 in the South Atlantic and in a stack of six equatorial Pacific sites (EEP), followed by a strong maximum ca. 
7 Ma (Drury et al., 2021; Lyle et al., 2019). This pattern holds true at Site U1506, although the onset may occur 
slightly later (Figure 7a) or be biased due to lower recovery at this site. At Site U1506, MARCarb shows an increas-
ing trend during Interval 1 and reaches a maximum at ca. 6.7 Ma, coinciding with the timing of the productivity 
regime change; during Interval 2, MARCarb remains high and shows a pattern similar to Site 1264 and to EEP.

At Site 1264, the onset of high MARCarb at ca. 7.8 Ma coincides with a shift from eccentricity–precession pacing 
to obliquity–precession pacing of %CaCO3 deposition (Drury et  al.,  2021). The rise in obliquity pacing was 
documented also in benthic δ 18O records as asymmetric cycles starting at ca. 7.7 Ma, strongly imprinted until ca. 
6.7 Ma and likely linked to the increased influence of high-latitude climate processes and ice sheet dynamics on 
climate variability during the Late Miocene (De Vleeschouwer et al., 2020; Drury et al., 2017; Drury, Westerhold, 
et al., 2018). It is possible that this inferred increase in high-latitude climate processes between ca. 7.7 and 6.7 Ma 
caused increased nutrient input into the ocean through increased glacial weathering. This could be the underlying 
driver of the onset and broad peak in MARCarb ca. 7 Ma, which seems to be mirrored between our new Tasman 
Sea data (Site U1506), the South Atlantic (Site 1264) and the EEP (Figure 7a). The obliquity-driven cycles in 
benthic δ 18O become less pronounced after ca. 6.7 Ma (Drury et al., 2017; Drury, Westerhold, et al., 2018), which 
may have resulted in reduced glacial weathering and associated nutrient input, and the first stepped decrease in 
the Biogenic Bloom.

While the comparison of MARCarb allows us to speculate about the global mechanisms behind the event, the 
high-resolution study of the benthic foraminiferal assemblages at Site U1506 allows us to distinguish the regional/
local imprint and to differentiate two phases (Interval 1 and Interval 2; Figure 7) during the Biogenic Bloom.

5. Conclusions
IODP Site U1506 in the Tasman Sea is a piece of a global puzzle important to understand some aspects of the 
Late Miocene-Early Pliocene Biogenic Bloom. At this site, we identified part of the Biogenic Bloom and we 
implemented the age model to calculate sedimentation rates and to date paleontological and geochemical changes 
across this event.

Benthic foraminifera assemblage point to two distinct productivity regimes within an overall scenario of high 
food supply to the seafloor. High nutrient availability at the seafloor is inferred from 7.4 to 6.7 Ma (Interval 1) 
based on high benthic foraminiferal accumulation rates (BFAR), high abundance of phytodetritus exploiting taxa, 
and opportunistic species. These results suggest high seasonal food supply, well-oxygenated bottom waters, and 
intense bottom currents. Between 6.7 and 4.5 Ma (Interval 2), the assemblages are dominated by dysoxic-suboxic 
taxa and infaunal morphogroups, pointing to high productivity triggered by continuous and high food supply to 
the seafloor and lower oxygen conditions. We speculate that the high productivity recorded during the event was 
possibly triggered by the increasing role played by high-latitude climate processes and ice sheet dynamics.

Our results also reveal that the diverse expression of the Biogenic Bloom from Interval 1 to Interval 2 seems 
to be related to the changes in the Pacific Ocean circulation during the Late Miocene. The productivity condi-
tions and strong current activity documented in Interval 1 could be linked to a strengthening of the EAC and 
shallow-intermediate waters, driven by the northward migration of the Westerlies, and the consequent migration 
of the Hadley cell, which led to greater influence at Site U1506. In contrast, the subsequent southward movement 
of the Westerlies during Interval 2 resulted in a weakening of these currents and a reduced influence on the site, 
and accounts for the weaker current activity documented after 6.7 Ma. These results show the importance of 
high-resolution studies to distinguish the local, regional, and global imprint of the Biogenic Bloom.
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Data Availability Statement
Data generated in this study are available in the Supporting Information S1 and archived in PANGAEA database 
(Gastaldello et al., 2023).
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