
Head Office: Università degli Studi di Padova

Department of Information Engineering

Department of General Psychology

Ph.D. Course in: Brain, Mind and Computer Science

Curriculum: Computer Science for Societal Challenges and Innovation

Computational Musical Creativity
Inspired by Musicological
and Statistical Analysis
A Serious Game for Rhythmic Interaction and

A Corpus-Based Hierarchical Representation Method for Style Imitation

Coordinator: Prof. Anna Spagnolli

Supervisor: Prof. Antonio Rodà

Co-supervisor: Prof. Massimo Grassi

Ph.D. Student: Filippo Carnovalini

Copyright ©2022 Università degli Studi di Padova

First edition, April 15, 2022

Understand what is the will of the Lord. Be filled with the Spirit,

addressing one another in psalms and hymns and spiritual songs,

singing and playing to the Lord in your hearts.

Ephesians 5:17-19.

vii

Acknowledgements

This thesis was funded by a doctoral grant by the University of Padova. During

the period of the Ph.D., I also received funding from Fondazione Ing. Aldo Gini. I

am extremely grateful towards my supervisors, Prof. Antonio Rodà and Prof. Mas-

simo Grassi for all the help throughout these years. I also wish to thank Prof. Sergio

Canazza, and all of the people at the Centro di Sonologia Computazionale, my

home lab, as well as Prof. Geraint Wiggins and everyone at the CC Lab at VUB for

welcoming me among them.

I also wish to thank everyone who worked with me, discussed my work, or even just

shared a coffee or a spritz: exchanging ideas is not only a most important activity for

a Ph.D. student, but also a most enjoyable one.

The final thanks go to my friends and my fraternity, and most importantly to

Serena, who became my wife during this Ph.D. and who, even right now as I’m writing

the finishing touches on my thesis, is sitting beside me.

ix

Abstract

The field of Computational Creativity tries to obtain creative behaviours from com-

puters, to further the understanding of what regulates creativity and what is possible

to obtain from computational systems. One common effort within this field is that to

have computers write music, as this is an activity that is recognized to require creativity.

In this thesis I review some of the main approaches to music generation as well

as some questions that remain unanswered within the field. In the work described

here, I focus on two of these, namely, interaction with generated music, and long-term

structure, trying to understand the role these two aspects can have in music generation.

A serious game for rhythmic interaction is presented. This game allows two players

to freely create a rhythm by interacting via MIDI drum pads. The software detects the

tempo and meter they are playing, and adds a musical augmentation to their interaction,

increasing the aesthetic value of their gaming and social experience. This is shown to

be an effective way of creating a captivating experience for users.

A system for the analysis of musical structure is also presented. This algorithm

uses ad hoc representations of musical content, based on tree representations used by

musicologists. Starting from the basic representations that were known in literature,

this algorithm builds further abstracted representations that summarize the structural

aspects of an entire piece and then of an entire corpus. Some example applications

are shown, including an algorithm for music generation that leverages these represen-

tations and Information Theory concepts to create novel music that shows a structure

similar to the ones found in the example corpus. While the method for generating the

melodic material used for these novel pieces is not fully capable of generating realistic

melodies, the algorithm manages to create satisfactory long-term structure, thanks to

the implemented representations.

xi

Sommario

Il campo della Creatività Computazionale prova a ottenere comportamenti creativi

dagli elaboratori, per migliorare la comprensione di cosa regola la creatività e appro-

fondire cosa sia possibile ottenere dai sistemi informatici. Una applicazione comune

in questo campo è la composizione automatica di musica, in quanto questa attività

notoriamente richiede creatività.

In questa tesi descrivo i principali approcci alla generazione di musica, come anche

alcune domande in questo campo che rimangono aperte. Nel lavoro qui descritto, mi

focalizzo su due di queste, ovvero interazione con la musica generata, e la struttura a

lungo termine, cercando di capire il ruolo che questi due aspetti possono avere nella

generazione di musica.

Un gioco serio per l’interazione ritmica è qui presentato. Il gioco permette a due

giocatori di creare liberamente un ritmo usando due pad ritmici MIDI. Il programma

riesce a seguire il tempo e il metro che i due suonano, aggiungendo musica alla loro

interazione, aumentando così il valore estetico della loro esperienza di gioco e sociale.

Questo gioco si dimostra un mezzo efficace per creare una esperienza coinvolgente per

gli utenti.

Viene presentato anche un sistema per l’analisi di strutture musicali. Questo algo-

ritmo usa rappresentazioni ad hoc della musica, basate su rappresentazioni ad albero

usate dai musicologi. Partendo da queste rappresentazioni di base che erano note in let-

teratura, l’algoritmo costruisce ulteriori astrazioni che sintetizzano gli aspetti strutturali

di un intero brano, e poi di un intero corpus di brani. Alcune applicazioni di esempio

vengono riportate, incluso un algoritmo per la generazione di musica che sfrutta queste

rappresentazioni e la Teoria dell’Informazione per creare nuovi brani che mostrino una

struttura simile a quelle trovate nel corpus di esempio. Sebbene il metodo per la gen-

erazione di melodie usato in questi brani non è del tutto in grado di creare melodie

realistiche, l’algoritmo riesce a generare strutture a lungo termine soddisfacenti, grazie

alle rappresentazioni implementate.

Contents

1 Introduction 1

1.1 The Search for the Creative Machine . 1

1.2 Motivations . 4

1.2.1 Computational Creativity as the Final Frontier of AI 4

1.2.2 Computational Music as a Creative Tool for Humans 5

1.3 Research Directions . 6

1.3.1 Social Interaction and Music Generation 6

1.3.2 Structure in Music Generation . 8

1.4 Contributions . 9

1.5 How to Read this Thesis . 9

2 Background and Literature Review 15

2.1 Computational Creativity . 15

2.1.1 Defining Creativity . 15

2.1.2 Computers and Creativity . 23

2.1.3 Evaluating Creativity . 25

2.2 Music Generation Systems . 30

2.2.1 Methods for Music Generation . 31

2.2.2 Open Challenges in Music Generation 41

2.2.3 Discussion . 50

xiii

xiv Contents

3 Social Interaction and Music Generation 53

3.1 The Social Nature of Music . 53

3.2 Related Work . 56

3.3 Real Time Tempo and Meter Tracking . 61

3.3.1 Theoretical Basis . 61

3.3.2 Algorithm . 63

3.3.3 Evaluation . 68

3.4 A Social Musical Game . 81

3.4.1 Architecture . 82

3.4.2 Evaluation . 91

3.5 Discussion . 94

3.5.1 Main Findings . 94

3.5.2 Limitations and Future Work . 96

4 Structure in Music Generation 99

4.1 The Hierarchical Nature of Music . 99

4.2 Related Work . 100

4.3 Three Tree-Based Representations for Music 105

4.3.1 Corpus Description . 105

4.3.2 Representations . 107

4.3.3 Applications . 112

4.4 Structure-Aware Style Imitation . 117

4.4.1 Corpus Analysis and Generation of Melodic Beginning 118

4.4.2 Generation of a Pool of Continuations 120

4.4.3 Genetic Approach to Select Continuation 122

4.4.4 Example Result . 123

4.5 Discussion . 124

4.5.1 Main Findings . 124

4.5.2 Scope of the Representation . 126

Contents xv

5 Conclusions 129

5.1 Summary and Discussion . 129

5.2 Contributions . 132

5.2.1 Publications . 133

5.2.2 Deliverables . 135

5.3 Closing Remarks . 135

References 137

List of Figures

3.1 Example of Gaussification. On the left, a set of time points with velocities are

represented as spikes over time. On the left, a Gaussification is applied to the

same points, to obtain a integrable function. 61

3.2 The gaussification of an input set of time points (solid blue line) is compared

to the prototypes for 44 (top) and 34 (bottom) meters (red dotted lines). The

prototype’s phases computed by the system translated them to maximize the

correlation with the input, but 44 was (correctly) chosen in this case as it scores

a higher correlation. 66

3.3 The importance assigned by the simulator to each of the 16th notes positions

in a measure, both for 44 and 34 meters. 70

3.4 The interface of the system: a computer running the software connected via

USB to a MIDI keyboard with drum pads. 82

3.5 Data flow in the Listener module: the onsets and velocities are collected from

the drum pads and then gaussified, and an average of the two signals is computed. 83

3.6 A generated measure in 4
4 for each of the accompaniment instruments, based

on a C major chord. 88

3.7 Data flow for the creation of the Markov chains from an input lead sheet. In

the example chains, the likelihood of each transition is not represented. 90

xvii

xviii List of Figures

4.1 Example of the process building Sk_trees and a Diff_tree. (a) shows two

bars of music being reduced with the Schenkerian approach. The arrow shows

the notes that are kept in the successive reduction, and the line joining the

arrow represents the reduced note. (b) shows the Sk_tree obtained from the

first measure. Notice that the leaves correspond to the notes that are present

with that duration in the surface melody, regardless of the level. (c) shows

the Sk_tree obtained from the second measure. Notice that there is one node

reporting R, as the reduction kept the note on the right, and not the one on the

left as usually occurs. (d) shows the Diff_tree obtained by comparing (a) and

(b). Notice that a leaf in this tree occurs whenever a leaf on either Sk_tree is

found. 108

4.2 A simplified Abs_tree built from the two Diff_trees on top. For readability, the

tree reports frequencies of occurence and the total number of observation rather

than the probabilities that need to be computed with the Bayesian Estimator.

The colors represent the tree from which each value for each feature comes

from: blue for left-side tree, red for the right-side one, and purple for those

values that are found in both. 110

4.3 Diffrence trees computed on allemande V, in compact form. The nodes below

the third level were omitted. 112

4.4 A table summing up the mean entropy of each abstraction tree derived from

the corpus, and some examples of abstraction trees as a text output of the

software. Only the first three levels were kept for readability. The labels of the

tree represent the compared segments: for example “0-1” means that the first

two bars of a piece are compared to measures 3 and 4, since in this case each

segment was two measures long. 114

4.5 Comparison of the mean information content computed from each of the three

sets of twenty musical pieces. Mean refers to the mean of the trees of a single

piece, rather than the mean of an entire corpus. 117

List of Figures xix

4.6 The process of the construction of the fitness for a new candidate. For each of

the already generated segments, a diff_tree must be constructed which will be

used to compute the information content with respect to the relative abstraction

tree. 122

4.7 One allemande generated with the system. 123

4.8 One reel generated with the system. 124

List of Tables

3.1 Average execution time (in seconds) for the extraction of tempo, meter and

beginning of next measure, along with absolute and percent standard deviation

(SD). The timings were measured on a 2013 Macbook Pro (2.4GHz Intel i5

processor, 4GB Ram) . 69

3.2 The four metrics (with standard deviation) computed over the various trials for

each of the σerr settings, averaged across all tempo settings. 72

3.3 The four metrics (with standard deviation) computed over the various trials for

each of the tempo settings, averaged across all σerr settings. 72

3.4 The time needed by the algorithm to detect a change of meter, in milliseconds

and in number of measures. 74

3.5 The time needed by the algorithm to detect a change of tempo (millisecond

added or subtracted from each beat), in milliseconds and in number of measures. 74

3.6 The evaluation of the estimates when the tempo grows (or decreases) by Step

milliseconds every 16th note. 75

3.7 The results obtained by the system with various window settings, averaged

across all β and σ values tested. 78

3.8 The results obtained by the system with various β settings, with a time window

fixed to 7500 ms, averaged across all σ values tested. 78

3.9 The results obtained by the system with various σ settings, with a time window

fixed to 7500 ms, averaged across all β values tested. 78

xxi

xxii List of Tables

3.10 Comparison of the results of the proposed system (window=7500, β = 0.75,

σ = 25) and those obtained by Tempo-CNN. 80

3.11 The questions posed to the participants of the evaluation of the system with

their average response and standard deviation on a scale from 1 (Completely

Disagree) to 7 (Completely Agree). 92

1

Introduction

1.1 | The Search for the Creative Machine

What is Creativity?

While the term is of fairly common use in everyday life, giving a precise definition of this

concept is not a trivial task. The general idea is that it relates to the ability that some human

individuals possess to create something that did not exist before. Upon further reflection,

one can notice that most of the times these “creations” start from concepts that already

existed, or at least that could already have existed, but that nobody had already explicitly

linked in a fixed product. This kind of “novel linkage” is what brought us works of art such

as Dalí’s “The Persistence of Memory”: clocks had been painted before, and everybody

has experienced that things can melt, but nobody had yet linked these two concepts in a

painting.

There is another question relating to creativity that raises even more problematic con-

siderations: can computers be creative? The usual experience with machines is that we

humans give a set of instructions to the machine along with some initial data (the input),

and we expect the machine to behave in a way that is fully deterministic, always giving the

same output when the same input is given. Moreover, we expect that the output should be

something that can be fully expected and computed even without the help of a computer,

albeit the computation of the output could be extremely time-consuming (otherwise we

would not have resorted to computers in the first place).

1

Chapter 1. Introduction

The word “deterministic” seems to be the exact opposite of our understanding of the

concept of creativity, and yet the idea of obtaining creative behaviors from computers has

inspired the writing of a notable amount of scientific publications, that can be collected

under the field of Computational Creativity (CC), defined as:

“The philosophy, science and engineering of computational systems which, by

taking on particular responsibilities, exhibit behaviours that unbiased observers

would deem to be creative.” Colton and Wiggins (2012, p. 21)

Practitioners of this field share the interest in gaining a better understanding of how cre-

ativity works, and to what extent it can be replicated via a computer system. The above

definition underlines the diversity in background of the people researching CC. Such a di-

verse community is for sure source of many interesting insights, but there is also room for

many different goals and perspectives that sometimes can make it hard to understand what

is the current general direction of the research, and what directions should be explored for

the advancement of the field (Lamb et al., 2018).

One of this field’s goals is for sure answering to the above question “can computers be

creative?”, that is most interesting to computer scientists and engineers that wish to create

advanced models of artificial intelligence with creative capabilities. Yet, this is only one

of the possible goals: artists could be more interested in finding out how computers can

help express their own creativity, while psychologists and philosophers are more interested

in using computer models of creativity to better understand creative processes that happen

in humans (Pearce et al., 2002). The diversity of the goals is reflected in the diversity of

the literature concerning CC. Some work was devoted to the definition or the assessment

of creativity itself. A notable amount of contributions focus on the design of systems

that are meant to be creative, sometimes designing them starting from some definition

of creativity, and thus the trying to actually obtain output that is creative according to

a certain evaluation method. Other times, the system is simply designed to tackle tasks

that are commonly considered to involve creativity (usually artistic tasks like painting or

composing music), but the process involved in the generation of such output does not

necessarily involve creativity. More often than not, the creativity of the creative systems

2

1.1. The Search for the Creative Machine

is not evaluated in any formal way, either having just summary evaluations of the quality

of the output or not having any evaluation at all (Jordanous, 2012). This might be fine

for the artistic goal of empowering the creativity of humans through computational means,

but is not acceptable for AI practitioners trying to understanding whether computers can

exhibit creative behaviors.

One especially prolific research task of CC is that of music generation, that has interested

computer scientists even before the birth of the term “Computational Creativity”. Ever since

the early days of computing, scientists and engineers have used computers for musical task,

creating digital synthesizers, developing engraving software, and also writing procedures

that generate musical scores, to be performed either by computers or by humans. This

task was called “Algorithmic Composition”, and as the name suggests was related to a well

defined procedure (an algorithm, once again a concept distant from creativity (Nierhaus,

2009; Fernández and Vico, 2013; Papadopoulos and Wiggins, 1999). A name that is more

common today is “Musical Metacreation”, that suggests the fact that the programmer

creates a system that in turn can create some kind of music (Bodily and Ventura, 2018).

Music is especially interesting for the investigation in CC because of the broad possibilities

that it offers in terms of mathematical and computational representations, and because

it does not need explicit semantics like other forms of art such as poetry or non-abstract

painting (Wiggins, 2020). Moreover, generating music via computational systems require

a deep understanding of what defines music in general and within a particular style. For

this reason, the study of music generation is also strongly intertwined with (Computational)

Musicology, and with Music Information Retrieval (MIR), fields which both give tools for

music generation and obtain further insights by the studies on Musical Metacreation (Pearce

et al., 2002).

3

Chapter 1. Introduction

1.2 | Motivations

1.2.1 | Computational Creativity as the Final Frontier of AI

It is not uncommon for practitioners of Computational Creativity to be questioned about

the usefulness of delegating creative tasks to computers. Some even argue that creativity

is something that only humans can possess, and trying to simulate it via computers is either

unethical or impossible (Sturm and Ben-Tal, 2021).

Most of these concerns derive from having a romanticized idea of what it means to be

creative (Hodson, 2017; Boden, 2004), but it still interesting to address why it is useful

to study the creative capabilities of machines. On this subject, it is important to clarify

that while many Computational Creativity studies focus on artistic subjects, the field is not

limited to such applications. As stated above, the definition of CC does not restrict the kind

of “creative behaviours” to be shown by computational systems. The artistic applications

are often chosen as a study case because these activities are widely recognized as needing

creativity, but there are examples of creative systems that deal with mathematics (Lenat,

1976), chemistry (Buchanan and Feigenbaum, 1978), and even cooking (Pinel et al., 2015).

More generally, creativity is understood as a fundamental feature of human intelligence, and

a person completely devoid of creativity would not be considered intelligent, as the lack of

creativity means that it would be impossible to solve (or even face) any problem that was

never encountered before. Such adaptability, and the fact that we expect Computational

Creative systems to be able to surprise even their developers, can make this field a futuristic

research for what really is the limit of what computers can do (Colton and Wiggins, 2012).

Aside from the mathematical limits given us by logic research, it is still unclear what is

the limit of what can be practically obtained by computers. CC proposes to expand these

limits by shifting the focus from problem-solving to artifact generation. A solution to a

problem is not excluded in this paradigm, but in this case the solution becomes the artifact

to be generated. Finally, another motivation for the study of Computational Creativity is

the study of Human Creativity through computers. Software requires very strict definitions,

and a deep understanding of what we are trying to obtain from the machine. Deepening

4

1.2. Motivations

the understanding of Creativity in computers can also help understand the mechanisms and

cognitive activities behind human creativity, which can become way less mysterious in this

way, as Margaret Boden suggests (Boden, 1996).

1.2.2 | Computational Music as a Creative Tool for Humans

The above paragraph lists some motivations for the study of Computational Creativity in

general, and those motivations can also be applied to the task of Music Generation as it is a

often used as an example application of creativity in computational systems. Despite that,

it would be possible to argue that generating music in itself is not beneficial to humans, as

such an artistic activity should not be delegated to computers. It is thus worth to outline

some motivations for the study of Music Generation that do not rely on the general study

of creativity. First of all, it is important to notice that Music Generation Systems are

complementary to human composers, as they can be used when a human composition is

not feasible. For example, in interactive media, music generated by computers can adapt

in real time to the narrative of the media, reacting to what the user is doing. One common

example is that of video games: a human composer has limited control to how the player

will interact with the game, and therefore cannot write music for any possible situation. It

is common to write different pieces or variations of a different piece to allow some level

of adaptability (e.g., often when the players enters a body of water in a video game the

instrumentation is often altered to reflect the different sound transmission of the different

material, making the sound more “muffled”), but it is simply impossible to write different

variations for all possible interactions. Some games resort to procedural music for this

reason, but a fully autonomous generation system could give a unique experience to the

player, that is completely tailored on his playing style (Brown, 2012a). Additionally, music

could become a novel mean of Human-Computer Interaction. If a computer is capable of

generating music in real time to express feelings or to accompany certain situations, this

would allow a sonified user experience, and allow for more effective Affective Computing. In

particular, music generation can be helpful in creating ad-hoc Music Therapy experiences for

people to enjoy at home (Cheatley et al., 2020, 2019). Finally, Music Generation Systems

5

Chapter 1. Introduction

can be inserted in the artistic activity of a human composer in many ways (Pearce et al.,

2002). The simplest way is to generate some musical excerpts from which the composer

can draw inspiration and work upon, but there are also generation systems that are explicitly

designed with the goal of co-creation between human and computers, and these can help

human composers express themselves in ways they would not have imagined, as if it were

another human collaborator. Potentially, these systems can also help people who have little

musical knowledge create music, as a sort of “musical assistant” (Navarro et al., 2016;

Collins and Coulon, 2012).

1.3 | Research Directions

This paragraph will outline the research questions taken into account in this thesis, and

formulate the research directions that this work tries to address. There are two principle

directions: the social impact of generated music, and structure in music generation. While

seemingly quite divergent, the substantial importance of each makes them interesting to

study in conjunction so as to lay a foundation for more a holistic study of computational

creativity. Moreover, while exploring these direction this thesis will include examples of how

computational music generation can remain centered on the human user, as long as socially

useful applications are considered and the tools employed have roots in human cognition.

1.3.1 | Social Interaction and Music Generation

Music is a fundamentally social phenomenon, and is a vital part of most cultures (Wiggins,

2020; Meyer, 1989). Given the non-semantic nature of music, its social role does not derive

from intrisic meaning in music, but rather from the interplay between music and culture,

as well as the interaction between musicians and listeners, and between musicians. These

kinds of interactions will shape the cultural meaning added to music, while the cultural and

social conventions will alter the nature of the musical interactions at the same time (Pearce,

2018; Meyer, 1956).

6

1.3. Research Directions

When music is being generated by a computer, its social value becomes dubious, as in

genereal algorithms for music composition lay outside the "social loop" described above.

One side effect of this is the different perception of the value of computer-generated

music (Moffat and Kelly, 2006), as well as the difficulty in seeing the utility of having

computer-generated music at all (Sturm and Ben-Tal, 2021). Even when the composi-

tion is not entirely delegated to the machine but rather arises from an interplay between

human and computer, as in the case of Computer-Assisted Algorithmic Composition, the

social implications diverge from the traditional interplay between humans adding aspects

of human-computer interaction (Sturm and Ben-Tal, 2021; Biles, 2013a). Some questions

arise when considering Socialty, Interaction, and Computational Creativity applied to music.

What is the role of computationally creative system for humans? What should the

computers achieve for the utility of human users? Can the computers actually be more

useful than human composers within certain situations? Can algorithms capture the social

standards and implications that regulate music making among humans? Can a computer

understand and respond to human emotion in a social environment? Can emotional con-

tent allow for more creativity in a computational system? Can emotional and social-aware

content make computer-generated music more useful for end users? Can generated music

be helpful to affective computing? Can generated music be useful in music therapeutic

settings?

In this thesis I explore how real-time music generation can be useful as a Human-

Computer Interface, and how it can be useful in a Music Therapy setting. The application

described in chapter 3 is one that is designed to be entirely human-centric, as the user

benefits from the presence of generated music, and is one where Computational Creativity

is necessary, as it would be nearly impossible to employ a human composer with the same

degree of effectiveness and non-intrusiveness. In my work, the social context is not explicitly

considered, but rather arises from the usage of the system, and is mainly related to sociality

and affiliation (Hove and Risen, 2009).

7

Chapter 1. Introduction

1.3.2 | Structure in Music Generation

Structure is a term with multiple meanings, even within the context of music. In general,

it refers to reuse and variation of musical content within a piece, but also to contrast

between different sections. Both these aspects can be analyzed at different levels of details:

considering groups of just few notes (and comparing motifs), or taking sets of many bars in

considerations (exploring what is usually called “form” in music theory). Within the context

of Computational Creativity and of Music Generation specifically, the problem of structure

is usually related to the fact that generated melodies seem convincing for a few seconds,

but then start to “wander off” (Dai et al., 2018), calling for algorithms that can consider

the long-term development of a piece.

What would be the best algorithm for such a long-term approach to music generation?

What kind of information can be extracted from music and learnt from a corpus that is

useful to this goal? How can one formalize structure while considering human cognition?

Should the algorithm for music generation be the same at a short-term local level and

at a long-term structural level? Would listeners perceive a structured piece be as more

creative, or at least more realistic, than one without clear structure? Does structure relate

to musical narration and emotional content? Can such narration be computationally studied

in a cognitively aware manner? Is it possible to apply what we learn about musical structures

in other fields, such as language?

In this thesis, structure is approached by using hierarchical representations of music,

that try to describe latent structural information of melodies. These representations will

serve as a way to compare different sections of a melody, and to define common structures

within a corpus. Chapter 4 will describe the algorithms to analyze these structure, and

how I applied Information Theory concepts to the obtained representations within a music

generation context.

8

1.4. Contributions

1.4 | Contributions

The following is an outline of the contributions described in this thesis:

■ A review of the state of the art of Computational Creativity and Music Generation

systems, underlining open challenges in the field.

■ A musical serious game where two players are required to create a rhythm together on

shared digital pads. The game analyzes their rhythmic interaction, inferring the tempo

and the meter in real time, and automatically generates a musical accompaniment

that fits the interaction.

■ A system for describing typical structures of a musical corpus through a probabilistic

description, that can be used in combination with Information Theory concepts to

describe the typicality of a new piece given a corpus.

■ A system for generating music that imitates the style and structure of a given corpus,

based on the same probabilistic description.

1.5 | How to Read this Thesis

This section will outline the contents of the rest of the thesis, giving an indication on how

to frame what is presented. The rest of the thesis is divided into three main chapters,

followed by a conclusions chapter. Since the chapters cover relatively diverse topics, it is

useful to describe how the thesis was developed to understand how the topics are related

to each other.

The presented work is framed within the scope of a three-years PhD program. Since

this work spanned from the end of 2018 to the end of 2021, this work was severely affected

by the Covid-19 pandemic, which forced non-optimal work conditions for the majority of

the PhD duration.

It is important to read the rest of the thesis keeping in mind that the presented work

has the ultimate goal of advancing the knowledge on music generation for the ultimate goal

9

Chapter 1. Introduction

of computational creativity. As such, this is a computer science thesis, and despite the fact

that the topics this thesis discusses are inherently multidisciplinary, it would be a mistake to

expect this thesis to deal with the matter at hand in a musicological, neuroscientific, music

therapeutic, psychological, or design point of view. While these disciplines play a role in

the following chapters, the contributions should be mainly considered as computer science

contributions.

Chapter 2 is the result of the first year of the PhD program, and tries to give a broad

introduction to the fields in which the thesis tries to give a contribution. As such, it describes

the field of Computational Creativity in general, giving a review of definitions of creativity

as well as of the evaluation of creativity, which is one of the main research areas in this

field. The latter part of the chapter is devoted to the study of music generation systems,

describing techniques and algorithms used to this goal and discussing open problems in the

field.

The chapter tries to frame the thesis within the state of the art of music generation with

a focus on creativity, but does not represent a complete introduction to all the works relevant

to the topics described in this thesis. Since the following chapters introduce applications of

music generation that required further study of technical solutions to more specific problems,

those chapters also include introductory section which further explore the literature related

to those sub-tasks.

What this chapter instead includes is a brief discussion on the open problems of music

generation, which was the driving factor for choosing the topics to cover in the subsequent

years of the PhD program and the subsequent chapters. The main focus which was chosen

as a result of this study of the literature is that of structural and narrative development of

a musical piece. This led to the study of music representations designed to capture musical

structures, and to the study of music as a social tool, with the long term goal of exploring

social and emotional meaning in music generation.

10

1.5. How to Read this Thesis

The main application described in Chapter 3 is a serious game for musical interaction,

inspired by music therapy. Such game can exemplify both how computational music gen-

eration can be necessary in some real-time applications and how social interaction plays a

role in creativity and in creative activities, such as music making, as well as providing the

grounds for further research on how such interactions can be used to describe emotional

development in generated music.

The design goal was to create an interactive system that would allow people without

musical expertise interact in a musical manner, similarly to what would happen between

musicians playing together. To obtain this goal, a game was designed. The game requires

players to interact solely rhythmically by hitting midi pads and subsequently adds a musical

augmentation to their interaction, generating music that is synchronized rhythmically with

the interaction but adds melodic and harmonic layers to increase the aesthetic experience.

To obtain this synchronization, a system for tempo and meter tracking was embedded

into the system. Since the data available to the tempo tracking system is limited to purely

rhythmic information without pitch nor timbre, this algorithm represents a novel contribution

despite not being the focus of the work in the chapter and having strict requirements that

rarely apply to other real-life applications for which better performing algorithms can be

found in literature.

The game was implemented as a fully functional prototype, and a fist user study was

performed collecting positive users impressions. The arrival of the Covid-19 pandemic soon

after the completion of the prototype, halted further development and testing of the sys-

tem, since it is strongly rooted in the close co-presence of two users. This also meant that

it was not possible to plan, within the time limit of the PhD program, the further evaluation

needed to assess the quality of the system in a therapeutic setting and as a creative tool.

While this hinders the quality and the scope of the contributions represented by this work, it

was still included in this thesis as it is the result of a notable amount of time and resources

within the PhD, and because the contributions it can give are still significant despite not

being able to fully assess the impact of socialty on the creative process.

11

Chapter 1. Introduction

The second main line of research, which is reported in Chapter 4, is the study of rep-

resentations for musical content that capture structural aspects of music. The goal in

this case was to enable music generation systems to explicitly consider structure to obtain

better long-term generation of music, which is another open problem in music generation

recognized by many researchers.

The basic idea behind this work was to study representations that would consider reuse

of melodic material in a way that is not directly dependent on the actual melodic content

of the piece, meaning that different melodies built in a similar manner could ideally be

represented by the same structural representation. To do this, a first representation inspired

by Schenkerian analysis was implemented, and two further representations that build upon

the first completed the analysis system to allow the representation of a set of pieces instead

of a single piece. It is worth noting that this system performs musical analysis, but in this

context the term analysis is not meant to mean a musicological analysis. While this tool

could potentially be useful for musicologists if further expanded, its main goal is to extract

structures useful to a music generation system.

To exemplify how this system can be used in such context, a simple music genera-

tion system is also presented in this chapter. Being based on first-order Markov chains,

the quality of the generated melodic material is limited, but the capability of structuring

melodic phrases beyond what this simple Markovian approach would allow for is still evident.

The final chapter gives a summary of the work described in the rest of the thesis, also

adding a list of the scientific publications and deliverables that resulted from it, closing with

a little discussion.

12

1.5. How to Read this Thesis

Originality

While this thesis represents an original contribution and contains substantial advancements

from any prior work, part of it was published in prior publications.

Parts of Chapter 2 were published in an open access journal (Carnovalini and Rodà, 2020).

Parts of Chapter 3 were published in conference papers (Carnovalini et al., 2019; Carnovalini

and Rodà, 2019b).

Parts of Chapter 4 were published in conference papers (Carnovalini et al., 2021a,b).

13

2

Background and Literature Review

In this chapter, I provide a broad introduction to the field of Computational Creativity, and

a review of the state of the art on Music Generation.

Throughout this thesis, rather than using the terms “Algorithmic Composition” or “Mu-

sical Metacreation”, which sometimes entail the fact that certain applications are favored

over others, I will use the more neutral term “Music Generation Systems” (MGSs). This is

not the only review of the subject (some are cited in Section 2.2.2), but most reviews focus

solely on the technical approaches used for music generation. This chapter will include such

a description of the main methods for generating music, but its latter part will also try to

give a picture of the challenges that are still not fully addressed, and what kind of solutions

have been tried or proposed to overcome those problems.

2.1 | Computational Creativity

2.1.1 | Defining Creativity

What is Creativity? This is a question that many researchers have faced before, especially

in the last seven decades. A specific event gave the inception to research in creativity, as

reported by James Melvin Rhodes (1961, pp. 305-306):

“The big push of interest in the subject of creativity began in 1950 when J. P.

Guilford of the University of Southern California was president of the American

15

Chapter 2. Background and Literature Review

Psychological Association. Guilford said in his presidential address to that orga-

nization that he found an appalling lack of research on creativity. He said he had

searched Psychological Abstracts for a quarter of a century and found out that

only 186 out of 121000 entries dealt in any way with creativity, imagination, or

any topic closely related.”

Since that year, psychological research on creativity exploded, exploring many facets of

what defines and stimulates creativity in humans. Some work was focused on the study of

what are the personality traits of the creative person (Rhodes, 1961; Getzels and Jackson,

1962), as well as what external factors can positively or negatively influence creativity (Am-

abile, 1983b,a). Other researchers were more interested on the mental processes that

happen in the creation of something creative, and finally much work were dedicated to the

definition of creativity itself.

2.1.1.1 | Creativity as Novelty and Value

The newfound abundance of research led to having hundreds of definitions of creativity in

literature. In their papers, Sarkar and Chakrabarti analyzed over 200 of those (Sarkar and

Chakrabarti, 2008, 2011; Ranjan et al., 2018), finding that the factors that have been used

as indicators for creativity can be grouped in two main categories: Novelty (or unusualness,

unexpectedness, surprise, originality) and Value (or usefulness, quality, appropriateness,

meaningfulness). This subdivision is not new at all, as Stein (1953) had already proposed a

definition of a creative work as novel and useful or satisfying. Novelty is usually considered

the defining characteristic of a creative artifact, but value is also necessary: it is easy

to think of something that has never been built before, like a car with fifteen wheels,

but while such car would be novel, it would have higher maintenance costs, with little

or no increase in performance. This kind of novelty lacks value: creativity (that includes

value) introduces innovations useful to the purpose of the created object, possibly leading

to a general advancement in its own field. One example of creativity in the field of car

manufacturing could be the introduction of hybrid cars: the idea of using two different

energy sources was novel, but hybrid cars are now common because of the advantages they

16

2.1. Computational Creativity

bring to their owners in terms of efficiency. On the contrary, it is highly unlikely that our

fifteen-wheeled car could become an industrial standard.

While Novelty and Values are surely important features of creativity, these give only a

vague description of creativity. From their study of the literature, Sarkar and Chakrabarti

(2008, p. 6) reached a somewhat more complete definition of creativity:

“Creativity occurs through a process by which an agent uses its ability to gen-

erate ideas, solutions or products that are novel and valuable.”

2.1.1.2 | The Four Perspectives of Creativity

The above definition points out that creativity is a concept that cannot be ascribed to the

final artifact, but must consider its creation. In particular, it underlines the existence of a

process, used by an agent, to create a product. These represent three of the four “P’s” of

creativity, first identified by Rhodes (1961): Person, Process, Product, Press. Rhodes was

interested in the educational aspects of creativity and in educating children to be creative,

and his discussion on the four P’s reflects this interest. To sum up his reflections:

■ Persons: there are personality traits that make some individuals more prone to cre-

ativity than others;

■ Process: while personality cannot be taught, there are processes (usually some kind

of heuristics) that can help to find novel and creative ideas;

■ Press: the environment in which a person lives is fundamental to the creative result,

and more often than not creative deeds can be considered the work of a group of peo-

ple. The importance of press is also shown by the amount of quasi contemporaneous

inventions around the world from people that had no contact with each other;

■ Products: once the idea is distilled in a fixed media, it becomes a product. The

products can be classified and studied more easily than the other aspects, making

them useful to the scientific study of creativity.

17

Chapter 2. Background and Literature Review

It is important to notice that while many researchers on creativity and CC use this

notion of the four P’s in their work, their meaning has changed, especially for the Press.

For example, Lamb et al. (2018) describe the four terms as follows:

■ Person: is the human (or non-human agent) who is seen as creative. Person theories

study what it is about the agent that makes them creative.

■ Process: is the set of internal and external actions the agent takes when producing

a creative artifact. Process theories study what sort of actions are undertaken when

creative work is done.

■ Product: is an artifact, such as an artwork or a mathematical theorem, which is seen

as creative or as having been produced by creativity. Product theories study what it

is about the product that makes it worthy of being called creative.

■ Press: is the surrounding culture which influences people, processes, and products

and which judges them as creative or uncreative. Press theories study what it is that

leads a culture to view something as creative.

Beside the loss of the plural on Person and Product, the focus shifted from the study of

factors that can help the development of creativity to the study of what makes something

be considered creative. Press is now listed last, as it includes not just the influences on

the creative Person before the creation of the artifact, but also the cultural impact of

the Product and its judgement. This shift is probably partly due to a paper by Anna

Jordanous, who revisited the concept of the four P’s under the light of the evaluation of

creativity (Jordanous, 2016), but the definition of the four P’s had already started changing

soon after the original paper by Rhodes: in Golann (1963) we find the terms Measurement

and Personality instead of Press and Person, showing that while the general idea of the

four P’s was soon utilized by the scientific community, it took some time to reach widely

accepted definitions.

This useful subdivision into four perspectives helps frame the various contributions on

creativity, as often each work focuses on only one or two of the above perspectives. For

18

2.1. Computational Creativity

example, the definitions of creativity as Novelty and Value are focused on the Product,

even if Sarkar and Chakrabarti’s definition encompasses almost all four P’s. In the following

sections I review some contributions that focus on the other three perspectives: Person,

Process and Press.

2.1.1.3 | Person

Regarding the Person perspective, the study of the personality traits of creative people

has unsurprisingly interested many psychologists: already in the first years after Guilford’s

speech much work emerged (an early review was made by Golann, 1963), and soon was

found out that creativity is not directly related to intelligence (Getzels and Jackson, 1962),

and a relationship between creativity and humor was also noted (Treadwell, 1970). Guilford

himself underlined that creatives emerge for their sensitivity to problems, mental flexibility,

and divergent thinking (Guilford, 1957, 1967). The importance of this last trait was ex-

ploited by Torrance, who designed the Tests of Creative Thinking (Torrance, 1965, 1974)

that give an effective measure for the individuation of creative people (Torrance, 1988).

Simonton (2000) gives a review of psychological studies on creativity in terms of personal

and developmental traits, as well as the socio-cultural influence of creativity (connecting

the Person and the Press perspectives).

Within the field of CC, one could argue that any Turing-complete machine is equivalent

in what it can achieve, thus making every computer system equal under the Person perspec-

tive. Nonetheless, the Person remains an insightful perspective at a more abstract level,

for example when a software system can be viewed as an agent or as a group of agents

collaborating together. In this case, the (virtual) personality of each agent could give a

different contribution to the system, making it useful to consider psychological personality

aspects such as motivation (Guckelsberger et al., 2017) or curiosity (Schmidhuber, 2012),

or to try and model in software cognitive aspects of creativity (Wiggins and Forth, 2015;

Wiggins and Sanjekdar, 2019).

19

Chapter 2. Background and Literature Review

2.1.1.4 | Process

The Process perspective has interested CC the most, as someone who wishes to obtain

a creative behavior from a computer must know how to describe creativity in algorithmic

terms. While there is no such thing as a fixed procedure to obtain something creative,

it is possible to gain insights on how to obtain creativity from the study of the creative

processes of people that have shown great creativity throughout history (and wrote how

they reached that idea). This is in part what Margaret Boden did in her book, The Creative

Mind (Boden, 2004) (for a shorter introduction to the same ideas see Boden, 1998, 2009).

The description of creativity she provides in that book has become extremely influential to

the field of CC, also because she used computer models of creativity to discuss her ideas,

explaining what was obtained and what was still to be achieved by machines. One of major

contributions she gave was the introduction of the idea of “Conceptual Space”, i.e. a space

where the possible concepts exist, some of which have been explored and some are yet to

be discovered. This basic idea allows the distinction of many levels of creativity:

■ Combinational Creativity: two already explored ideas from a concept space are

joined, thus creating an association that is novel;

■ Exploratory Creativity: some kind of method for the free exploration of the concept

space is used, to find regions in the space that are not explored yet but are valuable;

■ Transformational Creativity: the highest level of creativity is reached when a new

idea is found that was not part of the original conceptual space, thus changing the

shape of the concept space itself.

The idea of obtaining creative ideas from the union of two known ideas, that Boden

called Combinational Creativity, is at the basis of other theories of creativity, although with

different names: Koestler (1964) called the same idea Bisociation, while Fauconnier and

Turner (2008) used the term Conceptual Blending. The novelty of Boden’s theory lies in

the introduction of conceputal spaces, necessary for the definition of the other two levels of

creativity. Wiggins (2006, 2019) mathematically formalized these ideas, also showing that

Transformational Creativity is equal to Exploratory Creativity on a meta-level.

20

2.1. Computational Creativity

Another useful notion introduced by Boden is the distinction between H-Creativity (his-

torical creativity) and P-Creativity (personal creativity). In order for something to be H-

Creative, it must be the first time it has appeared in the history of mankind, while to be

P-Creative it is enough to be new to the one creating it. As an example, Boden mentions

that if a child can prove Pythagoras’ theorem without any help, we would find this deed

an impressive example of mathematical creativity even if that theorem was demonstrated

millennia ago. H-Creativity is what is usually considered novel and/or creative, but Boden

argues that P-Creativity is just as important as it originates from the same creative Process.

Another way to look at creativity as a Process is to study it from a cognitive and evo-

lutionary perspective, addressing how creativity is useful and how it could have advantaged

creative humans in the context of natural selection, possibly leading to a better under-

standing of the cognitive processes that guide creativity (Wiggins et al., 2015). Under this

perspective, it is also possible to give an explanation to why creativity is highly valued in a

social context, which leads us to the next perspective on creativity.

2.1.1.5 | Press

The Press perspective is most interesting to the evaluation and assessment of creativity.

This is not just an appendix to the concept of creativity: the working definition for CC seeks

behaviours that are deemed to be creative by an unbiased observer, making it necessary to

have an external appraisal of the Product before calling something creative. The work

of Amabile underlined both the importance of the environment for the development of

creativity (Amabile, 1983b; Amabile et al., 1996) and the importance of the assessment

of creativity, proposing one of the first formalized methods for the evaluation of creativity,

using expert judges (Amabile, 1983a). I will discuss the problems relating to the evaluation

of creativity later (see Section 2.1.3).

Even if someone tried to directly assess the creativity of a Product, of the Process behind

it, or of the Person, he needs to pass through the lens of human perception (and thus the

Press perspective) to be really uderstood (Colton, 2008), making the Press perspective

the most ubiquitous. On the other hand, the Press perspective is not enough to give an

21

Chapter 2. Background and Literature Review

indication of creativity, since commercial success or reach of a Product is influenced by a

variety of factors that go beyond creativity, or even just its Value (Fraiberger et al., 2018).

2.1.1.6 | Dimensions of Creativity

Another interesting contribution to giving a complete definition of Creativity comes from

Jordanous and Keller (Jordanous, 2012, 2013; Jordanous and Keller, 2012, 2016; Jordanous,

2019), who used a statistical language processing techniques to identify fourteen main

components of creativity, as described by scientific research on the topic. This study resulted

in an unordered list of components, that should be seen as different dimensions of the

concept of creativity rather than a systematic description (Jordanous and Keller, 2016):

■ Active Involvement and Persistence;

■ Dealing with Uncertainty;

■ Domain Competence;

■ General Intellectual Ability;

■ Generation of Results;

■ Independence and Freedom;

■ Intention and Emotional Involvement;

■ Originality;

■ Progression and Development;

■ Social Interaction and Communication;

■ Spontaneity/Subconscious Processing;

■ Thinking and Evaluation;

■ Value;

22

2.1. Computational Creativity

■ Variety, Divergence and Experimentation.

The notion of Novelty (here called Originality) and Value are kept, but using all 14

components gives a much broader definition of creativity, that considers all the four P’s:

for example General Intellectual Ability is related to the Person, Progression and Develop-

ment to the Process, Value to the Product, and Social Interaction and Communication is

connected to the Press perspective. Jordanous and Keller (2012) explain that not all the

components listed above will be as important in all possible creative deeds, so this list also

offers the possibility to categorize different kinds of creativity required by different activities.

To my knowledge, there is no work in literature that has given a short definition or a

model of creativity based on these fourteen dimensions.

2.1.2 | Computers and Creativity

The above definitions of creativity were general enough to apply to both humans and

machines alike (although the discussion sometimes focused on the implication of those

theories on computers). It is now time to face the second question posed in the introduction:

can computers be creative?

This is a question that seems to be as old as computer science: Lady Lovelace, while

commenting the Analytical Engine, mentioned that computers do not have the ability to

originate anything on their own (Lovelace, 1843). As paraphrased by Bringsjord et al.

(2003, p. 4), her statement reads:

“Computers can’t create anything. For creation requires, minimally, originating

something. But computers originate nothing; they merely do that which we

order them, via programs, to do.”

The Countess leaves no room whatsoever for creativity, but other important scientists

disagreed with her. Alan Turing, who argued that artificial intelligence should have creative

abilities, responded to Lady Lovelace’s objection pointing out that she had no real experience

in programming, while we now know that a computer can often surprise us by doing the

exact opposite of what we intended, until a program is thoroughly checked for bugs (Turing,

23

Chapter 2. Background and Literature Review

1950). This response is somewhat unsatisfying, since it seems that the only accountability

for creativity from computers would come from human errors, but in the rest of the article

Turing argues that intelligent machines should be able to learn, thus gaining abilities beyond

those envisioned by the original programmer.

Another strong argument against computer creativity is that of the “Chinese Room”

introduced by Searle (1980). He argues against artificial intelligence in general, but the

argument applies to creativity as well. He imagines to be locked inside a closed room, that

can accept questions and give answers written on paper, either in English or in Chinese.

For the English questions, he would answer normally using his own intelligence, while for

the Chinese ones he would use a special script telling him, for any combination of Chinese

symbols that he sees, what symbols to write as answer. Supposedly, the English answers

would be as good as the Chinese ones to the eyes of the people outside the room (if the

Chinese script is good enough), but the person inside would not gain any knowledge of

Chinese in this way. Searle argues that computers work in this way, manipulating symbols

without having a real understanding of those.

It is hard to argue with Searle’s objection, unless we suppose that the manipulations of

symbols that happen in computers are in reality not different from those that happen in our

brains, if not because of less “computational power” (Minsky, 1982). This vision basically

reduces human brains to extremely powerful computers, so that an artificial computer could

recreate all of their functions. This is of course far from being a proven truth, and does

not fully account for things we experience everyday, such as consciousness, free will, and

subjectivity (Chalmers, 1995; Hameroff and Penrose, 2014; Ceroni and Prosperi, 2018).

There is room for a long lasting debate on the possibility of computers being “really ”

creative, but fortunately CC is not ultimately interested in this debate. According to the

definition of CC, we want computer systems that have behaviours that an unbiased observer

would deem to be creative, and not necessarily behaviours that are actually creative. This

means that we aim at simulating creativity well enough to trick observers into thinking that

the product they are seeing is actually creative.

It is nonetheless important to understand what creativity is, and possibly to incorporate

24

2.1. Computational Creativity

the definitions of creativity in the generation process, because the unbiased observer will

judge creativity in the same way as it would with a human, thus implicitly applying some

of the concepts relating to creativity that were illustrated above. The problem of the

evaluation of creativity thus becomes central: if the goal is to recreate what an observer

would deem creative, it is necessary to give metrics of how creative something would be

perceived by an observer.

2.1.3 | Evaluating Creativity

Despite the importance of the evaluation of creativity, most of the scientific publications

on evaluation only came about in the last twenty years (Jordanous, 2013). In this section

some of the most common creativity evaluation methods are described. To read some more

extensive reviews on this subject, I suggest the following: Jordanous (2012, 2013, 2014);

Lamb et al. (2018); Pease and Corneli (2018); Ritchie (2019).

2.1.3.1 | Turing Test-Like Approaches

The definition of CC that we used suggests that creativity needs to be assessed via human

judgement, leading to evaluation techniques based on the concept of “Turing Test” (Turing,

1950): ideally, if a human cannot distinguish computer creativity from human creativity, the

computer has achieved a satisfying level of creativity.

Amabile (1983a) proposed the Consensual Assessment Technique (CAT), which has

become the standard evaluation of human creativity (Baer and McKool, 2009). This tech-

nique requires a pool of experts independently evaluating a set of artefacts. An artefact

can be considered creative if it receives good evaluations and the interrater reliability is high

enough (for example having a Cronbach’s alpha higher than 0.7). While this method was

not originally conceived for CC, it is easy to insert one or more computer generated arte-

facts along some human made ones, to get a comparison between human and computer

creativity. The judges only have access to the artefact, not knowing anything about its

author or background (including whether the author is a computer). This means that CAT

only evaluates the Product perspective in a non interactive way, making it rather different

25

Chapter 2. Background and Literature Review

from the original Turing Test, but it was included in this section because it operates a

comparison between human and computers carried out by a human evaluator.

Pearce and Wiggins (2001) propose a machine composition framework that includes in

its final phase an evaluation inspired by the Turing Test (although the authors underline

the major difference of not having interaction). While it was initially defined for music

generation, it can be applied to CC in general. This framework supposes that a corpus

is available to the software, and that some sort of learning is applied to create a “critic”

for that corpus. Once new compositions are generated that satisfy the learnt critic, some

generated pieces are presented a group of subjects along with composition coming from

the corpus. The evaluators are asked to tell whether the compositions they hear are human

or machine made (similarly to Turing’s imitation game). If their evaluation cannot be

statistically distinguished from a random selection, the system is considered effective. This

approach, being entirely based on learning a corpus, is arguably not really an evaluation of

creativity but rather one of quality in imitating human products.

Ariza (2009) underlines this and other limitations of Turing Test approaches to the

evaluation of creativity, showing how sometimes these tests are implemented in a way that

he calls “toy Tests”, failing to understand that interactivity between human and computers

was the main feature of the “Imitation Game”, as it was meant to assess intelligence, that

is experienced through interaction.Another critic to this kind of tests comes from Soldier

(2002), who raises a more fundamental doubt on the capability of non-experts to act as

evaluators. This is not surprising (indeed, CAT requires experts), but often Turing Test

approaches only require the evaluator to be human.

Bringsjord et al. (2003) propose to go beyond the Turing Test with the “Lovelace Test”

(inspired by her statement reported in section 2.1.2). The authors argue that Turing’s game

could be beat with simple manipulation of symbols without the need of any intelligence (as

Searle described with his Chinese Room example). On the contrary, an agent passes the

Lovelace Test if and only if it is capable of creating an output of some kind through a

repeatable process, and this output cannot be fully explained by the knowledge-base, the

architecture, and the core functionalities of the agent. Unluckily, this test is not easy to

26

2.1. Computational Creativity

perform in real-life situations, and arguably a machine could never pass this test, as every

output of a machine is the result of its architecture and functionalities. This might be a

good abstract test for real creativity, but is not very useful to evaluate CC systems.

A more manageable version of the Lovelace Test was proposed by Riedl (2014), that

requires the machine to be able to generate an output that satisfies a set of requirements

chosen by a human. The generated output is then evaluated in terms of how well it

meets the requirements and if it is “not unrealistic for an average human”. This proposal is

somewhat unsatisfying, because by losing the strong requirements of the original Lovelace

Test it basically falls back to a standard Turing Test, in a way that Ariza (2009) described

as “Directive toy Test”, meaning a Turing Test where the interaction is only limited to giving

initial directives for the generation.

2.1.3.2 | Self-Assessment Frameworks

Another popular approach is to have the author of the system describe the way it works and

how it can be considered creative or not, and to what degree. These assessments try to

frame the chosen Process in some kind of creativity scale, for example distinguishing if the

used process is combinational, explorational or transformative, using Boden’s categories.

Indeed, this kind of evaluation is reminiscent of how Boden investigated creativity in her

book (Boden, 2004).

Colton (2008) introduced these assessments with a reflection on how the evaluation

of the Product alone is not enough to evaluate the creativity of a system. He proposes

an example, where the same object is obtained through different processes. This can lead

to different perceptions of creativity, but obviously only if the process is known to the

observer. In that paper, he introduced the concept of the “Creative Tripod”, a tripod having

Skill, Appreciation and Imagination as legs, saying that all three must be extended to some

degree in order for the tripod to stand.

The tripod framework had little success, possibly because it was not formalized enough,

but it remained influential on literature on creativity evaluation. Colton, Pease and Charn-

ley (Colton et al., 2011; Pease and Colton, 2011b,a) described another framework for self-

27

Chapter 2. Background and Literature Review

assessment: the FACE and IDEA models. The FACE model can be used to describe the

creative capabilities of a system through a set of symbols that tell if the evaluated sys-

tem possesses or is capable of generating Expressions (i.e. products), Concepts, Aesthetic

measurements, and Framing information (read backwards, the initials spell FACE). The

IDEA model describes instead the impact of the system during its lifecycle, starting from

the developmental stage and ideally reaching a stage where it can perform some kind of

transformational creative processes.

These assessment frameworks are limited in the possibilities they offer, and a common

criticism is that the assessment comes from the author of the system, making it biased.

Nonetheless it is useful to frame the capabilities of a system and to reflect on the degree

of automation in creativity it has reached, even just for development purposes. Indeed, an

extension to the FACE/IDEA framework was proposed to consider the creative abilities of

different versions of a same software (Colton et al., 2014) to make it easier for a developer

to understand how the creativity of the system is progressing.

2.1.3.3 | Quantitative Metrics

In order to compare the results of different systems in terms of creativity, and to give more

scientific indications of the effectiveness of CC applications, it is desirable to have objective

metrics that can indicate how creative a system is. Designing such metrics is no easy task,

but many efforts have been made towards this goal.

Ritchie (2001) proposed a set of criteria for the evaluation of creativity based on the

Product perspective, judged according to Value and Typicality. The latter is a concept

strongly related to Novelty, but is based on the fact that an “inspiration set” (the corpus

used by the system) is available, and used to define what is more or less typical. These

two basic features must be measured according to some rating scheme, and can then be

used to compute a set of parametrized criteria, that are basically functions over the the

Value and Typicality. In his proposal Ritchie described these criteria as either satisfied or

not satisfied (if a certain treshold is reached), but often these were applied as a continous

scale rather than a boolean one. Extending this evaluation framework Pease et al. (2001)

28

2.1. Computational Creativity

focused on the measurement of Value and Typicality, while Colton et al. (2001) investigated

the effects of fine-tuning the input knowledge. Ritchie (2007) presented an updated version

of his criteria, commenting those researchers that have used it as a means of evaluation,

but the presence of many parameters to be tuned makes it difficult to use for comparisons

between different systems.

While Ritchie’s criteria are the main metrics for the evaluation of creativity, there are

other metrics in literature that can be relevant for CC systems, although they do not

evaluate directly the creativity of the systems. Galanter (2012) made a review of metrics

and methods to evaluate aesthetic value of computer generated artefacts, that is a vital

part of many CC systems. Shaker et al. (2016) focuses on procedural content generation,

and describes how it is possible to give a visual indication of the capabilities of a system in

terms of the variety of products it can generate. To the best of my knowledge, this system

has never been used for CC systems, despite the fact that the representation of the space

of possible outputs generated by a system has strong links to Boden’s theories (which in

part inspired Shaker’s work). Possibly, these graphical representations could give a good

indication of whether a system uses mere combinatorial creativity or is capable of going

beyond that limit.

2.1.3.4 | Evaluation of Generated Music

The evaluation methods that were presented in the previous paragraphs are general enough

to be applied to musical generation as well as to other CC applications. The following

methods focus instead solely on the evaluation of MGSs.

Eigenfeldt et al. (2012) used a concert setting to evaluate a variety of MGSs, and a

similar event is described by Sturm et al. (2019). In both cases, the evaluation in itself was

performed via a questionnaire given to the audience of the concert. This approach can be

extended by turning the concerts into music competitions, as has been done for computer-

generated expressive performances of human composed music (Katayose et al., 2012). If

the program includes both human and computer generated music, this approach becomes

similar to the ones inspired by the Turing Test, but a concert setting is one of the most

29

Chapter 2. Background and Literature Review

natural ways to experience music, and could fatigue the evaluators less than a laboratory

setting. Two major limitations of this approach is that the audience will evaluate music

according to their personal taste, rather than assessing creativity, and that this evaluation

method can only be used to compare the pieces that are included in the concert: comparing

different concerts could induce unwanted bias due to different performers, venue and setting

in general.

Another useful contribution is that of Yang and Lerch (2018), who argue that while

creativity cannot be assessed without a human evaluator, it is useful to use formative

metrics to describe how well computer generated music fits a musical genre, in order to

help the development of the system towards “human-like” music generation. To that goal,

many quantitative metrics are presented, and data visualization techniques are suggested.

While this does not solve the ultimate goal of the evaluation of creativity, it is nonetheless

an useful addendum to the evaluation toolbox.

An overview of the current methods for the evaluation of MGSs was made by Agres

et al. (2016). This contribution provides both motivations and tools to evaluate in different

manners systems that are merely generative, systems that allow for feedback, and systems

that are capable of some kind of self-reflection. Moreover, a distinction is presented between

internal and external evaluation, the first being necessary for the functioning of the system

and the latter being the usual a posteriori evaluation to understand the effectiveness of the

system.

2.2 | Music Generation Systems

This section reviews some work describing Music Generation Systems (MGSs), trying to

give a picture of what the current advancement of the state of the art is in creating systems

that can creatively generate music.

30

2.2. Music Generation Systems

2.2.1 | Methods for Music Generation

The many algorithms that can be applied to music generation can be grouped into some

main categories, but the reviews available in literature give different categorization. The

following are a summary of the categories found in literature:

■ Markov Chains;

■ Formal Grammars;

■ Rule/Constraint based systems;

■ Neural Networks/Deep Learning;

■ Evolutionary/Genetic algorithms;

■ Chaos/Self Similarity;

■ Agents based system.

In the following sections, I will describe each of these approaches by citing work that

implemented MGSs with these techniques.

2.2.1.1 | Markov Chains

A Markov Chain is a special Stochastic Process, i.e. a sequence of random events dependant

on a time variable, that has a finite number of states, and the probability of the next state

is only dependant on the current state (Brémaud, 2013). In practice, a Markov chain is

described by a transition table, where rows and columns represent the states, and every cell

(x , y) represents the probability of going from the state x to the state y . Since each row

represents a probability distribution, the sum of all the cells in a row must be equal to 1.

If the last n states are used to determine the probability of the next state instead of just

the last one, this is called n-th order Markov chain. These can be represented with a single

transition matrix as well, by constructing an equivalent first order Markov chain having An

rows, where A is the number of states in the n-th order chain.

31

Chapter 2. Background and Literature Review

Due to their sequential nature, Markov chains are well fit to describe melodies, seen as

a sequence of notes. The simplest way to implement a melody-generating Markov chain

is to use a set of notes as the possible states, and to compute the transition probabilities

between these notes by counting the occurrences of each transition in a given corpus to

create a first order Markov chain.

This is what was done in one of the first MGSs ever described. Pinkerton (1956) created

the “Banal Tune Maker” by analyzing the transitions of 39 nursery tunes by hand to create

a transition matrix. The states used were the seven notes of the diatonic scale of C major

(only one octave was considered), plus one extra symbol to indicate rests or notes that are

prolonged over a beat. In this case the states of the chain only contain pitch information,

requiring the use of other strategies to implement the rhythm. In this case, all the notes

were kept to the same duration, and the extra symbol was used to introduce rests in the

generated music. Of course, other approaches are possible, including implementing another

Markov chain to handle durations.

The basic assumption underlying this simple approach, i.e. that the next note is only

dependant on the previous note, is very flawed and only lead to musical results of little

interest. Pachet (2002) used a more refined approach in the “Continuator”. He implemented

a variable order Markov chains using prefix-trees to handle sequences of varying length (as

opposed to n-th order Markov chains that will always consider n states) and also used a

hierarchy of reductions: the system analyzed in a single chain pitch, duration and velocity,

but was able to ignore some information when analyzing new input and comparing it to the

learnt sequences. This was especially important in the Continuator because, as the name

suggests, it was meant to listen to a musical input and continue it in real time. Being

able to ignore part of the learnt information allowed the system to interact with previously

unmet input, and to consider musical structures at various levels of detail.

Hiller Jr and Isaacson (1958) used a different approach in their “Illiac Suite”. In their

fourth experiment, they used Markov chains to generate sequences of motions and progres-

sions rather than sequences of pitches and durations themselves, thus using the model to

organize the notes at an higher level. The same idea of organizing higher structural levels

32

2.2. Music Generation Systems

via Markov chains was used more recently in the GEDMAS system (Anderson et al., 2013),

whose goal was to generate Electronic Dance Music. To do so, a series of Markov chains

were used to choose the general form of the song (i.e. a sequence of sections, each section

being 8 bars long), to fill each section with a chord sequence, and finally to generate melodic

patterns.

2.2.1.2 | Formal Grammars

Chomsky (1957) introduced the concept of Generative Grammars, a tool for the analysis

of natural language that became extremely influential in linguistic studies. The same idea

was applied to musical studies, most notably by Lerdahl and Jackendoff (1985), who tried

to design a Generative Grammar for the description of music starting from music analysis

concepts introduced by Heinrich Schenker in his book “Free Composition” (Schenker, 1935),

that well fit the concept of rewriting rules, that is at the basis of Chomsky’s grammars.

A Generative Grammar is composed of two alphabets: terminal symbols and non-

terminal symbols (or variables). A set of rewriting rules is given over the union of these

two alphabets, that allow to transform variables into other symbols (both variables and

terminals). The generated language is the set of all the strings of terminal symbols that

can be obtained starting from a special variable chosen as starting point (usually called S)

and applying any number of rewriting rules in sequence.

Grammars can be seen both as an analysis tool and as a generative tool. For exam-

ple, Steedman (1984) compiled a Generative Grammar to describe Jazz chord sequences:

Pachet (2000) describes a system that is in part inspired by Steedman’s analysis to tell

apart blues songs and non-blues songs, while Chemillier (2004) implemented Steedman’s

grammar creating a software for music generation.

Chord sequences can be very easily encoded as symbols, but, if an adequate alphabet is

given, it is possible to use Grammars to generate any kind of musical information. Hamanaka

et al. (2007) describe a system for the automatic analysis of scores based on Lerdhal and

Jackendoff’s Generative Theory of Tonal Music (GTTM), formalizing in details a grammar

to describe musical material. This was then used to create variations on melodies by altering

33

Chapter 2. Background and Literature Review

the derivation trees (a graphical representation of the applied rewriting rules) (Hamanaka

et al., 2008). Quick (2011) implemented a software to generate three voice harmonies

using a Grammar derived from Schenkerian theory.

L-systems (Lindenmayer Systems) are a variant to Generative Grammars that has been

used for music generation. Their main difference from Grammars is that they implement

parallel rewriting, thus applying all the rewriting rules at once instead of only one at a time.

This characteristic makes these system less apt to sequential data, like simple melodies,

and have been used to generate stunning visual effects. When applied to music generation,

the most common approach was to map visual data generated by L-systems either to score

information (Prusinkiewicz, 1986; Nelson, 1996; Mason and Saffle, 1994) or to arrange a

sequence of musical segments (Langston, 1989; Supper, 2001).

Another related approach is that of Transition Networks: finite state automaton that

can parse languages similarly to what Generative Grammars do. The most notable example

of Transition Networks applied to MGS is that of David Cope’s Experiments in Musical

Intelligence (EMI) (Cope, 1991, 1992). His approach was to use pattern-matching algo-

rithms to analyze “signatures”, short musical sequences that define the style being analyzed,

and to determine when and how to use those signatures. After the analysis phase, the

collected information is encoded in a Transition Network that is then used to generate new

music in the style of the composer that was analysed. While the results are sometimes

impressive, they are arguably not very creative, since they just reuse material taken from

the learnt corpus (Wiggins, 2007a). Possibly, this is one of the reasons why there is not

much research on Transition Networks for music generation beside Cope’s work.

2.2.1.3 | Rule/Constraint based systems

Music theory traditionally describes rules that help that guide the compositional process.

While composers regularly break those rules, it should come to no surprise that those rules

have been used to implement MGSs since the early days of Algorithmic Composition, like

in the first two movements of the Illiac Suite (Hiller Jr and Isaacson, 1958).

The inclusion of rules can be implemented in many ways, for example as a final validation

34

2.2. Music Generation Systems

step, or to refine intermediate results. One natural way to implement rules in a MGSs is to

use Constraint Programming, whose declarative nature is well fit to describe music theory

rules. A survey on Constraint Programming used to model music theory (not only with the

goal of generation) was made by Anders and Miranda (2011).

One of the most influential researchers within the scope of music generation through

constraint is Ebcioǧlu, who first implemented rules of fifth-species counterpoint into a Lisp

program, and later implemented a custom logic language (BSL) that he used to create

CHORAL, a system for the generation of Bach-like chorales that uses some 350 rules for

the generation of melodies and harmonization (Ebcio\v{g}lu, 1988, 1990). The difficulty

of designing such a system lies in the complexity of explicitly coding a sufficient amount

of rules, many of which often do not have a formal definition in musicology literature.

Moreover, there is a tradeoff between adding more rules to obtain results that better fit the

style that is being modeled and leaving less constraints to be more open to different styles

of music.

Constraints can be used to model more abstract features, rather than explicit music

theory rules: Herremans and Chew (2016b) defines a way to describe tension in musical

pieces based on a geometric model of tonality called the Spiral Array (Chew, 2014). Her-

remans and Chew (2017) used that tension model in a MGS that is capable of generating

new music following the tension pattern of an input piece, by first generating random notes

and then applying optimization methods (in particular, Variable Neighbourhood Search) to

change the notes in order to satisfy constraints defined by the chosen tension model.

Techniques for optimization such as integer programming can be useful as a selection

technique when more than one possibility is available. For example, Cunha et al. (2018)

describe a MGS that creates guitar solos by concatenating guitar licks. This approach is

somewhat similar to a transition network, but in their implementation the concatenation of

any two licks had a defined transition cost, and through a branch-and-cut algorithm it was

possible to compute the optimal solo. The computation of transition costs was in itself

another example of integration of rules: in that work eight rules were described to assign

the transition cost between licks.

35

Chapter 2. Background and Literature Review

2.2.1.4 | Neural Networks/Deep Learning

The increased computational power of computers, and the widespread of general purpose

GPU programming, made deep learning techniques very popular in the latest years, with

applications that span from natural language processing, to image and video editing, to,

of course, music generation. The survey by Briot et al. (2020) is specifically focused on

these techniques, and gives an exhaustive overview of how machine learning has been used

in MGSs.

While the interest in these algorithms grew exponentially in the last decade, the first

MGS to use Artificial Neural Networks is that of Todd (1989), who used a three-layered

Recurrent Neural Network (RNN) to generate monophonic melodies. RNNs reuse the results

of the computations from previous steps when new input is given, allowing them to encode

temporal development. This is of vital importance when generating melodies, thus RNNs

are a typical approach for MGSs that use deep learning. Nonetheless, there is also room

for standard feed-forward networks: Lewis (1991) trained a network with musical patterns

ranging from random to well-constructed, to learn a measure of “musicality” that is then

used by his MGS to select pleasant compositions.

As already mentioned, RNNs are a popular choice for music generation. In particular,

LSTM (Long-Short Term Memory) (Hochreiter and Schmidhuber, 1997) are a special vari-

ant of recurrent networks that use special gates to decide the amount of information that

is taken from novel input and what is maintained from older inputs. This control over the

data flow allowed LSTMs to be both more efficient and effective than standard RNNs in a

wide range of applications, and have been used for music generation as well. The first mu-

sic generation LSTM was applied to blues improvisation (Eck and Schmidhuber, 2002b,a).

Traditional music was instead the focus of folk-rnn (Sturm et al., 2016), that analyzed over

20000 pieces in textual (abc) notation. A more advanced approach is used by DeepBach

(Hadjeres et al., 2017), that generates chorales in the style of Bach (whose chorales made

the training set for the software) using two LSTMs, one going forward and one going back-

wards in time, together with one feed-forward network to consider contemporaneous notes.

The results of these networks is then handled by a final feed-forward network that joins the

36

2.2. Music Generation Systems

results in final piece. The rationale behind this choice is explained by the goal of generating

counterpoint, which requires knowledge of both the previous and the following notes. This

gives an example of how it is possible to design complex architectures using many layers of

Neural Networks, but the complexity Comes with a price in terms of computational time.

Another deep learning approach that is of great interest to CC is that of Generative

Adversarial Networks (GANs) (Goodfellow et al., 2014). The idea behind this method is

to train two networks at the same time, one that generates artefacts imitating what is

learnt from real-world examples, and the other trying to discriminate between real and

imitated artefacts. As one gets better, the other must get better as well in order to “beat”

the other network (thus making them “Adversarial”). The two networks can be simple feed-

forward networks, but these are not the usual choice for music generation. For example, the

eloquently called C-RNN-GAN (Mogren, 2016) uses RNNs (in particular LSTMs) in a GAN

architecture to generate polyphonic music. MidiNet (Yang et al., 2017) uses convolutional

layers instead: Convolutional Networks are trained to reduce the dimension of the input,

usually starting from bidimensional input. This approach is often used on images, so when

applied to MGSs the input of the Network is often some graphical representation of music,

such as piano rolls. It is important to be aware that while images have two dimensions

that are equivalent (both represent displacement in space), graphical representations of

music show two non equivalent dimensions, usually pitch and time, possibly leading to less

reasonable results (Briot et al., 2020).

2.2.1.5 | Genetic/Evolutionary algorithms

The general idea behind Genetic (or Evolutionary) Algorithms (GA) is that, starting from

a population of random solutions to a problem, it is possible to combine those solutions to

obtain new solutions, and by selecting the ones that better answer the problem it is possible

to get closer and closer to the optimal solution to the original problem. Thus, to solve a

problem via GA, it is necessary to have (Sivanandam and Deepa, 2008):

1. The ability to generate random but suitable solutions to the problem as a starting

population;

37

Chapter 2. Background and Literature Review

2. A way to evaluate the “fitness” of a solution;

3. The ability to mutate and recombine those solutions.

In the field of music generation, the points 1 and 3 are for sure available (once a repre-

sentation of musical material is chosen), but it is hard to evaluate how good a solution

is (as already discussed in Section 2.1.3). It might be difficult even just giving a precise

definition of what the problem is. Nonetheless, Genetic Algorithms have often been used

to implement MGSs.

Possibly, the most famous Genetic MGS is GenJam, designed by Biles (1994). The

system is meant for Jazz improvisation, where a human player interacts with the software

that outputs both the pre-made musical base and solos generated on-the-fly by evolving the

human improvisation it has just listened to. Originally, the fitness function was implemented

by having a human decide if the output was good or bad, an approach that is usually referred

to as “Interactive Genetic Algorithm” (IGA). This generates a bottleneck for the system,

as a lot of human intervention is required. A successive version (Biles et al., 1996) used

and Artificial Neural Network as a fitness function, but it lead to unsatisfactory results.

In the end, the author resolved to completely eliminate the fitness function (Biles, 2001).

Basically, the algorithm retains the ability to mutate and compose licks, an ability that

is used to respond to musical input in a way that incorporates the human improvisation

without being a mere copy, but since there is no more evaluation of the fitness, GenJam is

no more a GA.

GenJam passed, through his versions, some of the most common approaches to the

definition of a fitness function. Another approach is to use rules taken from music theory

to design a fitness function. This is the approach chosen by Phon-Amnuaisuk et al. (1999).

In that case the goal was the harmonization of a given melody, and the fitness function

incorporated rules of harmony describing forbidden and preferred intervals and motions. In

this case, the GA becomes a way to explore a space of possibilities described by the chosen

rules. One might wonder if this is better or not than just generating samples following

those rules, as described in the previous section. Indeed, Phon-Amnuaisuk and Wiggins

(1999) found that their GA was outperformed by a rule-based system using the same set of

38

2.2. Music Generation Systems

rules that were incorporated in the fitness function. The authors argue that having explicit

control over a system’s knowledge will lead to better results and more powerful means of

exploration: while the authors do not scorn GAs in general, it seems that this approach

cannot give such explicit control over the knowledge of the system, and thus other systems

should be preferred when explicit knowledge is available.

GAs offer many other forms of hybridization, since the representation used by other

algorithms can be evolved through a GA. For instance, it is possible to evolve the rules of a

grammar (de la Puente et al., 2002), or to evolve the parameters of a Markov Chain (Werner

and Todd, 1997; Bell, 2011) or of a Cellular Automaton (Lo, 2012). I already mentioned

that rules, Neural Networks and human assessments can be incorporated in the fitness func-

tion for a Genetic algorithm. It is worth mentioning that Markov chains have been used for

the same goal (Lo and Lucas, 2006). Markov chains can also generate the initial popula-

tion, obtaining starting point that is better than random, possibly leading to convergence

to good solutions with fewer generations (Manaris et al., 2011).

2.2.1.6 | Chaos/Self Similarity

Musical compositions show some degree of self similarity, both in the musical structures and

in its spectral density (Hsü and Hsü, 1991), roughly following a 1/f distribution, at least for

pieces that are deemed pleasant to listen to (as opposed to random compositions) (Voss

and Clarke, 1978).

Starting from these considerations, fractals and other self-similar systems have been

used to generate musical material. The results of such systems are usually not regarded as

a final output, but rather as an inspiration for human composers (Bidlack, 1992). Another

approach is to generate self similar structures rather than directly generating self similar

melodies: Leach and Fitch (1995) generated tree structures like those described by Lerdahl

and Jackendoff (1985), by tracing the orbit of a chaotic system, and mapping the computed

values to different hierarchical levels of the tree.

Another approach is to use Cellular Automata (CA), dynamic systems composed of

many cells, whose states are updated at discrete times using a set of transition rules. One

39

Chapter 2. Background and Literature Review

famous example of CA is “Game of Life” by Conway (1970). Like other fractal systems,

CAs tend to generate melodies that are not too pleasing, and often need further human

intervention. CAMUS is a MGS that is based on two different CA, whose cells were mapped

to sequences of notes and to different instruments (Miranda, 1993). A later version used

a Markov chain to specify rhythm, but despite the effort to create a full MGS, the authors

still admit that the results can often be not very pleasing, but can become interesting “for

the composer who is prepared to put a little effort into the system” (McAlpine et al., 1999).

Miranda (2007) later argued that CA are more effective for sound synthesis, rather than

for MGSs.

These systems are arguably not interesting to AI practitioners, since the decision making

is based upon chaotic and random processes, but were included for completeness. Nierhaus

(2009) provides a good review of these approaches, that are given less consideration by

later surveys.

2.2.1.7 | Agents based systems

A software agent is an autonomous piece of software with perception and action capabilities.

Any software with such capabilities can be seen as an agent (including many of the systems

described in the previous sections), but the definition becomes especially interesting when

multiple agents cooperate within a single software, that can be referred to as a Multi Agent

System (MAS). This is not a specific algorithm for music generation, but rather a meta-

technique that has gained popularity among researchers, as testified by Tatar and Pasquier

(2019).

The use of agents in MGSs makes it easy to model certain musical behaviours. Voy-

ager (Lewis, 2000) is a MAS that has 64 player agents that generate melodies according

to one of various pitch generation algorithms written by the author, according to his own

taste, and a behaviour model that describes the general timbre, tempo, pitch range and

other features that regulate the development of the piece. This models a band where ev-

erybody is improvising, but still follows some general agreement. Lewis has played together

with Voyager, both in recordings and live: in this setting one can also consider the human

40

2.2. Music Generation Systems

performer as one additional agent of the system.

MASs are also useful to model social interactions: once each agent is given specific char-

acteristics (one could say, a personality), the interaction between different agents can take

into account the difference in their characteristics, either in a conflict or in an agreement.

For example, Kirke and Miranda (2011) introduces a system later called MASC (Kirke and

Miranda, 2015) where each agent has a specific “emotion” and the ability to express it by

“singing” to another agent. The other agent will be affected by the mood expressed by the

singer, adapting his own internal state. Moreover, their internal state also defines if the

listener will “like” the song, incorporating it into his own song.

Taking further the same idea, the agents can implement cognitive models that regu-

lates their interaction with the others. One such model is the Belief-Desire-Intention (BDI)

Architecture. For instance, Navarro et al. (2014, 2016) describe a MAS with the goal of

generating harmonic sequences, where two particular agent, the composer and the eval-

uator, have beliefs based on music theory and desires (one to compose and the other to

evaluate the generated composition). The intentions are represented by the algorithms im-

plemented to apply and verify the theoretic rules that form their beliefs, and are influenced

by the communication between the two roles.

2.2.2 | Open Challenges in Music Generation

To define a list of the open challenges in Music Generation, the following reviews published

in the last fifteen years were considered:

■ Nierhaus (2009)

■ Fernández and Vico (2013)

■ Williams et al. (2015)

■ Herremans et al. (2017)

■ Lopez-Rincon et al. (2018)

■ Tatar and Pasquier (2019)

41

Chapter 2. Background and Literature Review

■ Briot et al. (2020)

The challenges and directions that were described by the authors were analyzed and groped

as described below. For each of the identified challenge, some examples of how these

problems can be faced are cited, discussing how these are related to Creativity in general,

by categorizing these challenges using the dimensions of creativity described by Jordanous

and Keller (see section 2.1.1.6).

2.2.2.1 | Control

Control refers to having the possibility to choose specific features that the output of the

MGS will exhibit.

Having control over certain features of the output of a MGS can be, depending on the

used algorithm, trivial. But, with more data-driven approaches like machine learning, it

becomes less obvious what can be done to affect the output. It is not surprising that this

issue was only mentioned in a review focused on deep learning.

Since data-driven approaches are meant to learn features from their input, one simple

way to influence the features of the output is the selection of the training set. This approach

is to some extent used by every corpus-based system, knowing that learning on Folk music

will be very different from learning on Bach chorales. The problem with this approach is

that it does not allow a good granularity of control, and any change on the input would

require retraining the system, a task that can be very time consuming.

The same idea is applied in a slightly different fashion by Ekeus et al. (2012). Their

approach was to generate a set of randomly sampled Markov chains, which were evaluated

with an approach based on Information Theory. These were employed in a MGS that allows

the users to select a point in a triangular space where the vertices represent periodicity,

repetition, and noise. The chosen point is mapped to the features that were evaluated for

each Markov chain, and the most appropriate one is selected and used for melody generation.

The same approach can be used in Neural Networks by altering the parameters that

make up the network, but this can be much more intimidating, due to the excessive number

of parameters involved and the difficulty of understanding their meaning (Sturm, 2018).

42

2.2. Music Generation Systems

A way to obtain this is proposed by Kaliakatsos-Papakostas et al. (2018), who used a

recurrent network trained on a small dataset (made of only three pieces) that was augmented

specifically to address the features the authors wanted the user to be able to manipulate,

in order to study how the parameters are affected, and to be able to alter them accordingly

in the generation phase.

Control is related to the creative dimension of “Active involvement & persistence” which

suggests that the creative agent is in control of the generation process. Using deep learning

to achieve this can be extremely hard, although many advancements in this direction are

being made. We suggest to use techniques that allow for simpler tuning over the features

one wishes to control, by either using appropriate representations (see section 2.2.2.5) or

by explicitly limiting those features with rules. Machine learning can be used in conjunction

with these approaches to ensure other creative features, such as “Variety, divergence &

experimentation”.

2.2.2.2 | Narrative Adaptability and Emotion

Narrative Adaptability refers to the capability of the MGS to convey a sense of development

(Narrative) in the generated music, giving a more complex meaning to the piece. Emotion

refers to the capability of the MGS to convey specific emotions with the generated music.

These two are treated together because it is possible to convey different emotions in

different sections of the piece, one of the main aspects of Narrative Adaptability. Both

of these can be seen as a special instance of Control, where the features that are being

controlled relate to emotional aspects or to specific events of the narration. This is especially

relevant in non-linear media (like video games) where the Narrative must adapt in real-time

to the events in the media.

The study of Emotion in music has a long history (Juslin, 2010) and, as can be seen

in the review by Williams et al. (2015), has often been considered in MGSs. Narrative

Adaptability is less commonly found, despite the fact that such adaptability is something

that human composers could never achieve without the help of a computer, making it an

interesting field of investigation. Ventura et al. (2009) present an installation implementing

43

Chapter 2. Background and Literature Review

a typical architecture for emotion-aware systems: an emotion (expressed as values in the

valence/arousal plane (Hunter and Schellenberg, 2010)) is detected (in this case by analysing

the movements of the users via webcam) and then used as the input for the MGS. To do so,

some features that are known to be related to emotional expression are manipulated, such

as tempo, pitch range and loudness (Oliveira and Cardoso, 2007). A similar architecture

is used by Scirea et al. (2018) to add music to Checkers: the MGS analyzes the board

to understand how risky the situation is for the player, and then generates music that

emotionally expresses the level of risk.

Mezzo by Brown (2012a,b) uses a different approach that takes its roots in classical

music: the use of Leitmotifs. In a video game setting, some characters and situations are

given a theme (composed by a human), and when those are encountered in the game, a

message is sent to Mezzo. This will use the themes triggered by the messages, blending

them together to generate a music that expresses the current situation. Similarly, when

music is used within human-computer interaction, is is useful to detect musical features in

the human interaction to generate music that matches the emotional content as a feed-

back (Carnovalini and Rodà, 2019b; Carnovalini et al., 2019).

Another approach that does not necessarily involve a full MGS, but can be used to

increase its adaptive capabilities, is that of automatically generating transitions between

pre-composed sections, to be able to connect sections without knowing a priori when one

will end and one will start (Gillespie and Bown, 2017; Horner and Goldberg, 1991). This is

usually applied to human-made compositions, but it could be easily applied to a MGS, as

long as it is capable of generating the next musical piece in advance, since it is needed for

the transition generation.

These challenges are especially important for creativity, as they address “Intention &

emotional involvement” and ”Progression & development” and “Social interaction and com-

munication”, and in general are fundamental for the affective perception of the machine,

which in turn is important to pass Turing-like tests. One research direction we suggest is

to study how different expressive features can influence each other, and how to select one

specific expressive technique to convey certain feelings rather than altering all the features

44

2.2. Music Generation Systems

that are linked to that emotion, so that systems could be able to generate, for exam-

ple, a sad piece which is also fast-paced. This can also improve “Variety, divergence &

experimentation” of the generated pieces and possibly lead to more “Originality”.

2.2.2.3 | Hybridization

Hybridization refers to the use of more than one technique for music generation in a single

MGS.

This is the only point of this list that does not concern a quality of the output, but

rather a characteristic of the system itself. The need to go beyond a single method for

the generation of music was already noted twenty years ago (Papadopoulos and Wiggins,

1999), but the call for hybridization is relevant to this day. The rationale behind this

idea is that since there is not a single method that has been proved to be more effective

than the others, nor to be capable of addressing all the issues that a MGS must face, it is

important to take advantage of different approaches. Nonetheless, using multiple algorithms

is obviously expensive for the development, and in general it is hard to witness in the early

stages of any project. Moreover, researchers are often more interested in applying a specific

technique for music generation rather than creating a complete MGS that would benefit

from hybridization.

Some approaches are more prone to being used in an hybrid context than others: we

have already discussed how Genetic algorithms and rules or constraints are often coupled

with other algorithms, but other approaches are possible. Eigenfeldt and Pasquier (2009)

describes how the various versions of the Kinetic Engine have used different algorithms for

designing agents capable of generating rhythm, melodies, and harmony. In the later versions,

agents with different roles interacted with each other to generate both rhythm and melody,

and also a Markov chain was used to influence the harmonic progression Eigenfeldt and

Pasquier (2010). This gives an idea of how, in an agents-based system, it is possible to

delegate different tasks to different agents, that can each implement a different strategy

when generating their respective content.

A somewhat similar subdivision of tasks is proposed by Carnovalini and Rodà (2019a),

45

Chapter 2. Background and Literature Review

where the process of composing a melodic phrase is divided in successive steps: generation

of pitch succession, generation of rhythm, and finally generation of expressive variations of

intensity and timing. Each of these steps follows a different algorithm, but some informa-

tion is passed on through each step. In particular, all of the steps use information about the

importance of each of the generated notes, dividing them with a Schenkerian approach (Si-

monetta et al., 2018). The authors argue that this idea can be further extended to other

tasks (such as form generation and harmony), including both deep learning and classical AI

algorithms, trying to find the optimal combination for each task (Carnovalini, 2019).

The use of expressive musical performance generation systems Widmer and Goebl

(2004); Canazza et al. (2012, 2015), that are sometimes embedded in MGSs as the one

just cited above, can also be seen as a form of hybridization, but will be better discussed in

the next section.

We believe that systematic use of Hybridization could be one of the most prolific research

direction for CC, since it could help researchers expand different dimensions of creativity

using different techniques for each. Moreover, giving a variety of compositional approaches

to a software could be seen as giving it a better “Domain competence”, and being able to

choose between techniques can improve “Variety, divergence & experimentation”. Explic-

itly modelling into the software what different techniques are more apt for and changing

behaviour according to user’s requests could be an interesting research direction.

2.2.2.4 | Rendering

Rendering refers to the quality of the audio (meant as waveform) that is generated by the

MGS.

This might seem redundant, as the quality of the generation is obviously important in a

MGS. But in many cases, MGSs only handle symbolic music generation, usually as MIDI or

MusicXML files, and the audio is generated with simple software MIDI synthesizers, which

are far from giving good renditions of any musical composition.

We already mentioned that it is possible to add expressive performance to a generated

piece in order to improve its audio rendering. This is usually done through existing algorithms

46

2.2. Music Generation Systems

that are applied to the music after it is generated. A review of existing algorithms can be

found in Kirke and Miranda (2009).

Another way to improve the musical rendering is to use automatic orchestration tech-

niques: rather than having a predetermined instrument to play the generated piece (piano

seems to be a popular choice) it is possible to generate musical material that is then assigned

to different instruments (Handelman et al., 2012) or to have a set of possible instruments

from which to choose from and that can intervene at different moments of the composi-

tion (Anderson et al., 2013).

Brunner et al. (2018) describe a system that uses both expressivity and orchestration

to perform Style Transfer through Variational Autoencoders (Kingma and Welling, 2013).

Style Transfer tries to apply a certain style (for example, defined by a certain composer or

genre) to an existing musical piece that was not originally meant for that style. This can of

course be applied to computer-generated music as well, although we are not aware of any

work in literature that has yet tried this approach.

All these approaches generate some sort of variations after the score generation process

is over. This excludes any possibility to render audio in real-time, as the generation phase

must be over for these algorithms to function. A different approach that has been less

explored is to generate music and its expressive variation at the same moment: one example

is PerformanceRNN (Oore et al., 2018).

A completely different approach is to model music directly at the audio level, thus

implicitly generating the rendering as well. This approach is challenging for many reasons,

including computational complexity and the difficulty to capture semantic structures from

raw audio. Nonetheless, Dieleman et al. (2018) found that using Autoencoders it is possible

to obtain realistic results that remain consistent for tens of seconds, meaning that local

structures can be understood and modeled directly from the audio.

One could argue that the creative task we are interested in is the composition, while the

rendering is delegated to musicians. While it is true that in some cases computers generate

music that is meant to be played by humans, it is more often the case that computers

directly play the generated music themselves. Moreover, in the context of evaluation of

47

Chapter 2. Background and Literature Review

CC, having a good audio rendering can influence human evaluators, so it should not be

overlooked (Oore et al., 2018; Carnovalini and Rodà, 2019a). More generally, Rendering

can be seen as part of “Generating results”: while scores are results in themselves, the fruition

of music is through sound. Therefore, to add “Value” to the output, Rendering must be

considered. We are not aware of any research comparing user preference of computer

generated music that is emotionally rendered versus ‘deadpan’ executions, but that would

certainly be an useful contribution to CC research.

2.2.2.5 | Structure and Mapping

Structure refers to generating longer pieces, containing reasonable repetitions and subdivi-

sion of different sections, usually recreating some kind of musical form. Mapping refers to

the problem of handling different representations of music and choosing the most appropri-

ate one for the generation of musical content.

While the first is notoriously difficult for MGSs, the latter is an issue that is often not

considered, as usually a certain representation is chosen a priori. There are instead notable

proposals in literature that further the possibilities for MGSs using specific representations

of music.

Herremans and Chew (2016a, 2017) used a specific data structure, the Spiral Ar-

ray (Chew, 2014), to compute the tension profile of a musical piece. This profile is used

to generate a new piece that follows the same profile, through constraint programming.

Starting from a specific representation for tension structures, the MGS is able to create

longer pieces with convincing structure. One might argue that the structure is simply being

copied, but a possible extension to this work could possibly generate novel tension patterns

using the same ideas.

Representations based on Schenker’s or on Lerdahl and Jackendoff’s theories are studied,

since these can capture different levels of structural information. Most works only have

the aim of automatic analysis of musical pieces (Marsden, 2010; Marsden et al., 2013;

Hamanaka et al., 2016, 2017), but others have used this approach to generate music that

follows a defined structure (Groves, 2016; Carnovalini and Rodà, 2019a)

48

2.2. Music Generation Systems

Other systems approached the problem of structure without any specific representation.

GEDMAS (Anderson et al., 2013) explicitly generates structure, seen as successions of 8-bar

segments, through a Markov chain. Medeot et al. (2018) describe StructureNet, a neural

network that studies occurrences of repeats (either of rhythm or of interval sequences), and

that can be be embedded in a larger MGS influencing the generation process according to

the learnt structures of repeats.

Structure is strongly linked with the creative dimension of “Progression & development”,

and can be linked to the challenge of Narrative Adaptability as well. Once again, we

suggest to hybridize different approaches, possibly using different techniques at every level

of representation to consider the development of a piece at a macro level before considering

the local melodic and harmonic content.

2.2.2.6 | Playing Difficulty

Playing Difficulty refers to the ability of an MGS to regulate the difficulty for a human to

play the generated music.

This can be seen as a specific instance of Control, where the feature that must be

controlled is the technical difficulty of the output. This problem only becomes relevant

when the output of the MGS is meant to be played by a human, which is often not the

case: this might be the reason why this issue has hardly been acknowledged in literature.

The review by Herremans et al. (2017), that is the only one to mention Playing Difficulty,

only cites a couple recent works that have considered the issue. One is Sébastien et al.

(2012), that designed seven criteria used to estimate the difficulty of a piano piece, in

order to suggest pieces to learn to students. A similar approach for guitar is presented

in Xambó et al. (2018), based on known chords. Both these systems are not MGSs, but

could be implemented as a constraint or as a fitness function in a MGS. Another work

is that of McVicar et al. (2014), that generates guitar solos in tablature form. This is

indeed a MGS, but it does not really consider the difficulty of the generated solo, but rather

uses an algorithm to minimize fingering difficulty, without affecting the generation of the

piece. Extending on the same idea, Ariga et al. (2017) created a guitar solo generator that

49

Chapter 2. Background and Literature Review

considers the fingerings as a way to measure and control the difficulty of the generated

solos. Nakamura and Yoshii (2018) describes a system that creates piano reduction of

ensemble scores, capable of generating reductions with different levels of difficulty based on

fingering and tempo information.

On the opposite side of the difficulty spectrum, Pachet (2012) describes a system that

can generate virtuoso solos, using variable-order Markov chains trained on a dataset of

virtuoso solos. Arguably, increasing the Playing Difficulty of a generated piece is easier

than lowering it (without losing musicality), but the work by Pachet was motivated by a

study of creativity in solos and not of difficulty itself.

To be able to change the playing difficulty of a piece, one needs to increase the “Domain

competence” considering for example the physical characteristics of the instruments that

will be used to perform the piece, making this challenge also relevant to the perception

of CC. Choosing an appropriate level of difficulty can also improve the “Social interaction

and communication”, since if one wishes to create a MGS to interact with humans, it

is important to tune the difficulty to the end user’s ability. One possibility to deepen

this relatively unexplored branch is to use published exercises books for the learning of

instruments to extract features correlated to the difficulty level.

2.2.3 | Discussion

The sections above describe some open problems in music generation that were identified by

other researchers reviewing the state of the art. In addition to the ones listed above, most

researchers also include Evaluation and Creativity as open problems that are not completely

addressed yet, but these were excluded from this part of the chapter as those topics were

already widely discussed in the first half of the chapter.

It is intersting to notice that most of these open problems deal with making generated

music more human-like or more useful for humans. Narrative Adaptability, Emotional value,

Structure, Mapping, and Rendering all are arguably motivated by trying to make generated

music be more similar to music composed by humans, which usually has some kind of emo-

tional value or content, has a reasoned long term structure, and is performed or produced

50

2.2. Music Generation Systems

to sound as good as possible. Control and Playing Difficulty are related to generating music

under conditions dictated by the human user, so that the generated music can be most

useful to them and according to the motivations they had for wanting generated music in

the first place. Hybridization is an outlier in this context, as it regards technical details of

the implementation of music generated systems rather than being a feature of the output,

but one can easily make the case that hybridization is desirable because it can potentially

allow to address other problems as well.

As a result of this study of the state of the art, I decided to focus on the general aspect

that encompasses these open problems, that is trying to make generated music as human-

like and as useful for humans as possible. This is explored in the following chapters first

by implementing an application where human social interaction is enhanced by generated

music, and then by studying structural representations of music to obtain better long term

generation and thus better imitating human-composed music.

51

3

Social Interaction and Music
Generation

In this chapter, I explore one application where computer-generated music is crucial to allow

for new modalities for interaction, giving one example of how Computational Creativity can

be useful for human in a human-centric social experience.

3.1 | The Social Nature of Music

Music can be played alone, and solo pieces are often valuable parts of any virtuoso’s reper-

toire. Despite this, music playing is mainly a collaborative activity. Music students spend a

lot of time exercising in groups and orchestras, knowing that keeping a shared tempo and

shared musical expression is a fundamental skill for a professional musician. In classical mu-

sic coordination between different players can become so complex that it requires a director

to ensure that the musical interactions are effective and aesthetically pleasing.

When there is no written score, as with jazz improvisation, the interactivity of musi-

cal playing reaches another dimension. While there may be some agreement before the

improvisation, such as choosing an approximate tempo or a fixed chord progression, each

musicians needs to pay close attention to what the others are playing to keep the tempo

and make meaningful contributions to the session.

Musical and social interactions are fundamental in music-making for non-professionals

as well. Even a garage band of teenagers requires the members to collaborate both when

53

Chapter 3. Social Interaction and Music Generation

they play and when they stop if they want to make music effectively (Kokotsaki and Hallam,

2007). Interaction also leads to educational benefits, strengthening social skills and self-

esteem, and giving musicians a sense of belonging as well as higher satisfaction (Hallam,

2010). The emotional value of music is also a critical factor in the emergence of social

benefits (Koelsch, 2015) and music can be helpful even with subjects with social difficulties,

for example those suffering from autism spectrum disorders (ASD), that can express feelings

through music more effectively than with words (Allen and Heaton, 2010; Quintin et al.,

2011).

While playing in groups can realize these social benefits even if the involved players

are not professional-grade musicians, reaching an effective interaction and pleasing musical

results still requires months (and sometimes years) of practice with an instrument. Not ev-

erybody wishes to spend that much time learning how to play, and some cannot even hope

to achieve such technical abilities, for example due to motor impairments. Professional

music therapists can help their clients obtain these benefits despite the lack of training (Br-

uscia, 1987). One of the tools available to music therapists is that of improvisation. Even

if the client is not a musician, therapists can share musical instruments and create music

and sounds together. Alternatively, the client could play a simpler instrument, like a drum,

that can be played by anybody to some extent, while the therapist contributes to the im-

provisation using more complex instruments, such as a piano or a guitar, creating music

that follows what the client is doing but is more elaborate and pleasing. Doing so requires

the help of a highly trained professional and is therefore hard to practice as a daily and

inexpensive activity. Moreover, when applied to children, these improvisation sessions are

usually a dialogue between the (adult) therapist and a single child. The therapist could

interact with two or more children, but it would be impossible to have a “peer to peer”

improvisation between children alone. One option towards this goal would be reducing the

quality of the music, which is normally controlled by the therapist. This would mean, for

example, using only drums, which are less demanding in terms of musical training. The

result would be a rhythmic improvisation, devoid of melodic and harmonic material, but an

improvisation nonetheless. This could seemingly be a good compromise since the interac-

54

3.1. The Social Nature of Music

tivity is maintained, which is one of the principal features of music therapy. However, the

aesthetic value of the interaction is a crucial factor for the therapeutic effects of a musical

dialogue (Aigen, 2007; Stige, 1998), and should therefore not be overlooked.

But what are the social implications of music making when this activity becomes shared

with computers?

In this chapter, I describe a gaming system inspired by this kind of musical interaction: it

requires two players that collaboratively create a rhythm, having the experience of creating a

musical interaction, while the system ‘augments’ the interaction by adding a chord progres-

sion and melody. The game is meant to recreate the social benefits of group music-making

and music therapy sessions, even for people that do not have musical expertise nor training.

I propose this as a serious game since the goal of the game goes beyond mere entertain-

ment (Ritterfeld et al., 2009). In this sense, this contribution falls within the intersection

of technology, music, and health/well-being. Using digital technologies to facilitate music

therapy interactions and to create personally-tailored experiences is indeed a field which has

seen a rise in interest lately, but still has lots of unexplored territory and potentially profitable

interdisciplinary approaches (Agres et al., 2021). In our case, the game can be seen as a way

in which technology can use music to empower patients to reach therapeutic goals. While

these aspects are related to a variety of fields, this thesis is about Computational Creativity.

The motivation for studying this specific application of musical creativity is to showcase

how automatic music generation, while being performed by a machine, can be extremely

human-centric. While some would argue that in general the task of music composition is

better left to humans (yet many others would argue against such position), this application

shows one example where computer-generated music is vital to open new possibilities for

interaction that would not be possible with pre-made human-authored compositions.

The rest of the chapter, after a brief discussion on related work, will first introduce the

technical implementation of the tempo tracking system which is at the basis of the game in

Section 3.3, and then the gaming and therapeutic aspects will be described in Section 3.4.

55

Chapter 3. Social Interaction and Music Generation

3.2 | Related Work

Music is a fundamental element of multimedia applications, but systems that use music

and rhythm as the main element of interaction are rarer. Some notable examples are

commercially acclaimed video games that focus on rhythm.

The most common way in which rhythm is used as a game mechanic is to require the

player to perform a series of actions at the right moment, following a predetermined se-

quence that is shown to the player aligned with a musical soundtrack. The actions can

vary from dance moves (as in Dance Dance Revolution (Konami, 1998) or Just Dance

(Ubisoft, 2009) or clicking buttons on a keyboard or touchscreen (Frets on Fire (Unreal

Vodoo, 2002) or on special controllers (usually shaped like musical instruments, like gui-

tars in Guitar Hero (Harmonix Music Systems/RedOctane, 2005), drums in Rock Band

(Harmonix Music Systems/MTV Games, 2007) or Taiko no Tatsujin (Namco, 2001) or

even DJ consoles in Beatmania (Konami, 1997). In all of these games, the rhythm is

predefined and follows the chosen songs. The player can influence the musical output as

making correct moves or mistakes can trigger visual and aural feedback, but the song does

not account for improvisation nor adapts to the player’s performance. Other games have

made different use of rhythm by forcing a rhythm on otherwise “normal” game mechanics.

Otocki (SEDIC/ASCII Corporation, 1987) is a shooter game and one of the first games to

have a procedurally generated soundtrack. Each time the player shoots a bullet, a note is

randomly generated using rules that ensure the note fits the background accompaniment.

Since the notes must fall on beats of the background music, the bullets are also shot only

on those beats, resulting in delayed shots if the player does not follow the rhythm. An

even stricter imposition of rhythm is found in Crypt of the NecroDancer (Brace Yourself

Games/Klei Entertainment, 2015), a fast-paced turn-based RPG where turns are tied to

the soundtrack’s beats, meaning that if the player fails to act within a beat, the turn is lost.

An interesting feature of this game is that the soundtrack is fully customizable by the user:

a tempo and beat detection algorithm is used to align the gameplay to any music file the

user selects from his personal library. This feature makes the game adaptive to the user

selection, but once the music is selected it is still the player that must follow the rhythm of

56

3.2. Related Work

the game and not vice-versa as I wish to do with the proposed system.

Rhythm is also used in academic research to create serious games. One application is

to use rhythm games to teach the sense of rhythm, which is usually learned early in infancy

and strongly influences auditory processing and speech learning (Santolin et al., 2019). In

particular, infants with hearing impairments or neurological disorders do not learn rhythm

as effectively as others. This makes the use of serious games that help to build a rhythmic

sense useful to support their educational and neurological development. One such game

is Rhythm Workers (Bégel et al., 2018), where the player must either tap a touchscreen

following the beat of a song or recognize whether a percussive sound is aligned to the

background music’s beat. This game is designed for children with neurological impairments

but requires good hearing since the rhythm is presented through sound. Another mobile

game called El Misterio de Armonisia (Pérez-Arévalo et al., 2017) uses both sound and

visual cues as it is intended for children who have hearing impairments. The player must

tap certain areas in the touchscreen when a symbol enters those areas, and the symbol’s

movements are aligned to the musical cues, similarly to more famous games like Piano Tiles

(Umoni Studio, 2014).

Another context in which rhythm games were used in serious context is that of motor

rehabilitation. Rehabilitation of fine movements requires repeating certain movements many

times, a task that can quickly become tiring making the patients less willing to do the

prescribed exercises, hindering the benefits of the therapy (Fujioka et al., 2018). One

serious game with the goal of overcoming this difficulty (Shah et al., 2019) uses the Leap

Motion Controller, a sensor made of two infrared cameras, to detect hand gestures and

use them as input for a rhythm game that is similar to many games described above, but

in which the notes are triggered by gestures. The presence of the music (to which the

notes are aligned) and the challenge of the game makes the experience more pleasing and

less tiresome. Other similar proposals using other motion capture systems exist in the

literature (Agres and Herremans, 2017).

All the applications described above are games that use some kind of prerecorded music

to which the gameplay is aligned, rather than allowing the players to improvise and use

57

Chapter 3. Social Interaction and Music Generation

their own pace. One application that is more similar to ours is D-Jogger (Moens et al.,

2014), which detects the user’s walking or running pace and warps the music they are

listening to make the musical tempo match the movement pace. This application has the

goal of making an exercise session more pleasant by matching the tempo of the music

with the user’s pace, making it similar to the therapeutic goal proposed here. Despite the

similarity, the strong simplification of the rhythmic features considered (i.e., time between

steps) in their system makes the tempo detection algorithm they implemented not useful

for a music improvisation application. One application that deals with full improvisation

instead is Wiimprovisation (Benveniste et al., 2009), which uses Wii controllers to allow

the players to create music collaboratively. In this case, there is no background music,

but the players can move their controllers as if they were drumsticks to produce sounds.

A few different sounds are available by pressing different buttons on the controllers, and

different instruments can be selected to allow the players to use different sets of sounds.

The serious goal of this game is to provide mediation and improve social interactions in

children suffering from behavioral disorders, making this proposal the most similar to ours.

The main difference, in this case, is that the music is entirely generated by the players, who

have access to very limited sounds and expressive potentialities, making the resulting music

arguably less aesthetically pleasing than the augmentation proposed in this paper. I am not

aware of other work in literature that have the aim of augmenting a rhythmic improvisation

in the context of a serious game to make it more aesthetically pleasing.

Without considering the gaming aspects, the main technical requirement of the proposed

system is being able to understand and follow a rhythm established by its users, synchronizing

musical events generated by the software with those performed by the players.

Much work within Music Information Retrieval has focused on detecting rhythm meant

as tempo and meter. In that case, there is no interest in retrieving such information in

real-time, but is rather used to label musical data offline, for use in retrieval tasks at a later

time. Despite the abundance of works addressing this task, It is worth noting that this task

is usually applied to audio files and audio datasets (Jia et al., 2019; Quinton, 2017; Quinton

et al., 2016) and, more recently, to multimodal files including audio and video (Itohara et al.,

58

3.2. Related Work

2012; Ohkita et al., 2015) or other additional data (Benning et al., 2007). Far less research

has been dedicated to symbolic music. This is partly due to the fact that symbolic music

often incorporates tempo and meter markings within the files, making the task trivial. On

the contraty, in the application that is the core of this chapter, we find ourselves in the

situation where symbolic music is being generated in real time, and thus meter and tempo

annotations are not available, meaning that we must focus mainly on the relatively little

relevant literature that covers tempo and meter estimation in a symbolic context.

The earlier methods dealt with non-expressive quantized tempo files, which is common

for scores and computer-generated files, but does not reflect actual human performances.

Steedman (1977) analyzed inter-onset intervals to find most plausible beat durations, and

analyzed accents to detect meter. Dixon (2001) applied similar ideas to recorded human

performances in symbolic format, a context more similar to ours, by clustering groups of

similar inter-onset intervals to account for variations due to human expressivity. A different

approach is taken by Frieler (2004), who analyzes the discrete temporal events that consti-

tute symbolic files by transforming them into a continuous function, and then analyzing the

autocorrelation of the signal to find viable beat candidates. Whiteley et al. (2006) takes

the same approach further by adding the concept of a bar pointer, an ideal cursor over the

musical data which enables a bayesian approach to represent metrical and temporal expec-

tations. A Bayesian approach was also used by Cemgil et al. (2000), but by estimating

tempo through Kalman filters operating on a Tempogram, a wavelet based representation

of the performance.

For completeness, the following are some methods used for tempo estimation in audio.

When dealing with aural features different challanges emerge, mostly due to the fact that

musical events have no explicit temporal labeling in audio files. One approach would thus

be the use of techniques for onset detection by using spectral features, followed by the

study of the periodicity in the onsets following some of the approaches outlined above,

such as autocorrelation of the signals (Gouyon and Herrera, 2003; Alonso et al., 2004).

This approach can be taken a step further by using specialized regression approaches to

determine the tempo based on the found autocorrelation values (Eronen and Klapuri, 2010).

59

Chapter 3. Social Interaction and Music Generation

The current state of the art for audio tempo estimation is less adherent to the techniques

which could be used for symbolic music, leveraging deep learning techniques. In particular,

Convolutional Neural Networks are employed in this field to deal with the high dimensionality

of an audio signal to infer the tempo information with high success rate (Schreiber and

Müller, 2018; Böck and Davies, 2020; Durand et al., 2017).

As stated above, those methods were not meant to work in real time. Requiring the

tempo estimation system to work in real-time is more frequently considered by research

relating to score-following and automatic accompaniment (Muller et al., 2004; Dannenberg,

1984; Raphael, 2002), but once again these often consider aural features that are not

available in the context considered here. Those works consider MIDI instruments instead

only have access to symbolic information, as in the case of the system presented here. Those

implementations that focus on following a human improvisation best cover the requirements,

but often make assumptions on the input performance, requiring some prior knowledge

before the improvisation starts. One example is the MIDI Accompanist by Toiviainen (1998)

that uses oscillators to adapt to a non-predefined beat. This work has a complicated

mathematical basis, and it only focuses on the adaptation to a beat, not considering the

meter. Beatback (Hawryshkewich et al., 2010) offers another approach to follow drummers

in their improvisation, but the synchronization of the system is based on having the tempo

decided before the improvisation, thus making it not adaptive. A similar approach is that

of B-keeper (Robertson and Plumbley, 2007), which analyzes the audio of a kick drum to

perform synchronization, but again requires the prior knowledge of the approximate tempo

and does not consider meter. The improvisation follower by Xia and Dannenberg (Xia and

Dannenberg, 2017) is instead based on melody but is limited to improvisations over a given

melody, and the system needs to be trained over examples of the target accompaniment.

Other famous systems that are capable of augmenting human improvisation include Pachet’s

Continuator (Pachet, 2002) and Biles’ GenJam (Biles, 2013b), but both systems require a

fixed tempo (GenJam also requires a chord progression and a scaffold of the song structure),

and the musical augmentation works by exchanging musical solos with the user, and not

giving a contemporary musical background to the user improvisation.

60

3.3. Real Time Tempo and Meter Tracking

Figure 3.1: Example of Gaussification. On the left, a set of time points with velocities are
represented as spikes over time. On the left, a Gaussification is applied to the same points,
to obtain a integrable function.

3.3 | Real Time Tempo and Meter Tracking

This section describes the algorithm for the tempo and meter detection that is used within

the Serious Game described in Section 3.4. Due to the length of its description, its im-

portance within the system, and the fact that it can be potentially be applied to different

applications, it is discussed separately.

3.3.1 | Theoretical Basis

The proposed algorithm is based on the concept of Gaussification, as introduced by Frieler (Frieler,

2004). The algorithm’s input is a list R of N time points (onsets of notes) and a list V

of N coefficients (velocities of the same notes). These could be received through MIDI

protocol, for example by playing on a velocity-sensitive MIDI pad, or could be inferred from

an audio source extracting energy peaks. The system then constructs the linear combina-

tion of Gaussians centered at the time points in R, each multiplied by the corresponding

coefficient in V (as an example, see Figure 3.1). To define Gaussification more precisely:

Let R = {ti}1≤i≤N and V = {vi}1≤i≤N , and σ the standard deviation of the Gaussian

kernel.

61

Chapter 3. Social Interaction and Music Generation

Then

GR,V (t) =
N

∑
i=1

vie
− (t−ti)

2

2σ2

is the Gaussification of R, V . Throughout the work, σ was fixed to 25 ms, as suggested by

Frieler (Frieler, 2004).

The idea behind this representation of the input is that human players do not follow

precisely the beat as a metronome would do, but the timing of each human-played note is

an approximation of that regular beat. The Gaussification allows the algorithm to consider

this approximation when computing other features.

The Gaussification has the advantage of being an integrable function. Thanks to that,

Frieler (Frieler, 2004) was able to define the correlation between two Gaussifications as

follows:

CG(R1,V1),(R2,V2)(t) =
N1

∑
i=1

N2

∑
j=1

v1i v
2
j e
−

(t−(t1
i
−t2
j
))2

2σ2

Similarly, one can compute the autocorrelation of a single Gaussification by computing its

correlation with a time-shifted version of itself:

AGR,V (t) =
N

∑
i ,j=1

vivje
−

(t−(ti−tj))
2

2σ2 (3.1)

The main difference between the formulations that are reported here and the original

ones by Frieler (Frieler, 2004) is that the formula for the Gaussian used here is not the usual

probability density function. This variant was chosen so that the peak of each Gaussian

centered in ti is exactly vi , giving a more precise representation of the velocity of each note.

Another important function needed for the meter and beat detection algorithm is one

that allows choosing the most likely tempo when more than one is possible. If a song has a

tempo of 100 bpm, it is possible to perceive it as 50 bpm or 200 bpm: if one makes such a

mistake tapping along the song, they would correctly tap to beats of the song, but either

skipping one every two beats or by tapping twice every beat. Since this does not result in

a loss of synchronization this is not to be considered a major mistake, but it is nonetheless

necessary to choose the most likely tempo in these ambiguous situations. Psychology of

rhythm comes in handy for this task. In particular, Frieler (Frieler, 2004) used a function

62

3.3. Real Time Tempo and Meter Tracking

derived from Parncutt’s pulse-period salience (Parncutt, 1994):

P (t) = e−2 log
2
2 t/ts (3.2)

where ts is the “spontaneous tempo” expressed in milliseconds, that is the tempo that

humans are more likely to tap to if instructed to regularly tap to a tempo of their own

choice. Throughout the research, ts was fixed to 500 ms (120 bpm).

3.3.2 | Algorithm

This section describes the procedures used to estimate the tempo and meter, and also to

predict the onset of measures needed to effectively follow the rhythm established by an

improvising human.

events ← list of all the rhythmic events. Each element of this
list contains two fields: timestamp, velocity ;
window ← the width of the time window in milliseconds;
Input: events,window
for ainevents do

if a.timestamp < now ()−window then
remove a from events;

else
a.timestamp ← a.timestamp−(now ()−window);

end
end
N ← length(events);
for i ← to N do
R[i]← events [i].timestamp;
V [i]← events [i].velocity ;

end
norm ← AGR,V (0);
for i ← 100 to 2000 do
A[i]← (AGR,V (i)/norm) ∗ P (i);

end
beat ← argmax(A);
clar ity ← max(A)/P [beat];
return beat, clar ity ;

Algorithm 1: Estimation of the beat duration, along with its clarity.

63

Chapter 3. Social Interaction and Music Generation

3.3.2.1 | Beat Estimate

Algorithm 1 shows how the tempo is estimated. Of the input set of time points, only the

ones played in the last window ms are kept. The autocorrelation of the gaussification of

the points within this time window is computed as described in the previous section. The

rationale behind this is that a musical rhythm will be highly similar to itself when shifted

by the duration of a beat, thus the autocorrelation of the rhythm will peak on the most

reasonable beat candidates. The possible beat durations considered are between 100 ms

and 2000 ms, corresponding to tempos between 600 bpm and 30 bpm. For each possible

tempo, the autocorrelation is normalized by dividing the result with the autocorrelation of

the signal with itself, that is greater or equal to any other possible autocorrelation value.

This gives a result in the [0,1] interval, that is then multiplied by the value of function (3.2)

for the same tempo. This weighting makes the algorithm prefer tempos that are closer to

the perceived preferred tempo. The amount of time that gives the maximum result is the

chosen duration of a beat. To obtain a value in bpm one simply needs to use the following

equation:

bpm =
60000

beat duration

The algorithm also computes the clarity, that is simply the value of the autocorrelation

of the chosen tempo before the application of (3.2). This is a value in the [0,1] interval

and can be seen as the confidence of the algorithm in stating that the chosen beat is the

correct one.

For simplicity, Algorithm 1 shows how the autocorrelation is computed with the formula

introduced above. In practice, this is rather inefficient. Algorithm 2 shows how to incre-

mentally compute the autocorrelation every time a new rhythmic event is added, by saving

the partial sums in the events themselves. By doing this, the partial autocorrelation sums

of events that are outside the window are discarded and only those that are still within the

window are considered, along with the new event. The Add_Event function returns the

autocorrelation at a time shift t. To compute the beat and clarity, this function must be

inserted at the beginning of Algorithm 1 substituting the first two for cycles.

64

3.3. Real Time Tempo and Meter Tracking

events ← list of all prior events, added to the list with the following
function. Each element of this list contains three fields: timestamp,
velocity and sumt ;
window ← the width of the time window in milliseconds;
Function Add_Event(timestamp, velocity , t)

Output: AGR,V (t)
for a in events do
a.sumt ←
a.sumt + velocity ∗ a.velocity ∗ e−

(t−(timestamp−a.timestamp))2

2σ2 ;
end
events ← events.append(event(timestamp, velocity, 0));
result ← 0;
for a in events do

if a.timestamp > now() - window then
result ← result + a.sumt ;

else
remove a from events;

end
end
return result;

end
Algorithm 2: The algorithm for incrementally computing the autocorrela-
tion of the input signal at a given time-shift t. The call to function now ()
should output the current timestamp.

3.3.2.2 | Meter Estimate

Once the beat is estimated, the meter is computed based on the assumption that meter

emerges as a pattern of accents (Povel and Essens, 1985). A series of rhythmic patterns

are predefined, and a “prototypical” signal is constructed for each by generating time points

distanced by the estimated beat, having a velocity defined by the rhythmic pattern, following

the procedure in Algorithm 3. After these prototypes are generated, the meter is estimated

by choosing the prototype that has the highest correlation to the input time points set. In

this implementation only 34 and 44 were considered as possible meters, but it would be easy to

extend the procedure to other meters using additional prototypes. Exactly nine time points

are generated so that the sum of the velocities of all the points are the same between the

two prototypes, meaning that the correlations computed for the two meters are comparable.

Since there is no guarantee that the beginning of the window coincides with the beginning

65

Chapter 3. Social Interaction and Music Generation

of a measure, the the correlation is computed giving a variable time shift as input, that

“moves” the prototype along the input points. The time shift that results in the highest

correlation is the “phase” of the signal, i.e. the beginning of a measure in the window, as

shown in Figure 3.2. The meter whose prototype has the highest correlation (considered the

phase) is the chosen estimate for meter. The complete procedure is reported in Algorithm

4, that uses the function generateP rototype() described by Algorithm 3.

3.3.2.3 | Estimation of Next Measure

From the other procedures, the system already has an estimate of the duration of a beat

and of the number of beats in a measure, thus can easily obtain the duration of a measure:

measure = beat ·meter

In order to be synchronized with the human improvisation, the system needs a way to deter-

mine when to expect the beginning of a measure, just like a human joining an improvisation

Figure 3.2: The gaussification of an input set of time points (solid blue line) is compared
to the prototypes for 44 (top) and 34 (bottom) meters (red dotted lines). The prototype’s
phases computed by the system translated them to maximize the correlation with the input,
but 44 was (correctly) chosen in this case as it scores a higher correlation.

66

3.3. Real Time Tempo and Meter Tracking

Input: meter , beat
Rmeter ← [], Vmeter ← [];
for i ← 0 to 8 do
Rmeter .append(i ∗ beat);
if modulo(i ,meter) == 0 then
Vmeter .append(1);

else
Vmeter .append(0.1);

end
end
return Rmeter , Vmeter ;

Algorithm 3: Generation of a prototype.

Input: beat,R, V ,window , cur rent_time
R3, V3 ← generateP rototype(3, beat);
R4, V4 ← generateP rototype(4, beat);
for i ← 0 to window do
cor r3[i]← CG(R,V),(R3,V3)(i);
cor r4[i]← CG(R,V),(R4,V4)(i);

end
if max(cor r3) > max(cor r4) then
meter ← 3;

else
meter ← 4;

end
phase ← argmax(cor rmeter);
return meter , phase;

Algorithm 4: Estimation of the meter, along with the phase.

would wait for the beginning of a measure. It is possible to forecast the beginning of first

measure outside the considered window with the following:

onset = cur rent_time +measure − ((window − phase)%measure)

Where % is the modulo operation, and window must be the same time window used in the

above procedures. Ideally, the start of the next measure is obtained by adding the duration

of a measure until the result is beyond the window. In practice, the same result is achieved

implicitly via the modulo operation.

67

Chapter 3. Social Interaction and Music Generation

3.3.3 | Evaluation

The evaluation of the system was carried out through a variety of simulations, trying to

quantitatively assess if and how well the requirements described in the Introduction are met

by the system. Since the literature is scarce on systems for the estimation of tempo and

meter in a symbolic context, there are not many available datasets to test the effectiveness

of the system. Even less datasets are available that account for human deviations from a

perfect tempo. For this reason, most of the experiments described below are simulation

based. For the same reason, it is not easy to compare the results of this system with our

state-of-the-art approaches. Both real human-performances and a comparison to a state-

of-the-art algorithm can be found in section 3.3.3.5, but some concessions had to be made

and the dataset had to be adapted in order to compare the results of this system with a

system which is meant to work with audio files.

3.3.3.1 | Experiment 1: Real-Time

Before describing the experiment in itself, it is useful to make a few considerations on the

implementation of the system that are relevant to real-time computation. Envisioning an

application that needs to synchronize with an input rhythm, the rhythmic analysis process

should be called at constant time intervals. For example, two or three times every second

(every 500 or 333 ms). To consider the requirement satisfied the computation needs to be

carried out before another call is made (i.e., it must last less than 333 or 500 ms).

Method The computational time of the algorithms described above grows as O(N2),

where N is the size of the input arrays of time points and velocities, or more simply put

the number of input notes. This depends on the user improvisation and on the size of the

window. For this simulation, the size of the window was fixed to 6000 ms, and generated

regular rhythms having from 30 to 80 notes (with a step of 5) inside the 6000 ms time

window, and run the algorithm for the estimate of tempo, meter and onset of next measure

50 times per each setting on a 2013 Macbook Pro (2.4GHz Intel i5 processor, 4GB Ram).

The results are shown in Table 3.1.

68

3.3. Real Time Tempo and Meter Tracking

Notes Avg. Time [s] SD % SD

30 162.62 2.17 1.34
35 215.32 3.15 1.46
40 253.98 4.37 1.72
45 315.04 5.30 1.68
50 360.70 6.20 1.72
55 432.86 11.37 2.63
60 486.32 11.03 2.27
65 568.56 3.44 0.61
70 640.88 4.15 0.65
75 705.24 12.18 1.73
80 788.92 15.30 1.94

Table 3.1: Average execution time (in seconds) for the extraction of tempo, meter and
beginning of next measure, along with absolute and percent standard deviation (SD). The
timings were measured on a 2013 Macbook Pro (2.4GHz Intel i5 processor, 4GB Ram)

Discussion Despite the low computational power of the used machine, the algorithm is

able to analyze a set of 45 notes in less than 333 ms, and up to 60 notes in less than 500 ms.

With the use of the incremental algorithm for the computation of the autocorrelation, the

only notes that must be considered are those played since the last calculation. In practice,

this means that the system can follow the execution as long as the users play less than 45

notes in 333 ms, or one note every 7.4 ms. Given the fact that this is borderline impossible,

I consider the system to be completely capable of functioning in real-time.

3.3.3.2 | Experiment 2: Steady Tempo

The second experiment aims to compute metrics relating to the ability of the system to pre-

dict the tempo and meter, assuming a quasi-steady rhythmic production. The performance

is evaluated using as input the rhythms generated by a simulator, able to create random

event, characterized by reasonable (in the sense of human-like) constant tempo and meter,

given as parameters.

Simulations Setup The simulation used does not work in real-time, but it simulates the

passing of time via an internal metronome implemented as an integer counter. Iteratively,

69

Chapter 3. Social Interaction and Music Generation

0
0.2
0.4
0.6
0.8
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4/4 3/4

0
0.2
0.4
0.6
0.8
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4/4 3/4

0
0.2
0.4
0.6
0.8
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4/4 3/4

Figure 3.3: The importance assigned by the simulator to each of the 16th notes positions
in a measure, both for 44 and 34 meters.

the simulator consults, for every 16th note, a predefined table determined by the chosen

meter, whose cells represent the importance of each metric position in the measure. The

used weights are reported in Figure 3.3. Algorithm 5 shows how the table is used to generate

a rhythm in 44 meter (but is easy to adapt to 34): for every 16th note the content of the table

represents both the probability of generating a note corresponding to that time point and

the velocity associated to that note if generated. Both Figure 3.1 and 3.2 are examples of

4
4 rhythms generated in this way. The algorithm includes the possibility of adding a random

error to the generated time, to simulate the human imprecision in keeping a rhythm, that

depends on the σerr parameter.

Input: beat
metro ← 0 time ← 0;
for i ← 0 to 160 do
importance ← table[metro];
if random(0, 1) < importance then
R.append(time + er ror (σerr));
V .append(importance);

end
metro ← modulo((metro + 1), 16);
time ← (time + beat);

end
return R, V ;
Algorithm 5: Generation of a simulated rhythm in 44 .

Metrics Every time a note is generated, an estimate for tempo, meter, and onset of next

measure is done and compared to the correct value, to compute the following metrics:

70

3.3. Real Time Tempo and Meter Tracking

Tempo Accuracy (T-AC) : a score of 100 is assigned to each correct tempo estimate, a

score of 75 is instead given if the estimate is half or double the real tempo, as this

is considered a minor mistake. A tolerance of 10 ms is considered in both cases. A

score of 0 is given otherwise. The final value is the average score;

Meter Accuracy (M-AC) : the percent of times the estimated meter coincides with the

real meter;

Precision (P) : computed as the ratio of estimates that are within 50 ms from an actual

onset of a measure over the total amount of estimates;

Recall (R) : computed as the ratio of actual onsets of measures that are estimated within

50 ms over the total number of measures minus one (as the very first measure is

impossible to forecast).

Precision and Recall are computed only when the simulation is over, while Tempo and

Meter Accuracy are computed progressively during the simulation. This is important because

the “real” tempo and meter are the ones that the simulator is considering at the moment

of the estimate, and it could change over the simulation for some experiments.

Experiment Setup For this experiment the simulator module was instantiated varying two

parameters. The first was the tempo, that varied from 60 bpm to 200 bpm with 20 bpm

intervals. The second parameter is σerr : when generating the onsets of the rhythmic

events, a random error based on the Normal distribution was added. σerr is the standard

deviation of the distribution, that imitates different rhythmic precision levels of the simulated

human player (Repp, 2005). For each setting, the simulator ran 50 times, each on a freshly-

generated random rhythm, and the metrics were averaged over these executions. The tempo

did not change during an execution, and the meter was fixed to 44 for all the experiment.

The goal of this experiment was to test how well the algorithm responded to rhythmic

imprecision, and if the chosen tempo was relevant to the effectiveness of the algorithm.

The results of these experiments are reported in Tables 3.2 and 3.3.

71

Chapter 3. Social Interaction and Music Generation

σerr [ms] T-AC (SD) M-AC (SD) P (SD) R (SD)

0 79.6 (19.1) 87.8 (10.3) 54.8 (19.6) 86.4 (14.5)
2.5 79.5 (17.2) 87.4 (10.5) 53.3 (19.0) 85.8 (13.9)
5 76.0 (18.6) 87.6 (11.5) 49.9 (20.0) 83.1 (15.9)
7.5 70.5 (20.4) 86.1 (11.5) 45.6 (19.7) 80.1 (15.9)
10 66.7 (21.2) 86.0 (12.2) 42.5 (19.3) 77.0 (17.7)
15 53.9 (23.3) 84.8 (11.7) 34.5 (17.5) 70.3 (18.8)
20 41.2 (22.5) 83.0 (11.8) 25.8 (15.3) 59.7 (19.8)
25 33.4 (20.5) 81.1 (12.1) 21.2 (14.3) 53.0 (20.4)

Table 3.2: The four metrics (with standard deviation) computed over the various trials for
each of the σerr settings, averaged across all tempo settings.

Beat [ms]([bpm]) T-AC (SD) M-AC (SD) P (SD) R (SD)

1000 (60) 56.9 (18.2) 93.5 (5.6) 30.1 (12.5) 76.8 (18.3)
750 (80) 58.0 (24.6) 88.4 (7.2) 32.5 (15.0) 72.8 (19.1)
600 (100) 78.1 (22.6) 83.2 (6.9) 45.5 (17.0) 83.5 (17.6)
500 (120) 81.9 (19.9) 94.7 (5.8) 66.2 (21.0) 88.5 (13.7)
428 (∼140) 78.1 (23.0) 92.9 (7.1) 52.0 (20.5) 86.1 (16.7)
375 (160) 45.8 (28.5) 83.4 (13.2) 19.3 (9.6) 49.8 (16.1)
333 (∼180) 44.3 (21.8) 74.0 (9.5) 34.5 (15.8) 66.7 (18.2)
300 (200) 57.6 (18.99 73.8 (10.9) 47.3 (19.1) 71.0 (17.3)

Table 3.3: The four metrics (with standard deviation) computed over the various trials for
each of the tempo settings, averaged across all σerr settings.

Discussion In the best-performing conditions, i.e. either having very low σerr or having a

tempo of 120 bpm, the system performs really well: both the tempo and meter accuracy are

near or above 80. The recall in estimating the beginning of new measures is generally much

higher than the precision, and is generally lower than what one could expect from the value

of the tempo and meter accuracy: if the tempo and meter are correctly identified it should

not be difficult to foresee a new measure. This difference can be explained in two ways.

First, the measure onset determination procedure may not be precise enough, meaning that

sometimes the beginning of a measure is estimated to be one of the weaker beats and not

the first one. Second, the fact that a double tempo is considered as nearly correct means

that the prediction might fall on half a measure rather than a full one. By looking more

qualitatively at some of the generated rhythms where there are errors, it seems that the

72

3.3. Real Time Tempo and Meter Tracking

sum of these two factors makes it happen that the prediction often falls on the third and

sometimes on the second or fourth beat.

When deviating from the best settings, the performances decrease, especially concerning

the tempo accuracy and the precision. Changing the tempo from the ideal one, the perfor-

mance of the tempo accuracy degrades, probably because of the Parncutt function (3.2)

the double or half tempo estimates become more frequent as the tempo becomes more

extreme. Yet, the change is different for slow and fast tempos: faster tempos perform

worse. This is probably due to the fact that the error on the input given by σerr becomes

more evident as the intervals between notes become shorter.

As σerr grows, the performances worsen (although the meter accuracy remains over

80), but this comes to little surprise. With σerr ≤15 ms (as expected from a musically

trained human, although this depends on many factors (Repp, 2005)), the tempo estimate

remains correct more than half of the times, but having σerr >20 ms (which is expected

from a non-musician playing a steady rhythm) is below that threshold. This, coupled with

the fact that the precision is rather low, means that additional controls might be needed to

keep the estimate and the ability to follow the improvisation consistent, for example taking

the median of a series of consecutive estimates.

3.3.3.3 | Experiment 3: Sudden Changes

The above experiment only evaluated the general effectiveness of the proposed method

when a fixed tempo and meter is kept throughout the execution. This experiment tries to

check how quickly the system can adapt if those values suddenly change.

Experimental Setup This experiment uses two simulations: one in which the meter

changes, and one where the tempo changes. In both scenarios, the simulation performs

five measures without any change, and then suddenly changes setting. From that moment,

the time that passes until the system has predicted the new tempo or meter correctly ten

times is measured, meaning that the system has successfully adapted.

When changing the meter, the simulation was run with three tempo settings to see how

73

Chapter 3. Social Interaction and Music Generation

Tempo [ms] Avg. Time [ms] (SD) Measures

4
4 →

3
4

375 6598 (2355) 5.87
500 4625 (1488) 3.08
750 5662 (2013) 2.52

3
4 →

4
4

375 6257 (2376) 4.17
500 5047 (976) 2.52
750 3465 (924) 1.16

Table 3.4: The time needed by the algorithm to detect a change of meter, in milliseconds
and in number of measures.

∆ Beat [ms] Avg. Time [ms] (SD) Measures

-50 7463 (1158) 4.15
50 7711 (1775) 3.51

-100 6557 (1778) 4.10
100 7995 (1918) 3.33

-150 7136 (1315) 5.10
150 8866 (2347) 3.41

-200 5537 (1213) 4.61
200 9971 (3048) 3.56

Table 3.5: The time needed by the algorithm to detect a change of tempo (millisecond
added or subtracted from each beat), in milliseconds and in number of measures.

the estimate was affected, both going from a 44 to a 34 meter and vice-versa. The results,

averaged over 50 runs for each setting, are shown on Table 3.4. When changing the tempo

instead, the initial tempo was fixed to 500 ms (120 bpm), but the amount of change varied

from 50 to 200 ms (both increasing and decreasing the speed). Each setting was tested on

50 runs. The results are reported on Table 3.5. The σerr parameter was kept to 10 ms.

Since the reported timings are highly dependent on the tempo, the results are also reported

as number of measures.

Discussion As evident from the results, sudden changes do not lead to immediate adapt-

ing. Even for a human it is not easy to immediately detect a change in meter before

listening to at least one full measure to realize that the metric accents have changed. That

considered, the results for meter changes are satisfactory.

For a human, noticing that the tempo has changed is usually more immediate, but

74

3.3. Real Time Tempo and Meter Tracking

Step T-AC (SD) M-AC (SD) P (SD) R (SD)

0 87.1 (10.7) 97.4 (2.8) 69.3 (12.3) 90.2 (9.6)
1 60.0 (22.3) 92.7 (6.6) 45.7 (22.6) 78.0 (19.2)
2 49.3 (22.9) 92.4 (6.4) 36.9 (20.8) 68.3 (22.0)
3 40.8 (26.0) 90.2 (8.6) 31.4 (19.5) 61.4 (22.3)
4 35.7 (27.5) 87.8 (9.8) 27.6 (19.6) 55.8 (21.9)
5 34.3 (28.19 86.8 (9.2) 26.3 (19.7) 54.5 (23.9)

Table 3.6: The evaluation of the estimates when the tempo grows (or decreases) by Step
milliseconds every 16th note.

instead the system performs worse on this task, especially when the tempo becomes faster

(denoted on the tables by tempo intervals with the minus sign, as the bpm value is inversely

related to the beat duration). The difficulty of the adaptation to tempo changes is probably

due to the fact that the time window of considered notes is fixed to 6000 ms, and thus

will consider the old tempo until the notes relating to that tempo are outside the window.

Windows that vary in size could possibly be helpful to this task.

3.3.3.4 | Experiment 4: Gradual Tempo Change

The final experiment tests how the system reacts when the tempo grows not in a sudden

way but gradually over time.

Experimental Setup The setup for this experiment was similar to that of Experiment 2,

but here instead of having a fixed tempo, there were five measures with a fixed tempo of

500 ms, then a measure where the tempo incremented or decremented by a fixed amount

every 16th note, followed by four measures where the reached tempo remained unchanged

(the final tempo is 500 ms ± increment · 16). The possible values for the tempo change

were 1 to 5 ms, and for each 50 runs were made increasing the tempo and 50 runs were

made decreasing the tempo. The σerr parameter was kept to 10 ms. The averaged results,

along with a baseline where the tempo does not change, are reported in Table 3.6. The

results are averaged over over 50 runs for each setting. There was no significant difference

between the increasing tempo versus the decreasing one, so the two cases were joined.

75

Chapter 3. Social Interaction and Music Generation

Discussion The results show that the system cannot maintain its stability even if the

tempo change is performed over a period of time rather than immediately. If the change is

limited, we can expect the performance to degrade in a limited way for what concerns the

tempo estimate. The estimate of the next measure’s onset becomes less and less effective,

because the previsions that are made before the tempo change cannot account for the

final tempo change. This is not really surprising: even for a human musician it is hard to

follow a crescendo/rallentando only by hearing another musician perform it, without having

practiced it before or without having a visual cue (like a director).

3.3.3.5 | Experiment 5: Human Performance

Setup To verify the tempo tracking abilities of the system, a corpus of rhythmic perfor-

mances is needed, having a known ground truth tempo. Moreover, since the system uses

symbolic information (timing and velocity) based on the MIDI protocol, a corpus of MIDI

files (or other symbolic formats) must be used for the assessment, rather than a corpus of

audio files (such as .mp3 or .wav files). Many such corpora exist and are available freely

on the internet since such datasets are also used for music production. However, most

datasets are mostly (if not entirely) comprised of beats in 4
4 meter, and generated from

scores or other sources that use quantized timings, representing an ideal perfect tempo.

Instead, real human performances (the ones that would be most interesting here) include

subtle variations from the established tempo due to human expressiveness or to imprecisions

and other physical constraints.

The chosen dataset is the Groove Dataset (Gillick et al., 2019), created as part of

Google’s Magenta Project1. This dataset includes more than thirteen hours of drum MIDI

files, recorded directly from human performances. The problem of not having many samples

in meters other than 44 is present in this dataset as well: of its 1150 files, only twelve are

not in 44 meter. Therefore, I decided to eliminate those twelve files and focus on 44 for this

evaluation. This dataset also includes many “fills” samples, i.e., short phrases meant to join

different parts of a song. These are not fit for tempo tracking because of the short length

1https://magenta.tensorflow.org/datasets/groove

76

https://magenta.tensorflow.org/datasets/groove

3.3. Real Time Tempo and Meter Tracking

that would not allow the algorithm to find a rhythmic similarity. Those were thus excluded,

along with all the files that lasted less than two measures, leaving a total of 448 files that

were used for the evaluation of the system.

Since the proposed system is not designed to simply tell the tempo of a given MIDI file,

for the goal of this evaluation each input file was processed as follows:

■ all MIDI note_on messages were considered a single hit on one pad of the system;

■ notes that happened at the same moment (with a 25 milliseconds tolerance) were

joined to be considered as a single event, summing their velocity and keeping the

timestamp of the first note;

■ only the first 15 seconds of each file were kept: the system considers only the notes

within a defined time window, which was less than 15 seconds in all experiments, so

the remaining part was disregarded for this evaluation.

The tempo output given by the system represents what the system estimates as the

tempo for that particular moment, as the system never considers the file as a whole. This

means that it uses less information than what is available, but this is a better simulation

of what happens during the actual improvisation game, where the system must evaluate

the tempo only based on the last few seconds of improvisation. Two metrics were used in

this evaluation: the percentage of files for which the tempo was correctly identified, and

the percentage of files for which the tempo estimate is double or half the ground truth

tempo. Since playing double or half tempo still allows synchronization (while the “feel” is

different, the beats of a halved tempo always fall on a beat of the regular tempo), this is

considered a minor mistake, and thus the sum of these percentages can be considered as an

indication of the precision of the system. These metrics were also used as a way to tune the

three parameters of the tempo tracking system: σ, used to compute the autocorrelation

of the signal (see Equation 3.1 and Algorithm 2), β, a damping factor for the Parncutt

function (Equation 3.2), and the time window of events to be considered when computing

the tempo.

77

Chapter 3. Social Interaction and Music Generation

Window (ms) Correct Imprecise Total

2500 58.80% 15.80% 74.60%
5000 66.33% 14.71% 81.05%
7500 69.47% 13.65% 83.12%
10000 70.31% 13.27% 83.58%

Table 3.7: The results obtained by the system with various window settings, averaged across
all β and σ values tested.

β Correct Imprecise Total

0.25 63.77% 21.91% 85.68%
0.5 70.15% 15.80% 85.95%
0.75 71.82% 13.07% 84.89%
1 71.80% 11.84% 83.63%
1.5 70.85% 10.13% 80.98%
2 68.40% 9.19% 77.59%

Table 3.8: The results obtained by the system with various β settings, with a time window
fixed to 7500 ms, averaged across all σ values tested.

σ Correct Imprecise Total

7.5 66.16% 17.36% 83.53%
10 68.15% 16.32% 84.47%
12.5 68.92% 15.59% 84.51%
15 69.73% 14.79% 84.51%
17.5 69.75% 14.43% 84.18%
20 70.53% 13.84% 84.37%
22.5 70.66% 13.67% 84.33%
25 70.95% 13.42% 84.37%
27.5 71.24% 13.05% 84.29%
30 71.11% 12.76% 83.87%
32.5 70.78% 12.34% 83.13%
35 69.66% 11.80% 81.46%
37.5 68.20% 11.22% 79.43%
40 66.67% 10.56% 77.22%

Table 3.9: The results obtained by the system with various σ settings, with a time window
fixed to 7500 ms, averaged across all β values tested.

78

3.3. Real Time Tempo and Meter Tracking

Discussion Various values for those parameters were tested, as reported in Tables 3.7-

3.9, testing all the combinations between these parameter settings. The tables report the

percentages of estimates that were correct, as well as the percentage of estimates that

were double or half the correct tempo (“Imprecise” guesses), and the total of times which

the system guessed either correctly or imprecisely. Table 3.7 shows a first result which was

to be expected: lengthening the window makes the estimates more accurate. These results

would make us choose the longest window possible, but, in this context, the tempo does

not vary from the established one. Having longer windows also means that the system will

be slower reacting to tempo changes, a feature that is not tested here but is considered

important to the system. Therefore, the window was fixed to 7500 ms in the following

tables. Tables 3.8 and 3.9 show the results when changing the β and σ parameters, which

are useful for tuning the system. From both tables, we can see correct estimates are

not directly correlated to imprecise estimates. This means that tuning the parameters can

make a difference in how the system interprets different tempo candidates (especially the β,

used in 3.2 to distinguish between promising tempo candidates given by the autocorrelation

computation). When choosing the parameters, a tradeoff must be found between favoring

the correct estimate (that will result in a better experience) and tolerating more imprecise

estimates that allow for synchronization even if the algorithm is not accurate. I fixed

β = 0.75 and σ = 25, a combination that gave correct results in 74.06% of the cases and

an additional 12.47% of imprecise results, for a total of 86.53% of “acceptable” estimates.

Comparison It would be useful to compare these results to those obtained by algorithms

for tempo tracking to give this data more meaning. Within the field of Music Information

Retrieval (MIR), MIREX2 is the primary collection of challenges and datasets relating to

MIR tasks, so it is customary to compare new results to those obtained in those challenges.

The challenge that comes closest to my goal is that of “Audio Tempo Estimation”, which,

as the name suggests, involves detecting the tempo of audio files. While being the most

similar, being geared towards audio files makes this challenge very different from my goal of

detecting tempo in a symbolic setting, but MIREX does not include any challenge or dataset
2Music Information Retrieval Evaluation eXchange, www.music-ir.org

79

www.music-ir.org

Chapter 3. Social Interaction and Music Generation

Correct Imprecise Total

Proposal 74.06% 12.47% 86.53%
Tempo-CNN 70.31% 21.43% 91.74%

Table 3.10: Comparison of the results of the proposed system (window=7500, β = 0.75,
σ = 25) and those obtained by Tempo-CNN.

for the estimation of tempo in symbolic files. This may be because, in most scenarios, a

symbolic file will come with a tempo annotation (which is sometimes necessary to play the

file) making it useless to use algorithms to infer the tempo, although in our situation as

well as in other interactive applications it makes completely sense to estimate the tempo

of a symbolic sequence. To have a benchmark, a comparison with Tempo-CNN (Schreiber

and Müller, 2018) is reported below. Tempo-CNN is an open-source algorithm that is freely

available online3 and that performed well on the 2018 MIREX Audio Tempo Estimation

challenge, which is the latest at the time of writing as the challenge was not repeated in

later years. Instead of using the MIREX dataset for the comparison, which is composed of

audio files and cannot function with the proposed system, I rendered the MIDI files from the

Groove dataset into audio files. The Groove dataset already includes an audio rendering of

all its files, but using a standard rendering would not have allowed a fair comparison with my

system, which only uses timestamps and velocity. To avoid including too much information

(mainly timbre variation, due to using a full drumkit rather than a single pad), I rendered

the MIDI using only a single sound for all the note_on events in the files. I chose the

Hi Bongo sound (note 60 on General Midi channel 10) because it is a hand-played drum,

making it most similar to the playing style I would expect on the proposed system. The

conversion from MIDI to .wav was performed using the Command Line tool TiMidity++4.

For each of the 448 files in the corpus, Tempo-CNN estimated the tempo, and once again,

the number of correct guesses and also guesses that are half or double the correct tempo

wes computed.

Table 3.10 shows the results obtained by the system in the ideal setting, compared to

3https://github.com/hendriks73/tempo-cnn
4http://timidity.sourceforge.net

80

https://github.com/hendriks73/tempo-cnn
http://timidity.sourceforge.net

3.4. A Social Musical Game

those of Tempo-CNN. The two systems performed similarly: my system guessed correctly

more often, but Tempo-CNN had more acceptable guesses in total. It is also interesting

comparing Tempo-CNN’s result with the MIREX one, even if they are not directly com-

parable. MIREX requires submitted algorithms to guess two tempos rather than one, as

the dataset includes two tempo annotations for each song. These two annotations are

almost always one the double of the other, making the metric used by MIREX “At least one

tempo correct” similar to “Total” guesses in this evaluation, which accounts for double/half

tempo estimates. Tempo-CNN guessed more than 97% of the times at least one tempo

correctly on both the datasets used by MIREX. This suggests that there is a performance

drop between what registered at MIREX and the new evaluation due to the lack of timbrical

information in the dataset, which highlights that it is harder to guess the tempo using the

limited information available to the proposed system. It is also to be noted that the proposed

system is extremely efficient: using Algorithm 2 for the computation of the autocorrelation

incrementally, it is possible to calculate the autocorrelation at every new note in a couple

of milliseconds, making this system extremely apt for real-time applications like the one

described here. It is not immediately clear if Tempo-CNN could be adapted to operate in

real-time.

3.4 | A Social Musical Game

This section describes the Serious Game that was implemented using the tempo detection

system described above. The introduction to this chapter briefly discussed the potential

therapeutic benefits of such an interaction between players. Regardless of these potential

benefits, from the player’s perspective, the game’s objective is the interaction itself and

the two players must collaborate rather than compete to obtain more rewarding results.

The game starts without any music, and the two players must start playing the MIDI

pads that constitute the gaming system’s input. In the beginning, they can only hear the

sound they make with the percussion. As the game goes on, the system evaluates how

well the two players are interacting and assigns a score to their playing. This score is

presented to the players in two ways: on-screen, as “points” collected by the pair by keeping

81

Chapter 3. Social Interaction and Music Generation

Figure 3.4: The interface of the system: a computer running the software connected via
USB to a MIDI keyboard with drum pads.

a good interaction over time, and through “musical” feedback. This feedback is the musical

augmentation itself, which follows the tempo and rhythm given by the two players but

adds synthesized instruments to the musical production. Having a higher aesthetic value in

the musical output should give a more engaging experience to users and incentivize better

interactions between the players.

3.4.1 | Architecture

The system’s architecture is divided into three main parts. The “Listener” module collects

the inputs from the users and uses those to infer low-level features like tempo and measure

duration. The second module is the “Scorer”, which uses these low-level features to evaluate

the interaction between the players and assign them a score. Finally, the “Generator” uses

all the available information from the other two modules to generate the augmented music

and synchronizes it to what the users are playing. These modules will be better explained in

82

3.4. A Social Musical Game

Figure 3.5: Data flow in the Listener module: the onsets and velocities are collected from
the drum pads and then gaussified, and an average of the two signals is computed.

the following three subsections. Before reading the details of each module, the reader might

find it useful to watch a video example execution of the game, available at the following

URL: https://mediaspace.unipd.it/media/0_g90zoo2n

3.4.1.1 | Listener

The MIDI pads (the black squares in Figure 3.4) represent the only input interface of the

system used by the users. In the current implementation, each player uses a single pad,

83

https://mediaspace.unipd.it/media/0_g90zoo2n

Chapter 3. Social Interaction and Music Generation

but this could easily be changed in the future. Every time someone hits a pad, it sends a

note_on message to the computer running the gaming software, which saves a timestamp

when the message is received, along with the MIDI velocity included in the message, which

represents the force with which the user struck the pad. Being a strongly time-dependent

application, the system currently does not allow for network play and the pads must be

connected to the same computer. The rhythm played by each user is saved as a list of

events, which can then be represented as the topmost plots in Figure 3.5 show.

The players are not required to follow a precise tempo, and their rhythm is completely

improvised: at first, they can only hear the percussive sounds they generate by hitting the

pads. The system must then infer the tempo they produce to add music that is synchronized

with what the users play. To do so, the system uses the algorithm described in Section 3.3.

That algorithm functions using a single set of time points, while in this setting each player

produces one. The Listener thus calculates the tempo on an additional set of points which

is the average of the two lists of events registered from the two users. Since the two players

perceive the tempo as a feature emerging from the sounds produced by both, this approach

is more appropriate for the estimation of the tempo the two players perceive, rather than

computing the autocorrelation on both the signals and keeping a different tempo estimation

for each user.

This module outputs the estimated tempo and meter of the average signal and a times-

tamp representing the moment in which the system estimates the next measure will begin.

The beginning-of-measure prediction is fundamental for the Generator module, which uses

it as a synchronization point between the music generated by the system and the sounds

produced by the pads played by the users.

3.4.1.2 | Scorer

The features computed by the Listener module are needed for the correct generation of

music and to ensure the synchronization of the generated music with the rhythm played

by the users. The Scorer module instead considers features related to the gaming aspects

of the system to give feedback to the users about the quality of their interaction. The

84

3.4. A Social Musical Game

theoretical basis for this module derives from music therapy, and in particular from the

“Improvisation Techniques for Music Therapy” devised by Kenneth Bruscia (Bruscia, 1987).

Bruscia’s book describes a wide set of techniques available to music therapists to improve

their interaction with the client. These are divided into different categories and do not focus

solely on the music production but also on the physical/visual interaction with the client,

which is a kind of information that is not available in the proposed setting. I selected five of

the main basic features that only rely on the rhythm produced by the players. Here are the

definitions given by Perret in his comment on Bruscia’s work (Perret, 2005) for the chosen

techniques:

Imitation: Echoing or reproducing a client’s response after the response has been com-

pleted;

Synchronization: Doing what the client is doing at the same time;

Incorporating: Using a musical motif or behavior of the client as a theme for improvising

or composing, and elaborating it;

Pacing: Matching the client’s energy level (i.e., intensity and speed);

Rhythmic grounding: Keeping a basic beat or providing a rhythmic foundation for the

client’s improvisation.

These techniques are meant to be used by the music therapist to help the client during

the improvisation and do not immediately fit the situation where two peers are playing

together and must be evaluated by a computer system. Nonetheless, they were useful in

designing more precise and measurable features for the system. In particular, the system

distinguishes four possible levels, describing the quality of the interaction:

Level 0: The system is incapable of clearly following the users, as they are not making a

clear enough beat (no Synchronization or Rhythmic grounding);

Level 1: The system is capable of following the users, but one is dominating the rhythm

and the other is not contributing (no Pacing);

85

Chapter 3. Social Interaction and Music Generation

Level 2: The interaction is considered normal: the two players have established a rhythm

together;

Level 3: The interaction also includes imitations between the two players (Imitation and

Incorporation).

The algorithm computes the level of interaction according to Algorithm 6, that requires

as input the gaussified signals (the ones of the two players as well as the average one), the

duration of beat and measure in milliseconds, and the list of the timestamps of the notes

produced by the two players. The algorithm uses three functions: correlation(a,b), that

computes the correlation of the signal a with the signal b; now(), that returns the current

timestamp; and shift(a,b) that moves along the x-axis all the points of the signal a by b

units.

Input: signal1, signal2, signala, beat,measure, notes1, notes2
Output: Level of interaction
clar ity ← correlation(signala, shift(signala, beat))/ correlation(signala, signala);
if clarity < 0.4 then

return 0 ;
end
density1 ← |el : el > now()-10000 & el ∈ notes1|/10;
density2 ← |el : el > now()-10000 & el ∈ notes2|/10;
if density1 < 0.5 || density2 < 0.5 then

return 1 ;
end
crossCorr ← (correlation(signal1, shift(signal2,measure)) + correlation(signal2,
shift(signal1,measure))) /2;

if crossCorr < 15 then
return 2 ;

else
return 3 ;

end
Algorithm 6: The algorithm for the computation of the current interaction level.

The algorithm computes three significant features to distinguish the levels. The clar ity

represents how confident the system is in estimating the current beat. The two density

values represent the notes per second each user plays. Finally, crossCorr is how similar the

two signals are at the distance of one measure, i.e., how much the users imitate each other

86

3.4. A Social Musical Game

measure per measure. The threshold values for the various levels were chosen empirically

by computing the average values obtained by a “metronome” interaction, i.e. where the

two users were substituted by a software sending a beat at regular intervals. It would be

possible to use machine learning to determine better thresholds if enough data is collected

from real users’ interactions.

The final score is given to the users by adding a number of points each second depending

on the current level. Notice that, since the goal of the game is the interaction between the

two players rather than a challenge, the score is shared. The values of these features are

not directly transformed into points given to the user, but rather to compute the current

multiplication level. To ensure that the scoring system is stable, the level shown in the

interface is not the latest computed level, but the median of the fifteen last computed

levels. As well as being necessary for the visual feedback, the levels also influence the

musical output as the music generation method is the same at every level (as described in

the next section), but the volume of the generated instruments is proportional to the level

reached by the players.

3.4.1.3 | Generator

In this section, the algorithms used to generate music that is then synchronized with the

rhythm established by the users are described. However, there are potentially no constraints

on the music that can be added to the system since the Listener module computes all that

is necessary to synchronize music to the beat produced by the users. For example, it

would be possible to playback a pre-selected audio file (e.g. the users’ favorite song) and

synchronize it via time warping (Dannenberg, 1984; Robertson and Plumbley, 2007; Moens

et al., 2014). I decided to use simpler generated music to avoid taking the focus away

from the interaction between the users. If the players are too captured by the music, they

might start following it by tapping on its beats, becoming a sort of ‘human metronome’.

This would strongly reduce the interaction between the players and distract them from

each other’s rhythm. The Generator receives as input all the results of the other modules’

computations. The most important information is the prediction of the beginning of the

87

Chapter 3. Social Interaction and Music Generation

Warm Pad

Guitar

Bass

Figure 3.6: A generated measure in 44 for each of the accompaniment instruments, based
on a C major chord.

next measure. The Generator saves all the predictions obtained from the Listener, and

each time a pad is struck the current time is compared with the saved predictions. If

one is compatible with the current time (with a 50 milliseconds tolerance), the system

estimates that the received input is the beginning of a new measure. The time tolerance is

based on Parncutt’s studies (Parncutt, 1994). Every time this happens, the tempo and the

meter of the Generator are updated to match the ones computed by the Listener, and the

internal metronome of the Generator is reset and started. The Generator could potentially

start a measure at the predicted moment without waiting for input from the user, but

the above approach was preferred since it increases the feeling of control over the output.

Having the system react to specific actions performed by the user is important to obtain

the feeling of “I made this happen”, which is considered crucial for the effectiveness of music

therapy (Swingler, 1998).

Harmonic Accompaniment Generation At the beginning of each measure, a chord is

selected using a first-order Markov chain. This chain can be manually crafted or can be

generated via a Python script that uses the music21 library5 to read a lead sheet in Mu-

sicXML format. The chain is constructed by taking note of the frequency of moving from

one chord to another in the input file. The script is written so that the chords are analyzed

5https://web.mit.edu/music21/

88

https://web.mit.edu/music21/

3.4. A Social Musical Game

in a way that does not depend on the key, i.e. by using roman numerals instead of actual

chord names. The software only generates chord progressions in the key of C major, but it

would be easy to transpose the generated music to other tonalities.

Three accompaniment instruments are used to play the chords: an example is shown

in Figure 3.6. The actual notes depend on the current chord, but the warm pad (General

MIDI instrument 90) always plays the tonic while a guitar (General MIDI instrument 25)

plays the chord arpeggio, and a bass (General MIDI instrument 34) alternates between the

tonic and the fifth of the chord every eighth note. A new chord is selected each time there

is synchronization between a note_on event and the beginning of a measure predicted by

the Listener, but also when the internal metronome of the Generator reaches the 1st beat.

This means that the chord changes with every measure unless the same chord is selected

again.

Melody Generation To generate melody, a second Markov chain was constructed using

the same Python script. Since the generated melodies should depend on the underlying

chord being played at the moment, the script saves intervals between the tonic of the

chord and the note being considered rather than the name of the note itself. The chain

is restarted every time a chord changes, both in the learning and in the generation phase.

Moreover, since some chords are major and others are minor, the intervals are saved as

diatonic intervals and become a chromatic interval depending on the current chord during

the generation phase. This process is briefly illustrated in Figure 3.7.

A chromatic percussion instrument is associated with each player: a Music Box (General

MIDI instrument 11) and a Vibraphone (General MIDI instrument 12). Chromatic percus-

sions are used to keep the direct interaction of users focused on the rhythmic aspect, but

these instruments can add pitch to the played notes. The two players follow two parallel

chains that are both aware of the chord being played by the system. The Markov chain

only controls the pitch of the generated melody, while the player determines the rhythm.

Moreover, the Markov chain does not output the final pitch but rather an interval relative

to the current chord. Therefore, each time a player hits his pad, the actual new note is

89

Chapter 3. Social Interaction and Music Generation

INPUT.XML
Chords:
$ -> {I}
I -> {IV,V}
IV -> {I}
V -> {I}

Melody:
$ -> {1,3,5}
1 -> {1,5}
3 -> {3}
5 -> {5,6}
6 -> {6,5}

I

I IIV V

1 1

1 1 1

5 5 5

5 5

6 6

4 4

Input MusicXML file
roman numeral for chords
interval from chord tonic for notes

Internal representation:

Markov Chain

Figure 3.7: Data flow for the creation of the Markov chains from an input lead sheet. In
the example chains, the likelihood of each transition is not represented.

generated following these steps:

1. Current chord is retrieved;

2. If the chord has changed, the seed is set to “$” (empty seed), else, the seed is the

last generated interval;

3. The seed is used on the chain to generate the next interval;

4. The generated note is computed by following the interval chosen by the chain starting

from the tonic of the current chord.

There is no control of the harmonicity of the notes generated by the two chains, but the

use of diatonic intervals converted to chromatic intervals based on the chord ensures that

it is impossible to generate strong dissonances. This approach of using intervals from the

chord tonic to limit the output to “safe” notes was used by other notable work in Music

Generation, such as Biles’ GenJam (Biles, 2013b).

90

3.4. A Social Musical Game

3.4.1.4 | Implementation

The modules described above represent the abstract functionalities of the system rather than

actual software modules. The real implementation used for this system uses a Max/MSP6

patch for the collection of the input from the user and the generation of the music. The

patch communicates via Open Sound Control with a Python script that receives the list of

inputs from the patch and computes both the features described in the Listener module and

those related to the Scorer module. Practically, the Generator is implemented in Max/MSP

and the Scorer in Python, but the Listener is shared between the two systems. This

subdivision was chosen because Max/MSP is not fit for computations like those needed

for the autocorrelation, but on the other hand Python is not ideal for real-time computing.

Having a server invoked by the patch ensures that the computations done by Python are

not critically dependent on timing (all the time labeling is handled by Max/MSP) while

keeping the advantage of using Python and NumPy for the computation of the correlation

of signals.

3.4.2 | Evaluation

The main goal of this study was to create a system that would help the players develop

a rhythmic improvisation with music added by the software. The added music should help

increase interpersonal synchronization, resulting in an engaging experience that can lead to

better affiliation (Hove and Risen, 2009). The evaluation of the system’s capabilities of fol-

lowing a tempo was described in the previous section. Here, I include a questionnaire-based

evaluation of the user experience to measure the general appreciation and engagement of

the users with the system.

Twenty-four participants were collected among university students who volunteered to

test a musical game. Nine were females and fifteen males with an average age of 24.17 years

(standard deviation 3.48 years). In pairs, the participants who agreed to take part in the

study and signed the informed consent were told they would use a game to create a “rhythmic
6https://cycling74.com/products/max/

91

https://cycling74.com/products/max/

Chapter 3. Social Interaction and Music Generation

Question Avg. Response Std. Dev.

I found the game experience pleasant. 5.92 1.00
I think the music was aesthetically pleasing. 5.04 1.17
I wished to keep playing. 5.58 1.22
I wish to play again with this system in the future. 5.25 1.20
I was actively interacting with the other participant. 5.33 1.72
I was actively interacting with the system. 5.08 1.32
The system was interacting actively with me and the other participant. 5.50 1.29
I felt I had control over what was happening musically. 4.17 1.34
The system reacted to what I and the other participant were playing. 5.25 1.27
The music produced by the system was a stimulus to interact with the other player. 5.58 1.32

Table 3.11: The questions posed to the participants of the evaluation of the system with
their average response and standard deviation on a scale from 1 (Completely Disagree) to
7 (Completely Agree).

interaction”. Before starting the experiment, they were shown the drum pads and how hitting

them would produce a percussive sound. They were instructed to collaboratively create a

rhythm, only using the pads and not talking or communicating if not through the percussions

of the pads. They were also told that the system would add music to their rhythmic

performance based on how they interacted. Immediately after the explanation, the users

were left alone, while the researcher listened to the interaction from the next room, and the

users could start playing as soon as the researcher had left. For this evaluation, the system

for the generation of melodies was left out, leaving only the harmonic accompaniment

described in Section 3.4.1.3. This was done because while informally testing the system, I

found that the melody can distract the users from the rhythmic interaction, which I wanted

to be the main focus in this evaluation.

After playing with the system for three minutes, the researcher returned to the room

and each of the participants was asked to fill a questionnaire consisting of ten 7-points

Likert items asking their level of agreement with the presented sentences, on a scale from

1 (Completely Disagree) to 7 (Completely Agree). The questionnaire also asked what

their level of musical expertise was using a single question (Zhang and Schubert, 2019),

but except for one classically trained musician, all reported little amateur experience or no

experience at all. All the questions were posed in Italian, as it was the native language of all

92

3.4. A Social Musical Game

the participants. The questions in English, as well as the results of the questionnaire, are

reported in Table 3.11. The Cronbach’s alpha of the collected data is 0.83, showing that

the questionnaire has reasonable reliability. The first four questions were meant to assess

whether the participants liked to play with the system, while the other questions were more

intended to assess if they felt the system helped them interact musically. These questions

were chosen to test whether the players considered the game engaging, as this was the main

aspect to be assessed via user-testing since it could not be directly assessed via quantitative

measures by the researchers.

On average, the rating for the first questions was between 5 (Somewhat Agree) and

6 (Agree), indicating that the participants found the system to be pleasing to play with

and would have liked to play again, meaning that the system is considered engaging by the

participants. The results regarding the interactivity of the system are also positive, with

averages between 5 and 6 except for question eight. The participants felt there was an

interaction both between the players and with the system, and that the generated music

was helpful to their interaction. Despite the perceived sense that the system reacted to

their inputs, the participants did not feel like having full control over the produced music

(the average response is around 4, Neither Agree nor Disagree). This is reasonable, since

the rhythmic dimension of the music, the one that is directly controlled by the users, is only

a fraction of the whole musical output.

Aside from the questionnaire, qualitative observations collected during the experiment by

listening to the players’ interactions show that while the system is both capable of following

an established rhythm and quickly adapting to changes in tempo, the users are not driven

to experiment with more complex interactions. This is probably because the system takes

a few seconds to adapt to quick and abrupt changes (this is to be expected since the

system needs at least a complete repetition of a period before being able to adapt), and

the immediate feedback (before the system adapts) is negative. This induces the players

to stick to the first common rhythm they can establish, which is not necessarily the best

situation. Moreover, it was noticed that while the system is capable of handling meters

different from 4
4 , all the participants only used this meter. The trained musician seemed

93

Chapter 3. Social Interaction and Music Generation

to try exploring more complex rhythms at times but settled for simpler ones possibly to

accommodate the other player as well as not having immediate positive feedback from the

system. This suggests that further studies only using musicians might show a different usage

of the system. In general, the results collected from the questionnaire are not very strongly

detached from the neutral response, showing that there is still much room for improvement

in the system. Nonetheless, considering that the evaluation was carried out on what is the

very first version of the system, the results are very encouraging. Further developments

could improve the interaction to give a better feeling of control over the produced music,

for example by adding more complex musical variations to the output mimicking the users’

input more closely.

3.5 | Discussion

3.5.1 | Main Findings

This chapter described in detail how a Serious Game to improve sociality and interaction

was developed. While this did not immediately relate to music generation per se, it was a

useful to explore novel ways of music-based interaction, both between the players using the

system, and between the human and the machine.

To create this system, the main effort was dedicated to the creation of the Listener

module, that in more general terms is a system for the detection of meter and tempo in real

time, based solely on symbolic information on rhythm. The system accepts a set of tuples

describing the timing and the force (velocity) of played notes, and uses this information to

determine the meter and tempo. The latter is estimated by calculating the autocorrelation

of a signal built from the input. The meter estimation uses the same signal and compares

it to pre-built signals that represent typical accents in different meters. Despite the need to

calculate an autocorrelation at different time shifts, which in general could be an expensive

operation, the system can leverage the discrete nature of the signal to perform this operation

incrementally.

While tempo and meter detection are problems that are generally considered as solved

94

3.5. Discussion

by the MIR community, this application had more stringent requirements than usual (i.e.,

having only access to timing and velocity), and having obtained results that are comparable

to other state of the art approaches (when given similarly limited information) while working

in real-time is extremely satisfactory. The need to detect tempo and meter in a symbolic

context is uncommon (usually symbolic notation explicitly states this information) and for

this reason the MIR community focuses more on audio-based detection of these features.

Nonetheless, in the context of live music and live electronics, being able to detect the tempo

played by a musical instrument capable of outputting midi or other symbolic information

can be useful to a large number of artistic applications where some output from a machine

should be aligned with a musical performance (the output can be additional musical sounds

like in this case, but possibly also images, videos, or even actions performed by robots). In

this context the algorithm presented here becomes a relevant proposal, since it is capable

of functioning in real-time and makes extremely little assumptions on the input, making

it capable of working in any context where a discrete/symbolic rhythmic information is

available.

To complete the presented Serious Game, additional research and development were

needed. The game was framed within the context of Music Therapy, by researching the

principles of this discipline that would apply to the use case. Based on those principles, a

game that evaluates how well two persons are interacting was developed, using Python and

Max/MSP. This serves both as a way to illustrate how the real-time tempo detection system

can be useful to develop interactive experiences, and as a way to show how computer-based

music generation can be an extremely human-centric activity. In this case, the computer-

generated music depends on and favors the interaction between the players, giving them

part of the agency. In the context of Computational Creativity, this can be seen as a co-

creative system, where the creative product is both the interaction between the players and

the final musical product created in the interaction. Instead of being something that tries

to substitute human composers (as some seem to view Computational Creativity applied to

music in general, as reported by Sturm and Ben-Tal, 2021) it is something that empowers

humans in creating something that is directly a product of their actions, even if they would

95

Chapter 3. Social Interaction and Music Generation

not have been capable of producing it on their own. This sense of agency and the creativity

of the act are also important to the therapeutic aspects of the experience (Swingler, 1998;

Dai et al., 2018). These considerations make the presented application a perfect example

of how Computational Creativity can sometimes be needed to achieve things that human

artists could not possibly do as effectively, as efficiently, or as inexpensively. Artificial

music must not necessarily be a substitute for human musicians (as the above cited people

seem to fear) but can instead be a powerful tool at the service of humans. While further

work is required to fully assess the therapeutic usefulness of the proposed game, it already

shows many potentialities in itself and in the development of the related human-computer

interaction aspects.

3.5.2 | Limitations and Future Work

This work has primarily focused on the technical implementation of the rhythm following

system and of the related Serious Game. While this in itself can be a valuable contribution,

the therapeutic aspects of the serious game need to be further assessed.

Primarily, a long-term evaluation on the effects of using the serious game with continuity

should be considered, to see if the desired therapeutic effects on sociality are achieved.

More fine-tuned evaluations on the effects of different kinds of music and on the use of the

melodic module described above could be implemented as well. These kind of evaluations

were considered and planned, but the rise of the COVID-19 pandemic halted this study, as

it required the players to be in close proximity. A networked version of this application was

considered, but discarded since it would decrease the social effects that we wish to study.

The exploration of a social application for music generation was could also lead to

the exploration of how social and emotional aspects of music impact on the perception

of creativity. While this was not directly tested, this work tried to explore novel ways in

which generated music can play a role into co-creative applications, where computational

composers are not an alternative to the human, but rather create a joint musical effort.

In this case, the effort also has the goal of assisting the human and helping the players

socialize through non-verbal interaction. This can open many possibilities for Computational

96

3.5. Discussion

Creativity applications, both with a therapeutic goal and without any goal beyond the

generation of co-creative artifacts. Still, if one wishes to evaluate the creativity of this

social game, the usual evaluation criteria for musical artifacts would be hard to apply.

Different studies with other approaches should be considered in order to evaluate the direct

impact of emotional value on the perceived musical creativity.

97

4

Structure in Music Generation

In this chapter some ad-hoc tree-based representations of musical structures are presented,

with the goal of giving tools to allow structure-aware music generation. A system for music

generation is also presented, which leverages the above structures and information theory

concepts to impose structured generation based on the style of a corpus represented through

these representations.

4.1 | The Hierarchical Nature of Music

Several studies concerning music cognition prove that our music perception uses some level

of abstraction (Aiello, 1994; Deutsch et al., 2013; Schön et al., 2007). This perceptual

abstraction can be retrieved from symbolic representation of music since, as Vinet (2003,

p. 194) points out:

“The symbolic representation is content-aware and describes events in relation

to formalized concepts of music (music theory).”

This suggests that the symbolic level could include information about our music cogni-

tion and not just about music notation, which can be retrieved through the help of music

theory.

Generally speaking, the operation of retrieving perceptual abstractions with the help

of music theory concepts often leads to tree-based representations of music, where the

99

Chapter 4. Structure in Music Generation

nodes describe notes or grouping of notes, which are linked based on respective importance

according to music theory. Musicologists have used such representations to describe music

on multiple levels at least since the works of Heinrich Schenker (1935).

In his influential books, he theorized that music is imagined by the composers in a

hierarchical fashion, roughly divided in Ursatz (fundamental structure), Mittelgrund (middle

ground), and Vordergrund (foreground). According to Schenker the Ursatz should always

result in a scale descending to the tonic over an arpeggiation of the tonic chord, and the

other levels represent successive extensions of this structure. In particular, the Mittelgrund

includes all the most relevant notes and chords of the piece, and the Vordergrund represents

instead the complete composition.

The influence of this theory is evident in the well known book by Lerdhal and Jackendoff,

A Generative Theory of Tonal Music (GTTM) (Lerdahl and Jackendoff, 1985), where

the authors also grouped notes in a composition to form different hierarchical levels of

reductions. Differently from Schenker, these authors have provided an extensive rule-set

to define how such reductions work, inspired by Chomsky’s work on language (Chomsky,

1957).

These theories make it possible to describe different levels of importance of notes in

a score that, according to musicologist David Temperley, should reflect both the com-

poser’s ideas in the generation of a composition and the listener perception of the same

piece (Temperley, 2011), naturally incorporating other musical cognition concepts like ten-

sion and realization.

4.2 | Related Work

Structure can have different meanings, even within the context of music, so it is conve-

nient to consider what different accounts of musical structure entail for the computational

analysis and representability of such structures. Traditionally, music theory deals with the

concept of structure either talking about how melodies can be divided into periods, phrases

and motifs, or by analyzing how a piece can be divided into sections according to form

100

4.2. Related Work

theory, for example recognizing "Exposition", "Development" and "Recapitulation" within

a Sonata form. More advanced theories of music describe the hierarchical nature of mu-

sical pieces, such a Schenkerian Analysis (Schenker, 1935) or the Generative Theory of

Tonal Music (Lerdahl and Jackendoff, 1985). These kinds of approaches form tree repre-

sentations of the analyzed musical pieces, describing how different parts are linked together

thorugh reductions. Other theories, such as the one proposed by Nattiez (1975), follow

a syntagmatic approach, where the piece is seen as a series of syntagms, basilar melodic

units that can be grouped according to their resemblance. A commonality among all these

approaches is the fact that the musical piece is divided into smaller segments, which can

be categorized and/or linked based on their content and some similarity measure, making

it possible to group similar segments and differentiate segments that have different roles

within the piece (Abdallah et al., 2016).

Since the first common step to this kind of structural considerations requires segmenting

a piece into smaller parts, it is not surprising that a large amount of research has been

devoted to automatic segmentation of melodies, a (sub-)task that is also useful to a variety

of other musicological and music information retrieval applications.

The algorithms for segmenting melodies can be based on music theory principles, such

as those inspired by Grouping Preference Rules from GTTM (Frankland and Cohen, 2004)

which are mainly based on distance between notes and changes in duration or articulation

within the local melodic context, or other theories like Temperley’s Grouper model (Tem-

perley, 2004) which also incorporates the concept of parallelism and considers that phrases

within a certain piece should have roughly the same length.

One especially successful model for segmentation is the Local Boundary Detection Model

(LBDM) by Cambouropoulos (2001), which is based on the degree of variation between

features like pitch, duration and inter-onset-interval of notes in a local context. The basic

idea is that the comparison between the end of a phrase and the beginning of the next one

will result in a higher degree of difference than the comparisons operated within a single

phrase.

Other models follow statistical and bottom-up approaches rather than rule-based ones.

101

Chapter 4. Structure in Music Generation

For example, Hidden Markov Models have been applied to this task (Batlle and Cano, 2000),

using aural features as the observations and the segmentation as hidden states. Others

have implemented segmentation methods based on Information Theory concepts, where

changes in Information Content denote melodic boundaries (Pearce and Wiggins, 2008).

Another more advanced bottom-up approach that is not based on music theory leverages

Haar Wavelets to filter the pitch contour at different time scales and then examining the

filtered results to infer relevant segmentation points (Velarde et al., 2013). More recently,

with the growing popularity of deep learning algorithms, the task of segmentation is also

tackled with such algorithms, leading to satisfactory results (Guan et al., 2018; Zhang and

Xia, 2020).

The task of identifying meaningful segments is not the only aspect to structural analysis:

finding significant relationships between the segments is just as important. The first and

foremost relationship between melodic segments is that of similarity. This means that

melodic patterns can be exactly repeated within a musical piece, but they can also have

variations that still represent a significant link between the segments. The concept of

similarity itself is not devoid of ambiguity: ideally, we would like to capture as similar

all those melodies which are perceived as similar by listeners. This perceptual definition

requires to take into account cognitive aspects, making the detection of similarity not a

trivial task (Wiggins, 2007b).

The easiest approach is that of finding exact repetitions. This can be achieved by means

of efficient string-based algorithms applied to textual encodings of melodies (Cambouropou-

los, 1998; Hsu et al., 1998). It is worth noting that even if only exact repetitions are con-

sidered, depending on the employed encoding certain melodic variations can be detected as

well. For example, transposition invariance can be achieved by using an interval-based rep-

resentation (Conklin and Anagnostopoulou, 2001). String based-pattern matching can also

be applied to find approximate repetitions, i.e., repetitions that include a certain amount

of editing operations, such as insertion, substitution or deletion (Rolland, 1999) but this

generally requires less efficient algorithms. Another way to consider non-exact repetitions is

to take into account sub-segments. One way to achieve this is by using prefix-trees which

102

4.2. Related Work

allow to describe different hierarchical levels of repetition (Lartillot, 2016). Another method

is to use geometric representations of musical content, and use geometric tools to describe

possible transformations between melodic segments. This approach is at the base of SIA

and SIATEC (Meredith et al., 2002). which can also deal elegantly with poliphonic music,

unlike most other algorithms covered above. Given the success of these algorithms, other

algorithms that derive from these two can be found in literature (Meredith, 2013; Forth and

Wiggins, 2009). A deep architecture can also be applied to the task of pattern discovery:

Pesek et al. (2017) applied a Compositional Hierarchical Model inspired by similar models

used for Computer Vision for unsupervised pattern discovery in symbolic music, allowing to

give a description of repeated patterns at different hierarchical levels, although the hierar-

chy described in this context is a hierarchy between the detected patterns, rather than a

hierarchy of the parts of a musical piece as usually meant in this context.

Instead of focusing on the segments of a musical piece, others can directly implement

structural and hierarchical theories, such as those described in section 4.1, trying to give ap-

propriate representations with ad-hoc algorithms and data structures. While the theoretical

works cited in the previous section do not have the aim of describing algorithmic procedures

to compute the hierarchies and the structures they describe, there is a variety of more

computer science oriented work that try to formalize those ideas in a more machine-friendly

way, or that implement similar ideas for automating structural analysis of music (Marsden

et al., 2013).

Some researchers have applied grammar-based approaches to the computation of Schenke-

rian reductions, as grammars naturally allow the description of tree-like structures (Kassler,

1975; Mavromatis and Brown, 2004). One limit to this approach is the complexity and

aboundance of the rules needed to guide the process, which results in non-feasible compu-

tations (Marsden, 2007; Marsden et al., 2013). Some researchers overcome this problem by

emplying markovian approaches to filter the rules (Gilbert and Conklin, 2007), dynamic pro-

gramming (Marsden, 2010), or other kinds or pre-processing of the melodic material (Kirlin

and Utgoff, 2008). Another approach to making reduction more manageable is to use

heuristic approaches, relaxing the goal of performing Schenkerian analysis and instead per-

103

Chapter 4. Structure in Music Generation

forming more generic but more efficient melodic reductions. Orio and Roda (2009) performs

melodic reductions by assigning weights to notes in a melody based on melodic and harmonic

features and iteratively eliminating the notes with the lower weights. While the results can-

not claim to be actual Schenkerian analyses, the obtained reductions can be useful to other

applications.

GTTM is another well-known hierarchical theory of music. One early example of using

some of the rules from GTTM in a computational manner is the software Melisma Music

Analyzer (Temperley, 2004). In order to implement the entirety of GTTM instead, it is

necessary to resolve some ambiguities that are reasonable for a musicological theory but

cannot be allowed in a computational system. Hamanaka et al. (2006) proposed an extended

version of GTTM (exGTTM) which was later implemented in software for computer assisted

analysis (ATTA) or even for fully automated analysis (FATTA) (Hamanaka et al., 2007).

More recently, deep learning was applied to learn the rules for grouping required by GTTM

rather than explicitly implementing them (Hamanaka et al., 2017).

Since the goal in this chapter is describing structure for music generation, I’ll close this

discussion with some relevant proposals that come from that field. GEDMAS (Anderson

et al., 2013) uses a top-down approach for structured generation, using Markov chains to

generate the overall structure of a piece, but the melodic content itself is not part of this

hierarchical structure and is generated at a later time. MorpheuS (Herremans and Chew,

2017) applies a structure to imitate a given piece, but there, structure is related to perceived

tension, rather than repetition and reuse of melodic content. Deep learning techniques are

often applied to melodic generation, and some researchers have given proposals on specific

network topologies that can allow for more structured output (Chen et al., 2019; Zixun

et al., 2021), but the main downside of these approaches, besides the high computational

requirements, is the fact that the learnt structures are not easily interpretable by humans and

reusable in other contexts. Herremans et al. (2015) propose explicit modelling of structural

patterns for Ethiopian bagana songs (although the method could certainly be applied to

other musical styles), and use markov chains along with optimization techniques to generate

music that follows the given structural patterns. This proposal is the most similar to the

104

4.3. Three Tree-Based Representations for Music

one described in this chapter, but the main difference is that structure is imposed with top-

down patterns instead of emerging from the analysis of a corpus, as I propose here. Finally,

Wiggins (2021b) provides an in-depth theoretical base for the relevance of this approach to

music analysis and generation, but does not provide any practical approach to perform the

proposed analyses.

4.3 | Three Tree-Based Representations for Music

4.3.1 | Corpus Description

Along with this work on music representations, I present a small corpus made of twenty-four

baroque pieces that exhibit strong structural regularities. Though the size of the corpus is

relatively small, it is ideal for top-down approaches to musical analysis due to its structural

regularity.

The corpus is comprised of twenty-four allemandes (dance music originating from Ger-

many, usually possessing even meter), written in 1768 by Gabriele Leone (sometimes referred

to as Pietro Leone), a mandolin virtuoso from Naples. These pieces were originally included

in a method for teaching mandolin to violin players. As such, despite the great technical

ability of the author, the pieces are extremely simple and can be played by a novice. All of

the allemandes are written for a mandolin duo, ideally having the first part played by the

student and the second by the teacher, so all these pieces are polyphonic. In addition, a

single instrument often plays chords, so either part may polyphonic on its own. Since the

Neapolitan mandolin has only four strings, neither part ever has more than four simultaneous

notes. The corpus is released under a Creative Commons license, in MusicXML format1.

4.3.1.1 | Structure

Since I propose this corpus as a useful tool to study musical structures, it is worth describing

what kind of structural regularities this corpus offers.

At a high level, there are some evident regularities, as follows:
1https://doi.org/10.5281/zenodo.5145348

105

https://doi.org/10.5281/zenodo.5145348

Chapter 4. Structure in Music Generation

■ All of the pieces are divided into two sections, which I call the A section and B section.

■ In 20 out of 24 pieces, both the A and B sections are eight bars long.

■ In 22 pieces, the A section is repeated at the end, thus obtaining an “A-B-A” structure.

■ 20 allemandes have 24 meter.

■ All pieces are in a major key and modulate in the B section either to a close tonality,

or in only four of the allemandes, to the minor mode.

The following are the exceptions to above regularities:

■ IV has each section repeated (A-A-B-B).

■ XI has a 12 bars long A section.

■ XIV has both A and B section last only 4 bars.

■ XVIII has each section repeated and then the A section again (A-A-B-B-A).

■ XIX has a 16 bar A section and a 24 bar B section.

■ XXI has a 4 bar B section.

■ VII, IX, XVIII, and XIX have 38 meter.

■ VIII is unique in the corpus in that it has anacrusis.

Besides the regularities in the macro-level form, within each of the sections there is frequent

use of repetitions, transpositions, and imitation, both within a single part and between parts

of the two instruments. These make it simple to distinguish four-measure long phrases

that can be further divided into two sub-phrases. The relative simplicity of the melodic

material makes it easy to distinguish the use of techniques such as repetition, transposition

or inversion, making this corpus useful for algorithms that wish to detect such techniques.

Moreover, the corpus has two voices, so there is still enough variance and description to

extract meaningful information relating to harmony. One final peculiarity of this corpus

106

4.3. Three Tree-Based Representations for Music

not strictly related to musical structure is that each piece was named by the author with

an adjective describing the “feel” of the piece, like “The Joyful”, “The Grumpy” or “The

Fickle”, and therefore could be used to research if specific musical techniques relate to the

proposed emotions and expressions. Finally, the corpus is enriched with manually added

chord annotations. While there are many MusicXML corpora available, very few present all

the above characteristics. For this reason, I believe this corpus can represent a useful tool

for many researchers, despite its small size.

4.3.2 | Representations

4.3.2.1 | Schenkerian Trees

The first representation describes hierarchical reductions of a melody. In this tree represen-

tation, each node is a note, and the children of a node are the notes that. can be reduced

to the note in the node. Another way to see this, is to think of nodes as groupings of

notes. We can call this tree a Schenkerian tree (Sk_tree), as it represents a set of iterated

reductions of the given piece, inspired by what is traditionally done in Schenkerian analysis

(Schenker, 1935) or in the Generative Theory of Tonal Music (Lerdahl and Jackendoff,

1985).

The algorithm used to obtain these trees from a input lead sheet was described in

previous related work (Orio and Roda, 2009; Simonetta et al., 2018; Carnovalini and Rodà,

2019a), but it is worth describing here how the algorithm functions at a high-level.

First, a sliding window is created, twice as long as the shortest note duration in the input.

That window passes over the melody, and whenever there are two or more notes present in

window, the “more important” note is selected, given the harmonic context, tonality, and

metric position of the notes. For example, in the context of a C major piece, over a G

chord, a note G will be considered more important than a note F. The winning note is made

as long as the window, and the other notes are discarded. When all the notes in the window

have passed through the window, a new melody can be formed by all the notes that were

not discarded. This new melody will have the same length as the original melody, but less

107

Chapter 4. Structure in Music Generation

 L +7

LeafL +7

27

24

21

18

12

15

  
 


   






































 

















 

DG

Leaf L -1

Leaf Leaf

 L +4

R -1L +6

Leaf Leaf Leaf Leaf

Sk: same
Ch: same
Dir: same
Int: narrow

Sk: same
Ch: same
Dir: same
Int: narrow

Sk: diff
Ch: more

Sk: same
Ch: less

Sk: same
Ch: same

(a) (b) (c) (d)

Figure 4.1: Example of the process building Sk_trees and a Diff_tree. (a) shows two bars
of music being reduced with the Schenkerian approach. The arrow shows the notes that are
kept in the successive reduction, and the line joining the arrow represents the reduced note.
(b) shows the Sk_tree obtained from the first measure. Notice that the leaves correspond
to the notes that are present with that duration in the surface melody, regardless of the
level. (c) shows the Sk_tree obtained from the second measure. Notice that there is one
node reporting R, as the reduction kept the note on the right, and not the one on the left
as usually occurs. (d) shows the Diff_tree obtained by comparing (a) and (b). Notice that
a leaf in this tree occurs whenever a leaf on either Sk_tree is found.

notes overall, and the shortest notes should now be longer than what previously was the

shortest note. For instance, if the shortest note was a quarter note, the window would

be as long as an half note. If such window passed over two quarter notes, one of the two

would be eliminated and the other would become an half note: in this way, the shortest note

would now be an half note. The size of the window is then increased to twice the shortest

duration of this new melody, and the process is iterated until only one note remains.

These iterated reductions naturally form a tree (see Figure 4.1 over the letter a) where

the nodes of the tree correspond to the notes of the melody, and each level of the tree rep-

resents a level of reduction. For the following algorithms, the tree was further transformed

into a more compact representation by annotating in each node how a note is expanded

in the lower layer, describing the interval between the children (over the letters b and c in

Figure 4.1).

108

4.3. Three Tree-Based Representations for Music

4.3.2.2 | Difference Trees

The above algorithm serves as a way to simplify the melodic material in piece to make it

easier to find regularities, but does not actually compare different segments of a piece to

find such regularities. The Difference Trees (diff_trees) serve this purpose: they compare

the reductions made in the Sk_trees and annotate the actions required to transform from

the first tree to the second. The comparisons can be made between any segment of the

original piece, but should only be made going forward, i.e. comparing one segment only with

segments that come after that, due to the fact that this operation is not commutative.

The algorithm takes as input two Sk_trees, and proceeds as follows: the root nodes

of the two trees are selected (called R_1 and R_2), and a new node is constructed to be

the root of the output Diff_tree. Considering the direct children of R_1 and R_2 in their

respective trees, in the node of the Diff_tree the following features are annotated:

■ Sk: Schenkerian direction. If R_1 and R_2 come from the same position in the

children notes (left or right note), annotate same, otherwise diff. A leaf note counts

as expanded to the left.

■ Ch: Number of children. Annotate if R_2 has the same number of children as R_1, or

if it has more or less. If the result is same, compare the following features regarding

the children:

■ Dir: Interval direction. Annotate if the interval described in R_1 has the same

direction as the one described by R_2 or not (diff).

■ Int: Interval width. Regardless of the direction, annotate if R_2’s interval is more

narrow, more wide or the same as R_1’s interval.

Then, the first child of both is selected, and the algorithm recursively repeats on all

children until there are no more children or if they have a different number of children

(a leaf is found), in which case the recursion stops as it is not possible to operate the

comparison anymore. Figure 4.1 shows the result of this process.

109

Chapter 4. Structure in Music Generation

Sk: same
Ch: same
Dir: same
Int: narrow

Sk: same
Ch: same
Dir: same
Int: narrow

Sk: diff
Ch: more

Sk: same
Ch: less

Sk: same
Ch: same

Sk: {same:2, tot:2}
Ch: {same:2, tot:2}
Dir: {same:2, tot:2}
Int: {narrow:1, widen:1, tot:2}
Exp: {binary:2, tot:2}  

Sk: same
Ch: same
Dir: same
Int: widen

Sk: same
Ch: less
Dir: diff
Int: widen

Sk: diff
Ch: more
Dir: same
Int: narrow

Sk: same
Ch: same

Sk: same
Ch: same

Sk: same
Ch: same

Sk: {same:2, tot:2}
Ch: {same:1, less:1, tot:2}
Dir: {same:1, diff:1 tot:2}
Int: {narrow:1, widen:1, tot:2}
Exp: {binary:1, unary:1, tot:2}  

Sk: {diff:2, tot:2}
Ch: {more:2, tot:2}
Dir: {same:1, tot:1}
Int: {narrow:1, tot:1}
Exp: {binary:1, none:1, tot:2}  

Sk: {same:2, tot:2}
Ch: {same:2, tot:2}
Exp: {none:2, tot:2}  

Sk: {same:1, tot:1}
Ch: {same:1, tot:1}
Exp: {none:1, tot:1}  

Sk: {same:1, tot:1}
Ch: {same:1, tot:1}
Exp: {none:1, tot:1}  

Sk: {same:1, tot:1}
Ch: {same:1, tot:1}
Exp: {none:1, tot:1}  

Figure 4.2: A simplified Abs_tree built from the two Diff_trees on top. For readability, the
tree reports frequencies of occurence and the total number of observation rather than the
probabilities that need to be computed with the Bayesian Estimator. The colors represent
the tree from which each value for each feature comes from: blue for left-side tree, red for
the right-side one, and purple for those values that are found in both.

4.3.2.3 | Abstraction Trees

For each input piece, a set of (n−1)(n)
2 Diff_trees are produced, where n is the number of

segments the input piece is divided into. This number is due to the fact that the segments

are not compared with themselves nor the segments prior to them, but only with segments

that come later in the musical piece, so not all the n2 possible comparisons are performed.

Each tree is then labelled to indicate which segments are compared in that tree. Once

the Diff_trees for a set of pieces are produced, the Diff_trees that share the same label

110

4.3. Three Tree-Based Representations for Music

(i.e., that refer to the same segments of different pieces) can be joined together into a

single tree, that abstracts the general development of that particular comparison. For this

reason, we can call this representation an Abstraction Tree or Abs_tree. The procedure

works as follows: a new node which will be the root of the Abs_tree is created. Starting

from the root of all considered Diff_trees, for each of the possible features, the new node

annotates all the possible values that the feature assumes in all the given Diff_trees and the

number of occurrences of those values. The new node also annotates how many children

the roots of the given Diff_trees have, as a new separate feature. Then the algorithm

repeats recursively as long as at least one Diff_tree node has at least one child node.

Once the recursion process is complete, it is possible to compute the probability of each

value v for each feature in each node, using the following Bayes Estimator (Schürmann and

Grassberger, 1996):

p(v) =
occ(v) + β

tot + β ∗ size (4.1)

where occ(v) is the number of occurrences of the value v, while tot and size are respec-

tively the total of samples for that feature and the number of possible distinct values for

that feature. β was set to 1. All the features for which tot is less than a certain threshold

(I used 5 in the experiments described below) can be removed as those features would entail

too little information about the corpus. The nodes that remain empty because of this can

be removed as well. Figure 4.2 shows a simplified example of an Abs_tree built from two

Diff_trees. This process basically creates a probability distribution for each node, consist-

ing of a set of stochastic variables depending on the features present in the Diff_trees.

Because of this the Abs_tree is similar to a Markov Model, but rather than having the

probability distributions vary in time depending only on the previous state, the only feature

that determines the distribution is the position on the tree. For this reason, it would be

misleading to think of an Abs_tree as a chain or an automaton, and it is best to only view

it as a static probabilistic description of a musical corpus.

111

Chapter 4. Structure in Music Generation

                                         
V La Coquette (The Flirtatious) (La Civettuola)

DGmDD GmGmDGmGDGG GDGG
segment 1 seg. 2 seg. 3 seg. 4 seg. 5 seg. 6 seg. 7 seg. 8

S C D I
s s s w

S C D I
s s s n

S C D I
s s d n

S C
d m

S C
s s

S C D I
s s s n

S C D I
s s d n

Segment 1 vs segment 2
S C D I
s s s s

S C D I
s s s s

S C D I
s s s s

Segment 1 vs segment 3

S C D I
s s s s

S C D I
s s s s

S C D I
s s s s

S C D I
s s s s

S C D I
s s d w

S C D I
s s s n

S C D I
s s s n

Segment 1 vs segment 5

S C D I
s s s n

S C
s m

S C D I
s s s n

S C
s m

S C D I
s s s s

S C D I
s s s s

S C D I
s s d n

Segment 2 vs segment 4

S C D I
s s s s

S C D I
s s s s

S C D I
s s d s

S C
s s

S C D I
s s s s

S C D I
s s s s

S C D I
s s s s

Segment 6 vs segment 8

S C D I
s s s s

S C D I
s s s s

 S C
 s l

S C
s s

Legend:
s: same S: Sk
d: diff C: Ch
l: less D: Dir
m: more I: Int
n: narrow
W: widen

✤ ✤ ✤✤

✭

✦
✻

✭

✭ ✭

✭

✭

✭

✭

Figure 4.3: Diffrence trees computed on allemande V, in compact form. The nodes below
the third level were omitted.

4.3.3 | Applications

In this section, I will demonstrate, through example applications, the utility of the proposed

abstract representations. To do so, I will apply the explained structures to tasks relevant

to computational musicology and music information retrieval. It is worth noting that while

these applications were used to test the effectiveness of the proposed representations, these

do not represent the actual goal of this work. Indeed, the analysis performed by this system

is not actually a complete musicological analysis, but rather a way to extract meaningful

information capable of helping a music generation system.

4.3.3.1 | Musical Analysis

Figure 4.3 shows some Diff_trees computed from one allemande taken from the corpus:

following are some information that can be inferred by the encoding. In the first tree,

comparing segments 1 and 2, the highest level shows an interval that is widened (see ✽ in

the figure). The highest level of reduction is strongly reliant on the harmonic development.

This widening is connected to the fact that the second segment is more harmonically

diverse than the first. Conversely, the second level of both that tree and the one comparing

segments 1 and 5 (✤) sees only narrowing intervals. This level is less reliant on the harmony

but rather gives an indication of the general melodic contour, and indeed segment 1 (and

it’s repetition segment 3) is the one with the widest extension in the piece. The mentioned

112

4.3. Three Tree-Based Representations for Music

repetition is captured by the tree comparing segments 1 and 3 (✦), that shows no difference

at all across all features. The comparison between segments 2 and 4 and the one between

segments 6 and 8 (✭) also show a repetition (of the first measures of these segments), but

also shows the ending variation, that is to be expected from the ending of a phrase/section.

4.3.3.2 | Regularity Detection within a Corpus

The above introduced Abstraction Trees can be inspected to find regularities within a given

corpus. Of the twenty-four that make up our corpus, the twenty that have sixteen measures

in total were considered here, to make comparisons easier thanks to the equal length. All

the pieces were divided into two-bars long segments and the abstraction trees pairwise

comparing the segments were built as described above. The procedure produces a large

amount of data which is difficult to interpret on its own, but the tools of information theory

can help find the most relevant features. For each feature in each node, it is possible

to compute the normalized entropy (efficiency) of the probability distribution it describes,

which gives an useful indication of the importance of that feature within the corpus. The

lower the entropy, the more strictly that feature describes a recurring element in the corpus.

For example, as can be seen in Figure 4.4, looking at the mean normalized entropy of

all the constructed abstraction trees, it becomes evident that the tree comparing segments

0 and 2 (shown in figure) and the one comparing segments 4 and 6 are the most regular

ones. In those tree, almost each feature is set to “same”, meaning that there are little

or no differences between the above mentioned pairs of segments. Indeed, the phrases in

this corpus tend to repeat after 4 measures (the distance between the start of segments 0

and 2), and that is captured by the abstraction tree. Moreover, while the phrases repeat,

their ending is varied to make for more definitive phrase endings. This is captured in the

abstraction tree comparing segments 1 and 7 (shown in figure) where the left side of the

tree shows a repetition like the one described above, but in the right side of the tree the

most relevant feature is the one describing the ending grade, which is usually the tonic, as

expected from the closing of a musical period.

113

Chapter 4. Structure in Music Generation

[0
-2

]

Ro

ot
 ◊
 e

nt
ro

py
:

0.
14

sk
:

{'
sa

me
':

 2
0,

 '
to

ta
l'

:
20

,
'e

nt
ro

py
':

 0
.0

6}

st

ru
ct

:
{'

sa
me

':
 2

0,
 '

to
ta

l'
:

20
,

'e
nt

ro
py

':
 0

.0
7}

en
d:

 {
's

am
e'

:
20

,
't

ot
al

':
 2

0,
 '

en
tr

op
y'

:
0.

06
}

ch
_i

nt
:

{'
sa

me
':

 2
0,

 '
to

ta
l'

:
20

,
'e

nt
ro

py
':

 0
.0

7}

di

r:
 {

's
am

e'
:

20
,

't
ot

al
':

 2
0,

 '
en

tr
op

y'
:

0.
06

}

in

t:
 {

's
am

e'
:

20
,

't
ot

al
':

 2
0,

 '
en

tr
op

y'
:

0.
07

}

co

nt
:

{'
sa

me
':

 2
0,

 '
to

ta
l'

:
20

,
'e

nt
ro

py
':

 0
.0

7}

ex

pa
ns

io
n:

 {
'b

in
ar

y'
:

20
,

't
ot

al
':

 2
0,

 '
en

tr
op

y'
:

0.
07

}

├─

─
 R

ig
ht

 ◊
 e

nt
ro

py
:

0.
13

├

 s

k:
 {

's
am

e'
:

20
,

't
ot

al
':

 2
0,

 '
en

tr
op

y'
:

0.
06

}

├

 s

tr
uc

t:
 {

's
am

e'
:

20
,

't
ot

al
':

 2
0,

 '
en

tr
op

y'
:

0.
07

}

├

 e

nd
:

{'
sa

me
':

 2
0,

 '
to

ta
l'

:
20

,
'e

nt
ro

py
':

 0
.0

6}

├

 c

h_
in

t:
 {

's
am

e'
:

18
,

't
ot

al
':

 1
8,

 '
en

tr
op

y'
:

0.
08

}

├

 d

ir
:

{'
sa

me
':

 1
8,

 '
to

ta
l'

:
18

,
'e

nt
ro

py
':

 0
.0

7}

├

 i

nt
:

{'
sa

me
':

 1
8,

 '
to

ta
l'

:
18

,
'e

nt
ro

py
':

 0
.0

8}

├

 c

on
t:

 {
's

am
e'

:
18

,
't

ot
al

':
 1

8,
 '

en
tr

op
y'

:
0.

08
}

├

 e

xp
an

si
on

:
{'

bi
na

ry
':

 1
6,

 '
to

ta
l'

:
16

,
'e

nt
ro

py
':

 0
.0

9}

│

├─

─
 R

ig
ht

 ◊
 e

nt
ro

py
:

0.
28

26
05

05
95

86
66

55

│

├

 s

k:
 {

's
am

e'
:

16
,

't
ot

al
':

 1
6,

 '
en

tr
op

y'
:

0.
07

}

│

├

 s

tr
uc

t:
 {

's
am

e'
:

15
,

'm
or

e'
:

1,
 '

to
ta

l'
:

16
,

'e
nt

ro
py

':
 0

.3
4}

│

├

 e

nd
:

{'
sa

me
':

 1
5,

 '
to

ta
l'

:
15

,
'e

nt
ro

py
':

 0
.0

8}

│

├─

─
 L

ef
t

◊
en

tr
op

y:
 0

.2
3

│

├

 s

k:
 {

's
am

e'
:

16
,

't
ot

al
':

 1
6,

 '
en

tr
op

y'
:

0.
07

}

│

├

 s

tr
uc

t:
 {

's
am

e'
:

16
,

't
ot

al
':

 1
6,

 '
en

tr
op

y'
:

0.
09

}

│

├

 e

nd
:

{'
sa

me
':

 1
6,

 '
to

ta
l'

:
16

,
'e

nt
ro

py
':

 0
.0

7}

│

├

 c

h_
in

t:
 {

's
am

e'
:

11
,

't
ot

al
':

 1
1,

 '
en

tr
op

y'
:

0.
12

}

│

├

 d

ir
:

{'
sa

me
':

 1
1,

 '
to

ta
l'

:
11

,
'e

nt
ro

py
':

 0
.1

0}

│

├

 i

nt
:

{'
sa

me
':

 1
1,

 '
to

ta
l'

:
11

,
'e

nt
ro

py
':

 0
.1

2}

│

├

 c

on
t:

 {
's

am
e'

:
11

,
't

ot
al

':
 1

1,
 '

en
tr

op
y'

:
0.

12
}

│

└

 e

xp
an

si
on

:
{'

bi
na

ry
':

 6
,

'u
na

ry
':

 1
,

't
ot

al
':

 7
,

'e
nt

ro
py

':
 0

.5
2}

├─

─
 L

ef
t

◊
en

tr
op

y:
 0

.1
7

├

 s

k:
 {

's
am

e'
:

20
,

't
ot

al
':

 2
0,

 '
en

tr
op

y'
:

0.
06

}

├

 s

tr
uc

t:
 {

's
am

e'
:

20
,

't
ot

al
':

 2
0,

 '
en

tr
op

y'
:

0.
07

}

├

 e

nd
:

{'
sa

me
':

 2
0,

 '
to

ta
l'

:
20

,
'e

nt
ro

py
':

 0
.0

6}

├

 c

h_
in

t:
 {

's
am

e'
:

20
,

't
ot

al
':

 2
0,

 '
en

tr
op

y'
:

0.
07

}

├

 d

ir
:

{'
sa

me
':

 2
0,

 '
to

ta
l'

:
20

,
'e

nt
ro

py
':

 0
.0

6}

├

 i

nt
:

{'
sa

me
':

 2
0,

 '
to

ta
l'

:
20

,
'e

nt
ro

py
':

 0
.0

7}

├

 c

on
t:

 {
's

am
e'

:
20

,
't

ot
al

':
 2

0,
 '

en
tr

op
y'

:
0.

07
}

└

 e

xp
an

si
on

:
{'

bi
na

ry
':

 1
5,

 '
te

rn
ar

y'
:

1,
 '

to
ta

l'
:

16
,

'e
nt

ro
py

':
 0

.3
4}

├─

─
 R

ig
ht

 ◊
 e

nt
ro

py
:

0.
21

├

 s

k:
 {

's
am

e'
:

16
,

't
ot

al
':

 1
6,

 '
en

tr
op

y'
:

0.
07

}

├

 s

tr
uc

t:
 {

's
am

e'
:

15
,

'm
or

e'
:

1,
 '

to
ta

l'
:

16
,

'e
nt

ro
py

':
 0

.3
4}

├

 e

nd
:

{'
sa

me
':

 1
5,

 '
to

ta
l'

:
15

,
'e

nt
ro

py
':

 0
.0

8}

├

 c

h_
in

t:
 {

's
am

e'
:

9,
 '

to
ta

l'
:

9,
 '

en
tr

op
y'

:
0.

13
}

├

 d

ir
:

{'
sa

me
':

 9
,

't
ot

al
':

 9
,

'e
nt

ro
py

':
 0

.1
2}

├

 i

nt
:

{'
sa

me
':

 9
,

't
ot

al
':

 9
,

'e
nt

ro
py

':
 0

.1
3}

├

 c

on
t:

 {
's

am
e'

:
9,

 '
to

ta
l'

:
9,

 '
en

tr
op

y'
:

0.
13

}

├─

─
 L

ef
t

◊
en

tr
op

y:
 0

.1
6

├

 s

k:
 {

's
am

e'
:

16
,

't
ot

al
':

 1
6,

 '
en

tr
op

y'
:

0.
07

}

├

 s

tr
uc

t:
 {

's
am

e'
:

16
,

't
ot

al
':

 1
6,

 '
en

tr
op

y'
:

0.
09

}

├

 e

nd
:

{'
sa

me
':

 1
6,

 '
to

ta
l'

:
16

,
'e

nt
ro

py
':

 0
.0

7}

├

 c

h_
in

t:
 {

's
am

e'
:

12
,

't
ot

al
':

 1
2,

 '
en

tr
op

y'
:

0.
11

}

├

 d

ir
:

{'
sa

me
':

 1
2,

 '
to

ta
l'

:
12

,
'e

nt
ro

py
':

 0
.0

9}

├

 i

nt
:

{'
sa

me
':

 1
2,

 '
to

ta
l'

:
12

,
'e

nt
ro

py
':

 0
.1

1}

├

 c

on
t:

 {
's

am
e'

:
12

,
't

ot
al

':
 1

2,
 '

en
tr

op
y'

:
0.

11
}

└

 e

xp
an

si
on

:
{'

bi
na

ry
':

 6
,

't
ot

al
':

 6
,

'e
nt

ro
py

':
 0

.1
7}

En
tr
op

y:
M
ea

n

0-
1

0,
62

0-
2

0,
23

0-
3

0,
60

0-
4

0,
67

0-
5

0,
59

0-
6

0,
67

0-
7

0,
56

1-
2

0,
62

1-
3

0,
49

1-
4

0,
62

1-
5

0,
57

1-
6

0,
61

1-
7

0,
50

2-
3

0,
60

2-
4

0,
67

2-
5

0,
59

2-
6

0,
67

2-
7

0,
57

3-
4

0,
64

3-
5

0,
61

3-
6

0,
63

3-
7

0,
60

4-
5

0,
65

4-
6

0,
23

4-
7

0,
54

5-
6

0,
67

5-
7

0,
53

6-
7

0,
54

[1
-7

]
Ro

ot
 ◊
 e

nt
ro

py
:

0.
71

st
ru

ct
:

{'
sa

me
':

 2
0,

 '
to

ta
l'

:
20

,
'e

nt
ro

py
':

 0
.0

7}
ex

pa
ns

io
n:

 {
'b

in
ar

y'
:

20
,

't
ot

al
':

 2
0,

 '
en

tr
op

y'
:

0.
07

}
├─

─
 R

ig
ht

 ◊
 e

nt
ro

py
:

0.
65

├

 s
k:

 {
's

am
e'

:
20

,
't

ot
al

':
 2

0,
 '

en
tr

op
y'

:
0.

06
}

├

 s
tr

uc
t:

 {
's

am
e'

:
18

,
'l

es
s'

:
2,

 '
to

ta
l'

:
20

,
'e

nt
ro

py
':

 0
.3

8}
├

 t

o:
 {

'5
':

 1
,

'1
':

 1
4,

 '
6'

:
2,

 '
7'

:
1,

 '
to

ta
l'

:
18

,
'e

nt
ro

py
':

 0
.4

9}
├

 e

xp
an

si
on

:
{'

bi
na

ry
':

 1
7,

 '
un

ar
y'

:
1,

 '
te

rn
ar

y'
:

1,
 '

to
ta

l'
:

19
,

'e
nt

ro
py

':
 0

.5
4}

│

├─

─
 R

ig
ht

 ◊
 e

nt
ro

py
:

0.
43

│

├

 s

k:
 {

's
am

e'
:

18
,

't
ot

al
':

 1
8,

 '
en

tr
op

y'
:

0.
07

}
│

├

 s

tr
uc

t:
 {

's
am

e'
:

15
,

'l
es

s'
:

3,
 '

to
ta

l'
:

18
,

'e
nt

ro
py

':
 0

.4
7}

│

├

 t

o:
 {

'5
':

 1
,

'1
':

 1
1,

 '
6'

:
1,

 '
7'

:
1,

 '
to

ta
l'

:
14

,
'e

nt
ro

py
':

 0
.5

0}
│

├─

─
 L

ef
t

◊
en

tr
op

y:
 0

.2
7

│

├

 s

k:
 {

's
am

e'
:

19
,

't
ot

al
':

 1
9,

 '
en

tr
op

y'
:

0.
06

}
│

├

 t

o:
 {

'1
':

 6
,

'7
':

 1
,

't
ot

al
':

 7
,

'e
nt

ro
py

':
 0

.3
2}

│

├

 e

nd
:

{'
di

ff
':

 7
,

't
ot

al
':

 7
,

'e
nt

ro
py

':
 0

.1
5}

│

└

 e

xp
an

si
on

:
{'

bi
na

ry
':

 6
,

't
ot

al
':

 6
,

'e
nt

ro
py

':
 0

.1
7}

├─
─

 L
ef

t
◊
en

tr
op

y:
 0

.6
6

├

 s
k:

 {
's

am
e'

:
20

,
't

ot
al

':
 2

0,
 '

en
tr

op
y'

:
0.

06
}

├

 s
tr

uc
t:

 {
's

am
e'

:
20

,
't

ot
al

':
 2

0,
 '

en
tr

op
y'

:
0.

07
}

└

 e
xp

an
si

on
:

{'
bi

na
ry

':
 1

7,
 '

te
rn

ar
y'

:
2,

 '
to

ta
l'

:
19

,
'e

nt
ro

py
':

 0
.3

9}

├─

─
 R

ig
ht

 ◊
 e

nt
ro

py
:

0.
78

├

 s

tr
uc

t:
 {

's
am

e'
:

17
,

'l
es

s'
:

2,
 '

to
ta

l'
:

19
,

'e
nt

ro
py

':
 0

.3
9}

├

 e

xp
an

si
on

:
{'

bi
na

ry
':

 8
,

't
ot

al
':

 8
,

'e
nt

ro
py

':
 0

.1
4}

├─

─
 L

ef
t

◊
en

tr
op

y:
 0

.7
1

├

 s

k:
 {

's
am

e'
:

19
,

't
ot

al
':

 1
9,

 '
en

tr
op

y'
:

0.
06

}

├

 s

tr
uc

t:
 {

's
am

e'
:

17
,

'm
or

e'
:

1,
 '

le
ss

':
 1

,
't

ot
al

':
 1

9,
 '

en
tr

op
y'

:
0.

54
}

└

 e

xp
an

si
on

:
{'

bi
na

ry
':

 8
,

't
ot

al
':

 8
,

'e
nt

ro
py

':
 0

.1
4}

Figure 4.4: A table summing up the mean entropy of each abstraction tree derived from the
corpus, and some examples of abstraction trees as a text output of the software. Only the
first three levels were kept for readability. The labels of the tree represent the compared
segments: for example “0-1” means that the first two bars of a piece are compared to
measures 3 and 4, since in this case each segment was two measures long.

114

4.3. Three Tree-Based Representations for Music

4.3.3.3 | Genre Distinction

The following example shows that our system is capable of distinguishing different corpora

based on their structural aspects. While this is not a genre detection system, it shows

that structural information can vary between different genres and that the abstraction

trees can capture these differences. To do so, this application leverages another metric

commonly used in Information Theory. While entropy is related to regularity in a probability

distribution, Information Content gives an indication of how unexpected a certain outcome

is with respect to a given probability distribution. Since musical cognition is strongly related

to expectation (Huron, 2008), this metric becomes a relevant indicator when analyzing

musical pieces (Pearce and Wiggins, 2006). In this experiment, a set of abstraction trees

from the 20 allemandes taken from our corpus were built, along with the difference trees

from a set of 20 reels from the Nottingham Dataset (Foxley, 2011), and from 20 jazz pieces

composed between 1921 and 1930 taken from the EWLD corpus (Simonetta et al., 2018).

The abstraction trees contain probability distributions for each feature in each node, while

difference trees can be considered as outcomes for the same features. This means that for

each feature it is possible to compute the information content. To give single measure of

the total information content of a difference tree compared to an abstraction tree, the mean

of all the features in a node is computed to give the information content of a single node,

and the mean of all the information contents across nodes is computed to give the general

information content of a tree. This latter mean is also weighted by the mean entropy of the

nodes, and by an added coefficient that makes nodes lower in the tree less important than

nodes in the upper part of the tree (depth_k in the formula below). The total formula

is described below, where p(diff_tree_feature) represents the probability p(v) (computed

according to the estimator 4.1) of the value v found for the considered feature f in the

diff_tree node.

115

Chapter 4. Structure in Music Generation

ic(tree) =
∑node∈tree ic(node) 1

ent(node) ∗ depth_k(node)

∑node∈tree
1

ent(node) ∗ depth_k(node)
(4.2)

ic(node) = ∑
f ∈node

− log2(p(diff_tree_feature))
ent(f)

(4.3)

ent(node) =
∑f ∈node ent(f)

number_of_features_in_node
(4.4)

ent(f) = ∑
v∈alphabet(f)

− log2(p(v))p(v) (4.5)

Figure 4.5 shows the results of the comparisons. Since computing the information

content of a piece included in the abstraction tree would be an unfair advantage, an approach

similar to a k-fold validation was used: the allemande corpus was split into four parts of

5 pieces, and the information content of each piece was computed with respect to the

abstraction trees built solely on the 15 pieces outside the considered allemande’s group.

This means that there were actually four sets of abstraction trees built each on a different

subset of 15 pieces: the values for the other two groups (Jazz and Nottingham) were

computed on all the four sets and the mean is reported.

The results clearly show that this approach is capable of detecting the structural dif-

ferences between the corpora. The allemandes show a strong structural regularity, that is

not found in the other pieces. As expected, the reels from the Nottingham dataset are less

unexpected than the jazz pieces, since they too have some structural regularities that are

not always found in jazz pieces. It is worth noting that being based on difference trees, what

this system captures is the general structure of the piece and how much reuse of melodic

material is present, rather than comparing for instance the regularities in the melodies and

how typical they are for each genre. For this reason, the system in itself could not form an

actual genre detection system, although this metric can possibly constitute a complemen-

116

4.4. Structure-Aware Style Imitation

Leone Allemandes Jazz Songs Nottingham Reels

1
2

3
4

5
Information Content comparison between corpora

Corpus

M
ea

n
In

fo
rm

at
io

n
C

on
te

nt

Figure 4.5: Comparison of the mean information content computed from each of the three
sets of twenty musical pieces. Mean refers to the mean of the trees of a single piece, rather
than the mean of an entire corpus.

tary indicator that could be used in combination with other approaches in a genre detection

system.

4.4 | Structure-Aware Style Imitation

The representations described above only serve as an analysis tool, and not as a generation

tool. Moreover, most of the information that is represented is related to structure, and

do not prescribe ways in which a melody can be constructed. Yet, its analytical power can

be used to discriminate typical structures within a certain genre, as shown in the Genre

117

Chapter 4. Structure in Music Generation

Distinction task explained above. The music generation approach I describe here uses the

same idea of using Information Content to find typicality of structures, but embedded within

a genetic algorithm. This algorithm first generates some melodies, and then uses Informa-

tion Content as the fitness function to choose those melodies that are more fit to be a

continuation of the starting melodies given the genre of the analyzed corpus, so that the

final generated piece will show a satisfactory long-term structure.

The generation process functions as follows:

Step Zero: Construct the required data structures from a given corpus.

Step One: One starting segment lasting two bars is generated.

Other segments are generated with the following steps, until the specified length is reached.

Step Two: Generate some segments using the same procedure as the one above, that

constitute a pool of candidates. Add to the candidates pool all the segments that

constitute the piece so far.

Step Three: Mutate the pieces in the candidates pool. For each of the candidates, 5

mutations are generated, by selecting at random the operations: note deletion, note

insertion, change of rhythm, change of pitch.

Step Four: Evaluate the Information Content of all the candidates. If for one continuation

the information content is below a certain threshold, a winner is found. Otherwise,

the pool is reinitialized with the 5 best results and 5 new segments, and the process

repeats from Step Three.

The following sections will describe the above points in more detail.

4.4.1 | Corpus Analysis and Generation of Melodic Beginning

118

4.4. Structure-Aware Style Imitation

Step Zero

For this process to function, it is necessary to have a input corpus that must be analyzed

following the process described in the prior sections of this chapter. Each piece in the

given corpus is divided into segments lasting two measures, and a Sk_tree is built for each

segment. For each piece a set of Diff_trees are constructed, and finally the Abs_trees

that represent the entire corpus can be computed. In addition to those structures, that

only deal with structural representations, this algorithm extracts some additional data for

the construction of melodies.

The first of such structures is a first-order Markov chain learnt from the notes at the

topmost layer of the reductions operated on the segmented corpus. After the reduction

process for the construction of Sk_trees, each segment is reduced to only one note, and

thus the piece is reduced to a sequence of N notes where N is the number of segments in

the piece. A first order Markov chain is built to replicate this sequence, that is needed as

input for the following operations. We can call this chain the Top_chain. The Top_chain

also saves the probability for each of the symbols in the chain to be found as the reduction

of the first segment of a piece, by counting how many times each symbol is found in the

first segment’s reduction.

Additionally, a set of first-order Markov chains is constructed by analyzing the pitch

sequences in each of the segments. Instead of learning just one chain for these melodies, a

chain for each of the symbols found in the Top_chain is built. This is done to preserve the

fact that melodies can have different developments depending on the underlying structure

of the piece, represented here by the reduced note. Notice that prior to the segmentation,

as required by the algorithms for the construction of the tree structures, all the pieces

are transposed to the key of C Major/A minor, so that the reduced note is significantly

comparable across all pieces. Additionally, the surface chains also save the probability

for each symbol in the chain to be found at the start of the melody, by simply counting

the occurrences of each note at the beginning of a segment. We can call these chains

Surface_chain, and, for example, we can refer to the one built for those segments that

are reduced to the note C by writing Surface_chain[C].

119

Chapter 4. Structure in Music Generation

The above Markov chains only consider pitch in their alphabets. This is fine for the

Top_chain, that describes abstract notes, but for the construction of melodies it is neces-

sary to consider rhythm as well. In this work, a list of all the rhythmic sequences found in

the segments of the corpus were collected, so that it is possible to select one at random

when adding a rhythm to a melody.

Step One

All of the above can be computed beforehand, and the resulting model can be used to

generate any number of pieces. Once such a model is available, the generation process

starts by creating a sequence of notes via the Top_chain. The resulting piece will have

twice as many measures as the notes generated in this sequence. The resulting sequence

is called the Top_sequence The first note from which to start the Top_sequence can be

chosen beforehand (C is a reasonable choice) or it can be chosen at random using the saved

probability for the beginning symbol.

The first segment is then generated. To do so, a rhythmic pattern is chosen at random

from the rhythmic list. Then the surface chain is used to generate an appropriate amount of

notes, starting from a note chosen at random using the probabilities saved for the beginning

note. For this operation the surface chain labelled with the first note of the Top_sequence

is used (Surface_chain[Top_sequence[0]]).

4.4.2 | Generation of a Pool of Continuations

Step Two

Each of the segments beyond the first one are generated via a Genetic algorithm. A pool

of candidates is built for this process, and a winner is selected within this pool. The pool

is initialised with five segments that are generated using the same process described above,

i.e., by choosing a rhythm from the model’s rhythmic list and generating pitches selected

with the appropriate Surface_chain. Notice that the selection of the chain depends on the

note found in the Top_sequence in the position that corresponds to the segment that is

120

4.4. Structure-Aware Style Imitation

being generated. Additionally, all of the segments that were already included in the piece

are added to the pool, as well as a transposed version of the same in the case where the

note in the Top_sequence differs. For example, if the third segment is being generated, and

the Top_sequence looks like this: [C4, D4, C4], both the first and the second segments

are added to the candidates pool, but a copy of the second segment transposed down by 2

semitones (the interval between D4 and C4) is added as well. This allows the algorithm to

create melodic progressions (should this copy be chosen as a winner).

Step Three

For each of the candidates in the pool, 5 mutated segments are generated. The possible

operations performed to mutate the segments are:

Note deletion: randomly select one note from the segment and delete it. The length of

the previous note (or the following, if the deleted note was the first) increases by the

length of the deleted note.

Note Insertion: randomly select one note from the segment. That note’s length is halved,

and a new note is generated (using the appropriate Surface_chain) to fill the void.

Change of Pitch: randomly select one note from the segment and delete it. A new note is

generated to fill the void, using the appropriate Surface_chain if there is a preceding

note or using the probability for the beginning note if the deleted note was the first.

Change of Rhythm: a new rhythm is chosen from the rhythmic list. If the previous rhythm

had more notes, delete the last notes that would not be used. If the previous rhythm

had less notes, add notes to fill the void by using the appropriate Surface_chain.

The amount of mutation operations applied to one segments varies with the number of

the mutations that were already generated. That means that the first mutation for the

segment has one operation, the following two, and so on until the last one that undergoes

five operations.

121

Chapter 4. Structure in Music Generation

Segment 1
 Segment 2
 Segment N
 Candidate

Position N+1

diff_tree

abs_tree 1 vs N+1 abs_tree 2 vs N+1 abs_tree N vs N+1

Information
Content

Information
Content

Information
Content

Average
Information

Content

Fitness for Candidate:
diff_treediff_tree

Tune generated so far

Figure 4.6: The process of the construction of the fitness for a new candidate. For each
of the already generated segments, a diff_tree must be constructed which will be used to
compute the information content with respect to the relative abstraction tree.

4.4.3 | Genetic Approach to Select Continuation

Step Four

Evaluate the Information Content of all the candidates. To do so, a diff_tree between the

candidate and all the segments in the piece so far must be constructed, and those diff_trees

are evaluated against the abs_trees learnt on the corpus (see Figure 4.6). If the average

information content is below a certain threshold, a winner is found.

Otherwise, the 5 best results are kept in the candidate pool and the others are eliminated.

Five additional new segments are generated with the process described above, and are added

to the pool. The process repeats from Step Three, meaning that each of the candidates in

the new pool gets mutated five times before the evaluation restarts.

122

4.4. Structure-Aware Style Imitation

Music21

Music21 Fragment

    


 

    



 
 



  

  



 

 

  

 

 



  

  



















Figure 4.7: One allemande generated with the system.

After ten generations, if the desired threshold is not reached, the computation is halted

to avoid plateaus.

4.4.4 | Example Result

Figure 4.7 shows one example of what the generation system described above is capable

of creating. It is possible to see that the system managed to create a tune with a similar

structure to the corpus of allemandes. For example, the first two measures are repeated

in the fifth and sixth measures (segment 3), as was the case for the allemande reported

in Figure 4.3. Similarly to that allemande, the ending of measure 8 and 16 end on the

tonic, variating from the previous segments. We can also see that the second part of the

allemande is somewhat more free than the first part, with measure thirteen and fourteen

being rather different from the rest. This reflects the fact that in the corpus the second

section of the tunes is less regular than the first half.

The main shortcoming of this generated allemande is the presence of large melodic

intervals, which are indeed present in the corpus (otherwise those could not have been

generated by the Markovian approach), but are usually justified by melodic progressions

leading to those intervals, or happen with longer notes that allow the player to move the

hand the required amount in time. These intervals make the generated allemande rather

unfriendly for a beginner player, which is not the case for the ones in the corpus. The use

of an extremely simple algorithm for melodic generation (first order Markov chains) may be

the cause of the unfitting melodies, and this could possibly be solved by using more refined

123

Chapter 4. Structure in Music Generation

 

  

    

   

  

  

  



  


 



 

  

   

  

 

   



 

 

  

 

  










 














Figure 4.8: One reel generated with the system.

algorithm in the segment generation phase, as well as in the mutation phase. On the bright

side, the fact that the final output is reasonable despite the use of such a simple approach

to melodic generation shows the potential of the structural fitness system.

Figure 4.8 shows one additional example. In this case, the system was primed with reels

from the Nottingham Dataset. In this example it is possible to clearly distinguish and A and

a B sections. As customary in this style, the B section shows more embellishments than

the A section, but remains coherent with the first section especially in how the period ends:

measures 15 and 16 are a variation of measures 7 and 8, tying together the two sections in

their endings, allowing repetition of either or both sections in any order. As in the previous

example, the phrases end on strong grades, in this case always on the tonic.

4.5 | Discussion

4.5.1 | Main Findings

This chapter was devoted to representations of music that consider its structural aspects,

and to music generation based on such representations.

The first contribution of this part is the implementation of an algorithm for the reduction

of melodies inspired by Schenkerian Analysis, based upon work present in the scientific

literature. While this does not represent innovative contributions, it is the main building

block for the following representations, and already follows the principle of being an algorithm

based on cognition of music. The general consensus is that the idea of grouping musical

passage in a hierarchical fashion is indeed how we perceive melodies in our brain (Temperley,

124

4.5. Discussion

2011).

The main contribution is the three-tree based representation system, which uses the

trees built with the above mentioned algorithm as the input for further computations. The

relatively simple approach described in this thesis allows to give probabilistic descriptions of

how a piece, or even a set of pieces, unfold over time, rather than giving a static description

of the entire pieces similarly to what Schenkerian analysis did. Moreover, given the use of

probability distributions in the Abstraction trees, it was possible to use Information Theory

concepts to pragmatically analyze the pieces, in a way that is once again rooted in human

cognition. The use of information content is especially related to unexpectedness, which

is one of the main aspects of music cognition (Pearce and Wiggins, 2006; Pearce, 2018;

Wiggins and Sanjekdar, 2019). While this representation cannot capture the entirety of

information included in a musical piece (nor it is meant to), it offers a way to deal with

the structural aspects of melodic formation, which are sometimes overlooked by research in

Computational Creativity and is generally considered an open problem.

The representation system was applied to the goal of Music Generation, to create

folk music showing convincing structure. The limits of this representation, that does not

consider harmony, rhythm, and other key features of music, required the use of additional

algorithms and knowledge representations, taken from literature. While these additional

methods were not particularly innovative nor sophisticated, the use of information content

applied to the structural representations allowed for convincing results. A genetic approach

to generation was used, where the information content was at the basis of the fitness

function, to select continuations to a generated melody that resulted in a plausible structure

given the learnt corpus. Genetic algorithms are not commonly used in recent literature for

music generation, and some question their usefulness within this context (Phon-Amnuaisuk

et al., 1999; Wiggins et al., 1998; Carnovalini and Rodà, 2020). Yet, in this work I gave an

example of how this approach can be useful when dealing with complex features (such as

information content) that cannot be easily imposed by construction on a given melody.

125

Chapter 4. Structure in Music Generation

4.5.2 | Scope of the Representation

While explaining and exemplifying the representation system that constitutes the main pro-

posal of this chapter, a series of design choices were made, that influence what kinds of

music are fit to be represented with this system, and what kinds of uses can be made of these

data structures. It is worth discussing here what currently can be effectively represented

and what would instead require different approaches.

The first and foremost limitation is that this representation system, being based on a

Schenkerian-like approach, is limited to the representation of tonal music. Any genre of

music that makes strong use of atonality cannot be meaninfully analyzed and represented in

this manner. Going even further, the system requires the musical corpus to be represented

in symbolic systems based on western score notation, so any kind of electroacoustic music,

microtonal music, certain kinds of ethnic music, or any kind of music that cannot be rep-

resented via score notation cannot be represented, even if it still was tonal music. While

these are serious limitations, tonal music still represents a vast majority of the western music

production and being capable of only representing tonal music is a reasonable limitation.

Even within the scope of tonal music, it is possible to further characterize the limits of

this representation system. As stated above, this system is strongly rooted in the concept

of tonality, so music genres that use tonality but also modulate often, as modern jazz,

might be less efficiently represented. More importantly, this system is based on structural

aspects of music, and regularities within the melodic content of a corpus. If a musical genre

has little structural regularities in itself, it becomes harder for this system to infer useful

information.

The examples provided in this chapter deal with baroque and folk dance music. These

are perfect examples of music that presents strong structural regularities and lies within the

context of tonal music. Yet, it would be wrong to assume that this is the only context

where the presented representation can funciton. The allemande corpus chosen for this

study as its structural regularities made it easier to design the representation system, but

the algorithm in itself can be applied to any situation where melodic reuse is relevant, which

is true in most popular and baroque music, but also in many other contexts where standard

126

4.5. Discussion

forms are used.

If one were to try and overcome these limitations, the general approach of building

difference trees and abstraction trees could still be useful. More specifically, if one were to

substitute the Schenkerian-like analysis of the corpus with other kinds of analyses, possibly

to better describe different kinds of music, the hierarchical comparison between analyses

and the subsequent statistical study of the comparisons can lead to similar structural rep-

resentations, but for different musical contexts.

Another limit to the presented approach is that it uses a fixed segmentation approach,

which can be set by the user and that we set to two measures for the generation. While

this is surely a limit, one might think that this implies that only repetitions that have that

exact length can be detected, where instead it is possible to find both longer and shorter

relationships, since the difference trees will compare schenkerian trees across the entire

piece, and can find relationships at different levels in the reductions meaning that different

lengths can be considered. On the other hand, this fixed segmentation is still limiting in

the fact that a piece could be more reasonably divided into variable-length segments, and

most importantly the "phase" might be different across pieces. The system still functions

regardless of this limitation, but further work in this direction could lead to better results

in the future. Related to this, this study was limited to pieces having the same duration

(expressed in measures). Since the systems mainly deals with period-level structures, it

can be appropriate to detect periods and apply the proposed structures to periods, while

larger-scale aspects could be dealt with another abstraction tree built to function with larger

segments, which could be adapted to allow for different lengths.

One final limitation of the abstraction trees is that they require to be built starting from

a corpus of relatively coherent pieces, as it will try to find regularities within the corpus. If

the pieces differ too much, the result might lead to distributions too close to the uniform

to be useful for style imitation. Further research might be able to allow clustering based on

the difference trees, so that different abstraction trees can be built to describe the different

cluters.

To conclude, our system for music generation based on style imitation also has some

127

Chapter 4. Structure in Music Generation

limitations that were describe above. Most importantly, the melodic material it generates is

sometimes unsatisfactory. The first step towards a better system would be the implementa-

tion of more advanced methods for melody generation, possibly integrating neural networks

and deep learning in this phase.

128

5

Conclusions

5.1 | Summary and Discussion

In this thesis I presented the results of my research on some aspects of music generation,

related to the more general field of Computational Creativity.

I introduced the field in Chapter 2, presenting a review of the state of the art on

both Computational Creativity and on Music Generation Systems. In the final part of that

chapter, I discussed some open challenges of the field that need more consideration from

researchers. The rest of the thesis focuses on two of those challenges, namely Social Inter-

action and Structure in music generation.

Chapter 3 illustrates a serious game for social interaction between two players inspired

by Music Therapy. The game requires two users to improvise a rhythm on MIDI pads, and

adds a musical augmentation to reward their interaction, synchronized with their rhythm.

The system uses an algorithm for real-time detection of meter and tempo, which was

implemented based on the strict requirements of the system. The algorithm takes a set

of rhythmic notes (i.e. events that have onset time and force/velocity, but not pitch) and

estimates the tempo by constructing a signal based on those events, and calculating the

correlation between the signal and itself when shifted in time. The shift value that results

in the highest correlation is chosen as estimated tempo. The meter is then computed by

calculating the correlation of the signal with ad-hoc pre-built signals representing different

129

Chapter 5. Conclusions

meters. Using these two estimates, the system can also predict the onset time of the next

measure in the improvisation. The serious game uses the information computed with this

algorithm to synchronize music generated by the computer with the interaction between

the players. Depending on how well the players are interacting, the music also changes in

intensity and instrumentation. The quality of this application was evaluated via quantita-

tive metrics and with a questionnaire to test users. The testing show the potential of this

application, both as a way to design rhythm-based human-computer interactions, and as

an example application of musical co-creativity where computer-generated music is at the

service of human users in a therapeutic context.

Chapter 4 describes a system for representing structural information of music based on

three tree-based representations, and a system that leverages the same representations to

generate music with satisfatory long-term structure.

The representation system accepts a corpus of musical pieces. Each is divided into

segments, and each segment is reduced utilizing a Schenkerian-like approach. This reduc-

tion iteratively eliminates notes from the original segment, creating a tree where each node

represents how notes were reduced. The trees resulting from these segments are compared

with each other, creating a second representation called Difference Tree. In this represen-

tation, each node describes how the reduction operated in one segment differs from the

reductions operated in the compared segment. Finally, by joining Difference Trees created

from the various pieces in a corpus, an Abstraction Tree can be built. This represents

the probability distributions of the various operations described in the Difference Trees. In

practice, it represents the probability distributions for all the structural developments within

a corpus. Using Information Theory concepts, namely Information Content, it is possibly

to describe how unexpected (with respect to the given corpus) a structure of a musical

piece that was not included in the corpus is. This was used as a fitness function within a

genetic music generation system. This serves as a way to choose possible continuations for

the piece that is being generated. Doing so, the system ensures that the chosen contin-

uations are structurally plausible. To generate the musical material that is then evaluated

130

5.1. Summary and Discussion

in this genetic approach, the system uses Markov chains to generate pitch and dictionaries

to generate rhythm. While the results present unusual intervals, the algorithm is capable

of generating pieces that show satisfactory structure despite the simplicity of the melody

generation process.

The work presented in this thesis follow two main directions that were chosen as the

result of a review of the state of the art in Music Generation. These two directions deal with

social aspects of music and the utility of using computer-generated music for humans on one

side, and with the description od+f structure on the other. The two aspects, while apparently

rather diverse, both contribute to the advancement of music generation and can possibly lead

to advancements in creativity of musical systems as well. The general position that guided

this work is that, in order to obtain a form of creativity that is recognized as such by humans,

it is necessary to start from human cognition and to develop algorithms and representations

that reflect how humans view and perceive music. This position naturally guides towards

co-creative implementations of music generation systems, as in the case of the presented

serious game. Other researchers might suggest that such a human-centric view of creativity

is limiting, and that we should explore other concepts of machine-based creativity (Colton

et al., 2020). I would argue instead that to ensure that Computational Creativity is useful

to humans, we must keep the focus on human intelligence, human cognition, and human

creativity. Indeed, some definitions of Computational Creativity explicitly require humans

to define if something is creative or not (Wiggins, 2006, 2021a).

One reason for which I suggest keeping the human at the centre is that generating

computer music that is more similar to our music and that listeners can perceive as “human”

makes it easier to allow for human-computer co-creation, ideally exchanging ideas with the

computational composer (Sturm and Ben-Tal, 2021). Another reason is that, when we

look at a broader picture beside musical applications, we can see that in most long-term

goals of Computational Creativity, where creativity is embedded in any intelligent system,

the requirement for human-like creativity is the only one that makes sense. For example,

in the context of affective computing, if creativity is needed for us to relate more easily to

131

Chapter 5. Conclusions

a computational system, the model of creativity must be based on the one we relate to,

which is the human one. In more pragmatic or scientific applications, creativity can be used

to guide human reasoning (for example in creativity applied to math), and thus the involved

creativity must be akin to the human one so that the reasoning is understandable by us.

Finally, it is worth considering that most definitions of creativity see it as a two sided feature,

balancing novelty and value. While novelty leaves a lot of possibility for exploration beyond

what would be normally considered human, value is a concept that is still strongly related

to our benefit and idea of what is valuable. Building a creative system around human-like

reasoning and cognition could in principle ensure that the results are valuable from a human

viewpoint.

5.2 | Contributions

The contributions of the work described in the thesis are the following:

■ A review of the state of the art of Computational Creativity and Music Generation

systems, underlining open challenges in the field (published as open access article)

■ The study of social musical interactions through a real-time game:

• A system for the detection of meter and tempo in real time based solely on

rhythmic input seen as onset time + velocity (delivered as open source code)

• A system that generates a real time accompaniment for a rhythmic input (de-

livered as open source code)

• A serious game that analyzes a rhythmic interaction between two players and

generates musical accompaniment that fits their rhythm and evaluates the quality

of their interaction (delivered as open source code)

■ The study of structure in music through specialized representations:

• A dataset of 24 allemandes for musicological research on structure (delivered as

open data)

132

5.2. Contributions

• An algorithm for the reduction of melodies inspired by Schenkerian Analysis

(described in academic publications)

• A method for music representation based on the comparisons of tree represen-

tations of a musical piece (described in academic publications)

• A system for computing such representations, and for computing cognitively

relevant statistical features of a musical piece in comparison with a given corpus

using such representations (delivered as open source code)

• A system for generating music that imitates the style and structure of a given

corpus, based on the same statistical features (delivered as open source code)

5.2.1 | Publications

The projects described in this thesis led to the publication of one open-access journal article

and eight contributions in scientific conferences proceedings during the period of the Ph.D.

course.

■ Carnovalini, F., & Rodà, A. (2020). Computational Creativity and Music Generation

Systems: An Introduction to the State of the Art. Frontiers in Artificial Intelligence,

3, 14. https://doi.org/10.3389/frai.2020.00014

■ Simonetta, F., Carnovalini, F., Orio, N., & Rodà, A. (2018). Symbolic Music Simi-

larity through a Graph-Based Representation. Proceedings of the Audio Mostly 2018

on Sound in Immersion and Emotion - AM’18, 1–7. https://doi.org/10.1145/

3243274.3243301

■ Carnovalini, F., & Rodà, A. (2019). A Multilayered Approach to Automatic Mu-

sic Generation and Expressive Performance. 2019 International Workshop on Mul-

tilayer Music Representation and Processing (MMRP), 41–48. https://doi.org/

10.1109/MMRP.2019.00016

133

https://doi.org/10.3389/frai.2020.00014
https://doi.org/10.1145/3243274.3243301
https://doi.org/10.1145/3243274.3243301
https://doi.org/10.1109/MMRP.2019.00016
https://doi.org/10.1109/MMRP.2019.00016

Chapter 5. Conclusions

■ Carnovalini, F. (2019). Open Challenges in Musical Metacreation. Proceedings of

the 5th EAI International Conference on Smart Objects and Technologies for Social

Good, 124–125. https://doi.org/10.1145/3342428.3342678

■ Carnovalini, F., Rodà, A., & Caneva, P. (2019). A Musical Serious Game for So-

cial Interaction through Augmented Rhythmic Improvisation. Proceedings of the 5th

EAI International Conference on Smart Objects and Technologies for Social Good,

130–135. https://doi.org/10.1145/3342428.3342683

■ Carnovalini, F., & Rodà, A. (2019). A Real-Time Tempo and Meter Tracking System

for Rhythmic Improvisation. Proceedings of the 14th International Audio Mostly

Conference: A Journey in Sound, 24–31. https://doi.org/10.1145/3356590.

3356596

■ Carnovalini, F., Rodà, A., Harley, N., Homer, S. T., & Wiggins, G. A. (2021). A New

Corpus for Computational Music Research and A Novel Method for Musical Structure

Analysis. Audio Mostly 2021 (AM ’21), 4. https://doi.org/10.1145/3478384.

3478402

■ Carnovalini, F., Harley, N., Homer, S. T., Rodà, A., & Wiggins, G. A. (2021).

Meta-Evaluating Quantitative Internal Evaluation: A Practical Approach for Devel-

opers. Proceedings of the 12th International Conference on Computational Creativ-

ity, 5. https://computationalcreativity.net/iccc21/wp-content/uploads/

2021/09/ICCC_2021_paper_98.pdf

■ Carnovalini, F., Harley, N., Homer, S., Roda, A., & Wiggins, G. A. (2021). Study-

ing Structural Regularities through Abstraction Trees. Proceedings of the 15th In-

ternational Symposium on Computer Music Multidisciplinary Research, 10. https:

//cmmr2021.github.io/proceedings/pdffiles/cmmr2021_19.pdf

Moreover, an additional journal paper was submitted and after being accepted with

minor revision is awaiting evaluation from the editor.

134

https://doi.org/10.1145/3342428.3342678
https://doi.org/10.1145/3342428.3342683
https://doi.org/10.1145/3356590.3356596
https://doi.org/10.1145/3356590.3356596
https://doi.org/10.1145/3478384.3478402
https://doi.org/10.1145/3478384.3478402
https://computationalcreativity.net/iccc21/wp-content/uploads/2021/09/ICCC_2021_paper_98.pdf
https://computationalcreativity.net/iccc21/wp-content/uploads/2021/09/ICCC_2021_paper_98.pdf
https://cmmr2021.github.io/proceedings/pdffiles/cmmr2021_19.pdf
https://cmmr2021.github.io/proceedings/pdffiles/cmmr2021_19.pdf

5.3. Closing Remarks

■ Carnovalini, F., Rodà, A., & Caneva, P. (2022?) A Rhythm-Aware Serious Game for

Social Interaction. Submitted to Multimedia Tools and Applications.

5.2.2 | Deliverables

■ The code for the Serious Game is available at https://gitlab.dei.unipd.it/

facoch/sympaddy/

■ The Leone dataset, used for the structural experiments, can be found here: https:

//doi.org/10.5281/zenodo.5145348

■ The code for the Music Generation System, as well as the analytical tool it leverages,

is available at https://gitlab.dei.unipd.it/facoch/leone/

5.3 | Closing Remarks

In this thesis I explored two main directions for the advancement of Music Generation and

of Computational Creativity. The result is the development of new tools for the creation

and co-creation of music with the help of software, rather than a theoretical advancements

on what is necessary to achieve creativity in computational system. In particular, looking

back at the questions in Section 1.3, most of those still have no clear answer. It would be

especially interesting to verify what impact the tools presented in this thesis have to the

perception of creativity in the musical output of a system, as verifying this during the PhD

period was not possible due to the hardships imposed by Covid-19.

Despite being a practical work for most part, some lessons emerged. The importance

of the human factor in designing intelligent and creative system is the first one. Many

researches suggest that self-reflection is crucial in any creative framework. I suggest that the

study of human cognition is the foundation for building such reflection systems. Moreover,

the focus on human cognition and creativity can lead to applications that are useful to us.

One direction I intend to explore going forward with my research career is the application

of creative approaches to other AI applications. One example would be applying creativity

135

https://gitlab.dei.unipd.it/facoch/sympaddy/
https://gitlab.dei.unipd.it/facoch/sympaddy/
https://doi.org/10.5281/zenodo.5145348
https://doi.org/10.5281/zenodo.5145348
https://gitlab.dei.unipd.it/facoch/leone/

Chapter 5. Conclusions

to recommendation systems, to enable such systems to go beyond the metrics that are

generally used that only rely on the fact that people will like popular things. A creative

recommendation could be able to suggest things that are not very popular (novelty), but

are still of interest to the user (value). More generally, if it is true that creativity is a part

of human intelligence, it is time to see whether our studies in creativity can lead to better

performances in our intelligent systems, or at least make such artificial intelligences feel

more humane.

136

References

Samer Abdallah, Nicolas Gold, and Alan Marsden. Analysing symbolic music with probabilistic grammars. In

David Meredith, editor, Computational Music Analysis, pages 157–189. Springer International Publishing,

Cham, 2016. ISBN 978-3-319-25931-4. doi: 10.1007/978-3-319-25931-4_7. URL https://doi.org/10.

1007/978-3-319-25931-4_7.

Kat Agres and Dorien Herremans. Music and motion-detection: A game prototype for rehabilitation and

strengthening in the elderly. In 2017 International Conference on Orange Technologies (ICOT), pages

95–98, Singapore, December 2017. IEEE. ISBN 978-1-5386-3276-5. doi: 10.1109/ICOT.2017.8336097.

URL https://ieeexplore.ieee.org/document/8336097/.

Kat Agres, Jamie Forth, and Geraint A. Wiggins. Evaluation of musical creativity and musical metacreation

systems. Computers in Entertainment (CIE), 14(3):33, 2016. doi: 10.1145/2967506.

Kat R. Agres, Rebecca S. Schaefer, Anja Volk, Susan van Hooren, Andre Holzapfel, Simone Dalla Bella,

Meinard Müller, Martina de Witte, Dorien Herremans, Rafael Ramirez Melendez, Mark Neerincx, Se-

bastian Ruiz, David Meredith, Theo Dimitriadis, and Wendy L. Magee. Music, Computing, and

Health: A Roadmap for the Current and Future Roles of Music Technology for Health Care and Well-

Being. Music & Science, 4:205920432199770, January 2021. ISSN 2059-2043, 2059-2043. doi:

10.1177/2059204321997709.

Rita Aiello. Music and language: Parallels and contrasts. In Rita Aiello and John A. Sloboda, editors, Musical

Perceptions, pages 40–63. Oxford University Press, Oxford, UK, 1994.

Kenneth Aigen. In Defense of Beauty: A Role for the Aesthetic in Music Therapy Theory. Nordic Journal

of Music Therapy, 16(2):112–128, January 2007. ISSN 0809-8131. doi: 10.1080/08098130709478181.

Rory Allen and Pamela Heaton. Autism, Music, and the Therapeutic Potential of Music in Alexithymia. Music

Perception, 27(4):251–261, April 2010. ISSN 0730-7829, 1533-8312. doi: 10.1525/mp.2010.27.4.251.

137

https://doi.org/10.1007/978-3-319-25931-4_7
https://doi.org/10.1007/978-3-319-25931-4_7
https://ieeexplore.ieee.org/document/8336097/

References

Miguel Alonso, Bertrand David, and Gaël Richard. Tempo and beat estimation of musical signals. In

Proceedings of the International Conference on Music Information Retrieval (ISMIR), Barcelona, Spain,

2004.

Teresa M. Amabile. A Consensual Technique for Creativity Assessment. In Teresa M. Amabile, editor,

The Social Psychology of Creativity, Springer Series in Social Psychology, pages 37–63. Springer New

York, New York, NY, 1983a. ISBN 978-1-4612-5533-8. doi: 10.1007/978-1-4612-5533-8_3. URL https:

//doi.org/10.1007/978-1-4612-5533-8_3.

Teresa M. Amabile. The social psychology of creativity: A componential conceptualization. Journal of Per-

sonality and Social Psychology, 45(2):357–376, 1983b. ISSN 1939-1315(Electronic),0022-3514(Print).

doi: 10.1037/0022-3514.45.2.357.

Teresa M. Amabile, Regina Conti, Heather Coon, Jeffrey Lazenby, and Michael Herron. Assessing the work

environment for creativity. Academy of management journal, 39(5):1154–1184, 1996.

Torsten Anders and Eduardo R. Miranda. Constraint programming systems for modeling music theories

and composition. ACM Computing Surveys, 43(4):1–38, October 2011. ISSN 03600300. doi: 10.1145/

1978802.1978809.

Christopher Anderson, Arne Eigenfeldt, and Philippe Pasquier. The Generative Electronic Dance Music

Algorithmic System (GEDMAS). In Proceedings of the Artificial Intelligence and Interactive Digital

Entertainment (AIIDE’13) Conference, page 4, Boston, MA, 2013. AAAI Press.

Shunya Ariga, Satoru Fukayama, and Masataka Goto. Song2Guitar: A Difficulty-Aware Arrangement System

for Generating Guitar Solo Covers from Polyphonic Audio of Popular Music. In ISMIR, pages 568–574,

2017.

Christopher Ariza. The interrogator as critic: The turing test and the evaluation of generative music systems.

Computer Music Journal, 33(2):48–70, 2009.

John Baer and Sharon S. McKool. Assessing creativity using the consensual assessment technique. In

Handbook of research on assessment technologies, methods, and applications in higher education, pages

65–77. IGI Global, 2009.

Eloi Batlle and Pedro Cano. Automatic segmentation for music classification using competitive hidden

markov models. In ISMIR, 2000.

Chip Bell. Algorithmic Music Composition Using Dynamic Markov Chains and Genetic Algorithms. J.

Comput. Sci. Coll., 27(2):99–107, December 2011. ISSN 1937-4771.

138

https://doi.org/10.1007/978-1-4612-5533-8_3
https://doi.org/10.1007/978-1-4612-5533-8_3

References

Manjinder Singh Benning, Ajay Kapur, Bernie C. Till, and George Tzanetakis. Multimodal sensor analysis

of sitar performance: Where is the beat? In 2007 IEEE 9th Workshop on Multimedia Signal Processing,

pages 74–77, 2007. doi: 10.1109/MMSP.2007.4412821.

Samuel Benveniste, Pierre Jouvelot, Edith Lecourt, and Renaud Michel. Designing wiimprovisation for

mediation in group music therapy with children suffering from behavioral disorders. In Proceedings of the

8th International Conference on Interaction Design and Children, IDC ’09, page 18–26, New York, NY,

USA, 2009. Association for Computing Machinery. ISBN 9781605583952. doi: 10.1145/1551788.1551793.

URL https://doi.org/10.1145/1551788.1551793.

Rick Bidlack. Chaotic systems as simple (but complex) compositional algorithms. Computer Music Journal,

16(3):33–47, 1992.

John Biles, Peter Anderson, and Laura Loggi. Neural network fitness functions for a musical IGA. In

Proceedings of the Soft Computing Conference, page 11, 1996.

John A. Biles. GenJam: A genetic algorithm for generating jazz solos. In ICMC, volume 94, pages 131–137,

1994.

John A. Biles. Autonomous GenJam: eliminating the fitness bottleneck by eliminating fitness. In Proceed-

ings of the 2001 Genetic and Evolutionary Computation Conference Workshop Program, San Francisco,

page 7, 2001.

John A Biles. Performing with Technology: Lessons Learned from the GenJam Project. In Musical Metacre-

ation: Papers from the 2013 AIIDE Workshop, page 6, 2013a.

John A Biles. Straight-Ahead Jazz with GenJam: A Quick Demonstration. In Musical Metacreation: Papers

from the 2013 AIIDE Workshop, page 4. Association for the Advancement of Artificial Intelli- gence,

2013b.

Sebastian Böck and Matthew EP Davies. Deconstruct, analyse, reconstruct: How to improve tempo, beat,

and downbeat estimation. In Proceedings of the 21st International Society for Music Information Retrieval

Conference (ISMIR), Montreal, QC, Canada, pages 12–16, 2020.

Margaret A. Boden. Chapter 9 - Creativity. In Margaret A. Boden, editor, Artificial Intelligence, Handbook

of Perception and Cognition, pages 267–291. Academic Press, San Diego, January 1996. ISBN 978-0-12-

161964-0. doi: 10.1016/B978-012161964-0/50011-X. URL http://www.sciencedirect.com/science/

article/pii/B978012161964050011X.

Margaret A. Boden. Creativity and artificial intelligence. Artificial Intelligence, 103(1-2):347–356, 1998.

139

https://doi.org/10.1145/1551788.1551793
http://www.sciencedirect.com/science/article/pii/B978012161964050011X
http://www.sciencedirect.com/science/article/pii/B978012161964050011X

References

Margaret A. Boden. The creative mind: Myths and mechanisms. Routledge, London, United Kingdom,

2004.

Margaret A. Boden. Computer models of creativity. AI Magazine, 30(3):23, 2009.

Paul M Bodily and Dan Ventura. Musical Metacreation: Past, Present, and Future. In Mume 2018, page 5,

Salamanca, Spain, 2018. University of Salamanca.

Selmer Bringsjord, Paul Bello, and David Ferrucci. Creativity, the Turing test, and the (better) Lovelace

test. In The Turing Test, pages 215–239. Springer, 2003.

Jean-Pierre Briot, Gaëtan Hadjeres, and François-David Pachet. Deep Learning Techniques for Music

Generation. Computational Synthesis and Creative Systems. Springer International Publishing, New York,

NY, 2020. ISBN 978-3-319-70162-2. doi: 10.1007/978-3-319-70163-9. URL https://www.springer.

com/gp/book/9783319701622.

Daniel Brown. Mezzo: An Adaptive, Real-Time Composition Program for Game Soundtracks. In Musical

Metacreation: Papers from the 2012 AIIDE Workshop, page 5. AAAI, 2012a.

Daniel Lankford Brown. Expressing narrative function in adaptive, computer-composed music. PhD Thesis,

UC Santa Cruz, 2012b.

Gino Brunner, Andres Konrad, Yuyi Wang, and Roger Wattenhofer. MIDI-VAE: Modeling Dynamics and

Instrumentation of Music with Applications to Style Transfer. In Proceedings of the 19th International

Society for Music Information Retrieval Conference, ISMIR 2018, Paris, France, September 23-27, 2018,

pages 747–754, 2018. URL http://ismir2018.ircam.fr/doc/pdfs/204_Paper.pdf.

Kenneth E. Bruscia. Improvisational models of music therapy. Thomas, Springfield, IL, 1987. ISBN 978-0-

398-06040-4 978-0-398-05272-0. OCLC: 246139778.

Pierre Brémaud. Markov chains: Gibbs fields, Monte Carlo simulation, and queues, volume 31. Springer

Science & Business Media, 2013.

Bruce G Buchanan and Edward A Feigenbaum. Dendral and meta-dendral: Their applications dimension.

Artificial intelligence, 11(1-2):5–24, 1978.

Valentin Bégel, Antoine Seilles, and Simone Dalla Bella. Rhythm workers: A music-based serious game for

training rhythm skills. Music & Science, 1:2059204318794369, 2018. doi: 10.1177/2059204318794369.

Emilios Cambouropoulos. Towards a general computational theory of musical structure. PhD thesis, Ph.D.

thesis, University of Edinburgh, 1998.

140

https://www.springer.com/gp/book/9783319701622
https://www.springer.com/gp/book/9783319701622
http://ismir2018.ircam.fr/doc/pdfs/204_Paper.pdf

References

Emilios Cambouropoulos. The Local Boundary Detection Model (LBDM) and its Application in the Study

of Expressive Timing. In ICMC, page 8, 2001.

S. Canazza, A. Rodà, G.D. Poli, and A. Vidolin. Expressiveness in music performance:Analysis, models,

mapping, encoding. IGI Global, 2012. doi: 10.4018/978-1-4666-2497-9.ch008.

S. Canazza, G. De Poli, and A. Rodà. Caro 2.0: An interactive system for expressive music rendering.

Advances in Human-Computer Interaction, 2015, 2015. doi: 10.1155/2015/850474.

Filippo Carnovalini. Open Challenges in Musical Metacreation. In Proceedings of the 5th EAI Inter-

national Conference on Smart Objects and Technologies for Social Good, pages 124–125, Valen-

cia Spain, September 2019. ACM. ISBN 978-1-4503-6261-0. doi: 10.1145/3342428.3342678. URL

http://dl.acm.org/doi/10.1145/3342428.3342678.

Filippo Carnovalini and Antonio Rodà. A Multilayered Approach to Automatic Music Generation and Ex-

pressive Performance. In 2019 International Workshop on Multilayer Music Representation and Pro-

cessing (MMRP), pages 41–48, Milano, Italy, January 2019a. IEEE. ISBN 978-1-72811-649-5. doi:

10.1109/MMRP.2019.00016. URL https://ieeexplore.ieee.org/document/8665367/.

Filippo Carnovalini and Antonio Rodà. A Real-Time Tempo and Meter Tracking System for Rhythmic

Improvisation. In Proceedings of the 14th International Audio Mostly Conference: A Journey in Sound,

pages 24–31, Nottingham United Kingdom, September 2019b. ACM. ISBN 978-1-4503-7297-8. doi:

10.1145/3356590.3356596. URL https://dl.acm.org/doi/10.1145/3356590.3356596.

Filippo Carnovalini and Antonio Rodà. Computational Creativity and Music Generation Systems: An Intro-

duction to the State of the Art. Frontiers in Artificial Intelligence, 3:14, April 2020. ISSN 2624-8212.

doi: 10.3389/frai.2020.00014.

Filippo Carnovalini, Antonio Rodà, and Paolo Caneva. A Musical Serious Game for Social Interaction through

Augmented Rhythmic Improvisation. In Proceedings of the 5th EAI International Conference on Smart

Objects and Technologies for Social Good, pages 130–135, Valencia Spain, September 2019. ACM. ISBN

978-1-4503-6261-0. doi: 10.1145/3342428.3342683. URL http://dl.acm.org/doi/10.1145/3342428.

3342683.

Filippo Carnovalini, Nicholas Harley, Steve Homer, Antonio Roda, and Geraint A Wiggins. Studying Struc-

tural Regularities through Abstraction Trees. In Proceedings of the 15th International Symposium on

Computer Music Multidisciplinary Research, page 10, Tokyo/Virtual, 2021a.

Filippo Carnovalini, Antonio Rodà, Nicholas Harley, Steven T Homer, and Geraint A Wiggins. A New

Corpus for Computational Music Research andA Novel Method for Musical Structure Analysis. In Audio

141

http://dl.acm.org/doi/10.1145/3342428.3342678
https://ieeexplore.ieee.org/document/8665367/
https://dl.acm.org/doi/10.1145/3356590.3356596
http://dl.acm.org/doi/10.1145/3342428.3342683
http://dl.acm.org/doi/10.1145/3342428.3342683

References

Mostly 2021 (AM ’21), page 4, virtual/Trento Italy, 2021b. ACM. ISBN 978-1-4503-8569-5. doi:

10.1145/3478384.3478402. URL https://doi.org/10.1145/3478384.3478402.

Ali Taylan Cemgil, Bert Kappen, Peter Desain, and Henkjan Honing. On tempo tracking: Tempogram

representation and kalman filtering. Journal of New Music Research, 29(4):259–273, 2000. doi: 10.

1080/09298210008565462.

Mauro Ceroni and Giovanni Maria Prosperi. Free will, subjectivity and the physics of the nervous system.

Open Journal of Philosophy, pages 317–341, 2018. ISSN 2163-9442. doi: 10.4236/ojpp.2018.83023.

David J. Chalmers. Facing up to the problem of consciousness. Journal of consciousness studies, 2(3):

200–219, 1995.

Lee Cheatley, Wendy Moncur, and Alison Pease. Opportunities for computational creativity in a therapeutic

context. In Kazjon Grace, Michael Cook, Dan Ventura, and Mary Lou Maher, editors, Proceedings of

the 10th International Conference on Computational Creativity, Proceedings of the 10th International

Conference on Computational Creativity, ICCC 2019, pages 341–345. Association for Computational

Creativity (ACC), USA, 2019. ISBN 9789895416011. URL http://computationalcreativity.net/

iccc2019/assets/iccc%5fproceedings%5f2019.pdf.

Lee Cheatley, Margareta Ackerman, Alison Pease, and Wendy Moncur. Co-creative songwriting for bereave-

ment support. In Eleventh International Conference on Computational Creativity: ICCC’20, pages 33–41.

Association for Computational Creativity, 2020.

M. Chemillier. Toward a formal study of jazz chord sequences generated by Steedman’s grammar. Soft

Computing, 8(9):617–622, September 2004. ISSN 1433-7479. doi: 10.1007/s00500-004-0386-3.

Ke Chen, Weilin Zhang, Shlomo Dubnov, Gus Xia, and Wei Li. The effect of explicit structure encoding of

deep neural networks for symbolic music generation. In 2019 International Workshop on Multilayer Music

Representation and Processing (MMRP), pages 77–84. IEEE, 2019.

Elaine Chew. The Spiral Array. In Elaine Chew, editor, Mathematical and Computational Modeling of Tonal-

ity: Theory and Applications, International Series in Operations Research & Management Science, pages

41–60. Springer US, Boston, MA, 2014. ISBN 978-1-4614-9475-1. doi: 10.1007/978-1-4614-9475-1_3.

URL https://doi.org/10.1007/978-1-4614-9475-1_3.

Noam Chomsky. Syntactic Structures. Janua Linguarum. Mouton & Co, The Hague, 1957.

Tom Collins and Christian Coulon. FreshJam: Suggesting Continuations of Melodic Fragments in a Specific

Style. In Proceedings of the 2012 AIIDE Workshop, page 3, 2012.

142

https://doi.org/10.1145/3478384.3478402
http://computationalcreativity.net/iccc2019/assets/iccc%5fproceedings%5f2019.pdf
http://computationalcreativity.net/iccc2019/assets/iccc%5fproceedings%5f2019.pdf
https://doi.org/10.1007/978-1-4614-9475-1_3

References

Simon Colton. Creativity Versus the Perception of Creativity in Computational Systems. In AAAI spring

symposium: creative intelligent systems, volume 8, page 7, 2008.

Simon Colton and Geraint A. Wiggins. Computational creativity: The final frontier? In ECAI, volume 2012,

pages 21–16, Montpellier, France, 2012. University of Montpellier.

Simon Colton, Alison Pease, and Graeme Ritchie. The effect of input knowledge on creativity. In Proceedings

of the ICCBR’01 Workshop on Creative Systems, page 7, 2001.

Simon Colton, John William Charnley, and Alison Pease. Computational Creativity Theory: The FACE and

IDEA Descriptive Models. In ICCC, pages 90–95, 2011.

Simon Colton, Alison Pease, Joseph Corneli, Michael Cook, and Teresa Llano. Assessing Progress in Building

Autonomously Creative Systems. In ICCC, pages 137–145, 2014.

Simon Colton, Alison Pease, Christian Guckelsberger, Jon McCormack, Maria Teresa Llano, et al. On the

machine condition and its creative expression. In ICCC, pages 342–349, 2020.

Darrell Conklin and Christina Anagnostopoulou. Representation and discovery of multiple viewpoint patterns.

In ICMC, pages 479–485, 2001.

John Conway. The game of life. Scientific American, 223(4):4, 1970.

D. Cope. Recombinant music: using the computer to explore musical style. Computer, 24(7):22–28, July

1991. ISSN 0018-9162. doi: 10.1109/2.84830.

David Cope. Computer Modeling of Musical Intelligence in EMI. Computer Music Journal, 16(2):69, 1992.

ISSN 01489267. doi: 10.2307/3680717.

Nailson dos Santos Cunha, Anand Subramanian, and Dorien Herremans. Generating guitar solos by integer

programming. Journal of the Operational Research Society, 69(6):971–985, 2018.

Shuqi Dai, Zheng Zhang, and Gus G Xia. Music style transfer: A position paper. arXiv preprint

arXiv:1803.06841, 2018.

Roger B. Dannenberg. An on-line algorithm for real-time accompaniment. In ICMC, volume 84, pages

193–198, Ann Arbor, MI, 1984. Michigan Publishing.

Alfonso Ortega de la Puente, Rafael Sánchez Alfonso, and Manuel Alfonseca Moreno. Automatic composi-

tion of music by means of grammatical evolution. In ACM SIGAPL APL Quote Quad, volume 32, pages

148–155. ACM, 2002.

143

References

Diana Deutsch, William F Thompson, Henkjan Honing, and Stephen McAdams. Psychology of Music.

Elsevier, 2013.

Sander Dieleman, Aaron van den Oord, and Karen Simonyan. The challenge of realistic music

generation: modelling raw audio at scale. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-

man, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Sys-

tems 31, pages 7989–7999. Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/

8023-the-challenge-of-realistic-music-generation-modelling-raw-audio-at-scale.pdf.

Simon Dixon. Automatic Extraction of Tempo and Beat From Expressive Performances. Journal of New

Music Research, 30(1):39–58, March 2001. ISSN 0929-8215. doi: 10.1076/jnmr.30.1.39.7119.

Simon Durand, Juan Pablo Bello, Bertrand David, and Gaël Richard. Robust downbeat tracking using an en-

semble of convolutional networks. IEEE/ACM Transactions on Audio, Speech, and Language Processing,

25(1):76–89, 2017. doi: 10.1109/TASLP.2016.2623565.

Kemal Ebcio\v{g}lu. An Expert System for Harmonizing Four-Part Chorales. Computer Music Journal, 12

(3):43–51, 1988. ISSN 0148-9267. doi: 10.2307/3680335.

Kemal Ebcio\v{g}lu. An expert system for harmonizing chorales in the style of J.S. Bach. The Journal of

Logic Programming, 8(1):145–185, January 1990. ISSN 0743-1066. doi: 10.1016/0743-1066(90)90055-A.

Douglas Eck and Juergen Schmidhuber. Finding temporal structure in music: Blues improvisation with LSTM

recurrent networks. In Proceedings of the 12th IEEE workshop on neural networks for signal processing,

pages 747–756. IEEE, 2002a.

Douglas Eck and Jürgen Schmidhuber. Learning the long-term structure of the blues. In International

Conference on Artificial Neural Networks, pages 284–289. Springer, 2002b.

A. Eigenfeldt, A. Burnett, and P. Pasquier. Evaluating musical metacreation in a live performance context.

In Proceedings of the 3rd International Conference on Computational Creativity, ICCC 2012, pages 140–

144, 2012.

Arne Eigenfeldt and Philippe Pasquier. A realtime generative music system using autonomous melody,

harmony, and rhythm agents. In XIII Internationale Conference on Generative Arts, Milan, Italy, pages

67–76, 2009.

Arne Eigenfeldt and Philippe Pasquier. Realtime generation of harmonic progressions using controlled markov

selection. In Proceedings of ICCC-X-Computational Creativity Conference, pages 16–25, 2010.

144

http://papers.nips.cc/paper/8023-the-challenge-of-realistic-music-generation-modelling-raw-audio-at-scale.pdf
http://papers.nips.cc/paper/8023-the-challenge-of-realistic-music-generation-modelling-raw-audio-at-scale.pdf

References

Henrik Ekeus, Samer A Abdallah, Mark D Plumbley, and Peter W McOwan. The Melody Triangle: Exploring

Pattern and Predictability in Music. In Musical Metacreation: Papers from the 2012 AIIDE Workshop,

page 8, 2012.

Antti J. Eronen and Anssi P. Klapuri. Music tempo estimation with <formula formulatype="inline"> <tex

notation="tex">k</tex></formula>-nn regression. IEEE Transactions on Audio, Speech, and Language

Processing, 18(1):50–57, 2010. doi: 10.1109/TASL.2009.2023165.

Gilles Fauconnier and Mark Turner. The way we think: Conceptual blending and the mind’s hidden com-

plexities. Basic Books, 2008.

Jose D. Fernández and Francisco Vico. AI methods in algorithmic composition: A comprehensive survey.

Journal of Artificial Intelligence Research, 48:513–582, 2013.

Jamie Forth and Geraint A Wiggins. An approach for identifying salient repetition in multidimensional repre-

sentations of polyphonic music. In London Algorithmics 2008: Theory and Practice. College Publications,

2009.

Eric Foxley. Nottingham Database, 2011. URL https://ifdo.ca/~seymour/nottingham/nottingham.

html.

Samuel P. Fraiberger, Roberta Sinatra, Magnus Resch, Christoph Riedl, and Albert-László Barabási. Quan-

tifying reputation and success in art. Science, page eaau7224, November 2018. ISSN 0036-8075, 1095-

9203. doi: 10.1126/science.aau7224.

Bradley W. Frankland and Annabel J Cohen. Parsing of melody: Quantification and testing of the local

grouping rules of lerdahl and jackendoff’s a generative theory of tonal music. Music Perception, 21:

499–543, 2004.

Klaus Frieler. Beat and meter extraction using gaussified onsets. In ISMIR, page 6, Barcelona, Spain, 2004.

Universitat Pompeu Fabra.

Takako Fujioka, Deirdre R. Dawson, Rebecca Wright, Kie Honjo, Joyce L. Chen, J. Jean Chen, Sandra E.

Black, Donald T. Stuss, and Bernhard Ross. The effects of music-supported therapy on motor, cognitive,

and psychosocial functions in chronic stroke. Annals of the New York Academy of Sciences, 1423(1):

264–274, 2018. ISSN 1749-6632. doi: 10.1111/nyas.13706.

Philip Galanter. Computational Aesthetic Evaluation: Past and Future. In Jon McCormack and Mark

d’Inverno, editors, Computers and Creativity, pages 255–293. Springer Berlin Heidelberg, Berlin, Heidel-

berg, 2012. ISBN 978-3-642-31727-9. doi: 10.1007/978-3-642-31727-9_10. URL https://doi.org/10.

1007/978-3-642-31727-9_10.

145

https://ifdo.ca/~seymour/nottingham/nottingham.html
https://ifdo.ca/~seymour/nottingham/nottingham.html
https://doi.org/10.1007/978-3-642-31727-9_10
https://doi.org/10.1007/978-3-642-31727-9_10

References

Jacob W. Getzels and Philip W. Jackson. Creativity and intelligence: Explorations with gifted students.

Creativity and intelligence: Explorations with gifted students. Wiley, Oxford, England, 1962.

Édouard Gilbert and Darrell Conklin. A probabilistic context-free grammar for melodic reduction. In Proceed-

ings of the International Workshop on Artificial Intelligence and Music, 20th International Joint Conference

on Artificial Intelligence, pages 83–94, 2007.

Samuel Gillespie and Oliver Bown. Solving adaptive game music transitions from a composer centred per-

spective. In Proceedings of the 5th International Workshop on Musical Metacreation, page 8. Association

for Computational Creativity, 2017.

Jon Gillick, Adam Roberts, Jesse Engel, Douglas Eck, and David Bamman. Learning to groove with inverse

sequence transformations. In International Conference on Machine Learning (ICML), page 11, 2019.

Stuart E. Golann. Psychological study of creativity. Psychological Bulletin, 60(6):548–565, 1963. ISSN

1939-1455(Electronic),0033-2909(Print). doi: 10.1037/h0041573.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron

Courville, and Yoshua Bengio. Generative Adversarial Nets. In Z. Ghahramani, M. Welling, C. Cortes,

N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing Sys-

tems 27, pages 2672–2680. Curran Associates, Inc., 2014. URL http://papers.nips.cc/paper/

5423-generative-adversarial-nets.pdf.

Fabien Gouyon and Perfecto Herrera. Determination of the meter of musical audio signals: Seeking recur-

rences in beat segment descriptors. In Audio Engineering Society Convention 114, page 8, Amsterdam,

Netherlands, 2003. Audio Engineering Society.

Ryan Groves. Towards the Generation of Melodic Structure. In The Fourth International Workshop on

Musical Metacreation, MUME 2016., page 8, 2016.

Yixing Guan, Jinyu Zhao, Yiqin Qiu, Zheng Zhang, and Gus Xia. Melodic phrase segmentation by deep

neural networks. In ISMIR, 2018.

Christian Guckelsberger, Christoph Salge, and Simon Colton. Addressing the "Why?" in Computational

Creativity: A Non-Anthropocentric, Minimal Model of Intentional Creative Agency. In Proceedings of

the 8th International Conference on Computational Creativity, page 8. Goldsmiths, University of London,

2017. URL http://ccg.doc.gold.ac.uk/wp-content/uploads/2017/05/iccc2017_guckelsberger.

pdf.

J. P. Guilford. Creative abilities in the arts. Psychological Review, 64(2):110–118, 1957. ISSN 1939-

1471(Electronic),0033-295X(Print). doi: 10.1037/h0048280.

146

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://ccg.doc.gold.ac.uk/wp-content/uploads/2017/05/iccc2017_guckelsberger.pdf
http://ccg.doc.gold.ac.uk/wp-content/uploads/2017/05/iccc2017_guckelsberger.pdf

References

J.P. Guilford. The nature of human intelligence. The nature of human intelligence. McGraw-Hill, New York,

NY, US, 1967.

Gaëtan Hadjeres, François Pachet, and Frank Nielsen. Deepbach: a steerable model for bach chorales

generation. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages

1362–1371. JMLR. org, 2017.

Susan Hallam. The power of music: Its impact on the intellectual, social and personal development of

children and young people. International Journal of Music Education, 28(3):269–289, August 2010. ISSN

0255-7614. doi: 10.1177/0255761410370658.

Masatoshi Hamanaka, Keiji Hirata, and Satoshi Tojo. Implementing “A generative theory of tonal music”.

Journal of New Music Research, 35(4):249–277, 2006.

Masatoshi Hamanaka, Keiji Hirata, and Satoshi Tojo. Fatta: Full Automatic Time-Span Tree Analyzer. In

ICMC, pages 153–156. Citeseer, 2007.

Masatoshi Hamanaka, Keiji Hirata, and Satoshi Tojo. Melody Morphing Method Based on GTTM. In ICMC,

pages 155–158. Citeseer, 2008.

Masatoshi Hamanaka, Keiji Hirata, and Satoshi Tojo. Implementing methods for analysing music based

on lerdahl and jackendoff’s generative theory of tonal music. In Computational Music Analysis, pages

221–249. Springer, New York, NY, 2016.

Masatoshi Hamanaka, Keiji Hirata, and Satoshi Tojo. deepgttm-iii: Multi-task learning with grouping and

metrical structures. In International Symposium on Computer Music Multidisciplinary Research, pages

238–251, Matosinhos, Porto, 2017. Springer.

Stuart Hameroff and Roger Penrose. Consciousness in the universe: A review of the ‘Orch OR’ theory.

Physics of Life Reviews, 11(1):39–78, March 2014. ISSN 1571-0645. doi: 10.1016/j.plrev.2013.08.002.

Eliot Handelman, Andie Sigler, and David Donna. Automatic Orchestration for Automatic Composition. In

Musical Metacreation: Papers from the 2012 AIIDE Workshop, page 6. AAAI, 2012.

Andrew Hawryshkewich, Philippe Pasquier, and Arne Eigenfeldt. Beatback: A Real-time Interactive Percus-

sion System for Rhythmic Practise and Exploration. In NIME, pages 100–105, Sydney, Australia, 2010.

University of Technology Sydney.

D. Herremans, S. Weisser, K. Sörensen, and D. Conklin. Generating structured music for bagana using

quality metrics based on markov models. Expert Systems with Applications, 42(21):7424–7435, 2015.

ISSN 0957-4174. doi: https://doi.org/10.1016/j.eswa.2015.05.043.

147

References

Dorien Herremans and Elaine Chew. MorpheuS: automatic music generation with recurrent pattern con-

straints and tension profiles. In Region 10 Conference (TENCON), 2016 IEEE, pages 282–285. IEEE,

2016a.

Dorien Herremans and Elaine Chew. Tension ribbons: Quantifying and visualising tonal tension. In Pro-

ceedings of the Second International Conference on Technologies for Music Notation and Representation

(TENOR), page 10, Cambridge, UK, 2016b.

Dorien Herremans and Elaine Chew. MorpheuS: generating structured music with constrained patterns and

tension. IEEE Transactions on Affective Computing, 10(4):16, 2017. ISSN 1949-3045. doi: 10.1109/

TAFFC.2017.2737984.

Dorien Herremans, Ching-Hua Chuan, and Elaine Chew. A functional taxonomy of music generation systems.

ACM Computing Surveys (CSUR), 50(5):69, 2017.

Lejaren A. Hiller Jr and Leonard M. Isaacson. Musical composition with a high-speed digital computer.

Journal of the Audio Engineering Society, 6(3):154–160, 1958.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,

1997.

James Hodson. The creative machine. In ICCC, pages 143–150, 2017.

Andrew Horner and David E. Goldberg. Genetic Algorithms and Computer-Assisted Music Composition. In

ICMC, volume 91, pages 479–482, 1991.

Michael J Hove and Jane L Risen. It’s all in the timing: Interpersonal synchrony increases affiliation. Social

cognition, 27(6):949–960, 2009.

Jia-Lien Hsu, Arbee L. P. Chen, and C.-C. Liu. Efficient repeating pattern finding in music databases. In

Proceedings of the Seventh International Conference on Information and Knowledge Management, CIKM

’98, page 281–288, New York, NY, USA, 1998. Association for Computing Machinery. ISBN 1581130619.

doi: 10.1145/288627.288668. URL https://doi.org/10.1145/288627.288668.

Kenneth Jinghwa Hsü and Andrew Hsü. Self-similarity of the" 1/f noise" called music. Proceedings of the

National Academy of Sciences, 88(8):3507–3509, 1991.

Patrick G. Hunter and E. Glenn Schellenberg. Music and emotion. In Music perception, pages 129–164.

Springer, 2010.

David Huron. Sweet Anticipation: Music and the Psychology of Expectation. MIT Press, January 2008.

ISBN 978-0-262-30330-9.

148

https://doi.org/10.1145/288627.288668

References

Tatsuhiko Itohara, Takuma Otsuka, Takeshi Mizumoto, Angelica Lim, Tetsuya Ogata, and Hiroshi G Okuno.

A multimodal tempo and beat-tracking system based on audiovisual information from live guitar perfor-

mances. EURASIP Journal on Audio, Speech, and Music Processing, 2012(1):1–17, 2012.

Bijue Jia, Jiancheng Lv, and Dayiheng Liu. Deep learning-based automatic downbeat tracking: a brief

review. Multimedia Systems, 25(6):617–638, December 2019. ISSN 1432-1882. doi: 10.1007/

s00530-019-00607-x.

A. Jordanous. Four PPPPerspectives on computational creativity in theory and in practice. Connection

Science, 28(2):194–216, 2016. doi: 10.1080/09540091.2016.1151860.

Anna Jordanous. A standardised procedure for evaluating creative systems: Computational creativity evalu-

ation based on what it is to be creative. Cognitive Computation, 4(3):246–279, 2012.

Anna Jordanous. Stepping back to progress forwards: Setting standards for meta-evaluation of computational

creativity. In Proceedings of the Fifth International Conference on Computational Creativity, page 8,

Ljubljana, Slovenia, 2014. Jožef Stefan Institute.

Anna Jordanous. Evaluating Evaluation: Assessing Progress and Practices in Computational Creativity

Research. In Tony Veale and F. Amílcar Cardoso, editors, Computational Creativity: The Philosophy

and Engineering of Autonomously Creative Systems, Computational Synthesis and Creative Systems,

pages 211–236. Springer International Publishing, Cham, 2019. ISBN 978-3-319-43610-4. doi: 10.1007/

978-3-319-43610-4_10. URL https://doi.org/10.1007/978-3-319-43610-4_10.

Anna Jordanous and Bill Keller. What makes musical improvisation creative? Journal of Interdisciplinary

Music Studies, 6:151–175, October 2012. ISSN 1307-0401. doi: 10.4407/jims.2014.02.003.

Anna Jordanous and Bill Keller. Modelling Creativity: Identifying Key Components through a Corpus-Based

Approach. PLOS ONE, 11(10):e0162959, 2016. ISSN 1932-6203. doi: 10.1371/journal.pone.0162959.

Anna Katerina Jordanous. Evaluating computational creativity: a standardised procedure for evaluating

creative systems and its application. PhD Thesis, University of Sussex, 2013.

Patrik N. Juslin. Handbook of Music and Emotion: Theory, Research, Applications. Oxford University Press,

January 2010. ISBN 978-0-19-169643-5. URL http://www.oxfordscholarship.com/view/10.1093/

acprof:oso/9780199230143.001.0001/acprof-9780199230143.

Maximos Kaliakatsos-Papakostas, Aggelos Gkiokas, and Vassilis Katsouros. Interactive Control of Explicit

Musical Features in Generative LSTM-based Systems. In Proceedings of the Audio Mostly 2018 on Sound

149

https://doi.org/10.1007/978-3-319-43610-4_10
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199230143.001.0001/acprof-9780199230143
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199230143.001.0001/acprof-9780199230143

References

in Immersion and Emotion, AM’18, pages 29:1–29:7, New York, NY, USA, 2018. ACM. ISBN 978-1-

4503-6609-0. doi: 10.1145/3243274.3243296. URL http://doi.acm.org/10.1145/3243274.3243296.

event-place: Wrexham, United Kingdom.

Michael Kassler. Proving musical theorems I: The middleground of Heinrich Schenker’s theory of tonality.

Basser Department of Computer Science, School of Physics, University of Sydney, 1975.

Haruhiro Katayose, Mitsuyo Hashida, Giovanni De Poli, and Keiji Hirata. On evaluating systems for gen-

erating expressive music performance: the rencon experience. Journal of New Music Research, 41(4):

299–310, 2012.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,

page 14, 2013.

Alexis Kirke and Eduardo Miranda. A multi-agent emotional society whose melodies represent its emergent

social hierarchy and are generated by agent communications. Journal of Artificial Societies and Social

Simulation, 18(2):16, 2015.

Alexis Kirke and Eduardo R. Miranda. Emergent Construction of melodic pitch and hierarchy through agents

communicating emotion without melodic intelligence. In ICMC, page 8, 2011.

Alexis Kirke and Eduardo Reck Miranda. A survey of computer systems for expressive music performance.

ACM Computing Surveys (CSUR), 42(1):3, 2009.

Phillip B Kirlin and Paul E Utgoff. A framework for automated schenkerian analysis. In ISMIR, pages

363–368, 2008.

Stefan Koelsch. Music-evoked emotions: principles, brain correlates, and implications for therapy. Annals of

the New York Academy of Sciences, 1337:193–201, 2015. doi: 10.1111/nyas.12684.

Arthur Koestler. The act of creation: Hutchinson & Co. Ltd., London, UK, 1964.

Dimitra Kokotsaki and Susan Hallam. Higher education music students’ perceptions of the benefits of

participative music making. Music Education Research, 9(1):93–109, March 2007. ISSN 1461-3808. doi:

10.1080/14613800601127577.

Carolyn Lamb, Daniel G. Brown, and Charles L. A. Clarke. Evaluating Computational Creativity: An In-

terdisciplinary Tutorial. ACM Computing Surveys, 51(2):1–34, February 2018. ISSN 03600300. doi:

10.1145/3167476.

Peter Langston. Six techniques for algorithmic music composition. In Proceedings of the International

Computer Music Conference, volume 60, page 59, 1989.

150

http://doi.acm.org/10.1145/3243274.3243296

References

Olivier Lartillot. Automated motivic analysis: An exhaustive approach based on closed and cyclic pattern

mining in multidimensional parametric spaces. In David Meredith, editor, Computational Music Analysis,

pages 273–302. Springer International Publishing, Cham, 2016. ISBN 978-3-319-25931-4. doi: 10.1007/

978-3-319-25931-4_11. URL https://doi.org/10.1007/978-3-319-25931-4_11.

Jeremy Leach and John Fitch. Nature, music, and algorithmic composition. Computer Music Journal, 19

(2):23–33, 1995.

Douglas Bruce Lenat. AM: an artificial intelligence approach to discovery in mathematics as heuristic search.

Stanford University, 1976.

Fred Lerdahl and Ray S. Jackendoff. A generative theory of tonal music. MIT press, Cambridge, MA, 1985.

George E. Lewis. Too many notes: Computers, complexity and culture in voyager. Leonardo Music Journal,

pages 33–39, 2000.

J. P. Lewis. Music and Connectionism, chap. Creation by refinement and the problem of algorithmic music

composition. The MIT Press, Cambridge, 1991.

Man Yat Lo. Evolving cellular automata for music composition with trainable fitness functions. PhD Thesis,

University of Essex, 2012.

ManYat Lo and Simon M. Lucas. Evolving musical sequences with n-gram based trainable fitness functions.

In 2006 IEEE International Conference on Evolutionary Computation, pages 601–608. IEEE, 2006.

O. Lopez-Rincon, O. Starostenko, and G. A. Martín. Algoritmic music composition based on artificial

intelligence: A survey. In 2018 International Conference on Electronics, Communications and Computers

(CONIELECOMP), pages 187–193, February 2018. doi: 10.1109/CONIELECOMP.2018.8327197.

Ada Lovelace. ‘Notes on L. Menabrea’s ‘Sketch of the Analytical Engine Invented by Charles Babbage,

Esq.” ’. Taylor’s Scientific Memoirs, 3(1843):1843, 1843.

Bill Manaris, Dana Hughes, and Yiorgos Vassilandonakis. Monterey mirror: combining Markov models,

genetic algorithms, and power laws. In Proceedings of 1st Workshop in Evolutionary Music, 2011 IEEE

Congress on Evolutionary Computation (CEC 2011), pages 33–40. Citeseer, 2011.

Alan Marsden. Automatic derivation of musical structure: A tool for research on schenkerian analysis. In

ISMIR, pages 55–58, 2007.

Alan Marsden. Schenkerian Analysis by Computer: A Proof of Concept. Journal of New Music Research,

39(3):269–289, September 2010. ISSN 0929-8215, 1744-5027. doi: 10.1080/09298215.2010.503898.

151

https://doi.org/10.1007/978-3-319-25931-4_11

References

Alan Marsden, Keiji Hirata, and Satoshi Tojo. Towards computable procedures for deriving tree structures

in music: Context dependency in GTTM and Schenkerian theory. In Proceedings of the Sound and

Music Computing Conference 2013, pages 360–367, Stockholm, Sweden, 2013. KTH Royal Institute of

Technology.

Stephanie Mason and Michael Saffle. L-Systems, melodies and musical structure. Leonardo Music Journal,

pages 31–38, 1994.

Panayotis Mavromatis and Matthew Brown. Parsing context-free grammars for music: A computational

model of schenkerian analysis. In Proceedings of the 8th International Conference on Music Perception

& Cognition, pages 414–415, 2004.

Kenneth McAlpine, Eduardo Miranda, and Stuart Hoggar. Making music with algorithms: A case-study

system. Computer Music Journal, 23(2):19–30, 1999.

Matt McVicar, Satoru Fukayama, and Masataka Goto. AutoLeadGuitar: Automatic generation of guitar

solo phrases in the tablature space. In 2014 12th International Conference on Signal Processing (ICSP),

pages 599–604. IEEE, 2014.

Gabriele Medeot, Srikanth Cherla, Katerina Kosta, Matt McVicar, Samer Abdallah, and Marco Selvi. Struc-

tureNet: INDUCING STRUCTURE IN GENERATED MELODIES. In 19th International Society for

Music Information Retrieval Conference, page 7, Paris, France, 2018.

David Meredith. Cosiatec and siateccompress: Pattern discovery by geometric compression. In Music

Information Retrieval Evaluation eXchange (MIREX 2013). International Society for Music Information

Retrieval, 2013. International Society for Music Information Retrieval Conference, ISMIR 2013 ; Confer-

ence date: 04-11-2013 Through 08-11-2013.

David Meredith, Kjell Lemström, and Geraint A. Wiggins. Algorithms for discovering repeated patterns in

multidimensional representations of polyphonic music. Journal of New Music Research, 31(4):321–345,

2002. doi: 10.1076/jnmr.31.4.321.14162.

L.B. Meyer. Style and Music: Theory, History, and Ideology. Studies in the criticism and theory of music.

University of Chicago Press, 1989. ISBN 9780226521527.

Leonard B. Meyer. Emotion and meaning in music. University of chicago Press, 1956.

Marvin L. Minsky. Why People Think Computers Can’t. AI Magazine, 3(4):3–3, December 1982. ISSN

2371-9621. doi: 10.1609/aimag.v3i4.376.

152

References

Eduardo R. Miranda. Cellular automata music: from sound synthesis to musical forms. In Evolutionary

computer music, pages 170–193. Springer, 2007.

Eduardo Reck Miranda. Cellular automata music: An interdisciplinary project. Journal of New Music

Research, 22(1):3–21, 1993.

Bart Moens, Chris Muller, Leon van Noorden, Marek Franěk, Bert Celie, Jan Boone, Jan Bourgois, and

Marc Leman. Encouraging Spontaneous Synchronisation with D-Jogger, an Adaptive Music Player That

Aligns Movement and Music. PLoS ONE, 9(12):e114234, December 2014. ISSN 1932-6203. doi:

10.1371/journal.pone.0114234.

David C. Moffat and Martin G. Kelly. An investigation into people’s bias against computational creativity in

music composition. In Proceedings of the third Joint Workshop on Computational Creativity (as part of

ECAI 2006), 2006.

Olof Mogren. C-RNN-GAN: Continuous recurrent neural networks with adversarial training. arXiv preprint

arXiv:1611.09904, 2016.

Meinard Muller, Frank Kurth, and Tido Roder. Towards an Efficient Algorithm for Automatic Score-to-Audio

Synchronization. In ISMIR, page 8, Barcelona, Spain, 2004. Universitat Pompeu Fabra.

Eita Nakamura and Kazuyoshi Yoshii. Statistical piano reduction controlling performance difficulty. APSIPA

Transactions on Signal and Information Processing, 7, 2018.

Jean-Jacques Nattiez. Fondements d’une sémiologie de la Musique. Union Générale d’Editons, 1975.

Maria Navarro, Juan Corchado, and Yves Demazeau. A musical composition application based on a mul-

tiagent system to assist novel composers. In 5th International Conference on Computational Creativity,

page 4, Ljubljana, Slovenia, 2014.

Maria Navarro, Juan Manuel Corchado, and Yves Demazeau. MUSIC-MAS: Modeling a harmonic composi-

tion system with virtual organizations to assist novice composers. Expert Systems with Applications, 57:

345–355, 2016.

Gary Lee Nelson. Real time transformation of musical material with fractal algorithms. Computers &

Mathematics with Applications, 32(1):109–116, 1996.

Gerhard Nierhaus. Algorithmic Composition: Paradigms of Automated Music Generation. Springer Science

& Business Media, August 2009. ISBN 978-3-211-75540-2. Google-Books-ID: jaowAtnXsDQC.

153

References

Misato Ohkita, Yoshiaki Bando, Yukara Ikemiya, Katsutoshi Itoyama, and Kazuyoshi Yoshii. Audio-visual

beat tracking based on a state-space model for a music robot dancing with humans. In 2015 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 5555–5560. IEEE, 2015.

António Pedro Oliveira and Amílcar Cardoso. Towards affective-psychophysiological foundations for music

production. In International Conference on Affective Computing and Intelligent Interaction, pages 511–

522. Springer, 2007.

Sageev Oore, Ian Simon, Sander Dieleman, Douglas Eck, and Karen Simonyan. This time with feeling:

learning expressive musical performance. Neural Computing and Applications, November 2018. ISSN

1433-3058. doi: 10.1007/s00521-018-3758-9.

Nicola Orio and Antonio Roda. A measure of melodic similarity based on a graph representation of the music

structure. In ISMIR, pages 543–548, Kobe, Japan, 2009. ISMIR.

François Pachet. Computer Analysis of Jazz Chord Sequence: Is Solar a Blues? In Eduardo Reck Miranda,

editor, Readings in Music and Artificial Intelligence, pages 85–114. Harwood Academic Publishers, 2000.

François Pachet. Interacting with a musical learning system: The continuator. In Music and Artificial

Intelligence, pages 119–132. Springer, 2002.

François Pachet. Musical Virtuosity and Creativity. In Jon McCormack and Mark d’Inverno, editors, Comput-

ers and Creativity, pages 115–146. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-

31727-9. doi: 10.1007/978-3-642-31727-9_5. URL https://doi.org/10.1007/978-3-642-31727-9_5.

George Papadopoulos and Geraint Wiggins. AI methods for algorithmic composition: A survey, a critical view

and future prospects. In AISB Symposium on Musical Creativity, volume 124, pages 110–117. Edinburgh,

UK, 1999.

Richard Parncutt. A Perceptual Model of Pulse Salience and Metrical Accent in Musical Rhythms. Music

Perception: An Interdisciplinary Journal, 11(4):409–464, July 1994. ISSN 0730-7829, 1533-8312. doi:

10.2307/40285633.

M. Pearce and Geraint A. Wiggins. EXPECTATION IN MELODY: THE INFLUENCE OF CONTEXT AND

LEARNING. Music Perception, 23:377–405, 2006.

Marcus Pearce and Geraint Wiggins. Towards a framework for the evaluation of machine compositions. In

Proceedings of the AISB’01 Symposium on Artificial Intelligence and Creativity in the Arts and Sciences,

pages 22–32, 2001.

154

https://doi.org/10.1007/978-3-642-31727-9_5

References

Marcus Pearce, David Meredith, and Geraint Wiggins. Motivations and methodologies for automation of

the compositional process. Musicae Scientiae, 6(2):119–147, 2002.

Marcus T Pearce. Statistical learning and probabilistic prediction in music cognition: mechanisms of stylistic

enculturation. Annals of the New York Academy of Sciences, 1423(1):378, 2018.

Marcus T Pearce and Geraint A Wiggins. A comparison of statistical and rule-based models of melodic

segmentation. In ISMIR, pages 89–94, 2008.

Alison Pease and Simon Colton. Computational Creativity Theory: Inspirations behind the FACE and the

IDEA models. In ICCC, pages 72–77. Citeseer, 2011a.

Alison Pease and Simon Colton. On impact and evaluation in computational creativity: A discussion of the

Turing test and an alternative proposal. In Proceedings of the AISB symposium on AI and Philosophy,

volume 39, page 8, 2011b.

Alison Pease and Joseph Corneli. Evaluation of Creativity. In Roberto Confalonieri, Alison Pease, Marco

Schorlemmer, Tarek R. Besold, Oliver Kutz, Ewen Maclean, and Maximos Kaliakatsos-Papakostas,

editors, Concept Invention: Foundations, Implementation, Social Aspects and Applications, Compu-

tational Synthesis and Creative Systems, pages 277–294. Springer International Publishing, Cham,

2018. ISBN 978-3-319-65602-1. doi: 10.1007/978-3-319-65602-1_10. URL https://doi.org/10.1007/

978-3-319-65602-1_10.

Alison Pease, Daniel Winterstein, and Simon Colton. Evaluating machine creativity. In Workshop on creative

systems, 4th international conference on case based reasoning, pages 129–137, 2001.

Camila Pérez-Arévalo, Cristina Manresa-Yee, and Victor M. Peñeñory Beltrán. Game to develop rhythm and

coordination in children with hearing impairments. In Proceedings of the XVIII International Conference

on Human Computer Interaction, Interacción ’17, page 4, New York, NY, USA, 2017. Association for

Computing Machinery. ISBN 9781450352291. doi: 10.1145/3123818.3123853. URL https://doi.org/

10.1145/3123818.3123853.

Daniel Gilbert Perret. Roots of musicality: music therapy and personal development. J. Kingsley Publishers,

London ; Philadelphia, 2005. ISBN 978-1-84310-336-3.

Matevž Pesek, Aleš Leonardis, and Matija Marolt. Symchm—an unsupervised approach for pattern discovery

in symbolic music with a compositional hierarchical model. Applied Sciences, 7(11), 2017. ISSN 2076-

3417. doi: 10.3390/app7111135.

155

https://doi.org/10.1007/978-3-319-65602-1_10
https://doi.org/10.1007/978-3-319-65602-1_10
https://doi.org/10.1145/3123818.3123853
https://doi.org/10.1145/3123818.3123853

References

Somnuk Phon-Amnuaisuk and Geraint A. Wiggins. The four-part harmonisation problem: a comparison

between genetic algorithms and a rule-based system. In Proceedings of the AISB’99 Symposium on

Musical Creativity, pages 28–34. AISB London, 1999.

Somnuk Phon-Amnuaisuk, Andrew Tuson, and Geraint Wiggins. Evolving Musical Harmonisation. In Andrej

Dobnikar, Nigel C. Steele, David W. Pearson, and Rudolf F. Albrecht, editors, Artificial Neural Nets and

Genetic Algorithms, pages 229–234. Springer Vienna, 1999. ISBN 978-3-7091-6384-9.

Florian Pinel, Lav R. Varshney, and Debarun Bhattacharjya. A Culinary Computational Creativity Sys-

tem. In Tarek R. Besold, Marco Schorlemmer, and Alan Smaill, editors, Computational Creativity Re-

search: Towards Creative Machines, Atlantis Thinking Machines, pages 327–346. Atlantis Press, Paris,

2015. ISBN 978-94-6239-085-0. doi: 10.2991/978-94-6239-085-0_16. URL https://doi.org/10.2991/

978-94-6239-085-0_16.

Richard C. Pinkerton. Information theory and melody. Scientific American, 194(2):77–87, 1956.

Dirk-Jan Povel and Peter Essens. Perception of Temporal Patterns. Music Perception: An Interdisciplinary

Journal, 2(4):411–440, July 1985. ISSN 0730-7829, 1533-8312. doi: 10.2307/40285311.

Przemyslaw Prusinkiewicz. Score generation with L-systems. In ICMC, pages 455–457, 1986.

Donya Quick. Generating Music Using Concepts from Schenkerian Analysis and Chord Spaces. Technical

report, Yale University, 2011.

Eve-Marie Quintin, Anjali Bhatara, Hélène Poissant, Eric Fombonne, and Daniel J. Levitin. Emotion Per-

ception in Music in High-Functioning Adolescents With Autism Spectrum Disorders. Journal of Autism

and Developmental Disorders, 41(9):1240–1255, September 2011. ISSN 0162-3257, 1573-3432. doi:

10.1007/s10803-010-1146-0.

Elio Quinton. Towards the Automatic Analysis of Metric Modulations. PhD thesis, Queen Mary University

of London, 2017.

Elio Quinton, Mark Sandler, and Simon Dixon. Estimation of the reliability of multiple rhythm features

extraction from a single descriptor. In 2016 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 256–260, 2016. doi: 10.1109/ICASSP.2016.7471676.

B. S. C. Ranjan, L. Siddharth, and Amaresh Chakrabarti. A systematic approach to assessing novelty,

requirement satisfaction, and creativity. AI EDAM, 32(4):390–414, November 2018. ISSN 0890-0604,

1469-1760. doi: 10.1017/S0890060418000148.

156

https://doi.org/10.2991/978-94-6239-085-0_16
https://doi.org/10.2991/978-94-6239-085-0_16

References

Christopher Raphael. A Bayesian Network for Real-Time Musical Accompaniment. In T. G. Diet-

terich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems

14, pages 1433–1439. MIT Press, Cambridge, MA, 2002. URL http://papers.nips.cc/paper/

2035-a-bayesian-network-for-real-time-musical-accompaniment.pdf.

Bruno H. Repp. Sensorimotor synchronization: A review of the tapping literature. Psychonomic Bulletin &

Review, 12(6):969–992, December 2005. ISSN 1069-9384, 1531-5320. doi: 10.3758/BF03206433.

Mel Rhodes. An Analysis of Creativity. The Phi Delta Kappan, 42(7):305–310, 1961. ISSN 0031-7217.

Mark O. Riedl. The lovelace 2.0 test of artificial creativity and intelligence. arXiv preprint arXiv:1410.6142,

2014.

Graeme Ritchie. Assessing creativity. In Proc. of AISB’01 Symposium, page 10. University of Edinburgh,

Department of Artificial Intelligence, 2001.

Graeme Ritchie. Some empirical criteria for attributing creativity to a computer program. Minds and

Machines, 17(1):67–99, 2007.

Graeme Ritchie. The Evaluation of Creative Systems. In Tony Veale and F. Amílcar Cardoso, editors,

Computational Creativity: The Philosophy and Engineering of Autonomously Creative Systems, Com-

putational Synthesis and Creative Systems, pages 159–194. Springer International Publishing, Cham,

2019. ISBN 978-3-319-43610-4. doi: 10.1007/978-3-319-43610-4_8. URL https://doi.org/10.1007/

978-3-319-43610-4_8.

Ute Ritterfeld, Michael Cody, and Peter Vorderer. Serious games: Mechanisms and effects. Routledge,

2009. ISBN 9780203891650. doi: https://doi.org/10.4324/9780203891650.

Andrew Robertson and Mark Plumbley. B-Keeper: a beat-tracker for live performance. In Proceedings of the

7th international conference on New interfaces for musical expression - NIME ’07, page 234, New York,

New York, 2007. ACM Press. doi: 10.1145/1279740.1279787. URL http://portal.acm.org/citation.

cfm?doid=1279740.1279787.

Pierre-Yves Rolland. Discovering patterns in musical sequences. Journal of New Music Research, 28(4):

334–350, 1999. doi: 10.1076/0929-8215(199912)28:04;1-O;FT334.

Chiara Santolin, Sofia Russo, Giulia Calignano, Jenny R. Saffran, and Eloisa Valenza. The role of prosody

in infants’ preference for speech: A comparison between speech and birdsong. Infancy, 24(5):827–833,

2019. doi: 10.1111/infa.12295.

157

http://papers.nips.cc/paper/2035-a-bayesian-network-for-real-time-musical-accompaniment.pdf
http://papers.nips.cc/paper/2035-a-bayesian-network-for-real-time-musical-accompaniment.pdf
https://doi.org/10.1007/978-3-319-43610-4_8
https://doi.org/10.1007/978-3-319-43610-4_8
http://portal.acm.org/citation.cfm?doid=1279740.1279787
http://portal.acm.org/citation.cfm?doid=1279740.1279787

References

Prabir Sarkar and Amaresh Chakrabarti. Studying engineering design creativity-developing a common def-

inition and associated measures. In Proceedings of the NSF Workshop on Studying Design Creativity,

page 20, 2008.

Prabir Sarkar and Amaresh Chakrabarti. Assessing design creativity. Design Studies, 32(4):348–383, July

2011. ISSN 0142-694X. doi: 10.1016/j.destud.2011.01.002.

Heinrich Schenker. Free Composition (Der freie Satz). Longman Music Series. Longman, New York, NY,

USA, 1935.

Jürgen Schmidhuber. A Formal Theory of Creativity to Model the Creation of Art. In Jon McCormack and

Mark d’Inverno, editors, Computers and Creativity, pages 323–337. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2012. ISBN 978-3-642-31727-9. doi: 10.1007/978-3-642-31727-9_12. URL https://doi.

org/10.1007/978-3-642-31727-9_12.

D. Schön, L. Akiva-Kabiri, and T. Vecchi. Psicologia della Musica. Bussole: Psicologia. Carocci, Rome,

Italy, 2007. ISBN 9788843040605. URL https://books.google.it/books?id=LZEYAQAAIAAJ.

Hendrik Schreiber and Meinard Müller. A Single-Step Approach to Musical Tempo Estimation Using a

Convolutional Neural Network. In Proceedings of the 19th International Society for Music Information

Retrieval Conference (ISMIR), page 8, Paris, France, September 2018.

Thomas Schürmann and Peter Grassberger. Entropy estimation of symbol sequences. Chaos: An Interdisci-

plinary Journal of Nonlinear Science, 6(3):414–427, September 1996. ISSN 1054-1500, 1089-7682. doi:

10.1063/1.166191.

Marco Scirea, Peter Eklund, Julian Togelius, and Sebastian Risi. Evolving In-game Mood-expressive Mu-

sic with MetaCompose. In Proceedings of the Audio Mostly 2018 on Sound in Immersion and Emo-

tion, AM’18, pages 8:1–8:8, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-6609-0. doi:

10.1145/3243274.3243292. URL http://doi.acm.org/10.1145/3243274.3243292. event-place: Wrex-

ham, United Kingdom.

John R. Searle. Minds, brains, and programs. Behavioral and Brain Sciences, 3(3):417–424, September

1980. ISSN 1469-1825, 0140-525X. doi: 10.1017/S0140525X00005756.

V. Shah, M. Cuen, T. McDaniel, and R. Tadayon. A rhythm-based serious game for fine motor rehabilitation

using leap motion. In 2019 58th Annual Conference of the Society of Instrument and Control Engineers

of Japan (SICE), pages 737–742, 2019.

158

https://doi.org/10.1007/978-3-642-31727-9_12
https://doi.org/10.1007/978-3-642-31727-9_12
https://books.google.it/books?id=LZEYAQAAIAAJ
http://doi.acm.org/10.1145/3243274.3243292

References

Noor Shaker, Gillian Smith, and Georgios N. Yannakakis. Evaluating content generators. In Noor

Shaker, Julian Togelius, and Mark J. Nelson, editors, Procedural Content Generation in Games, Com-

putational Synthesis and Creative Systems, pages 215–224. Springer International Publishing, Cham,

2016. ISBN 978-3-319-42716-4. doi: 10.1007/978-3-319-42716-4_12. URL https://doi.org/10.1007/

978-3-319-42716-4_12.

Federico Simonetta, Filippo Carnovalini, Nicola Orio, and Antonio Rodà. Symbolic Music Similarity through

a Graph-Based Representation. In Proceedings of the Audio Mostly 2018 on Sound in Immersion and

Emotion - AM’18, pages 1–7, Wrexham, United Kingdom, 2018. ACM Press. ISBN 978-1-4503-6609-0.

doi: 10.1145/3243274.3243301. URL http://dl.acm.org/citation.cfm?doid=3243274.3243301.

Dean Keith Simonton. Creativity: Cognitive, personal, developmental, and social aspects. American psy-

chologist, 55(1):151, 2000.

S. N. Sivanandam and S. N. Deepa. Genetic algorithms. In Introduction to genetic algorithms, pages 15–37.

Springer, 2008.

Dave Soldier. Eine Kleine Naughtmusik: How Nefarious Nonartists Cleverly Imitate Music. Leonardo Music

Journal, pages 53–58, 2002.

Mark J Steedman. The Perception of Musical Rhythm and Metre. Perception, 6(5):555–569, October

1977. ISSN 0301-0066, 1468-4233. doi: 10.1068/p060555.

Mark J. Steedman. A Generative Grammar for Jazz Chord Sequences. Music Perception: An Interdisciplinary

Journal, 2(1):52–77, October 1984. ISSN 07307829, 15338312. doi: 10.2307/40285282.

Morris I. Stein. Creativity and Culture. The Journal of Psychology, 36(2):311–322, October 1953. ISSN

0022-3980. doi: 10.1080/00223980.1953.9712897.

Brynjulf Stige. Aesthetic Practices in Music Therapy. Nordisk Tidsskrift for Musikkterapi, 7(2):121–134,

January 1998. ISSN 0803-9828. doi: 10.1080/08098139809477932.

Bob L Sturm. What do these 5,599,881 parameters mean? An analysis of a specific LSTM music tran-

scription model, starting with the 70,281 parameters of its softmax layer. In Proceedings of the 6th

International Workshop on Musical Metacreation, page 8, 2018.

Bob L. Sturm, Joao Felipe Santos, Oded Ben-Tal, and Iryna Korshunova. Music transcription modelling and

composition using deep learning. arXiv preprint arXiv:1604.08723, 2016.

Bob L. Sturm, Oded Ben-Tal, {\’U}na Monaghan, Nick Collins, Dorien Herremans, Elaine Chew, Gaëtan

Hadjeres, Emmanuel Deruty, and François Pachet. Machine learning research that matters for music

159

https://doi.org/10.1007/978-3-319-42716-4_12
https://doi.org/10.1007/978-3-319-42716-4_12
http://dl.acm.org/citation.cfm?doid=3243274.3243301

References

creation: A case study. Journal of New Music Research, 48(1):36–55, January 2019. ISSN 0929-8215.

doi: 10.1080/09298215.2018.1515233.

Bob L. T. Sturm and Oded Ben-Tal. Folk the algorithms: (mis)applying artificial intelligence to folk music.

In Eduardo Reck Miranda, editor, Handbook of Artificial Intelligence for Music: Foundations, Advanced

Approaches, and Developments for Creativity, pages 423–454. Springer International Publishing, Cham,

2021. ISBN 978-3-030-72116-9. doi: 10.1007/978-3-030-72116-9_16. URL https://doi.org/10.1007/

978-3-030-72116-9_16.

Martin Supper. A few remarks on algorithmic composition. Computer Music Journal, 25(1):48–53, 2001.

Tim Swingler. The invisible keyboard in the air: An overview of the educational, therapeutic and creative

applications of the EMS Soundbeam. In 2nd European Conference for Disability, Virtual Reality &

Associated Technology, pages 253–259, Skövde, Sweden, 1998. University of Reading.

Véronique Sébastien, Henri Ralambondrainy, Olivier Sébastien, and Noël Conruyt. Score analyzer: Auto-

matically determining scores difficulty level for instrumental e-learning. In 13th International Society for

Music Information Retrieval Conference (ISMIR 2012), pages 571–576, 2012.

Kıvanç Tatar and Philippe Pasquier. Musical agents: A typology and state of the art towards Musical

Metacreation. Journal of New Music Research, 48(1):56–105, January 2019. ISSN 0929-8215. doi:

10.1080/09298215.2018.1511736.

David Temperley. The cognition of basic musical structures. MIT Press, Cambridge, Mass., 1. paperback

ed edition, 2004. ISBN 978-0-262-70105-1 978-0-262-20134-6. OCLC: 255948904.

David Temperley. Composition, Perception, and Schenkerian Theory. Music Theory Spectrum, 33(2):

146–168, October 2011. ISSN 01956167, 15338339. doi: 10.1525/mts.2011.33.2.146.

Peter M. Todd. A connectionist approach to algorithmic composition. Computer Music Journal, 13(4):

27–43, 1989.

Petri Toiviainen. An Interactive MIDI Accompanist. Computer Music Journal, 22(4):63–75, 1998. ISSN

0148-9267. doi: 10.2307/3680894.

E. P. Torrance. The Torrance tests of creative thinking, 1974.

E. Paul Torrance. Scientific Views of Creativity and Factors Affecting Its Growth. Daedalus, 94(3):663–681,

1965. ISSN 0011-5266.

E. Paul Torrance. The nature of creativity as manifest in its testing. The nature of creativity, pages 43–75,

1988.

160

https://doi.org/10.1007/978-3-030-72116-9_16
https://doi.org/10.1007/978-3-030-72116-9_16

References

Yvonne Treadwell. Humor and Creativity. Psychological Reports, 26(1):55–58, February 1970. ISSN 0033-

2941. doi: 10.2466/pr0.1970.26.1.55.

Alan M. Turing. Computing machinery and intelligence. Mind, 59(236):433–460, October 1950.

Gissel Velarde, Tillman Weyde, and David Meredith. An approach to melodic segmentation and classification

based on filtering with the haar-wavelet. Journal of New Music Research, 42(4):325–345, 2013. doi:

10.1080/09298215.2013.841713.

Francisco Ventura, A. Oliveira, and Amílcar Cardoso. An emotion-driven interactive system. In Portuguese

Conference on Artificial Intelligence, page 12, 2009.

Hugues Vinet. The representation levels of music information. In International Symposium on Computer

Music Modeling and Retrieval, pages 193–209. Springer, 2003.

Richard F. Voss and John Clarke. ”1/f noise”in music: Music from 1/f noise. The Journal of the Acoustical

Society of America, 63(1):258–263, 1978.

Gregory M. Werner and Peter M. Todd. Too many love songs: Sexual selection and the evolution of

communication. In Fourth European Conference on Artificial Life, pages 434–443. MIT Press/Bradford

Books. Cambridge, MA, 1997.

Nick Whiteley, A. Taylan Cemgil, and Simon Godsill. Bayesian Modelling of Temporal Structure in Musical

Audio. In ISMIR, pages 29–34, Victoria, Canada, 2006. University of Victoria.

Gerhard Widmer and Werner Goebl. Computational models of expressive music performance: The state of

the art. Journal of New Music Research, 33(3):203–216, 2004.

G. A. Wiggins. Computer Models of Musical Creativity: A Review of Computer Models of Musical Creativity

by David Cope. Literary and Linguistic Computing, 23(1):109–116, 2007a. ISSN 0268-1145, 1477-4615.

doi: 10.1093/llc/fqm025.

Geraint A. Wiggins. A preliminary framework for description, analysis and comparison of creative systems.

Knowledge-Based Systems, 19(7):449–458, November 2006. ISSN 0950-7051. doi: 10.1016/j.knosys.

2006.04.009.

Geraint A. Wiggins. Models of musical similarity. Musicae Scientiae, 11(1_suppl):315–338, 2007b. doi:

10.1177/102986490701100112.

Geraint A. Wiggins. A Framework for Description, Analysis and Comparison of Creative Systems. In Tony

Veale and F. Amílcar Cardoso, editors, Computational Creativity: The Philosophy and Engineering of

161

References

Autonomously Creative Systems, Computational Synthesis and Creative Systems, pages 21–47. Springer

International Publishing, Cham, 2019. ISBN 978-3-319-43610-4. doi: 10.1007/978-3-319-43610-4_2.

URL https://doi.org/10.1007/978-3-319-43610-4_2.

Geraint A. Wiggins. Creativity, information, and consciousness: The information dynamics of thinking.

Physics of Life Reviews, 34-35:1–39, December 2020. ISSN 1571-0645. doi: 10.1016/j.plrev.2018.05.001.

Geraint A Wiggins. Computational creativity and consciousness: Framing, fiction and fraud paper type:

Study paper. In Proceedings of the 12th International Conference on Computational Creativity (ICCC

’21), pages 182–191, 2021a.

Geraint A. Wiggins. Structure, abstraction and reference in artificial musical intelligence. In Handbook of

Artificial Intelligence for Music. Springer Nature Switzerland AG, Cham, 2021b. doi: https://doi.org/

10.1007/978-3-030-72116-9_15.

Geraint A. Wiggins and Jamie Forth. IDyOT: A Computational Theory of Creativity as Everyday Rea-

soning from Learned Information. In Tarek R. Besold, Marco Schorlemmer, and Alan Smaill, editors,

Computational Creativity Research: Towards Creative Machines, Atlantis Thinking Machines, pages 127–

148. Atlantis Press, Paris, 2015. ISBN 978-94-6239-085-0. doi: 10.2991/978-94-6239-085-0_7. URL

https://doi.org/10.2991/978-94-6239-085-0_7.

Geraint A. Wiggins and Abdelrahman Sanjekdar. Learning and Consolidation as Re-representation: Revising

the Meaning of Memory. Frontiers in Psychology, 10, 2019. ISSN 1664-1078. doi: 10.3389/fpsyg.2019.

00802.

Geraint A. Wiggins, George Papadopoulos, Somnuk Phon-Amnuaisuk, and Andrew Tuson. Evolutionary

methods for musical composition, volume UNPUBLISHED. University of Edinburgh, Department of

Artificial Intelligence, 1998.

Geraint A. Wiggins, Peter Tyack, Constance Scharff, and Martin Rohrmeier. The evolutionary roots of

creativity: mechanisms and motivations. Philosophical Transactions of the Royal Society of London B:

Biological Sciences, 370(1664), 2015. ISSN 0962-8436. doi: 10.1098/rstb.2014.0099.

Duncan Williams, Alexis Kirke, Eduardo R. Miranda, Etienne Roesch, Ian Daly, and Slawomir Nasuto.

Investigating affect in algorithmic composition systems. Psychology of Music, 43(6):831–854, 2015.

Anna Xambó, Johan Pauwels, Gerard Roma, Mathieu Barthet, and György Fazekas. Jam with Jamendo:

Querying a Large Music Collection by Chords from a Learner’s Perspective. In Proceedings of the Audio

Mostly 2018 on Sound in Immersion and Emotion, AM’18, pages 30:1–30:7, New York, NY, USA, 2018.

162

https://doi.org/10.1007/978-3-319-43610-4_2
https://doi.org/10.2991/978-94-6239-085-0_7

References

ACM. ISBN 978-1-4503-6609-0. doi: 10.1145/3243274.3243291. URL http://doi.acm.org/10.1145/

3243274.3243291. event-place: Wrexham, United Kingdom.

Gus G. Xia and Roger B. Dannenberg. Improvised Duet Interaction: Learning Improvisation Techniques for

Automatic Accompaniment. In NIME, page 5, Copenhagen, Denmark, 2017. Aalborg University.

Li-Chia Yang and Alexander Lerch. On the evaluation of generative models in music. Neural Computing and

Applications, November 2018. ISSN 0941-0643, 1433-3058. doi: 10.1007/s00521-018-3849-7.

Li-Chia Yang, Szu-Yu Chou, and Yi-Hsuan Yang. MidiNet: A convolutional generative adversarial network

for symbolic-domain music generation. arXiv preprint arXiv:1703.10847, 2017.

J. Diana Zhang and Emery Schubert. A Single Item Measure for Identifying Musician and Nonmusician

Categories Based on Measures of Musical Sophistication. Music Perception, 36(5):457–467, 06 2019.

ISSN 0730-7829. doi: 10.1525/mp.2019.36.5.457.

Yixiao Zhang and Gus Xia. Symbolic melody phrase segmentation using neural network with conditional

random field. In National Conference on Sound and Music Technology, pages 55–65. Springer, 2020.

Guo Zixun, Dimos Makris, and Dorien Herremans. Hierarchical recurrent neural networks for conditional

melody generation with long-term structure. In 2021 International Joint Conference on Neural Networks

(IJCNN), pages 1–8, 2021. doi: 10.1109/IJCNN52387.2021.9533493.

163

http://doi.acm.org/10.1145/3243274.3243291
http://doi.acm.org/10.1145/3243274.3243291

	Introduction
	The Search for the Creative Machine
	Motivations
	Computational Creativity as the Final Frontier of AI
	Computational Music as a Creative Tool for Humans

	Research Directions
	Social Interaction and Music Generation
	Structure in Music Generation

	Contributions
	How to Read this Thesis

	Background and Literature Review
	Computational Creativity
	Defining Creativity
	Computers and Creativity
	Evaluating Creativity

	Music Generation Systems
	Methods for Music Generation
	Open Challenges in Music Generation
	Discussion

	Social Interaction and Music Generation
	The Social Nature of Music
	Related Work
	Real Time Tempo and Meter Tracking
	Theoretical Basis
	Algorithm
	Evaluation

	A Social Musical Game
	Architecture
	Evaluation

	Discussion
	Main Findings
	Limitations and Future Work

	Structure in Music Generation
	The Hierarchical Nature of Music
	Related Work
	Three Tree-Based Representations for Music
	Corpus Description
	Representations
	Applications

	Structure-Aware Style Imitation
	Corpus Analysis and Generation of Melodic Beginning
	Generation of a Pool of Continuations
	Genetic Approach to Select Continuation
	Example Result

	Discussion
	Main Findings
	Scope of the Representation

	Conclusions
	Summary and Discussion
	Contributions
	Publications
	Deliverables

	Closing Remarks

	References

