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Abstract: The work describes a systematic optimization strategy for designing hypersonic inlet
intakes. A Reynolds-averaged Navier-Stokes database is mined using genetic algorithms to develop
ideal designs for a priori defined targets. An intake geometry from the literature is adopted as
a baseline. Thus, a steady-state numerical assessment is validated and the computational grid is
tuned under nominal operating conditions. Following validation tasks, the model is used for multi-
objective optimization. The latter aims at minimizing the drag coefficient while boosting the static
and total pressure ratios, respectively. The Pareto optimal solutions are analyzed, emphasizing the
flow patterns that result in the improvements. Although the approach is applied to a specific setup,
the method is entirely general, offering a valuable flowchart for designing super/hypersonic inlets.
Notably, because high-quality computational fluid dynamics strategies drive the innovation process,
the latter accounts for the complex dynamics of such devices from the early design stages, including
shock-wave/boundary-layer interactions and recirculating flow portions in the geometrical shaping.

Keywords: hypersonic flows; multi-objective opmization; genetic algorithm

1. Introduction

In recent years, hypersonic flight has gotten even greater attention from the scien-
tific community. Even though significant breakthroughs have been accomplished, several
questions remain unanswered. Inlet intakes, in particular, are among the most critical
and challenging to design of the numerous hypersonic components since their mechanics
are characterized by a large number of unstable events and unexpected flow phenom-
ena. However, the proper operation of a high-speed vehicle is fundamentally dependent
on the appropriate functioning of its intake system. The device, in fact, is the critical
component that conveys the flow to the engine core; as a result, it plays a unique role in
the vehicle’s stability and manoeuvrability and the overall mission’s safety. Because of
this, it is often difficult for such components to be correctly designed, particularly when
considering boundary layer ingestions or off-operation circumstances. In most cases, quasi-
two-dimensional techniques based on the Shock/Expansion Theory (SET) are used in the
early design phases, with the flow assumed to be stationary and viscous effects ignored.
These assumptions produce geometrical concepts that are generally incorrect, mainly when
off-design and upstart situations are encountered or tested. One problem that affects inlet
intakes is the intake unstart, which is often associated with a dynamic instability known as
buzz. Since it may be triggered either by the ingestion of the boundary layer (little buzz)
or by the ejection of a normal shock from the intake and the subsequent emergence of a
massive separation bubble (big buzz), inlet buzz is a multifaceted phenomenon.

In the late 1950s, Ferri et al. [1] and Dailey [2] made the first observations of the phe-
nomenon, which continues to affect numerous intake arrangements in super/hypersonic
conditions even today. From these pioneering works, several researchers have shown
that full-scale experiments are preferable to numerical models in hypersonic applications
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because of the complexity of the physics involved. In this path, Trapier et al. [3] suggest that
the big buzz is most likely related to acoustics phenomena that exist before the buzz begins.
Wagner et al. [4], on the other hand, investigate the upstart dynamics of an inlet/isolator
model at Mach 5, discovering a wide variety of oscillatory and non-oscillatory frequencies.
According to the findings, non-oscillatory flow is characterized by reduced pressure vari-
ations and an oblique shock upstream. Lee and Jeung [5] give a basic explanation of the
phenomena, categorizing the buzz across a single ramp into five separate regimes from
both an experimental and numerical standpoint. Soltani et al. [6] conducted a thorough
experimental campaign on axisymmetric inlets at various supersonic Mach numbers and
inlet angles of attack. The research includes a comprehensive shadowgraphs collection
for both design and off-conditions. Tan et al. [7] experimentally validate a technique for
practically monitoring the inlet status under starting and unstarted scenarios. Later on,
Soltani et al. [8] classify many forms of Shock/Boundary-Layer Interactions (SBLI) con-
cerning mixed-compression inlets. Schlieren and shadowgraph flow visualization and
unsteady pressure recordings are used to explore SBLI ejection under subcritical and buzz
conditions. Later on, the same research group [9] demonstrates that the buzz phenomenon
is shocked oscillation ahead of the supersonic air intake when its mass flow rate decreases
at off-design conditions.

However, experiments are costly and require a significant investment in terms of
time and skill to set up and maintain the testing facilities. Furthermore, the probes and
the tunnel boundary conditions used to gather the data often cause experiments to alter
the results in strong compressible conditions. On the other hand, numerical approaches
have gained popularity in recent years, owing to the increasing availability of computing
power and the resulting breakthroughs in Computational Fluid Dynamics (CFD). Receiv-
ing a precise response via CFD software is also a fascinating prospect, considering the
enormous variety of fluid dynamic phenomena that may occur at any moment and in any
location inside a hypersonic domain. Thus, several numerical investigations concerning
super/hypersonic inlet intakes have appeared, and numerous further contributions arise
in the literature as a consequence of the pioneering work of Newsome [10], who first
employed numerical modelling better to understand the near-critical and unsteady flow
regimes during inlet buzz. Lu and Jain [11] examined inlet fluid mechanics using a finite
volume Reynolds-Averaged Navier-Stokes (RANS) model, demonstrating that the buzz
cycle may be attributable to both local flow instabilities and acoustic resonance modes.
Trapier et al. [12] described flow instabilities concerning inlet intakes using a Delayed
Detached-Eddy Simulation (DDES) model. Hong and Kim [13] used RANS to analyze buzz
mechanics under different throttling circumstances. The authors discovered that when the
throttling ratio drops, the dominating frequency of pressure perturbation rises, resulting
in a more oscillatory perturbation pattern. Later, the same authors [14] used the prior
model to investigate the unstable behaviour of super/hypersonic inlet intakes in response
to changes in mass flow rate. Abedi et al. [15] undertake in-depth numerical studies to
model and capture buzz phenomena in a supersonic mixed compression air inlet. The
Unsteady-RANS (URANS) system of equations with k-ω SST closure is solved through
an axisymmetric unsteady numerical simulation. James et al. [16], on the other hand,
propose a two-dimensional compressible RANS model in conjunction with wind tunnel
experimental data to examine throttling conditions in supersonic inlets by altering the exit
area in the form of plug inserts. Yuan et al. [17] numerically analyze the beginning and
inlet-engine matching of an axisymmetric variable geometry inlet with complex structure.
Finally, De Vanna et al. [18,19] detailed buzz with Large-Eddy Simulation (LES) strategies.

Despite such contributions to hypersonic research, no definitive works have been
published that give a thorough categorization and complete design flow charts for im-
proving the performance of a hypersonic intake, beginning with its very early prototype
stages. An efficient and robust design, in fact, is often able to make inlet intakes more stable
functioning even in upstart or off-operating conditions, increasing the intake envelop and
minimizing recirculating region or flow detachments. In this respect, design guided by
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automatic optimization procedures is now considered the state-of-the-art in many engi-
neering fields, from structural applications [20–22], to fluid mechanics and aerodynamic
design [23,24], all the way up to the optimization of manufacturing processes or service
facilities [25]. In particular, Genetic Algorithms (GA) have become very popular in all
the scientific and technical applications where one or more parameters defining a system
have to be minimized/maximized. Compared to other non-linear operational research
algorithms (e.g., conjugate gradient methods, penalty methods or Monte Carlo strategies),
GA are often one of the best options for treating genuinely multi-objective constrained prob-
lems since the fitness functions describing the system are treated by combining stochastic
and deterministic features operations, broadening the investigation of the research space
and elaborating design options even very far from the initial baseline. However, GA suffer
from slow convergence to the Pareto front, and hundreds of fitness function evaluations
are required to get decent approximations of the optimum surfaces. The problem is particu-
larly felt in fluid mechanics since fitnesses are acquired from CFD calculations, which are
highly costly. As a result, after the initial GA implementation by Holland [26], numerous
contributions appeared in the literature to accelerate the techniques’ convergence and
meet the application needs (see, e.g., [27,28]). In this path, researchers combined GA with
non-linear regression algorithms such as Kriging methods, radial basis functions, neural
networks, and support vector machines [29–32], obtaining predictive meta models that
allow to drastically reduce the number of iterations to achieve the Pareto front at the ex-
pense of errors associated with data interpolation. Nevertheless, despite the intense activity
in combining GA with the most disparate engineering applications, very few research
activities have focused in employing evolutionary methods to design optimal hypersonic
devices, and the majority of such works aimed at optimizing the shock wave train on a
pure system and macroscopic level [33], disregarding the difficulties brought by the shock
waves’ interaction with the boundary layer. Thus, the blocking effects of severe viscosity
events, flow detachments, and recirculations are usually neglected during the early design
stages, resulting in time-consuming and non-functional prototypes.

In this scenario, the present research extends and improves early scrutiny of the Au-
thors [34] to specify robust criteria for automatic designing hypersonic inlet intakes. The
design approach, which applies to the initial stages of production, is based on the assump-
tion of steady-state viscous flows and employs RANS models in conjunction with GA to
generate optimal geometrical solutions to a priori defined goals. The reason why we chose
RANS methods to solve the flow field is essentially related to computational costs. It is
generally recognized, in fact, that RANS, modelling the whole turbulent spectrum, cannot
capture flow unsteadiness and time-varying characteristics such as pressure/velocity fluc-
tuations, being such features very critical for accurately describing SBLI problems [35–44].
Consequently, lower results accuracy in shock locations, angles, and interaction sites must
be accepted for a cheaper computing cost, which is crucial at the early design stages. Scale-
resolved methods, in fact, like LES, are hardly integrated with automatic design tools since
analyzing hundreds of configurations in a fully wall-resolved LES framework exceeds
the standard computational resources available in most scientific computing projects and
even more advanced proposals, exploiting highly efficient parallel architectures, hardly
affirm sustainability in terms of core/hours for optimization-guided-designs combined
with advanced CFD methods. Thus, the proposed approach allows for a good estimation
and management of the most complicated features pertained to highly compressible flows,
including the deployment of several wavefronts, realistic SBLI predictions, and near-wall
fluid mechanics with reasonable computational costs. Furthermore, due to the generality
of the proposed methodology, which consists of combining solver data with operational
research algorithms to identify the optimal system configurations of a device, the strategy
can be easily applied in a vast range of engineering fields, not just to fluid components as
presented in this work.

The following is a breakdown of the structure of the current document: Section 2
describes the numerical model in-depth together with the meshing approach. Section 3
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explains how the model is tuned and validated using the baseline configuration. Section 4
discusses the geometric parametrization, the optimization approach, and the rationale for
choosing the objective functions. Section 5 contains the derived optimum designs’ results
and comments. The conclusion and final comments are summarized in Section 6.

2. Computational Setup and Numerical Methodology

The current work combines commercial and open-source platforms, including Ansys
Fluent, Salome (https://www.salome-platform.org), MatlabTM (The MathWorks Inc., Mat-
lab, Natick, MA, USA), and Python scripts. Figure 1 reports the intake model’s geometrical
properties. The model is precisely equal to that previously analyzed by De Vanna et al. [19].
Unlike [19], the geometry is here reduced to two dimensions, making use of the flow homo-
geneity and spanwise direction, as customary for RANS models. The intake is divided into
two distinct sections: the ramp portion and the cowl lip. The ramp portion, which also cor-
responds to the intake chord L0, is 150 mm longer and consists of two ramps oriented at 10◦

and 22◦ to the horizontal axis, respectively, and an inlet with a height of 2.1 mm. The cowl
lip portion begins vertically at the channel entrance and is defined by a tiny ramp slanted
in the streamwise direction by 30◦. At 0.44 mm height, a straight roof covers the intake
channel. The system dynamics are simulated using a Lx × Ly = (1.05× 0.4)L0 mm domain.
The fluid domain is subtracted by the intake’s components using boolean operations and
divided into six blocks to apply simulation boundary conditions.

81.7 

150 

Figure 1. Geometrical representation of the baseline intake geometry. Dimensions reported in millimiters.

A total of three hybrid and increasingly refined meshes of size roughly 75 k, 150 k, and
300 k elements are used; these are referred to as Coarse (C), Medium (M), and Fine (F). The
meshing process is carried out using the open-source Salome platform. Each computational
grid is quality tested using the internal software suites, resulting in a mean skewness of 0.22,
a mean inflation growth rate of 1.05, and a mean orthogonality of 8 for each computational
grid. As previously stated, the meshing technique uses a hybrid structured/unstructured
approach, with structured cells being employed in the near-wall flow areas. As a result,
inflation is set up along the walls in order to improve resolution in the boundary layer and
ensure that proper y+w = yw/δν values are kept. In particular, we want to address the y+w < 1
threshold in order to ensure the quality of boundary layer resolution and to guarantee that
the correct resolution is maintained even for trial geometries throughout the optimization
process. Here, yw denotes the first off-the-wall cell distance, while δν = µw/(ρwuτ) is the
wall local viscous length, ρw is the wall density, uτ =

√
τw/ρw is the friction velocity and

τw = µw∂u/∂y denotes the wall shear stress. The thermodynamics variables are linked
with the ideal gas equation of state, p/ρ = RT, where p denotes the thermodynamic
pressure, ρ is the fluid density, and T denotes the temperature. R = R/M denotes the
specific gas constant, withR = 8.314 JK−1 mol−1 denoting the universal gas constant and
M = 28.965 g mol−1 denotes the air molecular mass. Sutherland’s two coefficients law is

https://www.salome-platform.org
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used to correlate temperature and laminar viscosity. Figure 2 reports an overview of the
mesh as well as some enlargements in the most critical areas (Figure 2b,c).

(a)

(b) (c)

Figure 2. Mesh overview (a) and details (b,c). The figures refers to the fine grid of 300 k elements.
(a) Mesh overview; (b) Mesh details over the channel entrance; (c) Mesh enlargement at the cowl lip.

The system dynamics are simulated in a steady-state framework by solving the com-
pressible RANS system of equations. Three increasingly sophisticated turbulence models
are used, with the expected dynamics in terms of flow fields and near-wall performance met-
rics compared: the one equation Spalart-Allmaras (SA) model by Spalart and Allmaras [45],
the two equations k-ω Shear Stress Transport (SST) model by Menter [46], and the four
equations Transition SST (TSST) model by Menter et al. [47]. The spatial components of the
Navier-Stokes equations are treated using the 2nd-order Monotonic Upstream-centered
Scheme for Conservation Laws (MUSCL) scheme by Van Leer [48], while gradients are
reconstructed using the Ansys Fluent standard implementation of the Least Squares Cell-
Based technique. A precomputed tolerance of 10−6 is set as a stopping point for the iterative
Navier-Stokes residuals dropping. Each analysis requires around 300 iterations to get the
convergence.

In terms of boundary conditions, the following are specified: pressure-far-field is en-
forced on the domain’s left side, where a free-stream Mach number of M∞ = u∞/c∞ equal
to 5 is imposed. Furthermore, the total pressure, p◦∞, and total temperature, T◦∞, are set to
820 kPa and 390 K, respectively. Here, u∞ is the free-stream velocity, whereas the undis-
turbed speed of sound is denoted by c∞. The inflow condition corresponds to a free-stream
Reynolds number ReL0 = ρ∞u∞L0/µ∞ = 2.3× 106. Concerning the inflowing turbulence
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intensity, some considerations are required. In particular, we observed that the system
dynamics is widely affected by the freestream flow character. During the previous LES
campaign [19], in particular, it has been observed that the big buzz phenomenon mostly dis-
appears when the undisturbed flow is laminar, while even small percentages of freestream
desymmetrization induce intense instabilities in the channel intake, promoting the buzz
buffeting. However, big buzz phenomena are not and must not be present in nominal
operating configurations such as those investigated in the current work, while little buzz
events, i.e., high-frequency fluctuations of the frontal shock system caused by SBLI, can
appear even in design conditions. Nonetheless, RANS models can not capture little buzz
events but require a turbulent intensity level to be specified. Thus, a turbulent intensity
of 1.5% is enforced to ensure compatibility between RANS results and experimental tests,
the value being the measured freestream turbulence in the wind tunnel. In terms of the
domain’s other sides, on the right, a pressure-inlet condition is imposed, while symmetry is
used to represent the upper bound. The whole numerical setup reproduces the previous
experimental campaign by Berto et al. [49]. Table 1 resumes the numerical arrangements
concerning the various models and provides the line styles to interpret the following of
the paper.

Table 1. Models parameters resume and line styles.

Case Line Style Marker Number of
Elements Turbulence Model

Coarse A O 75 k Spalart-Allmaras [45]
Coarse B O 75 k k-ω SST [46]
Coarse C O 75 k Transition SST [47]

Medium A M 150 k Spalart-Allmaras
Medium B M 150 k k-ω SST
Medium C M 150 k Transition SST

Fine A ◦ 300 k Spalart-Allmaras
Fine B ◦ 300 k k-ω SST
Fine C ◦ 300 k Transition SST

3. Model Validation and Baseline Analysis

The previous section’s numerical model is assessed using global and local flow quan-
tities. The study seeks to establish the best grid level and investigate the influence of the
turbulence model on system behaviour to select the most appropriate numerical arrange-
ment for the subsequent optimization.

First, we remark the flow field macroscopic configuration by comparing the experimen-
tal Schlieren density field and the numerical solution to the baseline setup. Figure 3 reports
the experimental instantaneous Schlieren density field (Figure 3a) as obtained during the
experimental campaign (see Berto et al. [49] for details) compared to the grey-shaded
density field obtained with present RANS computations (Figure 3b). Numerical results
refer to the highest resolution mesh and the TSST model. Regardless of the resolution or
turbulence model, the whole set of tested configurations accurately depicts the problem’s
macroscopic behaviour. Thus, we skip over characterizing flow concerning the various
numerical formats since the intake predicted dynamic exhibits similar behaviour regardless
of the numerics. We observe high compatibility between the experimental snapshot and
the computational results. In particular, the intake provides a system of somewhat intense
oblique frontal waves well resolved by the numerical model. These are caused by the two
ramps, with slopes of 10◦ and 22◦, which divert the flow into the channel and progressively
compress it.



Energies 2022, 15, 2811 7 of 27

(a)

(b)

Figure 3. Comparison between the experimental Schlieren density and the Reynolds-averaged
density field a hypersonic intake at Mach 5 and Reynolds 2.3 × 106. (a) Experimental Schlieren
density [49]; (b) Reynolds-averaged density field.

A shock wave with a hybrid oblique/normal character may also be noticed on the
cowl lip. The interplay of these three frontal waves results in a complicated structure that
includes a normal shock, a triple point, and a flow detachment at the cowl lip. Both the
numerical and experimental arrangements show such complex shock behaviour. Despite
this, the experimental setup reveals that the normal shock at the channel entry is somewhat
ahead of the projected location at the RANS level. This is due to the fact that the experimen-
tal apparatus embeds sidewalls, the boundary layer of which provides a non-negligible
blockage effect, increasing back-pressure and so maintaining the wave system closer to the
cowl lip. Despite this minor discrepancy, the RANS model accurately describes the global
field. A strong low-density bubble, in fact, is seen on the channel’s bottom surface. This is
enclosed between the right-running shock branch from the triple-point and its reflection
toward the channel bottom surface. In both the computational and experimental setups, an
expanding fan formed by the abrupt geometrical change between the second ramp and
the channel bottom surface is ascending the low-density bubble. Instead, the left-running
branch from the triple point consists of a slip line that keeps separate the recirculation
zone from the flow core. Again, the RANS solution gives considerable insight even in this
flow region compared to the experiments. Finally, it is not worthless to mention that the
complexity of the shock structures and discontinuities occurring in the system are distinct
and well-resolved by the computational grid, indicating that the selected resolution is
sufficient to prevent the waves smearing or other adverse effects due to numerical diffusion.
Therefore, based on the compatibility between the experimental flow field and that obtained
numerically, we have reasonable ground to believe calculation results are highly reliable.

Figure 4 illustrates the ramp SET-scaled drag force, D̂ = D/DSET , as a function of the
turbulence model and grid refinement. Here, D is the drag force per unit length calculated
by integrating the pressure and friction loads over the two ramps, while DSET is the drag
force forecast computed using SET formulae. The drag force calculation is confined to ramp
surfaces because this area is the only one that can be compared to quasi-two-dimensional
predictions based on the SET. According to the rescaling procedure, a D̂ value close to one



Energies 2022, 15, 2811 8 of 27

equals the SET prediction; conversely, the farther the value is from the unit, the larger is the
difference between the CFD and SET predictions.

1 2 3 4
mesh refinement level

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

D̂
=

D
/D

S
E
T

SET SA k − ω SST TSST

(a)

1 2 3 4
mesh refinement level

0.6

0.7
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0.9

1.0

1.1

1.2

1.3

1.4

D̂
=

D
/D

S
E
T

SET SA k − ω SST TSST

(b)

Figure 4. Comparison between the SET and the CFD-computed drag coefficient along with the first
and the second ramps as a function of the turbulence model and the mesh refinement level. (a) Drag
coefficient (ramp 1); (b) Drag coefficient (ramp 2).

Looking at Figure 4, the compatibility between the two methodologies is very high,
even if the CFD data is always somewhat overstated relative to the SET estimation. This
behaviour is evident due to SET’s failure to account for viscous terms instead of focusing
only on the wall-pressure contribution. However, since shape drag is prominent in the
arrangement under evaluation, the consistency between the SET and CFD estimations
is extraordinary. The two findings, in fact, differ by no more than 5% independently on
the grid level and turbulence model. This indicates that the numerical configurations are
resilient and compatible with the physics of the problem at the global level.

To additionally verify the numerical model, Figure 5 depicts the trend of the freestream
scaled wall pressure, pw/p∞, over the first (Figure 5a) and the second ramp (Figure 5b),
respectively. The results, in particular, reflect on the pressure data forecast as a function of
grid resolution and parametrically to the turbulence model. Lighter blue tones represent
the data acquired with the SA one equation model, whereas deeper blue lines represent the
solutions obtained with the k-ω SST two equations and the TSST four equations models. The
grey dashed line still denote the SET wall pressure prediction, whereas the black dot denotes
the mean pressure value acquired along the two ramps according to the experiments by
Berto et al. [49]. As can be seen, the CFD data are all confined to a relatively tight range
and are only moderately affected by the turbulence model used and the refinement level.
Furthermore, compliance with the SET data and experimental results assures that the
pressure field is appropriately captured by the CFD model, demonstrating the quality of
the current numerical model also via local quantities.

By gradually improving the analysis and being aware that the suggested numerical
models are compatible with the physics of the problem, we are now interested in determin-
ing whether the proposed computations grids can capture gradients of the fluid quantities
adequately. Thus, Figure 6 illustrates the trend of the y+w wall value, y+w = y/δν, i.e., the
inner-scaled distance of the first off-the-wall computational cell. In particular, Figure 6a
illustrates the trend relative to the ramp body and the channel’s lower surface, whereas
Figure 6b shows the upper wall’s interior surface trend as a function of the chord-scaled
streamwise coordinate, x/L0. As the reader can see, all of the chosen meshes provide
results close to the suggested threshold for wall-resolved RANS simulations (i.e., y+w ' 1),
indicating that there are sufficient points inside the boundary layer to capture temperature
and velocity gradients near the walls correctly. All grids and the turbulence model, in
particular, provide y+w values considerably below the suggested threshold, resulting in
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an average y+w ' 0.5. Even though such resolution is regarded well resolved concerning
wall-turbulence predictions in a RANS framework, we cannot claim a priori that the wall
dynamics of the optimization scenarios do not need much higher resolutions than the
baseline setup. Thus, since the optimized solutions may result in different wall conditions
than the baseline arrangement, such y+w level give a safety buffer.
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(b)

Figure 5. Non-dimensional surface pressure at the first and the second ramp surfaces as a
function of the grid refinement and the turbulence model. Gray dashed line denotes the SET
inviscid prediction while the black diamond denotes the mean-pressure signal experimentally
acquired by Berto et al. [49]. (a) Wall pressure (ramp 1); (b) Wall pressure (ramp 2).
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Figure 6. Scaled first off-the-wall cell distance trend as a function of the turbulence model and the
mesh refinement level. (a) y+w bottom surface (b) y+w top surface.

Having understood in quantitative terms that the grid can properly capture the velocity
and temperature gradients at the wall, Figure 7 reports the comparison of the results
obtained in terms of friction, c f = τw/q∞, and pressure cp = (pw − p∞)/q∞, coefficients as
a function of the grid level and the turbulence model. Here q∞ = 1/2ρ∞u2

∞ is the freestream
pressure load. In particular, Figure 7a,c show the trend of the friction coefficients, while
Figure 7b,d show the pressure coefficient along the bottom and the upper channel surfaces,
respectively.
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Figure 7. Friction and pressure coefficients trend along with the bottom ramps body and channel
surface as a function of the turbulence model and the mesh refinement. (a) Friction coefficient (bottom
surface); (b) Pressure coefficient (bottom surface); (c) Friction coefficient (top surface); (d) Pressure
coefficient (top surface).

Looking at Figure 7a, the findings show that the friction coefficient is reliant on both
the grid level and the turbulence model. Even though the friction coefficient values change
a bit from model to model and grid to grid, each numerical setup accurately represents the
system’s macroscopic behaviour. The flow on the first ramp, in fact, consistently exhibits a
flat friction trend caused by a mild transitional boundary layer. Again, all models indicate a
significant reduction in wall speed gradient at the ramp junction due to a tiny recirculation
bubble. Subsequently, the boundary layer becomes fully turbulent, as seen by the abrupt
rise in the friction coefficient at the second ramp. Thus, the sudden geometric transition
causes a second velocity wall-gradient discontinuity downstream of the second ramp. All
models predict a very consistent pattern with a comparable collapse, the following plateau,
and a recirculation zone even in this area. The extension of the latter is highly reliant on the
turbulence model and resolution, which is a well-known problem in RANS modelling.

Figure 7c shows the findings in terms of friction coefficient concerning the inner
top surface. We see that the flow exhibits an extreme separation in correspondence with
the cowl lip, owing mostly to the frontal shock wave, which has a nearly normal nature.
The separation causes an extensive recirculation bubble, which rebalances mostly in a
x/L0 = 0.1 space. Compared to the lower surfaces, the friction coefficient trend is signifi-
cantly more consistent model by model and grid by grid, supporting the accuracy of the
various numerical setups again.

Arguing about the pressure coefficient trend along the lower surfaces (Figure 7b)
and the inner side of the top surface of the duct (Figure 7d), the wall pressure is very
reliable, regardless of the resolution used or the turbulence model. The top internal surface,
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in particular, has a peak pressure coefficient ranging between 0.675 ÷ 0.7 x/L0 that is
accurately headed by all models, practically independently of the grid level. As a result, the
pressure coefficient collapses into a relatively narrow range for all the numerical settings,
unlike the friction coefficient, which has a more substantial dependence on the turbulence
model and the grid.

Gathering the strings of the validation process, the latter reveals that the numerical
results are nearly independent of the grid used and the turbulence model employed. As a
result, the Fine B model is employed for the following optimization. The model comprises
the highest resolved grid-level and the k-ω SST model. The decision is influenced by
the tradeoff of having an efficient numerical arrangement and a flow description almost
equivalent to all of the other examined models.

4. Optimisation Procedure

As stated in the introduction, the current work intends to provide an integrated
optimization environment suited for the automated design of inlet intakes under su-
per/hypersonic conditions after tuning a suitable numerical model. The stages of the
process are as follows. To begin, a baseline intake geometry must be established using ex-
perimental criteria or quasi-two-dimensional design techniques. The latter is rebuilt using
parametrical approaches, as described in Section 4.1. The baseline geometry is employed
as an input for the multi-objective optimization claiming optimal designs concerning a
priori defined goals. The definition of the objective functions and the optimization loop
is covered in Section 4.2. The geometries, automatically generated by the optimization
algorithm, are gradually recombined to the most promising parameters. The assessment
of the goal functions using CFD simulations guides the recombination job. As a result, at
the conclusion of the process, the algorithm generates a collection of geometrical solutions
capable of maximizing/minimizing the design objectives until a certain number of eval-
uations are completed. Many computational tools are gathered inside the optimization
loop through an automated method performed by scripting the individual packages. In
particular, the optimization code, written in Matlab, serves as the loop’s driver, creating
journal files for Salome and Ansys Fluent throughout loop iterations. A schematic of the
whole technique is reported in Figure 8.

Figure 8. Schematic of the optimization procedure.

4.1. Geometry Parametrisation and Baseline Reconstruction

The parametrization strategy menages the novel shapes by parametrically regulating
the geometry aspects (i.e., curves in 2D, surfaces in 3D). At first, the geometric components
of the most critical interest must be chosen. In the present study, the ramp portion is
selected as the goal of the optimal designing process. This area has the most significant
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impact on intake performance since the ramp shape determines the whole fluid dynamics
in the channel as well as the assessment of the frontal shock system. For the geometrical
reconstruction, Bézier splines are adopted. The splines’ parametrization is carried up from
the intake leading edge up to the intake channel’s entrance using the following equation:

x(t) =
n

∑
i=0

(
i
n

)
(1− t)n−itixi (1)

Here x(t) = {x(t), y(t)}T denotes the spline coordinates, {x}n
i=1 = {xi, yi}n

i=1 is the spline
control-points set, t ∈ [0:1] is the curve parameter and n is the spline order. The baseline
geometry reconstruction is accomplished out using an in-house developed Matlab program.
The algorithm, in particular, takes a baseline geometry and randomly associates a certain
number of Bézier splines in the ramp area. The curves are determined by applying a relaxed
functional metric logic which holds:

I =
1

x1 − x0

∫ x1

x0

[FR(x)−F ∗(x)]2dx (2)

Here F (x)R is a randomly selected spline while F (x)∗ denotes the baseline curve; x0
and x1, with x0 < x1, are the integration extrema. Equation (2) is used as a guideline to
determine the initial control point population, {x0,l}N

l=1, accounting for the distance (in
the sense of the function norm) between the randomly selected spline and the baseline
geometry. In theory, the technique might be used to find the spline control points, xopt,
that best matches the baseline curve by minimizing I . However, such an approach was
not pursued since it would lead to confine later optimization to seek solutions around the
starting condition. Thus, the optimal reconstructing curve is relaxed concerning randomly
generated disturbances. In this work, we employed fifth-order splines, setting n = 5.
Therefore, we use the N = nInd = 6 initial individuals. Depending on the number of
design goals, the latter are evolved for the nGen = 40 and nGen = 80 generations for
two- and the three-objectives problems, respectively. GA, in fact, suffering from slow
convergence to the Pareto front, require hundreds of fitness function evaluations to get
decent approximations of the optimum surfaces [26–28]. Thus, 240 and 480 trials are
tested, respectively, combining the initial N designs up to the convergence of the Pareto
front. Such evaluations proved sufficient to populate the Pareto front with satisfactory
distributed solutions.

4.2. Definition of the Optimisation Problem and Objective Functions Selection

Once the geometry is parametrized, the current technique aims to determine the
optimal geometrical solutions for critical design characteristics. Thus, a multi-objective
optimization problem is specified as follows:{

minimise fi(x) i = 1, . . . , l
subjected to gj(x) ≤ 0 j = 1, . . . , m

(3)

here { f }l
i=1 is the fitness functions set, {g}m

j=1 denotes the constraints and x = {x1, . . . , xn}T

is the decision variables describing the system geometry (i.e., the Bézier control points).
The solution of Equation (3) is the Pareto front, which collects the sample of non-dominated
designs. In particular, a x1 design is said dominating another x2 if and only if

∀i ∈ [1, l] fi(x1) ≤ fi(x2) (4a)

∃j ∈ [1, l] fi(x1) < fi(x2) (4b)

Such a mathematical formulation indicates that no other geometries dominate any Pareto
front designs, with the latter gathering the best geometrical compromises. As a result, the
Pareto front offers a wealth of information for engineers who practice optimization. The
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set gathers the best designing solutions in terms of goal functions and constraints, and it
provides the best compromise between the various geometries. Thus, within the Pareto
front, performance can only be increased at the price of a loss in another.

In the case of a hypersonic intake, the design demands the component to be as little
intrusive as feasible in terms of total vehicle drag. Furthermore, the inlet intake must
compress the flow, resulting in diffusion and slowing down the stream to the combustion
chamber. Finally, systems with oblique compression trains are often selected to avoid
energy losses caused by normal shock generation. These ideas are converted into the
following three objective functions that must be minimized:

f1 = Cd f2 =
p0

p1
f3 =

p◦0
p◦1

(5)

Here f1 is the drag coefficient, f2 is the inverse of the Static Pressure Ratio (SPR) while f3 is
the inverse of the Total Pressure Ratio (TPR). In Equation (5) p0 and p1 are the area-weighted
static pressures at the intake channel’s entry and exit, respectively, whereas p◦0 and p◦1 are
the area-weighted total pressures collected at the same places, with p◦ = p + 1/2ρu2. The
fitness functions are limited to avoid selecting unphysical designs or flow circumstances.
Thus, f2 is restricted to f2 < 1. All solutions that fall outside this range are flagged
with fi values equal to 1000. The technique does not explicitly constrain operational
research but rather penalizes less promising research routes, avoiding selecting unphysical
geometrical solutions.

Three distinct optimization campaigns are undertaken to examine the impact of
the three goals together and separately. The first includes f1 and f2 goals, which entail
searching for solutions with the least drag and the highest SPR. On the other hand, the
second campaign provides for the minimization of f1 and f3, intending to find solutions
that have the least friction while also the highest TPR. The final set of operational studies is
carried out by simultaneously reducing the three goals; thus, seeking solutions with the
least drag and the highest static and dynamic pressure ratios.

The multi-objective GA package offered by Matlab is used for optimization. The
decision variables are transmitted to a dynamic journal file developed in Python that pivots
the Salome meshing algorithm. The Matlab driver script automatically sends the mesh to
the Ansys Fluent CFD solver when the mesh is complete. As a result, a new geometrical trial
is produced together with a novel set of goals fi. Once the fitness functions are calculated,
the GA technique uses their values to generate a new set of geometrical control points,
resulting in a new trial design. This new shape is created by combining previously produced
geometries and strives to minimize fitnesses. The process results in the Pareto front by
iterating up to the maximum number of generations, nGen. The NSGA-II multi-objective
genetic algorithm is employed in this work. In particular, the method combines tournament
selection, distributed crossover, and Gaussian mutation, with shrink and scale factors set to
one. Thus, compared to other optimisation strategies (see, e.g., [31,50]) NSGA-II provides
reduced uncertainty in terms of the obtained optimal solutions [32]. The interested reader
is addressed to Yijie and Gongzhang [51], Konak et al. [52], Deb et al. [53] for a thorough
discussion of the algorithm.

5. Optimization Results

This section displays the results of the optimization approach. To enhance the clarity of
the text, the discussion is divided into two subsections. Section 5.1 discusses the bi-objective
approach findings, dividing the drag coefficient and the inverse of the SPR minimization
( f1/ f2) from the drag coefficient and the inverse of the TPR optimization loop ( f1/ f3).
Section 5.2 presents the findings of the tri-objective strategy obtained by reducing the
drag coefficient while boosting the static and dynamic pressure ratios at the same time
( f1/ f2/ f3).
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5.1. Bi-Objective Optimization Results

The solutions to the bi-objective optimization problems are shown in Figure 9. In
particular, Figure 9a reports the f1/ f2 optimal dataset while and Figure 9b shows the f1/ f3
goals solutions. The plots are made non-dimensional concerning the baseline f1, f2, f3
values so that any point in the plots in the interval [0 : 1]× [0 : 1] represents an improvement
compared to the baseline. Blue dots denote the non-optimal findings, while the red dots
represent the Pareto optimal collection. In both instances, 240 configurations are evaluated
and recombined by merging 6 initial individuals for a number of 40 generations.
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Figure 9. Baseline-scaled Pareto fronts concerning the two objective optimizations. (a) Non-
dimensional f1/ f2 Pareto front; (b) Non-dimensional f1/ f3 Pareto front.

5.1.1. f1/ f2 Optimization

Starting with Figure 9a, the Pareto front collects 17 optimal designs and exhibits the
typical hyperbolic trend, which is characteristic of a minimum/minimum optimization
problem. Nonetheless, the Pareto front is not very extensive, and the extremal instances are
different just for a few percentages. In any case, the improvement obtained compared to
the baseline case (denoted with a red cross) is significant, offering a reduction of more than
10% for f1 setup and of about 5% for f2. Details are reported in Table 2.

Concerning the f1 and f3 optimization, 7 optimal individuals are gathered in the Pareto
set (Figure 9). In this case, the optimal solutions collapse into a single minimal configuration
that offers a group of optimal options clustered around a minimum. This should be
examined concerning the meaning of the established goals: the drag coefficient and the
TPR. Because the TPR highlights the influence of mechanical losses due to turbulent flow
areas or regions where the boundary layer recirculates or detaches, the measure indicates
comparable performance characteristics to the drag coefficient. Thus, the two pieces of
information are not too different, the reason why the Pareto solutions collapse to a single
optimal configuration. However, compared to the previous setup, we observe optimizing
the drag coefficient together with the TPR produce improved solutions compared to the
baseline case, with a f1 reduction of over 10% and a f3 improvement of about 30%. Details
are still reported in Table 2.

Table 2. Improvement percentages for the bi-objective optimal designs.

Case Opt. Loop ( f1 − f1,0)/ f1,0 ( f2 − f2,0)/ f2,0 ( f3 − f3,0)/ f3,0

Opt. f1 ( f1, f2) −10.3% −3.87% -
Opt. f2 ( f1, f2) −6.51% −5.35% -
Opt. f1 ( f1, f3) −14.62% - −35.8%
Opt. f3 ( f1, f3) −13.68% - −36.6%
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Going through the physical reasons of the gains, we can have a look at the Mach and
scaled density fields as reported in Figure 10. The latter collects the two extremal instances
corresponding to the f1/ f2 optimization, i.e., the minimal drag design (Figure 10a,b) and
the maximum SPR shape (Figure 10c,d). At first glance, the two arrangements do not
seem to be much different. The ramps are compressed into a continuous surface that
progressively leads the flow from the leading edge to the channel entry. Both solutions
show the first ramp with a prominent bulge, causing the oblique wave to shift slope and
arrange itself to cross the cowl lip. This shock wave configuration performs very well
because it removes the system of the many interactions/reflections that defined the baseline
geometry as well as the normal shock wave at the duct entry, resulting in a more stable
boundary layer in conjunction with the cowl lip.

However, some substantial differences can be detected between the two optimal
designs. The case with minimum drag, in fact, offers an almost linear ramp system, with a
very slight curvature between the first and second ramp and a gradual flow compression.
This induces a nearly perfect incidence between the oblique wave coming from the leading
edge and the upper lip, minimizing the subsequent reflection and considerably reducing
the recirculation bubble inside the duct. On the other hand, the setup with the maximum
SPR favours the flow rotation between the first and second ramp. The latter shows a
decidedly more marked tightening trend with a consequent increase in static pressure
according to the intent prescribed by the objective. Therefore, it offers a higher SPR than the
previous arrangement but realistically a decidedly narrower envelope due to the difficulty
of accommodating flow conditions far from the design for which ramps with marked
rotation struggle properly.

(a) (b)

(c) (d)

Figure 10. Mach number and scaled density contours for optimized f1/ f2 solutions. (a) Mach number
contour Cd—optimum; (b) Density contour Cd—optimum; (c) Mach number contour SPR—optimum;
(d) Density contour SPR—optimum.

We increase the level of details by comparing the trend of the friction and pressure
coefficients for optimal and the baseline solutions, respectively. The results are reported in
Figure 11. In particular, Figure 11a,c report the trend of the friction coefficient along the
lower and upper surfaces, respectively, while Figure 11b,d report the trend of the pressure
coefficient along the same walls.

Figure 11a shows that the friction trend between the ramp body and the bottom
surface of the channel is not distinct from the two optimal cases. Thus, a decreasing trend
is detected along the first ramp, with a small discontinuity at the duct’s entry. Except for
the region associated with the second ramp, where it is significantly decreased, the friction
coefficient is similar to the reference case and readjusts to baseline values at the ramp and
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the channel exit. The recirculation bubble at the exhaust is somewhat more intense for the
optimum SPR scenario than in the minimal drag case.

The friction behaviour over the channel’s top surface is much different between the
two extremal configurations, as reported in Figure 11c. In particular, the baseline example
shows a stagnation zone characterized by a large bubble, while, in both best scenarios, such
circumstances are significantly mitigated. In particular, the minimal drag configuration
results in an almost disappearing recirculation bubble, condensing it into a small piece at
the top lip’s stagnation point. On the other hand, the scenario with maximal SPR allows for
a more intense partial detachment and recirculation to the cowl lip, even if it is much more
confined than the first attempt solution.
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Figure 11. Comparison between the baseline and the optimal f1/ f 2 friction and pressure coefficient
trends along the bottom and the top surfaces. (a) Friction coefficient (bottom surface); (b) Pressure
coefficient (bottom surface); (c) Friction coefficient (top surface); (d) Pressure coefficient (top surface).

The pressure coefficient’s trend leads to similar conclusions to those reached so far.
In Figure 11b, we see a comparison of the baseline pressure coefficient with the least drag
and the greatest SPR. When the drag coefficient is kept to a minimum, we maintain a
progressive rise in wall pressure up to the duct’s entry. Thus, the pressure level on the
ramps is shallow compared to the baseline solution, despite the device’s greater global
compression.

Finally, the baseline scenario is halfway between the two optimized cases in terms of
the pressure coefficient trend over the top surface (Figure 11d). Indeed, the pressure peak
is advanced in the minimal drag design and slightly delayed for the maximal SPR. This is
due to the location of the frontal shock wave’s interaction with the top lip.

5.1.2. f1/ f3 Optimization

We now discuss the outcomes of the bi-objective optimization using the fitness func-
tions f1 and f3. As previously stated concerning the Pareto front, the collection of optimum
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solutions collapses into a single minimum. However, the least drag optimal solution
(minimum f1) and the best TPR shape (minimum f3) are presented for completeness and
following the previous paragraph. The Mach and scaled density contours for these two
configurations are shown in Figure 12. In particular, Figure 12a,b report the optimal drag
solution while Figure 12c,d show the maximum TPR configuration. We instantly notice how
nearly alike the two geometries are. As observed while commenting the f1/ f2 optimization,
the optimized ramp body is collapsed into a single continuous and regular surface, with the
first ramp retaining the bulge and the second ramp exhibiting a slightly negative convexity.
In contrast to the SPR optimum, improving the TPR promotes compression regularity and
reduces the pressure jump between the ramp system and the duct entrance. Additionally,
this example shows that the oblique frontal wave impinges nearly exactly on the cowl lip,
thus minimizing normal shocks at the duct’s entry and recirculation/vein separation in
this region. Examining the fluid dynamics inside the channel more in-depth, we see that
the oblique wave reflection from the cowl lip impinges on the duct’s bottom surface and
produces a tiny recirculation bubble. Nevertheless, this is restricted to a small region and
the boundary layer may self-balance in a bit of space, indicating that the wave system is
genuinely optimal and that detachments and recirculations result in confined and marginal
occurrences relative to the system’s overall performance.

(a) (b)

(c) (d)

Figure 12. Mach number and scaled density contours for optimized f1/ f3 solutions. (a) Mach number
contour Cd—optimum; (b) Density contour Cd—optimum; (c) Mach number contour TPR—optimum;
(d) Density contour TPR—optimum.

As usual, proceeding incrementally, we comment on the fluid dynamics improvement
at the local level. Thus, Figure 13 shows the trend of the friction and the pressure coefficients
along with the ramps and the lower surface of the intake channel (Figure 13a,b) as well as
for the entire length of the upper internal surface (Figure 13c,d). The lines in shades of red
still describe the trend for the optimized cases, while the blue curve reports the reference
baseline values.

By examining the friction coefficient’s trend in Figure 13a, we see that the two optimal
shapes provide identical outcomes. The wall speed gradient, in particular, stays almost
consistent with the baseline scenario for the first segment of the first ramp. The bulge region
then experiences a steady rise in friction, resulting in the boundary layer re-stabilization in
a conventional turbulent configuration. Thus, the friction coefficient continues in a very
delicate and regular manner up to the duct’s entry, when a slight speed gradient leap is
noted due to the geometric discontinuity. In either scenario, the ramp’s trend is instantly
restored up to the recirculation region due to the interaction between the oblique wave
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coming from the cowl lip and the boundary layer. In general, the recirculation region
between the two ramps vanishes entirely, but friction stays much reduced over the whole
length of the lower surface, particularly in the second ramp area. This results in a more
gradual shift in the wall dynamics and, therefore, a more stable and efficient dynamic
intake functioning.

The pressure coefficient’s trend related to the bottom surface (Figure 13b) is fascinating.
We see that the dynamics have shifted dramatically compared to the baseline situation. The
initial ramp experiences an expected pressure rise owing to the bulge, with a pressure peak
on the wall about 0.4x/L0 as a result. The peak is rapidly evacuated due to the geometry of
the second ramp, which in this instance has a little negative curvature, resulting in the flow
gradually expansion. The trend is usually broken at the duct’s entry, where a net pressure
decrease is recorded, although far smaller than in previously optimized circumstances.
Pressure recovery is focused as necessary near the channel’s end, where the reflected shock
wave causes the static pressure rise.
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Figure 13. Comparison between the baseline and the optimal f1/ f3 friction and pressure coefficient
trends along the bottom and the top surfaces. (a) Friction coefficient (bottom surface); (b) Pressure
coefficient (bottom surface); (c) Friction coefficient (top surface); (d) Pressure coefficient (top surface).

Rather than that, let us watch what occurs at the top surface. According to the friction
coefficient (Figure 13c), any trace of flow separation is disappeared, and the flow may
stay stable and adherent to the wall due to the impinging wave’s ideal location on the
cowl lip. This is due to the wave potion being significantly advanced, as seen by the
pressure coefficient trend (Figure 13c), which demonstrates how the pressure peak is
greatly anticipated compared to the baseline setup, as well as of lower intensity.

Thus, on average, the geometric solutions produced by optimizing f1/ f3 objectives
exhibit features that are much superior to the baseline scenario and include elements of
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primary interest even when compared to the f1/ f2 goals. We will proceed with the study by
presenting the findings of the tri-objective optimization process, which prioritized the three
factors simultaneously to identify the ideal geometries for the device under consideration.

5.2. Tri-Objective Optimization Results

Because the drag coefficient, the static pressure ratio, and the dynamic pressure ratio
are all relevant characteristics of a hypersonic intake, the current section attempts to discuss
the optimization outcomes that simultaneously includes all these three parameters; thus,
providing a truly tri-objective optimal designing approach. It is important to note that,
although bi-objective analyses have proven that drag and TPR are two entirely identical
targets, nothing can ensure that a three-objective optimization would not provide con-
trasting designs by minimizing f1, f2 and f3 at the same time. Figure 14 shows the set of
solutions obtained by solving Equation (3) while pursuing the objectives f1, f2 and f3. For
the purpose of completeness, Figure 14 report the result. The results compete with nInd =
6 evolved individuals for a number of nGen = 80 generations. Along the first coordinate
the objective function f1 scaled by the baseline geometry fitness, f1,0, is reported as well as
the f2/ f2,0 and f3/ f3,0 values are provided along the second and third axis, respectively.
As a consequence, the three-dimensional box [0 : 1]× [0 : 1]× [0 : 1] includes the set of
Pareto-optimized solutions compared to the baseline setup.
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Figure 14. Baseline-scaled Pareto fronts concerning the tri-objective optimization.

We may quickly draw some conclusions based on these findings. Generally speaking,
a three-objective problem yields a three-dimensional Pareto surface as a solution. Present
computation, instead, clusters the optimal designs along a curve. Thus, results show that,
even in a three-objective framework, one goal is redundant, and the optimization problem
is genuinely bi-objective. In particular, as we noted in the bi-objected analyzes, we observe
that the drag coefficient and the TPR allow for equivalent performance concerning the
current device. Thus, minimizing the global drag or boosting the TPR yields comparable
designs. Even if this behaviour had been observed in the previous bi-objectives analyses,
the fact could not be asserted a priori for a tri-objective approach since non-linearity inherent
to the system might have triggered the decoupling between the Cd and the TPR parameters.
However, the exceptionally high correlation between the two variables is easily explained.
As previously stated, the drag coefficient and TPR are comparable pieces of information.
The first describes how efficient a device is concerning the aerodynamic friction; the second
is equal to one in the limit of inviscid and incompressible flow circumstances. Thus, optimal
design options minimize recirculating flow portions or boundary layer thickening zones
(drag information), probing the difference between an ideal and real viscous flow with
shock waves (a TPR goal).

Let us now discuss the factors that contributed to the performance improvement. For
conciseness, when it comes to fluid fields, we will look only at extremal instances with
the least drag and the optimal SPR configurations. Figure 15 reports the Mach and scaled
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density fields associated with the extremal Pareto front solutions. Specifically, Figure 15a–d
depict the stationary dynamics with the least drag and highest SPR, respectively. As the
reader can notice, both cases show a relatively uniform and smooth ramp system, with a
bulge in the initial ramp section and a subsequent negatively-convex second ramp. Such
finding is a crucial difference between the two- and tri-objective approaches since the
former optimization produced negative ramp curvature based only on the f1/ f3 design
objectives, while a positive convexity was reserved to the SPR boosting.

(a) (b)

(c) (d)

Figure 15. Mach number and scaled density contours for tri-objective optimized solutions. (a) Mach
number contour Cd—optimum; (b) Density contour Cd—optimum; (c) Mach number contour SPR—
optimum; (d) Density contour SPR—optimum.

Both cases deflect the principal oblique wave to the cowl lip. The lowest drag design,
in particular, reveals the primary oblique shock impingement location to exactly coincide
with the cowl lip, whereas the maximum SPR configuration tends to shift it somewhat
downstream in the channel, at the price of boundary layer stability. As already observed,
both designs favour oblique reflections inside the channel. Such an arrangement minimizes
losses due to entropy formation induced by normal waves and significantly reduces vein
separation and boundary layer recirculation produced by the interaction of strong waves
and solid walls. In comparison to the previous paragraph’s (especially concerning the
lowest Cd and highest TPR configuration), we can see that the geometry produced here is
less exasperated in terms of the negative curvature of the second ramp, even though the
position of the shock waves and the overall fluid dynamics are very similar.

We conclude by discussing the wall features associated with extremal instances.
Figure 16, in particular, depicts the trend of the friction and the pressure coefficients along
the dynamic intake’s bottom and upper surfaces, respectively. The blue line competes with
the baseline reference, whereas the curves in shades of red reflect the parameter trends
for the optimal configurations. We instantly see that, even on a quantitative level, curves
corresponding to the least drag and the highest TPR are precisely overlaid, verifying our
prior arguments.
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Figure 16. Comparison between the baseline and the optimal f1/ f2/ f3 friction and pressure co-
efficient trends along the bottom and the top surfaces. (a) Friction coefficient (bottom surface);
(b) Pressure coefficient (bottom surface); (c) Friction coefficient (top surface); (d) Pressure coefficient
(top surface).

The absolute eradication of the recirculation bubble between the ramps is still con-
firmed even for the tri-objective analysis, and a significant congruence between the different
designs in the friction coefficients over the bottom surface is detected (Figure 16a).

The pressure coefficient trend over the lower surface (Figure 16b), instead, reveals a
slightly higher pressure level for the SPR scenario compared to the other two configurations.
The event is confined only in the second ramp region while externally curves overlap for
all designs. We also notice that, when compared to the f1/ f3 optimal setup, the pressure
jump between the second ramp and the channel entrance is here more intense, indicating
that the SPR objective plays a role in the geometries’ shaping, supporting the pressure level
along with the ramp surface and keeping flat the pressure coefficient in this region.

By monitoring the trend of the friction coefficient over the top internal surface (Figure 16c),
we draw similar conclusions to the two-objective analyses. In particular, optimizing the
impingement location of the shock wave ensures that the flow stays fully attached to the
wall, with only the configuration at maximum SPR exhibiting a tiny recirculation at the
leading edge of the top lip. As it exits the channel, the trend of the optimized instances
follows that of the baseline case.

Finally, the pressure coefficient on the lower surface (Figure 16d) exhibits the typical
peak at an advanced position compared to the baseline scenario. The peak intensity is
much lower for the least-drag/maximum-TPR case than those with maximum SPR.
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5.3. Role of Cowl Lip Location

In earlier sections, we discussed the role of compression ramp design without looking
at the influence of the intake cowl lip. Indeed, we are well aware that the lip location
and shape heavily impact the aerodynamic efficiency of such devices. Thus, the present
section aims to parametrically explore the lip location’s role concerning the tri-objective
optimized designs obtained in the early campaign: therefore, looking at the role of the lip
location concerning the optimal Cd and the optimal SPR cases. In particular, we attempt
to shift the lip back with respect to the baseline geometry and we compare three different
configurations, namely moving the lip by 1%, 3% and 5% downstream the original location.
Percentages refer to the intake chord length.

Figure 17 reports the aerodynamics coefficients results, c f and cp, concerning the three
optimal-drag-derived geometries with backward lip. In particular, figures still provide
the baseline solution in blue while the optimal reference is reported with its orange line.
Lip-backwards designs are reported in shades of purple. As the reader can notice, minimal
discrepancies can be detected between the reference and the lip-shifted solution concerning
the lower surface aerodynamics (Figure 17a,b). In this respect, we remark that when the
cowl lip is retracted, the recirculation bubble naturally moves downstream since the flow
separation due to the oblique shock propagating from the cowl lip moves accordingly
with the lip. The location of the incident wave’s also has a negligible effect on pressure
recovery, which is somewhat advanced relative to the configuration with the lip in the
nominal position.
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Figure 17. Friction and pressure coefficient trends along the bottom and the top surfaces for the
baseline, the optimal Cd design and three Cd optimal-derived backward cowl lip configurations.
(a) Friction coefficient (bottom surface); (b) Pressure coefficient (bottom surface); (c) Friction coefficient
(top surface); (d) Pressure coefficient (top surface).
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On the other hand, the top lip location influence is less negligible on the upper surface.
The friction coefficient (Figure 18c) shows that retracting the lip stabilizes the boundary
layer. A monotonically decreasing c f trend, in fact, is detected, mostly regardless of the
amount of retraction. The lip shifting also allows the boundary layer to transit immediately
to a fully turbulent regime, while the nominal location exhibits a partial friction rise owing
to a laminar-to-turbulent boundary layer transition. The pressure coefficient’s behaviour
(Figure 18d) confirm such behaviour, exhibiting a constant monotonous trend where the
lip is set back. Thus, the arrangement avoids pressure gradient inversions resulting in
detachment phenomena, thereby increasing the intake’s operating envelope, particularly in
off-design conditions.
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Figure 18. Friction and pressure coefficient trends along the bottom and the top surfaces for the
baseline, the optimal SPR design and three SPR-optimal derived backward cowl lip configurations.
(a) Friction coefficient (bottom surface); (b) Pressure coefficient (bottom surface); (c) Friction coefficient
(top surface); (d) Pressure coefficient (top surface).

For completeness, lip retraction is also investigated for the SPR-optimal design case.
The trend of the aerodynamic coefficients along the surfaces of interest is reported in
Figure 18. Again, the baseline solution is drawn with a solid blue line, the SPR optimal
solution recovers its red tone while shades of purple present the SPR-optimal-derived
configurations with the top lip at a rearward position of 1%, 3%, and 5% of the intake
chord, respectively. Again, the lip location induces negligible effects in the lower wall
aerodynamic coefficients (Figure 17a,b), with findings that are entirely consistent with
those previously explained. Top wall performance is much more intriguing (Figure 17c,d).
Even in this scenario, in fact, the location with the greatest retraction, i.e., 5%, removes any
trace of boundary layer separation or transition, resulting in a perfectly monotone trend of
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the friction coefficient. Similarly, the pressure coefficient is exceedingly regular, avoiding
adverse flow pressure gradient components.

Finally, in terms of the analyzed intake geometry, retracting the cowl lip favourable
influences flow. In particular, for both the studied configurations, it is observed that the rear
position of the upper lip minimally influences the lower channel surface fluid dynamics
while it acts more markedly on the boundary layer relative to the upper wall. More rearward
positions show friction and pressure trends of a more markedly monotonous character with
consequent optimization of the intake envelope regime in off-design conditions. However,
a more systematic quantification is required to make solid conclusions.

6. Conclusions

The present work presents a systematic and straightforward numerical approach for
the automatic design of super/hypersonic inlet intakes in a multi-objective optimization
framework. The compressible RANS equations forecast system dynamics in various con-
figurations, the latter built up via genetic algorithm combinations. CFD databases enable
novel inlet shapes based on precomputed design objectives. The process embeds non-linear
flow characteristics and viscous phenomena as crucial aspects of engineering prototyping
from the beginning of the design process.

First, the numerical model is validated in grid resolution and turbulence model sensi-
tivity to establish the optimal numerical assessment. As a result, an extensive validation
campaign is reported for global and local quantity convergence, determining the minimal
mesh size and the appropriate turbulence model for system dynamics prediction. Accord-
ing to our analyses, 300 k elements coupled with k-ω SST provide a good balance between
computational time and accuracy.

The optimization process minimizes the drag coefficient while boosting the static and
total pressure ratios. The first parameter concerns the geometric interference of flying
vehicles with respect to the freestream flow, the second targets flow compression for the
inlet intake, the latter disfavors normal shock waves and viscous phenomena due to the
incremental contribution of oblique wave trains and adherent boundary layer. The three
parameters’ role is systematically investigated by first attempting a series of bi-objective
optimizations and then integrating them into a single designing process. The analyses
revealed that the drag coefficient and the total pressure ratio are completely equivalent
performance parameters so that the minimization of the first or the maximization of the
second lead to identical designing shapes.

Numerous comparisons and comments are made between the optimal shapes con-
figurations. The analyses, in particular, focused on the physical reasons underlying the
obtained improvements, attempting to understand the benefits introduced by the opti-
mized geometries compared to the baseline setup. Qualitative (i.e., observation of fluid
fields) and quantitative results (i.e., analysis of the friction and pressure coefficients along
the walls) are provided.

Finally, the effect of cowl lip placement is explored at a basic level by examining the
influence of a rearward position for optimum drag shape. The investigations revealed that
retracting the cowl might increase the boundary layer stability over the surfaces within the
intake channel.

Based on the limitation of RANS modelling, future research aims at performing wall-
resolved LES of the optimal intake designs here determined. LES modelling, in particular,
has been already successfully employed by the research group and the reader should refer
to De Vanna et al. [19] for a complete characterization of the methodology. In addition,
combining GA with high-fidelity computational fluid dynamics methods such as the wall-
modelled LES approach proposed by De Vanna et al. [54] will be a goal in the near future.
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