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Neurological deficits following stroke are traditionally described as syndromes related to damage of a specific area or vascular terri-

tory. Recent studies indicate that, at the population level, post-stroke neurological impairments cluster in three sets of correlated

deficits across different behavioural domains. To examine the reproducibility and specificity of this structure, we prospectively

studied first-time stroke patients (n¼ 237) using a bedside, clinically applicable, neuropsychological assessment and compared the

behavioural and anatomical results with those obtained from a different prospective cohort studied with an extensive neuropsycho-

logical battery. The behavioural assessment at 1-week post-stroke included the Oxford Cognitive Screen and the National

Institutes of Health Stroke Scale. A principal component analysis was used to reduce variables and describe behavioural variance

across patients. Lesions were manually segmented on structural scans. The relationship between anatomy and behaviour was ana-

lysed using multivariate regression models. Three principal components explained �50% of the behavioural variance across sub-

jects. PC1 loaded on language, calculation, praxis, right side neglect and memory deficits; PC2 loaded on left motor, visual and

spatial neglect deficits; PC3 loaded on right motor deficits. These components matched those obtained with a more extensive bat-

tery. The underlying lesion anatomy was also similar. Neurological deficits following stroke are correlated in a low-dimensional

structure of impairment, related neither to the damage of a specific area or vascular territory. Rather they reflect widespread net-

work impairment caused by focal lesions. These factors showed consistency across different populations, neurobehavioural bat-

teries and, most importantly, can be described using a combination of clinically applicable batteries (National Institutes of Health

Stroke Scale and Oxford Cognitive Screen). They represent robust behavioural biomarkers for future stroke population studies.
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Introduction
‘You learn neurology stroke by stroke’ C.M. Fisher (1961)

Neurologists traditionally classify behavioural syn-

dromes based on the damage of specific brain regions

(e.g. Broca aphasia) or the vascular distribution of stroke

[e.g. middle cerebral artery (MCA)]. When behavioural

deficits are correlated the explanation is that adjacent

cortical regions suffer from the injury, be it ischaemia, as

in right hemiplegia and Broca aphasia, or abnormal elec-

trical activity, as in the Jacksonian march.1–3 Dr Fisher

described more than 70 different syndromes caused by

focal ischaemia in his work.1

However, recent work offers a different perspective

showing that syndrome-based descriptions do not charac-

terize behavioural deficits at the population level. For in-

stance, the examination of samples of stroke patients with

the National Institutes of Health Stroke Scale (NIHSS)

identifies two factors: one for left and one for right hemi-

sphere lesions, which split respectively in a cognitive and

sensory-motor component, accounting for approximately

80% of behavioural variability across subjects.4,5

Since cognitive deficits are only cursorily measured by

the NIHSS, this simplified model may reflect a lack of

sensitivity for impairment in multiple cognitive domains.

However, a more recent analysis in a prospective sample

of stroke patients (n¼ 132), tested with an extensive

neuropsychological battery (44 tests covering multiple

domains: language, motor, vision, memory, attention) at

Washington University (WU) in St. Louis, discovered that

three deficit components account for the majority (65%)

of variability in performance.6 These factors remained at

three-twelve months post-stroke, tracked recovery, and

could represent biomarkers of impairment.7 The first fac-

tor loaded on language, including deficits of language ex-

pression and comprehension, and memory, both verbal

and spatial. The second and third factors loaded on the

contralateral motor and visual attention deficits, i.e. left

deficits for right lesions, and vice versa. Neither local

damage nor vascular distributions could account for the

observed correlation of deficits in different domains.

Instead, a strong relationship was observed with function-

al network damage measured with fMRI.8–11

The first aim of this study was to validate through a

short and clinically applicable assessment the previously

identified structure of impairment in a different popula-

tion: Veneto, Italy. We used the Oxford Cognitive

Screening (OCS), specially developed by the late psych-

ologist Glyn Humphreys and colleagues to study post-

stroke cognitive impairment.12,13 This test covers lan-

guage, memory, attention, calculation and praxis; it takes

10–15 min to be administered—against more than 2 h for

the WU battery—and with the NIHSS may provide a

clinically suitable neurobehavioural assessment applicable

in busy stroke units. The data were analysed to find ro-

bust components of impairment that were correlated

across patients. The results were then compared to those

obtained by analysing the independent dataset from WU

in the same manner. The second aim was to examine the

neuroanatomy of these factors using a multivariate ma-

chine learning approach. We related spatial patterns of

damage to behavioural scores to find a lesion model that

best accounted for the individual variability of scores. To

replicate the neuroanatomy, we ran the same approach

on the WU cohort.

Materials and methods

Study sample

The recruitment covered 22 months, from December 2017

to October 2019, and occurred at the Stroke Unit and

Clinica Neurologica of the Hospital of Padova and the

Stroke Unit of the Ospedale S. Antonio Padova.

The inclusion criteria, same as in the WU cohort,

included:
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(1) Age 18 or higher;

(2) First symptomatic stroke, ischaemic or haemorrhagic in

aetiology;

(3) Up to two lacunes, clinically silent, less than 15 mm in

size on CT scan;

(4) Time of enrolment: <2 weeks from stroke onset;

(5) Awake, alert, and capable of participating in research.

Exclusion criteria included: (i) Previous stroke based on

clinical imaging; (ii) Multifocal strokes; (iii) Inability to

maintain wakefulness in the course of testing; (iv) More

than two asymptomatic lesions on CT scan; (v) Presence

of central nervous system tumours; (vi) History of

dementia; (vii) Previous central nervous system surgeries;

(viii) Schizophrenia, bipolar disorder, major depression or

other severe psychiatric conditions; (ix) Other medical

conditions that preclude active participation in research

and may alter the interpretation of the behavioural/

imaging studies; and (x) Inability to provide consent; for

severe aphasic patients informed consent next-of-kin gave

informed consent.

Procedures

We screened a total of N¼ 1080 charts. Subjects

(n¼ 237) with a first symptomatic stroke, ischaemic or

haemorrhagic, were prospectively recruited, with n¼ 180

meeting post-enrolment inclusion criteria. Supplementary

Figure 1 describes the enrolment flowchart and shows

reasons for lack of inclusion. Subjects were evaluated

with a neurobehavioural battery at the acute phase

(5 6 3.3 days post-stroke). The behavioural battery

included the OCS12 and the NIHSS.14 We collected struc-

tural imaging (130 MRI scans and 50 CT scans) that

was routinely performed for each subject at 5 6 4 days

post-stroke. Supplementary Figure 2 illustrates the design

of the study.

Measures

Experienced neurologists examined all patients using the

NIHSS,14 which was administered on admission, on dis-

charge and at the time of testing (within a week). The

NIHSS includes 15 subtests: level of consciousness subt-

ests, gaze and visual field deficits, facial palsy, upper and

lower motor deficits (right and left side), limb ataxia,

sensory impairment, inattention, dysarthria and language

deficits. The NIHSS scores at the time of testing were

analysed. Also, we recorded: demographics data, stroke

risk factors, other neurological, psychological, or psychi-

atric conditions, familiarity for stroke, stroke subtype

(haemorrhagic or ischaemic), clinical presentation.

The OCS was administered the first week following

stroke onset. The OCS is a brief tool—10–15 min long—

developed to describe acute cognitive impairment post-

stroke.12 It is structured around five cognitive domains:

language, praxis, number processing, attention and mem-

ory, and consists of 10 individual subtests. In the

language domain, picture naming, picture pointing and

sentence reading subtests measure speech production,

auditory comprehension and reading, respectively. In the

memory domain, verbal and spatial memory are exam-

ined separately through the orientation, recall and recog-

nition, and episodic memory subtests. Number writing,

and calculation tasks evaluate number processing. An

imitating meaningless gestures test measures praxis.

Finally, the broken heart test includes several subtests

each measuring a different aspect of attention. The over-

all accuracy rate (across the two fields) is a measure of

sustained attention, which is necessary for a high overall

performance. The number of misses either on the left or

right visual field is a measure of egocentric neglect.

Finally, missing gaps on the left or right side of the indi-

vidual hearts is a measure of allocentric neglect. Visual

fields are checked separately.

MRI and CT lesions

MRI and/or CT scans were routinely performed on ad-

mission and follow up depending on clinical status.

Lesions were manually segmented on structural MRI and

CT scans using the ITK-snap imaging software system15

and individually checked by a neurology resident and a

board certified neurologist.16,17 CT and MRI segmented

lesions were mapped on the MNI152 atlas using the

Advanced Normalization Tools.18 The FSL software was

used to create the overlap of individual lesions on a

standard brain atlas, producing an overlay map of all

lesions.19 Finally, to precisely describe stroke topography,

lesions were mapped on the Harvard-Oxford cortical and

subcortical structural masks.20

Behavioural analysis

The statistical analysis included the OCS subtests scores

and the NIHSS individual scores. All subtests were nor-

malized to their maximum values, and sign-inverted, such

that the largest values corresponded to the most severe

level of deficit. Only patients who participated to all task

sets were included. After having z-scored the behavioural

scores, we used a principal component analysis (PCA) to

reduce the number of variables and describe the variabil-

ity of behavioural deficits. Since many variables were

expected to be correlated, an oblique rotation

(PROMAX) was used (for completeness non-rotated

PCAs and the corresponding anatomical maps were com-

puted). As the oblique rotation is dependent on the num-

ber of selected components, we decided to be consistent

with Corbetta et al.,6 and selected the first three Principal

Components (PCs).

Moreover, a correlation matrix was computed to

graphically visualize the strength of correlation between

tests. Many subtests were at ceiling, with most subjects

reaching maximum scores. Matlab R2018b was used for

all statistical analysis.
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Lesion-behaviour analysis

The analysis was run on our sample and a subset of

patients of the WU cohort (n¼ 67 had completed all tests

of the battery). To relate behavioural deficits to lesions,

we employed a ridge regression algorithm (RR).21 RR is

a multivariate method based on machine learning.

Multivariate methods control for hidden biases, such as

the vascular distribution of damage, that consistently dis-

tort lesion-deficit maps computed using voxel-wise uni-

variate methods.22,23 These biases can displace inferred

critical regions from their true locations in a manner opa-

que to replication. RR models allow us to predict behav-

ioural variance based on structural features including

volume and location (for additional detail of the proced-

ure see Supplementary methods).

Vascular territory control analysis

To test whether different vascular territories of the MCA

were strongly associated with different PC scores, we

clustered patients based on their lesion location. We com-

puted the percentage overlap of each lesion with a mask

of three vascular territories (deep branches, anterior-su-

perior branch and posterior-inferior branch).24 We clus-

tered these groups of lesions based on their location

within the vascular territories and selected the optimal

number of clusters through Silhouette and Davies Bouldin

indexes. We used mixed measures ANOVA, with PC

(PC1–PC3) as within-subjects factor and clusters as be-

tween-subjects factor, to test the interaction effect of PC

scores and anatomical clusters. We performed the same

analysis on the subset of patients of the Washington

University dataset (n¼ 67).

Data availability

All data reported in the present study are available from

the authors and all the software and algorithms used in

the present study are cited in the Material and methods.

Results

Participants

The study sample had a mean age of 69 years old. All

patients were Caucasian. Most patients were male (53%).

The majority had completed middle or high school in the

Italian educational system (mean level of education:

10 years). The most commonly identified stroke risk fac-

tors were hypertension (64% of patients) followed by

smoking, diabetes mellitus, atrial fibrillation and coronary

artery disease (Supplementary Table 1, Demographics and

Clinical Characteristics).

In terms of stroke-related variables, the study sample

presented a mean NIH score of 7.1 6 5.6 on admission,

while the NIH score at the time of testing was 3.2 6 2.9.

The NIH score used for the analysis was the one col-

lected at the time of neuropsychological testing. Motor

impairment was the most common deficit (90% of

patients), followed by aphasia (34%), and neglect (20%).

The aetiology of most strokes (89%) was ischaemic while

11% were haemorrhagic. Slightly less than half of the is-

chaemic patients underwent acute stroke treatment (42%)

(Supplementary Table 2. Acute reperfusion therapy

details). Finally, 44% of patients presented left hemi-

sphere damage, 40% right hemisphere damage, 7.5%

infratentorial lesions and 9% had clinical deficits without

lesions on neuroimaging scans (Supplementary Table 3).

Anatomy

To generate a precise description of stroke topography,

we implemented a voxel-wise analysis of lesions. Figure 1

shows an overlay map of all segmented lesions normal-

ized to a standardized brain atlas.25 The segmented

lesions included: 79 subjects with left hemisphere lesions,

71 subjects with right hemisphere lesions and 14 subjects

with cerebellum or brainstem lesions. Sixteen subjects

presented negative MRI/CT scans for acute events. Stroke

topography was predominantly subcortical and

Figure 1 Lesion topography. Overlay of damage in atlas space (n¼ 164). The colour bar represents the percentage of lesions affecting

each voxel (anatomical view).
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concentrated in the basal ganglia, central white matter

and thalamus. Cortical lesions predominantly occurred in

the MCA territory. Specifically, 10% of lesions exclusive-

ly affected the cerebral cortex, 22% damaged subcortical

structures, while 65% were cortico-subcortical lesions

(Supplementary Tables 3 and 4). The structural damage

in our study was similar to the topography of recent

studies on prospective clinical samples.6,26,27

Behavioural PCA

A PCA was run on the OCS and NIHSS subtest scores

to reduce the number of variables and identify hidden

factors that capture behavioural variability. Most scores

showed a long tail distribution with most patients having

a peak near zero with a long positive tail consistent with

varying degree of deficit. While the identification of

many components would be consistent with the existence

of many distinct behavioural syndromes, the discovery of

a small number of components is consistent with corre-

lated deficits across functional domains. The PCA was

run on 158 subjects with a complete dataset including all

NIHSS and OCS scores (88% of the enrolled patients; 22

patients were not able to complete the assessment due to

fatigue or underlying comorbities).

Three PCs accounted for nearly 50% of the behaviour-

al variance (Fig. 2). PC1 accounted for 23.5% of the

variance, PC2 for 14% of the variance and PC3 for

7.5% of the variance. This structure is represented in Fig.

2A where the size of each circle is proportional to the

Figure 2 Behaviour factor analysis. (A) The percentage of variance explained by each Principal Component is proportional to the diameter of

each circle. The position of each circle on the brain atlas represents the Principal Component’s lateralization. Finally, circles are labelled with the

main subtests underlying each PC, the font size reflects the relative role of each loading. (B) Each table graphically shows single loadings of OCS and

NIHSS subtests (on the right) for each PC. Black bars represent positive correlation, while grey bars represent negative correlation.
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percentage of variance explained by each factor across

subjects. Figure 2B shows the loadings for each score (see

Supplementary Fig. 3 for non-rotated PCA loadings

results). Positive loadings indicate lower performance,

while negative loadings indicate higher performance. PC1

loaded on language, memory, calculation, apraxia and

allocentric neglect. PC2 loaded on left side motor, visual,

left egocentric neglect and overall performance deficits.

PC3 loaded on right side motor deficits.

The correlation among behavioural scores was also

examined through a correlation matrix (Fig. 3). A ‘block’

structure along the diagonal indicates correlation among

different tests. Consistently with PC1, there was a robust

correlation between language, calculation, praxis, verbal

and spatial memory tasks, and right allocentric neglect.

Left motor deficits correlated with left visual field and left

egocentric and allocentric neglect (PC2), while right motor

deficits formed a separate cluster (PC3). Interestingly, some

tests show positive correlation across two components. For

instance, the OCS Heart overall accuracy, a test of general

performance, and the OCS orientation were common to

PC1 and PC2; dysarthria and face palsy, which were not

computed separately for left versus right body/field, loaded

on both left and right hemisphere-specific components.

In summary, this analysis identified three main sets of

correlated behavioural deficits: one cognitive related to

language, calculation, praxis, and memory deficits, and

two contra-lesional motor-attention components. General

performance influenced both the cognitive and left motor-

attention component.

RR behaviour to anatomy

To study the relationship between structural damage and be-

havioural impairment, we applied a RR model. The analysis

was conducted on subjects (n¼ 148) that included both be-

havioural and neuroimaging data. Figure 4A shows the scatter

plots of the empirically measured behavioural scores versus

the estimated behavioural scores from the RR model based

on the lesion anatomy. Essentially, the model predicts the best

fitting behavioural scores from the distribution of lesioned

voxels across patients. Each dot represents a subject, and the

size of each dot is scaled by the lesion volume. The model

explained different levels of variance for each factor score:

PC1: 38%; PC2: 44%; and, PC3: 9%, respectively.

Figure 5 shows the maps of the most predictive anatomical

structures (weights of the RR) associated with each PC scores.

The anatomical description goes from the dorsal to the ventral

slices, and from the anterior to the posterior direction. The or-

ange/yellow colour scale indicates damaged voxels associated

with low performance, whereas the blue/teal colour scale indi-

cates damaged voxels associated with high performance. Here,

Figure 3 Correlation matrix of behavioural subtests. The colour bar represents Pearson r-values. Each square corresponds to the

variables identified through the PCA analysis (i.e. PC1, PC2, PC3).
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we focus on anatomical regions associated with low perform-

ance. Low performance on language, memory, calculation and

praxis (PC1) correlated with damage of the left superior and

middle frontal gyrus, left inferior parietal and underlying white

matter, left occipital dorsal, left inferior frontal gyrus/insula

and underlying white matter, left putamen and caudate, left

thalamus, and left anterior middle and inferior temporal gyrus.

Left motor and attention deficits (PC2) correlated with dam-

age of the right superior, middle, and precentral gyrus, right

superior and inferior parietal regions, right corona radiata and

internal capsule, right caudate, putamen, and thalamus, and

right superior and middle temporal gyrus, right orbitofrontal

gyrus. Finally, low scores on right motor and attention deficits

(PC3) localized to damage of the left caudate, putamen, and

internal capsule, left thalamus, and left lateral occipital cortex.

Validation: WU cohort

To test the external validity of our predictions, we

applied the same analysis to the behavioural scores of the

WU cohort.6 The St. Louis WU cohort includes n¼ 132

first-time stroke patients prospectively enrolled with the

same criteria as this study; the behavioural battery takes

2.5 h, and includes 44 scores in 7 domains (motor, vis-

ual, language, spatial attention, general performance, ver-

bal and spatial memory). A PCA on the behavioural

scores also yielded three components (PC1–3) that

explained 49% of the variance, which loaded on similar

functional domains. PC1 (22.5%) loaded on language

and verbal/spatial memory; PC2 (15%) on left motor, left

visuospatial neglect, general performance and spatial

memory; PC3 (11.4%) on right motor and right spatial

neglect6 (Supplementary Fig. 4). A RR model explained

different levels of variance for each factor (PC1: 13%,

PC2: 56% and PC3: 35%, respectively) (Fig. 4B).

The weights of the RR identified regions of the brain

whose damage mostly contributed to the different PC

scores. Low performance on language, memory, calcula-

tion and praxis (PC1) correlated with damage of several

left hemisphere regions: left precentral white matter, left

inferior parietal and underlying white matter, left insula

and inferior frontal gyrus, left caudate, putamen, and

thalamus, left anterior and middle temporal gyrus. This

map contained also right hemisphere regions including

Figure 4 Ridge regression scatter plots. Factor scores for right (in green) and left (in red) lesions (in black for midline lesions). The

diameter of each coloured circle is proportional to the lesions volume. Each lesion is associated to three Principal Component values: on the

X-axis empirically measured behavioural scores, on the Y-axis the estimated behavioural scores of our model. If the lesion location is a good

predictor then the relationship between empirical and model scores are linearly related. (A) are calculated on the University of Padua data,

while (B) are calculated on the Washington University data.
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right precentral white matter, right caudate, putamen, and

thalamus, right insula, right anterior temporal gyrus. Left

motor and attention deficits (PC2) localized to the right pre-

central cortex and underlying corona radiata, right caudate,

putamen and internal capsule. A significant region was also

in the left middle temporal gyrus. Finally, low scores on

right motor and attention deficits (PC3) scores correlated

with damage to the left precentral gyrus and underlying cor-

ona radiata, left internal capsule, putamen, and thalamus,

left anterior inferior frontal gyrus (Fig. 6).

For each PC, we evaluated the spatial correlation between

the maps obtained with our data and the maps obtained

with the WU dataset, after having resampled both maps in

the same space of the WU data. For PC1 we obtained a cor-

relation r¼ 0.66 (P < 10�5); for PC2 r¼ 0.35 (P < 10�5);

for PC3 r¼ 0.11 (P < 10�5). In general, the topography of

damage related to the main axes of behavioural impairment

was consistent between both samples of stroke patients.

Control for vascular distribution

We tested whether lesions in different vascular territories

[e.g. (deep vs. superficial branches of MCA] cause different

profiles of deficits based on the PC behavioural scores. We

clustered patients based on their lesion location. Cluster 1

included patients with lesions in deep, antero-superior and

postero-inferior MCA branches. Cluster 2 included patients

with lesions in the deep branches of MCA. Cluster 3

included patients with lesions in the postero-inferior branch

of MCA and cluster 4 lesions in the antero-superior branch

of MCA (Supplementary Fig. 5A). The mixed measures

ANOVA, with PCs as within-subjects factor and clusters as

between-subjects factor found a significant global interaction

effect (F¼ 2.48, P¼ 0.024), but no significant main effects.

The interaction effect was driven by different patterns of PC

scores between cluster 2 and 3 (F¼ 5.008, P¼ 0.04,

Bonferroni corrected for 6 multiple comparisons). This inter-

action shows that PC1 scores are stronger in cluster 3 given

the cortical/perisylvian distribution, while PC3 scores are

higher in cluster 2 given the subcortical location

(Supplementary Fig. 5B). The same analysis on the subset of

patients of the Washington University dataset (n¼ 67) found

no interaction effect between PC scores and vascular clusters

(Supplementary Fig. 5C).

Discussion
This study investigated whether previously described6

groups of correlated deficits describing post-stroke

Figure 5 Ridge regression maps from the University of Padova sample. Warm colours represent positive correlation between

anatomical voxels and high PC values (i.e. high level of impairment in the corresponding domains). Cold colours represent negative

correlation between anatomical voxels and high PC values. Anatomical overlay maps are shown for PC1, PC2 and PC3 scores, respectively

[after Gaussian smoothing (variance ¼ 1) and scaling within �1; þ 1½ �; weights lower than 0.05 in absolute values are not shown].
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behavioural variability could be validated using a differ-

ent population and a different neuropsychological battery.

Furthermore, we studied whether a simplified neurologic-

al and psychological assessment could be used as a sensi-

tive measure of these axes of impairment. Finally, the

topography of stroke lesions was analysed to map the re-

lationship between structural damage and behavioural

biomarkers.

The behaviour factor analysis showed a strong correl-

ation between deficits across domains. Three factors

explained �50% of the variance with Factor 1 loading

on functions that are traditionally associated with the left

hemisphere: language, verbal memory, calculation and

praxis. However, on Factor 1, we also found visual epi-

sodic memory and general performance, functions that

are typically associated with the right hemisphere.

In the language domain, subtests evaluated the level of

speech production, auditory comprehension, reading

capacities and general performance. All language tasks

loaded under PC1 showing correlation that accounted for

ffi24% of the whole variability of scores across subjects

with no clear separation in the traditional aphasia syn-

dromes, e.g. (Broca, Wernicke). This correlation among

language deficits/syndromes is comparable to the St.

Louis WU cohort: their PC1 accounted for 22.5% of

variance.6 Interestingly, the Padova PC1 also includes

tasks for number processing abilities (Number Writing

and Calculation). Number processing is traditionally asso-

ciated with lesions of the parietal lobe, especially the left

parietal (even though an association with right parietal

cortex was recently described by Semenza et al).28 PC1

also loaded on praxis, a left fronto-parietal function.29

Finally, PC1 also loaded on verbal and visual memory,

similarly to what we find in the St. Louis battery.

Interestingly, the Padova PC1 also includes correlation

with right visual neglect and general performance.

Overall, then, both Padova and St. Louis PC1 capture

correlated deficits in many traditional left hemisphere

functions (language, calculation, praxis, verbal memory),

but also right hemisphere functions (general performance

and visual memory).

PC2 and PC3 capture in both batteries, respectively,

left and right motor deficits. The ranking in variance

explained is also similar, first left (PC2) then right (PC3)

motor deficits. Interestingly, in the motor domain, we do

not see the traditional vascular syndromes (e.g. middle

vs. anterior cerebral vs. subcortical), but correlated defi-

cits of both upper and lower extremity motor function.

This is consistent with prior PCA studies on the

NIHSS4,5 and Corbetta et al.6 While traditional

Figure 6 Ridge regression maps from the Washington University sample. Warm colours represent positive correlation between

anatomical voxels and high PC values (i.e. high level of impairment in the corresponding domains). Cold colours represent negative

correlation between anatomical voxels and high PC values. Anatomical overlay maps are shown for PC1, PC2 and PC3 scores, respectively

[after Gaussian smoothing (variance ¼ 1) and scaling within �1; þ 1½ �; weights lower than 0.05 in absolute values are not shown].
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neuropsychological and neurophysiological investigations

differentiate between sensory versus memory driven

movements, and reaching versus grasping,30–32 more re-

cent studies emphasize the correlation among different

kinds of ecological movements, and the low dimensional-

ity of movements in terms of kinematic analysis, EMG

activation, and even responses in motor cortex. A reach-

ing movement for instance will require coordinated move-

ments of shoulder, arm, elbow, wrist and fingers that

occur together in patterns of neural activation (syner-

gies).33–36

The OCS does a good job in separating deficits of at-

tention. General performance captured by the overall de-

tection score on the Heart task loads on both PC1 and

PC2. PC2 also captures left visual neglect, both egocen-

tric, i.e. cantered on the body midline, and allocentric,

i.e. cantered on the midline of objects, consistently with

the syndrome of hemi-spatial neglect.37 Interestingly, right

allocentric neglect loads on PC1 consistent with the ob-

servation that this form of neglect is better conceptualized

as a left hemisphere object agnosia.37,38 Both Padova

PC2 and PC3 are highly similar in structure to St. Louis,

despite differences in the neuropsychological tests used.

Overall, then our study essentially replicates Corbetta

et al. demonstrating that at the population level this low-

dimensional structure of behavioural impairment is specif-

ic to stroke irrespective of population, time of testing

(5 days Padova, 2 weeks, 3–12 months St. Louis) and

other non-specific factors (i.e. variability in performance,

low motivation, anxiety or depression) potentially present

at the acute phase.

While the St. Louis battery takes between 1 and 1=2
and 2 h being structured in 44 different scores covering

multiple domains: motor, language, memory, attention,6

the neurobehavioural battery in this study was shorter to

administer. The OCS, a validated tool for cognitive as-

sessment in stroke,12 can be readily administered in ap-

proximately 10 min. It has shown high levels of

inclusivity, reliability, convergent and divergent validity

between subtests and other cognitive tests, such as

MOCA, BDAE, Wechsler.12 It has been validated in sev-

eral countries12,39–44 stratified for age, gender and educa-

tion level. Recent studies have demonstrated high levels

of sensitivity in detecting stroke-specific cognitive impair-

ments even in mild stroke.45 The NIH stroke scale was

designed to be standardized, repeatable, and usable in

large multi-centre clinical trials.46 Clinical researchers

have widely accepted this scale due to high levels of in-

ter-examiner and test-retest score consistency.47 In add-

ition, it has been repeatedly validated as an excellent

predictor for patient outcome.14 While previous studies

on the factor structure of the sole NIH stroke scale4,5

have identified two factors, one for each hemisphere, this

study combining the NIHSS and OCS replicates the 3-

factor structure identified in Corbetta et al.6 This implies

that to capture cognitive impairment the NIHSS should

be integrated with a more sensitive cognitive screen.

Importantly, we found that the combination of NIHSS

and OCS had an excellent level of compliance. We were

able to administer all subtests at 5 days to 88% of

enrolled patients, against 51% of enrolled patients at

2 weeks on the St. Louis battery. It remains to be seen if

the NIHSS/OCS battery will be sensitive to recovery simi-

larly to the St. Louis battery.7

It should be underscored, however, that in both data-

sets a significant amount of behavioural variance (�50%)

was not described by our data reduction approach and

the effect size of PC3 was in general quite small. Where

does the rest of the behavioural variance in stroke go?

One possibility would be to add more patients hoping

that as more lesions sample-specific locations in the

brain, more specific patterns of behaviour will emerge.

This is possible, even though we currently feel this is un-

likely. In Padova, we carried out a preliminary analysis

with n¼ 100 individuals (as compared to n¼ 180 in the

final analysis), and we obtained the same three factors

explaining about the same amount of variance. In St.

Louis, we more than doubled the subjects by running

PCA on domain-specific components obtained on the

maximum number of patients, and the variance

accounted increased only by 15%.

So how can we improve our post-stroke behavioural

description? It is possible that the percentage will increase

as some other important cognitive domains are included

(i.e. emotion, decision making, social cognition, theory of

mind). In particular, the identified axes of behavioural

impairment are similar to the main behavioural axes

described in healthy subjects when considering the brain’s

functional lateralization through fMRI meta-analytic data.

Karolis et al. showed that four axes (i.e. symbolic com-

munication, perception/action, emotion and decision-mak-

ing) could summarize the entire architecture of the

brain’s lateralization of function.48 Karolis results could

provide a physiological counterpart to the identified post-

stroke behavioural biomarkers, but it suggests that at

least two additional cognitive domains (emotion and deci-

sion-making) shall be added to our short battery to pro-

vide a comprehensive behavioural profile of stroke

patients.

When considering structural damage, our study demon-

strated stroke topography was predominantly subcortical,

with a paucity of cortical lesions. Lesions were extremely

heterogeneous in volume, including both lacunar and

hemispheric strokes. All vascular territories were involved,

with the MCA predominantly affected in accordance with

well-established stroke literature.20,49 Cortical areas were

exclusively affected in only 10% of patients, in agreement

with data from other prospective clinical sample studies

on acute stroke patients.6,26,27 A significant portion of

the sample (42%) underwent acute reperfusion therapy.

Demographic factors and differences in clinical character-

istics did not likely bias topography, especially as strong

factors associated with subcortical damage (such as

hypertension, diabetes type II and hemorrhagic strokes)
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were actually slightly less represented in our sample in

comparison with other consecutive sample studies.50

Once again, these results emphasize how stroke (both in

topography and symptoms) should be better conceptual-

ized as a subcortical disease with secondary impact on

white matter pathways and cortico-cortical and cortico-

subcortical functional interactions.51

Finally, we investigated the relationship between behav-

ioural biomarkers and stroke topography through a

multivariate machine learning method. While previous

studies have performed factor analysis to identify neural

structures of pre-conceived and distinct functional

domains (i.e. language, motor, memory, attention),6,52 the

PC scores of our subjects derive from statistical correl-

ation alone and bypass the need of, often overlapping,

behavioural classifications of deficits to map biomarkers.

Most importantly, this completely data-driven approach

provides topographical correlates regarding post-stroke

multi-domain impairment. High PC1 (language, memory,

calculation, praxis) scores mainly correlated with damage

of left cortico-subcortical regions; high PC2 scores (left

motor and visual attention) with damage of right cortico-

subcortical regions; high PC3 scores (right motor) with

damage of left subcortical regions. The resulting maps

are consistent with those obtained by running the same

analysis on the St. Louis data set.6 These results show

that behavioural impairment following a stroke can be

reliably related to lesion location and raise several inter-

esting considerations.

Firstly, our anatomical correlates do not correspond to

precise vascular territories. In fact, we tested if different

vascular territories of the MCA were associated with dif-

ferent PC scores and found no clear association in either

dataset (Supplementary Fig. 5).

Secondly, our structural models were able to explain

only low-medium levels of variance for our components

(PC1¼ 38%, PC2¼ 44% and PC3¼ 9%, respectively).

These results agree with recent studies that show both le-

sion location and functional network impairment account

for behavioural variance.53 Moreover, while sensorimotor

deficits are more precisely predicted by structural varia-

bles, cognitive deficits depend more on multi-network

functional connectivity alterations.8,54 As our components

derive from statistical correlation alone, we believe mod-

els that include pathophysiological information (such as

white matter disconnection and f-MRI analysis), could

provide better results in predicting our behavioural

biomarkers.53,55,56

In conclusion, this study demonstrated a low-dimen-

sional structure of neurological deficits following stroke

using a combination of clinically applicable batteries.

Neurological deficits post-focal lesions are more accurate-

ly described by correlated deficit components rather than

the collection of individual syndromes as in traditional

neurological teaching. We identified a few factors that

showed consistency across different populations and

different neurobehavioural batteries. The associated lesion

topography of the identified components was also robust.

The identified biomarkers are therefore sensitive meas-

ures of behavioural impairment when investigating the

epidemiology, genetics, or pathophysiology of stroke.

They should also be employed to assess the efficacy at

the population level of novel acute or chronic

interventions.

Supplementary material
Supplementary material is available at Brain

Communications online.
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