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Abstract—Age of Information (AoI) is a metric often used to
represent the freshness of the information exchanged between
a sensing source and a receiver. We consider a system where
these two nodes are connected through an error-prone time-
slotted channel, and a relay node is also present to assist the
transmission. We consider both the sensor and the relay as
intermittently and independently active nodes, whose activity
rate may be adjusted, resulting in different levels of freshness
and corresponding energy costs. To this end, the activity pattern
can either follow a Bernoulli random process or a periodic duty
cycle with adjustable duration. After computing the expected AoI
and the complete Peak Age of Information (PAoI) distribution
for both cases, we consider a fully distributed game theoretic
duty cycle optimization, in which the two nodes independently
tune their own activity rate, finding a balance between freshness
and cost. The equilibrium of the resulting game is found to be
both efficient from the perspective of the resulting performance
and computationally lightweight for a distributed robust control
implementation.

Index Terms—Age of Information; Data acquisition; Modeling;
Robust communications; Relay.

I. INTRODUCTION

Over the past decade, the Internet of Things (IoT) has
begun to slowly integrate with many aspects of everyday life,
providing novel services and applications that give citizens,
companies, and public administrations an up-to-date awareness
of the environment in cities, factories, and homes [2]. The
main requirement for these applications is not throughput, or
even latency for individual transmissions, but rather freshness:
recent data from the sensors should be available to the moni-
toring application. Age of Information (AoI) is a performance
metric that aims to evaluate the freshness of the data updates
coming from one or more remote sensing sources [3].

Compared to the conventional memoryless metrics such as
latency/delay, AoI is better able to characterize not only the
Quality of Service (QoS) of the communication system, but
also the robustness of the associated network control, and can
be connected to the state estimation error as related to the
system outage [4], [5]. AoI and related metrics have seen
significant interest from the research community over the past
decade, and analytical and experimental studies exist for many
schemes and communication technologies [6].

In order to provide reliable performance, several works in
the literature have considered coding and Automatic Repeat
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Request (ARQ) strategies to minimize the AoI. The use of
repetition in time [7] or over orthogonal communication chan-
nels [8] can provide significant reductions of the average and
worst-case AoI, but comes at the cost of a higher load on the
communication channel. Adding redundancy is also opposite
to what done by AoI minimization strategies that involve
dropping outdated packets, instead [9]. For what concerns the
performance improvement that ARQ can provide in terms of
AoI [10], [11], it is found to be often better than with error
correction coding, as individual updates can be retransmitted
only when needed, but requires a feedback channel, which is
often costly or even unavailable for low-power IoT nodes.

Energy-limited IoT nodes often have other constraints to
consider, such as limited energy or low-bitrate communication
channels: in this case, strategies to minimize AoI are often
more complex [12] to take the additional requirements into
account. Redundant communication schemes increase energy
consumption, as the additional transmitted data requires power,
so that the consideration of transmission costs is crucial. In
general, any redundant solution that can relax either communi-
cation or other constraints can be beneficial to the information
freshness: as an example, it is possible to consider redundancy
in terms of energy [13], using a backup energy source for
energy-harvesting nodes.

In this work, we consider a scenario, in which a sensor is
aided by a relay node [14]–[16]: transmissions from the sensor
may fail, leading to a higher AoI, but the relay can recover
from these failures by retransmitting the message, ensuring
that it is delivered to the receiver. We analyze the average
AoI in this scenario, providing a closed-form solution, and
define a game theoretic optimization, in which transmissions
from the node and relay have a cost: the Nash equilibrium
(NE) of the game between the sensor and relay represents an
easily computable, Pareto efficient solution to the problem of
optimizing their activity rate [17].

The contributions of the paper are the following:
• We fully characterize the AoI and Peak Age of Informa-

tion (PAoI) as a function of the relay and sensor’s duty
cycle limitations, considering both a random activations
scenario in which transmissions follow a Bernoulli pro-
cess and a periodic activation scenario;

• We provide a general game theoretic optimization model,
which can be run distributedly by the two nodes without
any explicit coordination;

• We define computationally efficient strategies to approx-
imately reach the optimum operation point, which are
within the capabilities of even simple devices;

• We verify the analysis by simulation, and draw some
design insights from the outcomes in different scenarios.

To the best of our knowledge, this is the first work to
consider the distributed optimization of such a relay scenario,
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including both expected AoI and PAoI violation probability
and providing exact theoretical guarantees for performance.
Previous works on AoI in relay-aided systems [15], [16], [18]
either compute the age without considering the optimization of
the network or optimize the scenario in a centralized fashion,
using heuristics and approximate formulations of the age.

The rest of this paper is organized as follows. In Sec. II
we review related work. The basic communication system
model is defined in Sec. III. Sec. IV presents the analysis
of the PAoI distribution, while we derive the expected AoI
in Sec. V. The game theoretic approach to implement a
distributed strategic management of the system to increase
its resilience is developed in Sec. VI. Sec. VII then presents
the numerical results, and Sec. VIII concludes the paper and
presents some possible avenues of future work.

II. RELATED WORK

AoI was first defined as a performance metric for real-
time applications in vehicular networks [19]. The general
nature of the metric has led to an explosion of interest from
the research and industrial communities, with analyses in
disparate scenarios [2] using various theoretical models [6].
However, most of the scenarios investigated in the literature
generally involve single links, or sometimes multiple access
with competing nodes [20].

Cooperative systems such as vehicular networks, which
pursue the shared objective of safe, efficient automated driving
by disseminating information in real time over wireless links,
are still relatively unexplored in the relevant literature [21].
One possible reason for this is that the coordination of multiple
nodes towards AoI minimization is often seen as requiring sig-
nificant signaling to acquire a global network characterization
and perform a stateful optimization. However, IoT scenarios
require timely status updates and low energy consumption,
which would both be negatively affected by the signaling.

As a possible solution in this sense, we investigate dis-
tributed policies that do not require signaling, and optimize
the transmission parameters distributedly and robustly [4] by
adopting a game theoretical perspective [22]. The nodes can
reach a locally efficient solution, i.e., the Nash Equilibrium
(NE), without resorting to explicit signaling but just leveraging
the common knowledge of each node’s rationality. Hence, our
approach can be seen as a robust distributed solution.

We remark that game theory was already used in combi-
nation with AoI-related objectives of individual nodes. For
example, a medium access game was considered in [23], in
which the channel follows a simple collision model. Similar
investigations, but with more advanced access mechanisms and
models, are also developed in [24] for an interference channel
and [17] for a collision channel with capture effect. A more
detailed analysis, which also considers irregular repetition
slotted ALOHA, is presented in [7].

All these works assume that nodes are competing for access,
and there is no mutual assistance for relaying. Some points
about the relationship of AoI to redundancy or retransmissions
can be found in works such as [10], [11]. Even cooperative sce-
narios can require trade-offs between individual and system-
level objectives: in [25], two sources, both able to provide

equivalent updates at the receiver’s, were considered. A game
theoretic model was proposed to capture the inherent laziness
of strategic agents, which would refrain from updating (and
pay the associated cost) if they expect the other to do it. This
trend is also present in our analysis: as we will see, the source,
knowing that the relay improves its reliability, can decrease its
activity and act lazily.

Additionally, most scenarios with multiple nodes assume
a symmetric scenario. In case of symmetry, game theory
may lead to multiple NEs, not all of them being efficient.
Thus, a very relevant difference in our analysis is that the
scenario is instead asymmetric, as the relay can only intervene
after the source [26]. As we show in the following, this
can significantly strengthen the analytical, as we are able to
prove the uniqueness of the NE (up to quantization in the
discrete case, which may actually lead to two equilibria), and
convergence to it is easily achieved through fictitious play [27].

For what concerns the network setup, there are some papers
exploring relay channels from an AoI standpoint, even though
the perspective is never game theoretic and considers the relay
as acting with stateful information and opportunistically (or,
it would be best to say, purely driven by altruism and bearing
no cost). For example, in [28], a relay is considered to act as
an intermediary between a number of sensor and destination
nodes, and the problem is to minimize age of information
through an optimal scheduling policy. However, there is no
direct communication between source and destination nodes,
and the relay node is the only resource manager. In [29],
a similar scenario is considered but the communication is
bidirectional and the relay is two-way. The use of short block-
length codes with multiple parallel relays was also explored
in recent work [18], [30], potentially optimizing the packet
length, the retransmission procedures over both links, and the
number of selected relays to control the age-energy trade-off.

Conversely, [14] considers two network models, one of
which is the same as ours, i.e., a three-node relay network with
a direct channel and a path through the relay (the other being
a symmetric two relay network with two paths each going
through one of the relays), and the relay-aided transmission
incurs AoI increased by 1 time slot. They also focus on
static scheduling policies, i.e., the transmission probabilities
of nodes, and derive AoI expressions through Markovian jump
linear systems similar to ours. However, their focus is on inves-
tigating and directly deriving AoI-optimal scheduling policies,
without a game theoretic investigation. In this sense, source
and relay nodes are fully coordinated entities. Furthermore,
they only consider the expected AoI, with no consideration
for worst-case performance.

The same model is also considered in [31], in which the
authors additionally compare the case of pure time-division
multiple access, where transmissions must be sequential be-
tween the source and the relay, thus resulting in the AoI
of relay-aided transmissions being higher, and the extension
to simultaneous transmissions via non-orthogonal medium
access. Also, [15] considers a similar relay channel model,
but their focus is on an opportunistic relay (not controlled by
a rational player) and the only optimization takes place in the
choice of the update generation probability p by the source,
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which is chosen to minimize the AoI. This very same model
is also analyzed in [16] from the perspective of a stateful
stochastic optimization of the system, with nodes acting in
a coordinated fashion.

All these investigations prove that, while communication
through a relay has the potential to improve information
freshness, it is unclear how to implement it distributedly and
without signaling when both nodes also incur energy costs
for their activity. On the other hand, our game theoretic
approach avoids the need for idealization and takes the analysis
in a more realistic context of IoT nodes with distributed
management [4].

III. SYSTEM MODEL

We consider an IoT sensor and a gateway exchanging status
updates over a time-slotted wireless channel. The sensors
follow an update-at-will model, in which fresh information
is always available to the sensor, but there are strict energy
constraints, which limit the frequency of transmissions. As
the sensor operates in a duty cycle mode, we consider two
modes for packet generation:
(a) Random reporting: the sensor follows a Bernoulli process,

waking up and transmitting a packet with probability p;
(b) Periodic reporting: the sensor wakes up once every T

slots and reports the current value.
As commonly done in the literature [6], [17], we neglect the
transmission delay in the information exchange, so transmitted
packets are generated at the beginning of a slot and received
in the same time slot, with no delay. However, introducing
a latency of 1 slot for each transmission would not change
the results, simply increasing the AoI by a fixed value of 1.
All considerations in the following sections remain valid for a
system with a transmission delay, and our choice of neglecting
it is entirely for the sake of readability and mathematical
simplicity. However, we take fluctuations of the wireless
channel into account: as fading and interference may prevent
the receiver from decoding the packet, we model the channel
as a Packet Erasure Channel (PEC) with erasure probability
f , which is known to both the sensor and receiver.

In the following, we will denote vectors in bold, e.g., as
x, and their elements using a subscript, e.g., xi. Random
variables will be represented by capital letters, e.g., X , and
their Probability Mass Function (PMF) or Probability Density
Function (PDF) will be denoted as pX(x). The correspond-
ing Cumulative Density Function (CDF) will be denoted as
PX(x).

We consider the presence of a relay node [32], as shown
in Fig. 1, which is known to improve the resilience of the
transmission and achieve lower delays. The relay is randomly
and independently active with probability b due to energy
limitations: as coordinating with the gateway would require
additional signaling, the relay does not know the status or AoI
of the sensor. As a relay might be required to serve multiple
sensors and might not even know the activity pattern of the
sensor without explicit synchronization, it will be randomly
active both when the sensor is randomly active and when its
reporting is periodic. In the latter case, we will also consider

Sensor Gateway
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Backup

Fig. 1: Illustration of the considered monitoring scenario, in
which the relay intercepts information from a sensor and
repeats it to ensure its correct transmission.

a fully synchronized scheme, in which the relay is active once
every M sensor periods. When it is active, the relay listens
to the channel used by the sensor to transmit, decodes the
transmitted packet if the sensor is also active, and relays it to
the receiver via a reliable out-of-band exchange. This way, the
relay can receive the packet in one time slot and retransmit
it in the next one in a decode-and-forward fashion; naturally,
this introduces an additional delay of one time slot. In this
case, the latency of the transmitted packet is 1 instead of 0.
This model can also represent a random repetition code [7]
with Maximal Ratio Combining (MRC) decoding. The relay
needs to be able to receive a new packet from the sensor while
relaying the previous one to the gateway, but as the reception
and transmission are over different frequency bands, this does
not require it to have full-duplex capabilities.

In-band relaying systems have already been prototyped in
practical systems such as LoRaWAN [33], [34], although using
a different spreading factor for the second hop would have the
same effect as out-of-band communication. Several relaying
IoT solutions, including both in-band and out-of-band relays,
have been proposed in the literature [35] over a wide variety of
technologies. In particular, the use of drones as relays has been
explored [36] widely and over different applications; drones
almost always operate out-of-band, as they use a different
technology to connect to the gateway.

Note that the retransmission by the relay is assumed to
be always successful, since it takes place on an orthogonal
reliable communication channel, but it would be trivial to
include independent and identically distributed (i.i.d.) failures
on this side too, by simply rescaling the value of b. In other
words, if the relay has an i.i.d. failure rate h, we can effectively
replace b with bh in the following.

If the i-th packet from the sensor is generated at time Gi,
we can consider the reception time Ri, distinguishing three
cases. The packet is either received directly from the sensor, in
which case Ri = Gi, erased and recovered through the relay,
with Ri = Gi + 1, or erased and not relayed. Conventionally,
a packet that is never received has infinite latency, and its
reception instant is +∞. The conditional distribution of Ri,
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for a given value of Gi, is then:

pRi|Gi(ri|gi) =


1− f, if ri = gi;

fb, if ri = gi + 1;

f(1− b), if ri = +∞.
(1)

Naturally, this does not hold in the fully synchronized case,
as the PMF depends on the relay’s random activation. In
that case, the PMF is simple, as the activation of the relay
is deterministic. The latency for packet i is then given by
Ti = Ri − Gi. We can also define set R(t), containing the
indices of the packets that have been correctly received by
time t:

R(t) = {i ∈ N : Ri ≤ t} . (2)

Thus, the value of AoI at the receiver in time slot t is [3]:

∆(t) = t− max
i∈R(t)

Gi, (3)

which implies a sawtooth pattern for the evolution of AoI [37],
[38], decreasing to Ti after packet i is delivered and linearly
growing until the next packet reception. We can define the
expected AoI, ∆̄, as:

∆̄ = lim
τ→∞

1

τ

τ∑
t=0

∆(t). (4)

Finally, the PAoI Ψ is the AoI at the instant of a packet
reception:

Ψi = Ri − max
j∈R(Gi)\{i}

Gj , if ∃M ∈ N : Ri < M. (5)

PAoI is defined only for successfully delivered packets. In the
following, we will consider both the average AoI and the PAoI
threshold violation probability as system Key Performance
Indicators (KPIs).

The other KPI that we consider is energy: we assume that
both the sensor and relay pay a fixed energy cost, represented
by constant c for the sensor and k for the relay, every time
they activate. In the following, we will study the trade-off
between the timing performance, which improves if the nodes
are active more often, and the expected energy consumption
per slot.

We assume that both the sensor and the relay node are
controlled by strategic agents operating with the aim to min-
imize the AoI at the receiver’s side. At the same time, we
also consider activity costs for both the sensor and the relay.
We leverage and expand analytical results for AoI and PAoI
in the presence of independent random transmissions over a
slotted channel. From a performance evaluation perspective,
we discuss how our problem can be framed as a potential game
[39], whose NE is found to be an efficient trade-off between
achieving fresh information without incurring excessive costs.
At the same time, the strategic interaction between the two
agents can take place without any explicit exchange of control
information, which makes our approach particularly suitable
for distributed robust implementations.

We also highlight that our system requires no feedback
channel towards the sensor or the relay: as transmission is
random, and the relay operates independently, the sensor
can become active in a given slot, obtain a measurement,

transmit its value, and return to sleep mode, without needing to
remain awake and receive feedback. As reception may require
almost as much power as active transmission [40] for low-
power sensors, this can significantly extend the lifetime of the
sensor’s battery with respect to a scheme relying on feedback
or explicit coordination.

IV. PEAK AGE OF INFORMATION

We can now derive the distribution of the PAoI Ψ. As above,
we first consider the random reporting case, then extend the
results to periodic reporting. In the following, for notational
convenience, we will set q = 1−b, representing the probability
that the backup is inactive, and σ = 1− fq, representing the
overall success probability of a packet.

A. Random Reporting

Let us consider packet i, which is successfully received.
The PAoI Ψi represents the time between the generation of
the latest received packet before i and the reception of packet
i. Following the definition in (5), the PAoI is equivalent to
Ψi = Ti + Gi −maxj∈R(Gi)\{i}Gj . We note that the inter-
packet interval Θi = Gi − maxj∈R(Gi)\{i}Gj corresponds
to the AoI ∆(Gi) in the case in which packet i is not
immediately transmitted. We then give the PMFs of the latency
Ti (considering only successfully received packets, as the PAoI
is undefined for lost packets) and of the inter-packet interval
Θi, noting that the two are statistically independent, in the
following Lemmas.

Lemma 1.1. Under a successful transmission of packet i, the
PMF of the latency Ti is

pTi|S(t) =

{
1−f
σ , if t = 0;
f(1−q)
σ , if t = 1.

(6)

Proof. The PMF is derived directly from (1), under the con-
dition that the packet is successfully received (either directly
or through the relay), i.e., that Ri is not infinite.

Lemma 1.2. The PMF of the inter-packet interval Θi is given
by:

pΘi(θi) = (1− pσ)θi−1pσ, if θi > 0. (7)

Proof. The inter-packet interval follows a simple geometric
distribution: in order for the closest previous packet to be
generated θi slots before, there must be no successful packets
in between, and the probability is the same for all packets.

Theorem 1. The PMF of the PAoI Ψi for packet i, received
successfully either directly from the sensor or through the
relay, is:

pΨi(ψi) =


0, if ψi = 0;

p(1− f), if ψi = 1;

p(1− pσ)ψi−1
[
1− f + f(1−q)

1−pσ

]
, if ψi ≥ 2.

(8)

Proof. We know that Ψi = Θi+Ti, and Θi ≥ 1. Consequently,
the PAoI can never be 0. In the case ψi = 1, we need packet
i to be transmitted with latency 0 and Θi to be 1. In all
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other cases, since the inter-packet interval and the latency are
independent, we can directly apply a convolution to solve the
case in which ψi > 2:

pΨi(ψi) = pTi|S(0)pΘi(ψi)+pTi|S(1)pΘi(ψi−1), if ψi ≥ 2.
(9)

The actual value of the PMF is then simply derived by
substituting the results from Lemma 1.1 and Lemma 1.2
into (9).

Corollary 1.1. The CDF of the PAoI Ψi for packet i, received
successfully either directly from the sensor or through the
relay, is given by:

PΨi(ψi) =


0, if ψi = 0;

p(1− f), if ψi = 1;

1− (1−pσ)ψi

σ

[
1− f + f(1−q)

1−pσ

]
, if ψi ≥ 2.

(10)

Proof. The CDF can be promptly computed from the PMF in
Theorem 1.

B. Periodic Reporting

In the periodic reporting case, the PAoI is simpler, and it
depends on the number of failed transmissions between two
subsequent successes. We have to consider the case in which
the packet is recovered through the relay, as well as the one
in which the transmission from the sensor is successful.

Theorem 2. The PMF of the PAoI Ψi in a periodic reporting
system is:

pΨi(ψi) =


(1− σ)

ψi−T
T (1− f), if

⌊
ψi
T

⌋
∈ N+;

(1− σ)
ψi−T−1

T f(1− q), if
⌊
ψi−1
T

⌋
∈ N+;

0, otherwise.
(11)

where N+ = N \ {0}.

Proof. As we know that the success probability is σ, the prob-
ability of having n frames between two subsequent successful
transmissions follows a geometric distribution with parameter
σ. Since the reception of the packet may be either direct or
through the relay, we can perform the convolution between
the inter-packet interval distribution (which is non-zero only
if the argument is a multiple of the period T ) and the latency
distribution, which is the same as for the random reporting
case and is given in Lemma 1.1. The resulting PMF is then
the one given in the theorem.

Corollary 2.1. The CDF of the PAoI Ψi in a periodic
reporting system is given by:

PΨi(ψi) =


0, if ψi < T ;

1− (1− σ)
ψi
T −1f, if

⌊
ψi
T

⌋
∈ N+;

1− (1− σ)

⌊
ψi
T

⌋
, if ψi > T ∧

⌊
ψi
T

⌋
/∈ N+.

(12)

Proof. As for the random reporting case, the CDF can be
easily derived from the PMF from Theorem 2.

The PAoI distribution for the special case with T = 1
needs to be considered separately, but is trivial to compute,
and omitted here due to space limitations.

C. Full Synchronization

We can now consider the fully synchronized system. In this
case, the relay is active once every M sensor periods, bounding
the PAoI. We first define the value Mi, i.e., the number of
transmission periods elapsed between the latest relay activation
and the generation time of the latest successfully received
packet:

Mi = mod

(
max

j∈R(Gi−1)
Gj , T

)
, (13)

where mod(m,n) is the integer modulo operation.

Lemma 3.1. The conditional PMF of the PAoI for the fully
synchronized system for a given value of Mi is given by:

pΨi|Mi
(ψi|mi) =


1−f
f f

ψi
T , if ψi

T ∈ N (M −mi);

fM−mi , if ψi = (M −mi)T + 1;

0, otherwise.
(14)

Proof. The derivation of the conditional PMF is simple: if
we have M −mi consecutive failures, the packet will always
be retransmitted by the relay, by the definition of Mi, and the
PAoI will be (M−mi)T+1. The probability of this happening
is fM−mi , as transmission successes are independent. On the
other hand, the relay is inactive for earlier packets, so the PAoI
distribution is a truncated geometric with success probability
1− f and a timestep T between attempts.

Lemma 3.2. The PMF of Mi is given by:

pMi(mi) =

{
1

(1−f)M+f , if mi = 0;
1−f

(1−f)M+f , if mi ∈ N (M − 1),
(15)

where N (m) = {1, . . . ,m},m ∈ N+.

Proof. The PMF can be derived by applying Bayes’ theorem,
considering that packets with mi = 0 are always successful,
as the relay is active, while other packets are delivered with
probability 1− f .

Proof. The system behaves like the periodic system without a
relay until the next relay activation, which, by the definition of
Mi, is after M −mi packets. If M −mi packets fail, the last
failed packet is always relayed correctly to the gateway.

Theorem 3. The PMF of the PAoI in the fully synchronized
system is given by:

pΨi(ψi) =



((1−f)(MT−ψi)+T )f
ψi
T

fT(M+ f
1−f )

, if ψi
T ∈ N (M);

(1−f)f
ψi−1
T

(1−f)M+f , if ψi−1
T ∈ N (M − 1);

fM

(1−f)M+f , if ψi = MT + 1;

0, otherwise.
(16)

Proof. The correctness of the formula can be easily verified
by applying the law of total probability to the conditional
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distribution from Lemma 3.1, using the marginal distribution
from Lemma 3.2.

V. EXPECTED AGE OF INFORMATION

We now derive closed-form expressions for the expected
AoI in the system we discussed above, in which a sensor sends
updates to a gateway through a PEC with erasure probability
f . The sensor is aided by a relay node, which is active with
probability b and does not actively coordinate with the sensor.
The relay retransmits packets that are sent while it is active
through an out-of-band channel, enabling the reception of
initially lost packets with some additional latency.

A. Random Reporting

We first consider the random reporting system, in which the
sensor updates follow a Bernoulli process with probability p.

Lemma 4.1. The expected AoI for a random reporting system
without a relay is

∆̄(p) = [p(1− f)]−1 − 1. (17)

Proof. The AoI evolution can be seen as a renewal process
and, in this context, the period between successful updates are
defined as cycles, since they reset the AoI to 0. The cost of
the renewal process is also the AoI. Thus, we can compute
the expected AoI by dividing the expected total cost over a
cycle by the average duration of a cycle. Following [41], the
expected AoI for a sensor whose updates follow a Bernoulli
process with probability ρ can be computed as:

∆̄(ρ) = ρ−1 − 1. (18)

As failures are independent from the update process, the
thinned process considering only successfully received updates
is still a Bernoulli process, with probability ρ = p(1 − f),
which we can substitute into (18) and prove the Lemma.

An entirely equivalent formulation can be obtained by
looking at the intervals between any two updates, not just
successful ones, so that the AoI does not reset to 0, which
simplifies inserting the relay in the analysis.

Remark 1. Since the system is kept the same, computing the
expected AoI as the average cost over an interval divided by
the average length of the interval itself will yield the same
result if we consider (a) a renewal cycle between successful
updates; or (b) any inter-update interval.

If we take approach (b), for a random reporting system with
probability p, the inter-update interval has length p−1 − 1.
However, the AoI, which represents the cost, does not always
reset to 0 at the end of each interval. Consequently, we say that
for those intervals that do not follow a successful transmission,
the AoI starts with a bias, i.e., the cost is increased because
of the previous failures. The expected cost over a period
following a successful update is (p−1− 1)2, and the expected
value of the extra cost due to failures is (1−f)−1f(1−p)p−2.

This means that, under this second approach, we can com-
pute ∆̄ as the sum of p−1 − 1 and a bias β due to previous
failures, equal to f times a geometric number of slots until

reaching a success, with probability p(1− f), averaging over
the number of slots, which leads to:

∆̄(p) = p−1 − 1 +

+∞∑
j=0

(j + 1)fp(1− f)(1− p+ fp)j . (19)

The solution of the series in (19) is the result in (17). The
same holds for the periodic reporting system.

We can then use this method to account for the relay when
computing the expected AoI.

Theorem 4. The expected AoI in a random reporting system
with a relay is:

∆̄(p, b) =
1− p(1− f)

pσ
. (20)

Proof. Following the approach from Remark 1, we can com-
pute the expected AoI as the sum of p−1 − 1 and a bias.
If we consider the relay, the bias can be computed through
three different terms, all of which are only included if the
transmission from the sensor fails, so we always have a
coefficient f . The terms are then as follows:

1) If the backup is active for the update, the bias is simply
equal to β1 = 1, as the AoI is reset to 1 in the
slot following the failed transmission. This happens with
probability π1 = f(1− q);

2) If the backup is inactive, which happens with probability
q, and the last successful update from the sensor was j+1
slots ago, the bias is the same as in (19). In this case, the
probability of the bias being equal to β2(j) = j + 1
is π2(j) = pfq(1 − f)(1 − pσ)j , as we must consider
both the cases with no transmission and with a failed
transmission without a backup;

3) If the last successful update j+ 1 slots ago was from the
relay, i.e., the transmission of the sensor failed, but the
relay retransmitted it correctly, the bias is β3(j) = j+ 2,
with probability π3(j) = pf2q(1− q)(1− pσ)j .

Combining the three terms, we find that the bias is equal to:

β =π1β1 +

+∞∑
j=0

[π2(j)β2(j) + π3(j)β3(j)]

=f(1− q) + pfq

+∞∑
j=0

(1− pσ)j [j + 1 + f − (j + 2)fq]

=
f(p+ q − pq)

pσ
.

(21)
This promptly leads to the Theorem statement (20).

We note that the effect of the backup at the relay node is
localized in the addition of a q term in the denominator to the
result for the system without a relay as given in (17). Naturally,
the result of (20) implies that when q = 1, i.e., the relay never
performs a backup, the expected AoI ∆̄(p, 0) is the same as
the one derived in (17). On the other hand, when q = 0, i.e.,
the relay is always active, we get ∆̄(p, 1) = p−1 − 1 + f ,
which is consistent with failures causing a fixed increase of 1
in the AoI, since the relay is error-free, but introduces a delay
of 1 slot, thus increasing the expected AoI by f .
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B. Periodic Reporting

We then consider the periodic reporting system, in which
updates are generated deterministically every T slots. We can
apply the same method to derive the expected AoI.

Lemma 5.1. The expected AoI for a periodic reporting system
without a relay is given by:

∆̄ =
(1 + f)T

2(1− f)
− 1

2
. (22)

Proof. As for the random reporting system, we can compute
the expected AoI by dividing the expected total cost by the
expected duration of a cycle. Since there is no relay, the
number of periods n between two successive packet receptions
is geometrically distributed with probability 1 − f , and the
expected cycle duration is T

1−f . The expected AoI is then:

∆̄ =
1− f
T

∞∑
n=1

(1− f)fn−1
nT−1∑
δ=0

δ

=
(1− f)2

2

∞∑
n=1

fn−1(nT − 1)n

=
(1− f)2

2

(
(1 + f)T

(1− f)3
− 1

(1− f)2

)
.

(23)

This result is equivalent to the thesis, completing the proof.

We can then use the same approach of Remark 1 to compute
the bias necessary to adjust for the presence of the relay.

Theorem 5. The expected AoI in a periodic reporting system
with a relay is given by:

∆̄ =
T − 1

2
+
f + (1− σ)(T − 1)

σ
. (24)

Proof. Following the approach from Remark 1, we can com-
pute the expected AoI as the sum of T−1

2 , i.e., the expected
AoI if f = 0, and a bias term. If we consider the relay, there
are two bias terms: the first is due to recovered failures, i.e.,
packet losses during slots in which the relay is active and the
gateway receives the packet with an additional delay, while
the second is due to unrecovered failures. The two terms are
then as follows:

1) If the relay is active and the last successful update from
the sensor was nT slots ago, the AoI grows to nT instead
of resetting immediately, then resets to 1. The bias term
is then β1(n) = n, as the additional cost is divided by the
renewal period T . This happens with probability π1(n) =
f(1− q)σ(1− σ)n−1;

2) If the relay is inactive and the last successful update from
the sensor was nT slots ago, the AoI in the next renewal
cycle will increase by a factor nT . We then have β2 =
nT , as the additional cost is incurred in all slots of the
cycle. This case occurs with probability π2(n) = σ(1 −
σ)n, as the delay of the previous transmission does not
matter.

Combining the two terms, we find that the bias is equal to:

β =

∞∑
n=1

π1(n)β1(n) + π2(n)β2(n)

=f

∞∑
n=1

n(1 + q(T − 1))σ(1− σ)n−1

=
f(1 + q(T − 1))

σ
.

(25)

If we set q = 1, i.e., the relay is never active, the expected
AoI corresponds to the result in Lemma 5.1.

C. Full Synchronization

We can now consider the fully synchronized system, ex-
ploiting the results on the PAoI.

Lemma 6.1. If we consider the cycle ending with the re-
ception of packet i, the inter-packet distance Xi = Gi −
maxj∈R(Gi−1)Gj has the following PMF:

pXi(xi) =


2+(1−f)(M− xiT −1)

f(M+ f
1−f )

f
xi
T , if xi

T ∈ N (M − 1);

fM−1

M(1−f)+f , if xi = MT.
(26)

The expected duration of a cycle E [X] is given by:

E [X] =
MT

(1− f)M + f
. (27)

Proof. For a given Mi, the conditional cycle duration distri-
bution is given by:

pXi|Mi
(xi|mi) =

{
1−f
f f

xi
T , ifxiT ∈ N (M −mi − 1);

f
xi
T −1, ifxiT = M −mi.

(28)
The proof of this follows the proof of Lemma 3.1. We can then
simply apply the law of total probability using the steady-state
distribution of Mi from Lemma 3.2 to get the PMF in (26).
The expected value can then be easily verified by solving the
following sum:

E [X] =

M∑
n=1

nTpXi(nT ). (29)

Theorem 6. The expected AoI ∆̄ for the fully synchronized
system is given by:

∆̄ =
1

2M(1− f)2

[
2fM+1 (f + T − 1)− f2(MT +M + 2)

− 2f(T −M − 1) +M(T − 1)
]
.

(30)
where the multiplying term ζ is defined as:

ζ = 2((1− f)M + f)E [X] (1− f)2. (31)

Proof. The total AoI over cycle ending with the reception of
packet i is defined as follows:

Ai =

Ri∑
t=maxj∈R(Gi−1) Rj

∆(t). (32)
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This follows the standard method from the discrete-time queue
literature [42]: the total AoI over a cycle, over which the PAoI
is Ψi, is Ai = Ψi(Ψi−1)

2 , and the expected AoI is ∆̄ = E[A]
E[X] .

We can then use the PMF from Theorem 3 to get the PMF of
Ai and compute E [A] as follows:

E [A] =

MT+1∑
ψi=1

ψi(ψi − 1)

2
pΨi(ψi). (33)

The solution of the sum is quite cumbersome, but relatively
simple, and leads to the result in (30).

VI. GAME THEORETIC OPTIMIZATION

Similar to [22], [41], we investigate the optimization of the
sensor’s duty cycle, represented by its activation probability p
in a random reporting system, and the inverse of its period T
in a periodic reporting system. In the following, we will often
refer to p for both kinds of system, with p = T−1 for the
periodic reporting case: this slight abuse of notation allows us
to avoid repeating the same definitions twice.

We assume that the sensor incurs a cost c every time it
sends an update, implying that the expected cost paid by the
sensor is cp. This cost term can model the expenditure of a
finite resource by the sensor (e.g., energy in a battery-powered
or energy-harvesting sensor) [13], but also the use of the
shared wireless medium and of the resources of the relay [25].
From a network control perspective, situations when the sensor
constantly sends updates represent a waste of bandwidth. Thus,
the cost can be seen as a way to regulate the sensor activity.

The cost must then be traded off against a system-level
penalty ξ(p, b), representing the performance degradation that
results from using stale information. We may express this cost
in two ways:

1) We may consider an average-sense optimization, measur-
ing the system-level penalty with the expected AoI, i.e.,
ξ(p, b) = ∆̄(p, b);

2) We may consider a risk minimization scenario, in which
the system-level penalty is represented by the probabil-
ity of violating a threshold PAoI, i.e., ξ(p, b) = 1 −
PΨi(ψmax).

Since the system-level penalty and the energy cost are both
objectives to minimize, the utility function of the source can
be described as

uS(p, b) = −ξ − cp , (34)

following the standard game theoretical convention that mod-
els the players as utility maximizers instead. We remark that
uS(p, b), coherently with the usual requirements of utility
theory, is written as a function of both p and b: the dependence
on b is caused by the fact that both definitions of ξ(p, b) depend
on q, which is defined as 1−b. This means that we can account
for the beneficial impact that the relay node and its backups
have on the AoI, which in turn allows to transmit more often,
in spite of this causing an increased cost cp.

Following the same logic, the relay node also incurs a cost
for every time slot in which it is active, and we denote it as a

coefficient k. The expected energy cost for the relay node is
then kb, and the utility of the relay node is then defined as

uR(p, b) = −ξ − kb , (35)

since the relay is interested in helping the sensor in its task.
We model the sensor and the relay in the random reporting

scenario as two rational agents S and R playing a static game
of complete information with continuously valued actions p
and b, both of which fall in [0, 1]. These agents follow their
respective utilities uS(p, b) and uR(p, b). This game structure
implies that values p and b are determined by each agent
independently and unbeknownst of each other, which would
fulfill the typical requirements of IoT systems to minimize the
signaling between nodes, as well as offering improved robust-
ness against wrong or missing exchanges [32]. As remarked
above, the sensor does not require reception capabilities to
determine the strategy, but only the knowledge of the erasure
probability f and of the cost parameters c and k.

Theorem 7. The game between the sensor and relay is an
Exact Potential Game (EPG), and its potential function φ(p, b)
is given by:

φ(p, b) = −ξ − cp− kb. (36)

Proof. To prove that φ(p, b) is a potential function [43], we
first need to show that it is a potential function for uS(p, b),
i.e., that uS(p, b) − uS(p′, b) = φ(p, b) − φ(p′, b). As b
is fixed, this is trivially true, since the potential function
φ(p, b) = uS(p, b)−kb. Secondly, we need to show that φ(p, b)
is also a potential function for uR(p, b). This is also true, as
the potential function φ(p, b) = uR(p, b) − cp. In both cases,
the equality is valid under any definition of ξ(p, b).

We remark that the potential function φ(p, b) is slightly dif-
ferent from the total utility uS(p, b)+uR(p, b) = −2ξ−cp−kb,
since a factor 2 is missing. Indeed, the total utility is not a po-
tential function, as it does not meet the conditions for an exact
potential. As stated in [43, Lemma 2.7], the potential function
we identified is unique, aside from an additive constant term.

Corollary 7.1. The game has at least one pure-strategy NE,
and it is a maximum of the potential function.

Proof. The corollary follows from applying [43, Lemma 2.1]
and [43, Lemma 4.3]; we refer to that work for a more
complete analysis of the properties of potential games.

The pure-strategy NE can be found in a computationally
efficient way that also translates into a distributed system man-
agement, through the procedure known as fictitious play [27],
which in essence corresponds to each node working indepen-
dently to locally maximize its own utility function without the
need of coordinating with the other node. The same procedure
can be followed to prove that φ(T, b) = ξ − c

T − kb is a
potential function for the periodic reporting scenario, with the
same corollary.

A. Random Reporting

If we consider the random reporting system, and use ex-
pected age as a target, i.e, ξ(p, b) = ∆̄(p, b), the game is an
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EPG over a compact, continuous move space for both players,
as we have p, b ∈ [0, 1]. In this case, a pure NE can be found
by finding the local maxima of the potential function φ(p, b).
The NE condition can then be stated as

∇φ(p, b) = (0, 0) , (37)

which implies

∂ξ(p, b)

∂p
= −c , ∂ξ(p, b)

∂b
= −k . (38)

Theorem 8. The scenario with random reporting and an
expected age objective has a single pure NE, which is either
at the boundaries (i.e., one of the two players is either always
or never active) or given by: p =

√
1

c(1−fq)

q = 1
f −

√
1−p(1−f)

fkp

. (39)

Proof. Using q instead of b, we can rewrite the second
condition of (38) as ∂ξ(p, b)/∂q = k. After computing the
partial derivatives, we then have the following conditions:{

− 1
p2σ + c = 0;

f(1−p(1−f))
p(1−fq)2 + k = 0.

(40)

It is immediate to see that the first equation has a single
positive solution. A simple way to guarantee that p ∈ (0, 1)
is to impose c ≥ 1, which also makes sense if compared with
a strategic case without relays [41]. On the other hand, the
second equation has two solutions, one of which is always
greater than 1. We then have three cases:

1) If the second solution is negative, we need to compare
the potential of the two cases with q = 0 and q = 1,
computing p as the sensor’s best response in each case.
The case with the highest potential is the NE;

2) If the second solution is greater than 1, the NE is given
by q = 1, while p is the best response as given by the
first condition;

3) If the second solution is in (0, 1), we can get the
solution from the Theorem statement with some algebraic
manipulation.

In all three cases, there is a single maximum of the potential
function in the pure strategy space, so there is a single pure
NE.

Corollary 8.1. The relay node in the random reporting
scenario, considering the expected age as a system penalty
function, is always active (i.e., q = 0) if:

k ≤ f
(√
c− (1− f)

)
, (41)

while it is always inactive if:

k ≥ f(
√
c−
√

1− f)√
(1− f)3

. (42)

Proof. The behavior of the relay node ultimately depends on
the numerical value of k (as is also intuitive). The higher
the value of k, the lower the probability of an active relay
becomes. The first condition can be easily derived by imposing
a negative solution to (40); the NE is on the left boundary (i.e.,

q = 0) by a continuity argument: as k decreases, the value of
q should also decrease, as the energy cost for relay is smaller.
In the same way, we impose a solution larger than 1 to derive
the second condition.

The strategic choice for q = 0 is p = (c)−0.5, while it
is p = (c(1 − f))−0.5 if the strategic relay is never active,
i.e., q = 1. In the case p and b both fall in inner points of
[0, 1], their numerical values can be immediately found by a
recursive approach, where an initial value p = p(0) can be
set and then used to solve (39) to derive any q(i) from p(i)

and then p(i+1) from q(i). This procedure would correspond
to the technique known as fictitious play [27]. As the game
is an EPG, it possesses the Approximite Finite Improvement
Property (AFIP) [43], which states that every improvement
path that reaches a regret smaller than ε, with ε > 0, is finite.
Convergence is then guaranteed, as every iteration of fictitious
play increases the potential, and we reach an ε-equilibrium in
a finite number of steps thanks to the AFIP.

B. Periodic Reporting

If we consider periodic reporting, the sensor’s action is the
period T ∈ N+. The potential is then a mixed function φ :
N+ × [0, 1] → R, and we can compute the best responses
individually.

Theorem 9. The best response of the relay q∗(T ) is
0, if 1

f −
√

f+T∗−1
kf ≤ 0;

1
f −

√
f+T∗−1

kf , if 1
f −

√
f+T∗−1

kf ∈ (0, 1);

1, if 1
f −

√
f+T∗−1

kf ≥ 1.

(43)

Proof. The partial derivative ∂φ(p, q)/∂q is given by:

∂φ(p, q)

∂q
=
f(f + T − 1)

(1− fq)2
+ k. (44)

As for the random reporting case, one of the solutions of
the quadratic equation identifying the local maxima is always
greater than 1. The pure NE then corresponds to the other
solution, which is the one given in the Lemma, if it is in (0, 1).
Following the same reasoning as for the random reporting
case, the best response is 0 if both solutions are negative and
1 if the positive solution is greater than 1.

Lemma 10.1. The potential function φ(T, q) has either one
or two maxima in N+ for a given value of q, which are
determined by the value Td(q):

Td(q) =

√
1

4
+

2c(1− fq)
1 + fq

− 1

2
. (45)

If Td(q) ∈ N+, the potential has two maxima, which are Td(q)
and Td(q) + 1. Otherwise, it has a single maximum, which is
given by dTd(q)e.
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Proof. We consider the conditions under which φ(T, q) =
φ(T + 1, q):

−1

2
− (1− σ)(T − 1)

σ
− c

T
= − (1− σ)T

σ
− c

T + 1
1

2
+

1− σ
σ
− c

T
= − c

T + 1

T 2 + T − 2c(1− fq)
1 + fq

= 0.

(46)

The only positive solution to this quadratic equation is given
by Td(q), as defined in the Lemma. We can also consider
that, since the quadratic equation is convex, φ(T, q) is strictly
decreasing, i.e., φ(T + 1, q) < φ(T, q), for any T > Td(q),
and strictly increasing for any T < Td(q).

We then consider the case in which Td(q) /∈ N+: in this
case, bTd(q)c < Td(q), and so φ (dTd(q)e) > φ (bTd(q)c).
However, since dTd(q)e > Td(q), we know that the maximum
must be dTd(q)e, as the function becomes strictly decreasing.
On the other hand, if Td(q) ∈ N+, φ(Td(q), q) = φ(Td(q) +
1, q), and the potential function has two maxima.

There is a boundary condition to keep into account, as the
potential is always monotonically decreasing if Tmax < 1,
which happens if c < 1+fq

4(1−fq) . In that case, the optimal
choice is always T = 1, i.e., the sensor transmits regardless of
the relay’s activity or failure probability. We can then simply
impose c ≥ 1+f

4(1−f) to avoid this edge case.

Theorem 10. If the best response of the sensor T ∗(q) isdTd(q)e , if Td(q) /∈ N+;

arg max
T∈{Td(q),Td(q)+1}

φ (T, q∗(T )) if Td(q) ∈ N+, (47)

then fictitious play approximately converges to a pure NE in
a finite number of steps.

Proof. We can use Lemma 10.1 to easily verify that the
best response is unique if Td(q) /∈ N+, and approximate
convergence in a finite number of steps is guaranteed by [44,
Theorem 7]. On the other hand, if Td(q) ∈ N+, one of the
two best responses is on an improvement path, as it increases
the potential. By verifying the next best response of the relay,
we ensure that there are no loops and that each best response
improves the potential.

Corollary 10.1. The relay node in the random reporting
scenario, considering the expected age as a system penalty
function, is always active (i.e., q = 0) if:

k ≤ f
(
f +

⌈
1

2

(√
1 + 8c− 1

)⌉
− 1

)
, (48)

while it is always inactive if:

k ≥ f

(1− f)2

(
f − 1 +

⌈
1

2

(√
1 +

8c(1− f)

1 + f
− 1

)⌉)
.

(49)

Proof. We first consider the case in which q = 0. In order for
q to be 0, the condition is the following:

1

f
−

√
f + T − 1

kf
≤ 0. (50)

We can substitute the optimal value of T for q = 0, i.e., T ∗0 =⌈
1
2

(√
1 + 8c− 1

)⌉
. After some algebraic steps, the condition

is proven. We can follow the same logic to prove the second
condition, which is verified if:

1

f
−

√
f + T − 1

kf
≥ 1. (51)

We then substitute the optimal value of T for q = 1, i.e.,

T ∗1 =

⌈
1
2

(√
8c(1+f)

1−f + 1− 1

)⌉
. The resulting condition

then corresponds to the one stated in the corollary. If either
of these conditions is verified, the value of q is either 0 or 1,
and the value of T is T ∗0 or T ∗1 , respectively.

In this case, we may have two pure NEs, due to the
discretization of the sensor’s action space; in this case, the
selection of the NE depends on the initial strategy in the
iterated best response. One NE will be more advantageous
for the sensor, while the other will be better for the relay.
Since we assume that both nodes are cooperating, and just
need to decide on a common strategy, we will pick the NE
with the highest potential in each scenario, which may favor
either node.

C. Full Synchronization
Under full synchronization, both nodes take discrete actions.

We then follow the same strategy as the periodic case, showing
that the best response strategies are on an improvement path,
and thus fictitious play converges to a pure NE.

Theorem 11. The best response T ∗(M) of the sensor for a
given relay period M isdTd(M)e , if Td(M) /∈ N+;

arg max
T∈{Td(M),Td(M)+1}

φ (T,M∗(T )) if Td(M) ∈ N+, (52)

where M∗(T ) is the best response strategy for the relay, and
value Td(M) is defined as:

Td(M) =

√
1

4
+

2M(1− f)2c

2fM+1 − f2M − 2f +M
− 1

2
. (53)

If the sensor follows this strategy, the best response is on an
improvement path.

Proof. As in the proof of Lemma 10.1, we consider the
conditions under which φ(T,M) = φ(T + 1,M), obtaining
the following quadratic equation:

T 2 + T − 2M(1− f)2c

2fM+1 − f2M − 2f +M
= 0. (54)

This equation has a negative solution, while the other solution
is positive if 2fM+1−f2M−2f+M

8M(1−f)2 ≤ c. We can then follow the
same steps as for Theorem 10 to show that T ∗(M) is a best
response and is on an improvement path.

Theorem 12. The best response M∗(T ) of the relay for a
given sensor period T isdMd(T )e , if Md(T ) /∈ N+;

arg max
M∈{Md(T ),Md(T )+1}

φ (T ∗(M),M)) if Md(T ) ∈ N+. (55)
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The value of Md(T ) is given by:

Md(T ) =

αW

(
βf

1
α log(f)
α

)
− log(f)

α log(f)
, (56)

where W (·) is the Lambert W function [45]. The constant
factors are given by α = 1− f and β = 1− (1−f)2k

f(f+T−1) . If the
function has no positive solution, the best response is always
M = +∞, i.e., the relay never activates.

Proof. Computing the conditions under which φ(T,M) =
φ(T + 1,M) leads to the following equation:

(αM + 1)fM − β = 0. (57)

The solution to the equation is then Md(T ) as given by (56),
and we can follow the proof of Theorem 10.

The discretization of choices also means that there might be
two NEs. It is sufficient to start fictitious play from M = 1 and
from M = +∞ to find both, and as the nodes are cooperative,
they can select the NE with the highest potential and achieve
the global optimum.

D. Risk Optimization

If we consider the risk optimization scenario, i.e., set
ξ(p, b) = 1 − PΨ(ψthr), there is no analytical solution, as
the CDF of the PAoI is exponential, and finding the maxima
requires solving high-degree polynomial equations. In this
case, we can find an approximate solution by discretizing the
action spaces for both nodes and finding the pure NEs with the
Lemke-Howson algorithm [46], which takes the bimatrix form
of the game as input. This might be computationally rather

complex, as the Lemke-Howson’s worst-case complexity is
exponential in the size of the action space, but we found that
a rough action space quantization is often enough to reach a
good solution, resulting in quick convergence in practice.

In the random reporting case, the quantization interval λ
determines the approximation level of the NE. In the periodic
reporting case, the relay’s action space still needs to be
quantized, while the sensor’s action space is already discrete, if
unbounded. We then only need to set a maximum transmission
period in order to obtain a finite discrete action space.

VII. NUMERICAL RESULTS

We now consider the results in some possible scenarios,
both considering the AoI and the game theoretic optimization.
We verified the analytical results by running a Monte Carlo
simulation for 107 slots. The parameters for all simulations
are reported in the figure captions. The Monte Carlo results
confirmed that the derived PAoI distributions were correct, as
Fig. 2 clearly shows. The expected AoI results are shown in
Fig. 3, confirming the validity of the analysis. We selected
the same average activation rates for the three systems in
both figures, and performance for schemes with the same
average traffic is shown using the same color in Fig. 3: as
expected, higher traffic results in a lower average AoI. We
can also note that the periodic reporting system is second-
order stochastically dominant [47] over random reporting: the
average AoI for the former is smaller than for the latter
reporting, and the tail is more contained as well. The same
is true for the fully synchronized system over the periodic
reporting one, at the cost of some signaling to maintain
synchronization between the sensor and relay.
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Fig. 4: Effect of f on the NE for a strategic and dummy relay, with c = 100 and k = 10.

After verifying the correctness of the PAoI analysis, we
consider the game theoretic optimization, using expected AoI
as the system penalty: Fig. 4 shows the resulting NE for the
three systems, as well as the potential, comparing strategic
choices to relays with a fixed activation probability. In the
random reporting system, the activation probability p for the
sensor increases gradually with f in the case of a strategic
relay, while the relay is always inactive until the erasure
probability is relatively high, as Fig. 4a shows: indeed, there
is no need for a relay to assist an error-free communication.
Naturally, a lower value of the relay activity cost k would lead
it to be active even for lower values of f , and vice versa. If
f increases further, the relay’s activity rate increases, while
the sensor’s decreases: as the channel between the sensor and
the receiver becomes worse, it becomes more convenient for
the relay to shoulder the cost of the transmission, as it can
guarantee a reliable delivery, while a higher activation rate
from the sensor would provide diminishing returns. Fig. 4b
also shows that the game theoretic optimization allows us
to maximize the potential with respect to fixed strategies,
improving the overall system utility.

The equivalent results for the periodic reporting and fully

synchronized systems are shown in Fig. 4c-e and Fig. 4f-h,
respectively. In these cases, we have two NEs, with slightly
different values of the potential: the first NE tends to shift
the burden of the communication towards the relay, with a
higher value of b and a longer transmission period T for the
sensor, while the other NE does the opposite. As we remarked
in the previous section, this is due to the discretization of
the sensor’s action space. The value of the potential in these
scenarios is higher, as the expected AoI is generally lower for
the same settings. In a cooperative system, the two nodes can
then compute both NEs, selecting the one with the highest
system-level utility, which we will use in all the following
analyses.

We can then consider the effect of the relay cost parameter
k, shown in Fig. 5. As expected, the expected AoI in the
random reporting system is generally lower for lower values
of k, as shown in Fig. 5a: the AoI is only the same for very low
values of f , when the relay is always inactive for any value of
k. If we look at the higher values of f , the AoI for k = 5 and
k = 10 becomes the same as for k = 1 over a certain k, as the
relay activity rate becomes 1. If we consider higher values of
k, the sensor must increase its activity to balance higher values
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Fig. 5: Effect of the relay cost parameter k on the NE for the three schemes with c = 100.

of f , as it is not able to rely on the backup provided by the
relay. We can then define three activity regimes by looking at
the relay activation probability in Fig. 5c:

• A low-error regime, in which the sensor activity rate
increases linearly, while the relay is inactive;

• A high-error regime (only reached if the sensor activity
cost is high), in which the relay is always active, and the
sensor activity rate is fixed, as the benefits in terms of
expected AoI are not enough to offset the cost;

• An intermediate regime, in which p decreases with f ,
while b increases.

.
A similar pattern appears in Fig. 5d-f for periodic reporting.

Interestingly, the discrete nature of the reporting period leads
to a staircase-shaped AoI pattern: the expected age gradually
grows as f increases, then sharply drops when the cost
becomes high enough that the sensor reduces its period. When
the relay is also active, the age trend becomes smooth again, as
b can take continuous values. In the fully synchronized system,
shown in Fig. 5g-i, both the low-error and intermediate-error
regimes present the sawtooth pattern, as the relay’s actions are
also discrete. We note that, in the low- and high-error regimes,

the periodic and fully synchronized system behave identically,
as the relay is either always or never active, and the difference
between the two manifests only in the intermediate regime.

We can also perform the same evaluation as a function of
the sensor activity cost c, as shown in Fig. 6. The three activity
regimes are still present in the random reporting scheme, as
shown in Fig. 6a, and lower values of c lead to a higher
activity from the sensor (and a lower activity from the relay),
as well as a generally lower AoI. As Fig. 6d-f show, the
periodic reporting system shows a similar pattern, although
the high-error regime is reached earlier, and the expected AoI
is generally lower. We can note the same sawtooth pattern in
the low-error regime that we remarked on above; the same
considerations hold for the fully synchronized system, shown
in Fig. 6g-i.

We can then consider the threshold violation probability
optimization, in which the system penalty is ξ = 1−PΨ(ψthr):
in this case, we considered a quantization interval λ = 0.01,
which led to a quick convergence of the Lemke-Howson
algorithm in all cases. Naturally, the period T in the periodic
reporting system is already discrete, but we capped its value
to 100. The value was reduced to 30 for both M and T in the
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Fig. 6: Effect of the sensor activity cost c on the NE for the three schemes with k = 10.

fully synchronized system.

Fig. 7 shows the NE and threshold violation probability
for the threshold violation optimization.The first thing we can
note, which is evident from Fig. 7a, is that the sawtooth pattern
appears in the random reporting system as well. This is due
to the quantization of the action space, visible in Fig. 7b-c,
and a finer quantization step would have led to a smoother
curve. We also note that the sensor and relay costs need to
be reduced, as the risk is naturally bounded in [0, 1] since it
represents a probability, with a much lower dynamic range
with respect to the expected age. In this case, the relay never
reaches an activity rate of 1, while it does in the periodic
reporting scenario, as shown in Fig. 7d-f. We can see that, for
higher values of the sensor cost c, the relay activity rate grows
very rapidly after a certain threshold. If the relay activity is 1,
the optimal strategy for the sensor is to transmit every ψthr−1
steps, as this guarantees that the PAoI will never cross the
threshold (any failed transmission will be recovered through
the backup transmitted by the relay, with an additional delay
of 1 slot). In this case, the risk drops to 0 and the energetic
burden of the system is borne almost entirely by the relay. If
we consider lower values of c, this regime is never reached,
and the relay activity rate b gradually increases with f . The

fully synchronized system, shown in Fig. 7g-i, is even better at
maintaining a low violation risk, as its deterministic activation
pattern results in zero risk for Ψthr ≥MT + 1.

VIII. CONCLUSION AND FUTURE WORK

In this work, we studied a system in which status updates
from a sensor must be delivered through receiver over a
slotted-time, error-prone slotted channel, considering the pres-
ence of a relay node that can recover failures in the subsequent
slot. The relay and sensor are energy-limited and follow a duty
cycle, with either memoryless or periodic activations and no
coordination between the two.

We leveraged a closed-form analytical computation of the
expected AoI and PAoI threshold violation probability as func-
tions of the involved parameters, to derive a game theoretic
representation of the interaction between the sensor and the
relay as strategic agents driven by a common potential. We
showed that such an approach can be used to derive an
efficient system working point without any signaling between
the sensor and relay, but just through local computation at
each node. Thus, our proposed approach can be generalized
to a framework for practical implementations with backup out-
of-band relays in IoT scenarios [40].
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Fig. 7: Effect of c on the threshold violation NE in the three schemes with k = 0.25 and ψthr = 25 (quantization interval
λ = 0.01).

Future extensions may consider different models for the
activity of the nodes other than i.i.d. activation probabilities,
e.g., stateful optimizations can be performed [38], and the
same for the failure rate of the channel [48], as well as the
data generation process [49], potentially including correlation
between different sources [50], [51].
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