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We investigate geometric configurations of α (4He nucleus) clusters in the second Jπ = 2+ state
of 12C, which has been discussed as a rotational band member of the second 0+ state, the Hoyle
state. The ground and excited 0+ and 2+ states are described by a three-α cluster model. The
three-body Schrödinger equation with orthogonality conditions is accurately solved by the stochastic
variational method with correlated Gaussian basis functions. To analyse the geometric configura-
tion in a convenient form, we introduce a confining potential. The two-body density distributions
together with the spectroscopic information clarify the structure of these states. We find that main
configurations of both the second 0+ and 2+ states are acute-angled triangle shapes originating from
the 8Be(0+)+α configuration. However, the 8Be + α components in the second 2+ state become
approximately 2/3 because the 8Be subsystem is hard to excite, indicating that the state is not an
ideal rotational band member of the Hoyle state.

I. INTRODUCTION

An α (4He nucleus) cluster is one of the most fun-
damental ingredients for understanding the structure of
nuclei. The first excited Jπ = 0+ state of 12C, the so-
called Hoyle state, is believed to play a crucial role in
generating the 12C element in the universe [1]. For more
than half a century, the Hoyle state has been studied by
various theoretical models. As the state has a significant
amount of the 8Be(0+)+α configurations [2, 3], the Hoyle
state decays dominantly via sequential decay process
8Be(0+)α → 3α [4]. On the other hand, Ref. [5] claimed
that the Hoyle state has the α-condensate like charac-
ter, where three α bosons occupy in the same S orbit.
The structure of the Hoyle state has also been discussed
in terms of geometric configurations of three-α particles
based on the algebraic cluster model (ACM) [6–8]. Fully
microscopic calculations predicted a significant amount
of α cluster configurations in the Hoyle state [9, 10]. Very
recently, prominent three-α cluster structure configura-
tions were confirmed in the Monte Carlo Shell Model ap-
proach [11] and the density functional theory [12, 13].

The search for other excited cluster states with some
analogy to the Hoyle states has attracted interest. The
structure of second Jπ = 2+ state is controversial as it
can be a candidate of a rotational excited state of the
Hoyle state forming the “Hoyle band” [14]. Experimen-
tally, the 2+2 state was confirmed [15–18] at 2.59(6)MeV
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above the three-α threshold with the decay width of
1.01(15)MeV [19]. The idea of the Hoyle band has at-
tracted attention. Ref. [20] deduced a limit for the direct
decay branching ratio of the Hoyle state under the as-
sumption that the intrinsic structure of 0+2 and 2+2 are
the same. Theoretically, the 2+2 state has only been rec-
ognized as having dominant 8Be(0+) + α configurations,
in which its intrinsic structure is a weakly-coupled 8Be
plus an α particle with the angular momentum of 2 [3, 9].
In analogy to the Hoyle state, the α-mean field character
in the 2+2 state can be considered, in which one α parti-
cle is excited to the D orbit [21, 22] but Ref. [23] argued
that the 2+2 state is not a simple rotational excited state
based on the analysis of the energy levels obtained by the
microscopic three-α cluster model. In the context of the
ACM, the 2+2 state is interpreted as the rotational excited
state of the Hoyle state in which three α particles geo-
metrically form an equilateral triangle and vibrate with
the D3h symmetry [24]. To confirm whether this state
belongs to the Hoyle state, a certain degree of similarity
in the intrinsic structure should be observed. This moti-
vates us to conduct a detailed study to clarify the extent
of similarity between the structure of the second 0+ and
2+ states.

To settle this argument, in this paper, we study ge-
ometric configurations of three-α particles in the sec-
ond 2+ state and compare its structure with the second
0+ Hoyle state using accurate three-α wave functions.
8Be + α components are analysed to clarify the origin of
these configurations.

In this paper, the four physical states, Jπ = 0+1 ,
0+2 , 2+1 and 2+2 of 12C are studied within the three-α
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cluster model. In the next section, we explain our ap-
proach. Fully converged solutions are obtained by corre-
lated Gaussian expansion with the stochastic variational
method. They are briefly explained in Secs. II A and
IIB. Geometric configurations of the α particles are vi-
sualized by calculating two-body density distributions as
well as other physical quantities. To evaluate these phys-
ical quantities of the state with rather wide decay width
such as the second 2+ state, we introduce a confining po-
tential. The details are given in Sec. II C. In Sec. III,
we show the numerical results and analysis. Finally, we
conclude the structure of the 2+2 state in Sec. IV.

II. METHOD

A. Three-α cluster model

In this paper, the wave functions of 12C are described
as a three-α system. The ith single α particle coordinate
vector is denoted by ri (i = 1, 2, 3) and a set of Jacobi co-
ordinates, x1 = r2−r1 and x2 = r3−(r1+r2)/2, exclud-
ing the center-of-mass coordinate x3 = (r1 + r2 + r3)/3
is defined by x̃ = (x1,x2), where a tilde denotes the
transpose of a matrix. The three-α Hamiltonian reads

H =

3∑
i=1

Ti − Tcm +

3∑
i>j=1

(V ij
2α + V ij

Coul.) + V3α, (1)

where Ti is the kinetic energy of the ith α particle.
The kinetic energy of the center-of-mass motion Tcm is
subtracted. The mass parameter in the kinetic energy
terms and the elementary charge in the Coulomb poten-
tial (VCoul.) are taken as ℏ2/mα = 10.654 MeVfm2 and
e2 = 1.440 MeVfm, respectively. Two-α interaction V2α

is taken as the same used in Ref. [25], which is derived
by a folding procedure using an effective nucleon-nucleon
interaction. We employ the three-alpha interaction V3α

depending on the total angular momentum Jπ reproduc-
ing the binding energies as was used in Ref. [26]. Here
we adopt the orthogonality condition model [27–29]. To
impose the orthogonality condition to the Pauli forbid-
den states (f.s.), we introduce in the Hamiltonian the
following pseudopotential [30]:

VP = γ

3∑
i>j=1

∑
nlm∈f.s.

|ϕnlm(ij)⟩ ⟨ϕnlm(ij)| . (2)

The summation of nlm runs over all the f.s., i.e., 0S,
1S, and 0D states. We adopt the harmonic oscillator
wave functions for ϕnlm with the size parameter ν =
0.2575 fm−2 [25] reproducing the size of the α particle.
Taking γ large enough, we exclude the Pauli forbidden
states variationally from numerical calculations. In this
paper, we take γ = 105 MeV. The f.s. components of the
resulting wave functions are found to be in the order of
10−5.

B. Correlated Gaussian expansion

The kth state of the three-α wave function Ψ
(k)
JM (x)

with the total angular momentum J and its projection
M is expressed in a superposition of fully symmetrized
correlated Gaussian basis functions G [31, 32],

Ψ
(k)
JM =

K∑
i=1

C
(k)
i G(Ai, ui,x), (3)

G(Ai, ui,x) = S exp

(
−1

2
x̃Aix

)
YJM (ũix), (4)

where S is the symmetrizer which makes basis func-
tions symmetrized under all particle-exchange, ensuring
bosonic properties of α particles. A variational param-
eter Ai is a 2 by 2 positive definite symmetric matrix,
and x̃Ax is a short-hand notation of

∑2
i,j=1 Aijxi · xj .

The angular part of the wave function is described by us-
ing the global vector ũx =

∑2
j=1 ujxj with ũ = (u1, u2)

and u2
2 = 1 − u2

1 [32, 33]. A set of linear coefficients

C
(k)
i is determined by solving the generalized eigenvalue

problem,

K∑
j=1

HijC
(k)
j = E(k)

K∑
j=1

BijC
(k)
j (i = 1, . . . ,K), (5)

where the matrix elements Hij and Bij are defined as

Hij = ⟨G(Ai, ui,x)|H|G(Aj , uj ,x)⟩ (6)

Bij = ⟨G(Ai, ui,x)|G(Aj , uj ,x)⟩ . (7)

The variational parameters Ai and ui are determined by
the stochastic variational method [31, 32]. For more de-
tails of the optimization procedure, the reader is referred
to Refs.[34, 35].

C. Confining potential

In this paper, we treat resonant 0+2 and 2+2 states as
a bound state. This is the so-called bound-state approx-
imation and works well for a state with a narrow de-
cay width such as the 0+2 state (Expt.: Γ = 8.5 × 10−3

MeV [36]), while for 2+2 it is hard to obtain the physical
state with a simple basis expansion [37] as it has some-
what large decay width (Expt.: Γ = 1.01(15) MeV [17]).
To estimate the resonant energy, the analytical contin-
uation in the coupling constant [38] is useful but does
not provide us with the wave function. Nevertheless, a
square-integrable wave function of resonant states is use-
ful to analyse its structure. A confining potential (CP)
method [39, 40] is suitable for this purpose, as we can
treat a resonance state as a bound state inside of the
CP. To get a physical resonant state in the bound-state
approximation, we introduce a confining potential in the
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TABLE I. Calculated energies measured from the three-α
threshold and rms radii of the 0+1 , 0

+
2 , 2

+
1 , and 2+2 states.

Jπ E (MeV) Rrms (fm)

0+1 −7.25 1.71

0+2 0.84 3.44

2+1 −2.92 1.93

2+2 2.32 3.50

following parabolic form [39] as

VCP =

3∑
i=1

λΘ(|ri − x3| −R0)(|ri − x3| −R0)
2, (8)

where Θ(r) is the Heaviside step function,

Θ(x) =

{
1 (x > 0)

0 (x < 0)
. (9)

The strength λ and range R0 parameters of the confining
potential are real numbers and have to be taken appro-
priately.

Here we investigate the stability of the energies
as well as root-mean-square (rms) radii Rrms =√
⟨ΨJM |(r1 − x3)2|ΨJM ⟩ of the 0+1 , 0+2 , 2+1 states

against changes of λ and R0. Figure 1 shows the en-
ergies and rms radii of the 0+1 , 0+2 , 2+1 and 2+2 states
with different R0. The strength of the confining poten-
tial is set to be λ = 100 MeV/fm. Since the R0 value
is taken large enough, the energies and the rms radii of
the bound states, 0+1 and 2+1 , do not depend too much
on these parameters. Even for the resonant 0+2 and 2+2
states, we find that the fluctuations of the energies are
small about 0.1 MeV and 0.6 MeV, respectively, in the
range of R0 = 8–10 fm. This is reasonable considering
the facts that the 0+2 state has quite small decay width
and the 2+2 state has larger decay width. The magnitude
of the radius fluctuation against to the changes of R0 is
about ≈ 0.3 fm for the 0+2 state and ≈ 0.5 fm for the
2+2 state. We also made the same analysis by strength-
ening the strength λ by 10 times and a similar plot was
obtained. Hereafter, we use the results with R0 = 9 fm,
λ = 100 MeV/fm2.

Table I lists the calculated energies and rms radii.
These energy values can be compared with the real parts
of the complex energies obtained by the complex scal-
ing method (CSM) [26]. The energies are 0.75 and 2.24
MeV for 0+2 and 2+2 states, respectively, which are in good
agreement with our results. Finally, we obtain the rms
radii of the 0+2 and 2+2 states using these obtained wave
functions. They are found to be similar and significantly
large compared to the 0+1 and 2+1 states.
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FIG. 1. R0 dependence in the CP. Energies and rms radii of
the 0+1 , 0

+
2 , 2

+
1 , and 2+2 states with R0 = 8, 9 and 10 fm are

plotted. The strength of the confining potential λ is set to be
100 MeV/fm2. See text for details.

III. RESULTS

A. Three-α configurations: Two-body density

To discuss the geometric configurations of the three-α
systems, it is intuitive to see the two-body density distri-
butions with respect to the two relative coordinates, x1

and x2, defined by

ρ(r,R) = ⟨Ψ|δ(|x1| − r)δ(|x2| −R)|Ψ⟩ , (10)

Note that the distribution is normalized as∫∞
0

dr
∫∞
0

dR ρ(r,R) = 1. Figure 2 plots the two-

body density distributions of the Jπ = 0+1 , 0
+
2 , 2

+
1 , and

2+2 states. For a guide to the eyes, the specific r/R
ratios are indicated by the dashed lines and their corre-
sponding geometric shapes are depicted by inset figures.
We remark that the two-body density distributions were
already discussed for the Jπ = 0+ states in detail by
using the shallow potential models [4, 41]. Here we
present the results with the OCM. The preliminary
results for the 0+ states were already discussed in
Ref. [42] but we repeat it to remind the characteristics
of the two-body density distributions and to compare it
with the 2+ state.
The two-body density distributions of the 0+1 and 2+1

states have similar peak structures; the most dominant
peak is located on the equilateral triangle configuration
at r ∼ 3 fm and some other peaks come from the nodal
behavior of wave function due to the orthogonality to the
forbidden states. We see different fine structures when a
shallow potential model is employed. See Ref. [42] for
detailed comparison.
In contrast to the compact ground state, the two-body

density distribution of the 0+2 state is widely spreading.
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FIG. 2. Two-body density distribution ρ(r,R) of the (a) Jπ = 0+1 , (b) 0+2 , (c) 2+1 , and (d) 2+2 states. Contour intervals are
0.025 fm−2 for 0+1 and 2+1 and 0.0025 fm−2 for 0+2 and 2+2 . Specific r/R ratios are indicated by dashed lines and their geometric
configurations are illustrated in small panels, e.g., the diagonal dashed line indicates the equilateral triangle configurations.

The most dominant peak of the 0+2 state distribution is
located at the acute-angled triangle configuration, which
comes from the 8Be(0+) + α structure [42]. For the 2+2
state, likely to the 0+2 , the two-body density distribution
spreads and the most dominant peak is located at the
acute-angled triangle configuration. However, we find
that the amplitude is significantly smaller than the 0+2
state and less small peaks in the internal regions. The
difference of these peak structures between the 0+2 and
2+2 states implies different intrinsic structure, which will
be discussed in the next subsection.

B. Partial-wave and 8Be components in the three-α
wave functions

In this subsection, we discuss more detailed structure
of these three-α wave functions. For this purpose it is
convenient to calculate the partial-wave component and
8Be spectroscopic factor, which are respectively defined
by

Pl1l2 =
3!

2!1!
|⟨ [Yl1(x̂1)Yl2(x̂2)]JM |ΨJM ⟩|2 , (11)

Sl1l2 =
3!

2!1!
|⟨ϕl1(x1)[Yl1(x̂1)Yl2(x̂2)]JM |ΨJM ⟩|2 , (12)

where ϕl is the radial wave functions of
8Be with the rel-

ative angular momentum l = 0, 2, or 4, which correspond
to physical resonant states with Jπ = 0+, 2+ or 4+, re-
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spectively, obtained by solving the two-α system using
the same two-α potential adopted in this paper. The
Pl1l2 value is the probability of finding (l1, l2) component
in the three-α wave function, while the Sl1l2 value can be
a measure of the the 8Be+α clustering. Note that given
l1 and l2, Sl1l2 is a subspace of Pl1l2 , hence Sl1l2 ≤ Pl1l2

always holds.
Table II lists the Pl1l2 and Sl1l2 values for the 0+ and

2+ states. The 0+1 state has almost equal Pl1l2 val-
ues for l1 = l2 = 0, 2, and 4, which can be explained
by reminding that the state has the SU(3)-like charac-
ter [22]. The higher partial-wave components is found to
be ≈ 5%. The 0+1 wave function has about 50% of the
8Be + α component. The 2+1 state is mainly composed
of (l1, l2) = (2, 2) and (4,4) components, P22 and P44, re-
flecting SU(3) character as like the 0+1 state [22] and also
contains about half of the 8Be + α component. Conse-
quently, the structure of the 2+1 state can be interpreted
as a rigid rotational excited state of the 0+1 while keeping
its geometric shape as was shown in Fig. 2.

On contrary, the Pl1l2 values of 0+2 concentrate only on
the l1 = l2 = 0 channel about 70%, which is consistent
with the microscopic cluster model calculations [22, 43].
This characteristic behavior is often interpreted as the
bosonic condensate state of the three-α particles [5, 22].
This (l1, l2) = (0, 0) channel mostly consists of the
8Be(0+) + α component shown in Table II, forming the
acute-angled triangle shape in the two-body density dis-
tribution [42].

For the 2+2 state, dominant partial-wave components
are the (l1, l2) = (0, 2) and (2,0) channels. The 8Be(0+)+
α component is dominant in the (l1, l2) = (0, 2) chan-
nel, while few 8Be(2+) + α component is found in the
(l1, l2) = (2, 0) channel, which is in contrast to the 0+2
state mainly consisting of the 8Be+α configuration. This
strong suppression can naturally be understood by con-
sidering the fact that the excitation energy of 8Be(2+)
is rather high 3.26 MeV (Expt.: 3.12 MeV [44]), com-
pared to the calculated energy spacing between 0+2 and
2+2 , ≈ 1.4 MeV.

C. Spectroscopic amplitude

To discuss the role of the dominant channels in the
geometric configurations in the 0+2 and 2+2 states, it is
useful to evaluate the 8Be spectroscopic amplitude (SA)

θl1l2(R) =

√
3!

2!1!

1

R2

× ⟨ϕl1(x1) [Yl1(x̂1)Yl2(x̂2)]JM δ(|x2| −R) |ΨJM ⟩ .
(13)

Note that
∫∞
0

dR [Rθl1l2(R)]2 = Sl1l2 . For practical cal-
culations, see Appendix A of Ref. [45], where an explicit
formula of the SA with the correlated Gaussian basis
function was given.

Figure 3 shows the SA with (l1, l2) = (0, 0) for the
0+2 state and (0,2) for the 2+2 state, which respectively
correspond to the dominant configurations for each state.
The SA of the 2+2 state is smaller than that of the 0+2 state
reflecting the magnitudes of the Sl1l2 values. For the sake
of comparison, we also plot the radial wave function of
8Be(0+), ϕ0(r). The peak position of rϕ0(r) is located
at 3.68 fm, while the SA has the largest peak at 4.97 fm
for the 0+2 state and 6.20 fm for the 2+2 state. These are
consistent with the fact that the highest peak of the two-
body density distribution is located at (r,R) = (3.9, 5.1)
fm for the 0+2 state and (r,R) = (3.9, 5.3) fm for the 2+2
state, exhibiting the acute-angled triangle configuration
as shown in Fig. 2.
We also evaluate the rms radii of the SA defined by

Dl1l2 =
√∫∞

0
dRR2[Rθl1l2(R)]2/Sl1l2 , listed in Table II.

The SA radii of the dominant channel of the 0+2 and 2+2
states are 5.84 fm with (l1, l2) = (0, 0) and 7.38 fm with
(l1, l2) = (0, 2), respectively. Remanding that the rms
distance of the 8Be wave function is 5.32 fm, the 8Be+α
configuration induces an acute-angled triangle geometry.

IV. CONCLUSION

How similar is the structure of the 2+2 state in the 12C
as compared to the Hoyle state? We have made com-
prehensive investigations of the structure of 12C with a
special emphasis on the geometric configurations of α
particles. The 0+ and 2+ states of 12C are described by a
three-α cluster model with the orthogonality constraint.
Precise three-α wave functions are obtained by using the
correlated Gaussian expansion with the stochastic varia-
tional method. We introduce a confining potential to ob-
tain a physical state, allowing us to visualize the three-α
configuration by using square integrable basis functions.
In comparison of the two-body density distributions of

the 0+2 and 2+2 state, the main three-α configurations are
found to be the same; the acute-angled triangle shape
coming from the 8Be(0+) + α component. However, the
magnitude is significantly small for the 2+2 state com-
pared to the 0+2 state. We find that the 2+2 state can be
mainly excited by the relative coordinate between 8Be
and α. The 8Be cluster in the 0+2 state is hardly excited
because the excitation energy of the 8Be(2+) is higher
than the energy difference of 2+2 state from the Hoyle
state. Therefore, we conclude that the 2+2 state is not
the ideal Hoyle band but could be interpreted as a par-
tially rotational excited state of 0+2 . It is interesting to
study the 4+2 state, which is observed recently [14] and
considered also as a candidate of the Hoyle band member.
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TABLE II. Partial-wave component and 8Be spectroscopic factor of the Jπ = 0+ and 2+ states. See text for details.

0+1 2+1 0+2 2+2
(l1l2) Pl1l2 Sl1l2 Pl1l2 Sl1l2 Pl1l2 Sl1l2 Pl1l2 Sl1l2

(00) 0.352 0.193 – – 0.786 0.668 – –

(02) – – 0.096 0.058 – – 0.451 0.419

Subtotal (l1 = 0) 0.352 0.193 0.096 0.058 0.786 0.668 0.451 0.419

(20) – – 0.095 0.054 – – 0.374 0.021

(22) 0.351 0.175 0.483 0.268 0.112 0.027 0.044 0.011

(24) – – 0.006 0.003 – – 0.020 0.007

Subtotal (l1 = 2) 0.351 0.175 0.584 0.325 0.112 0.027 0.438 0.039

(42) – – 0.007 0.003 – – 0.029 0.007

(44) 0.285 0.100 0.299 0.114 0.060 0.013 0.017 0.008

(46) – – ∼ 10−4 ∼ 10−5 – – 0.006 0.004

Subtotal (l1 = 4) 0.285 0.100 0.306 0.117 0.060 0.013 0.052 0.019

Total 0.988 0.468 0.986 0.500 0.958 0.708 0.941 0.477
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FIG. 3. Square of 8Be spectroscopic amplitudes, θl1l2(R) with (a) (l1, l2) = (0, 0) and (b) (l1, l2) = (0, 2) for the 0+2 and 2+2
states. The radial wave function of the 8Be(0+) state ϕ0(r) is also compared.
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Rev. C 87, 044307 (2013).

[13] J.-P. Ebran, M. Girod, E. Khan, R. D. Lasseri, and P.
Schuck, Phys. Rev. C 102, 014305 (2020).

[14] M. Freer et al., Phys. Rev. C 83, 034314 (2011).
[15] M. Itoh, et al., Nucl. Phys. A 738, 268 (2004).
[16] M. Freer et al., Phys. Rev. C 80, 041303(R) (2009).
[17] M. Itoh et al., Phys. Rev. C 84, 054308 (2011).



7

[18] W. R. Zimmerman et al., Phys. Rev. Lett. 110, 152502
(2013).

[19] J. H. Kelley, J. E. Purcell, and C. G. Sheu, Nucl. Phys.
A 968, 71 (2017).

[20] R. Smith, M. Gai, M. W. Ahmed, M. Freer, H. O. U.
Fynbo, D. Schweitzer, and S. R. Stern, Phys. Rev. C
101, 021302(R) (2020).

[21] Y. Funaki, A. Tohsaki, H. Horiuchi, P. Schuck, and G.
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