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Abstract

The human brain has a remarkable metabolic budget, and most of its glucose

and oxygen consumption happen during rest. However, the precise factors that

control resting-state metabolism across different brain regions are still unknown.

Two functional imaging tools that can provide a window into the complex mech-

anisms of brain metabolism and spontaneous activity are positron emission to-

mography (PET) and functional MRI (fMRI). In particular, the PET radio-

tracer [18F]fluorodeoxyglucose ([18F]FDG) allows to track the first steps of glucose

metabolism in the brain in vivo; resting-state fMRI (rs-fMRI), on the other hand,

has a offered a powerful non-invasive tool for assessing proxies of spontaneous

brain activity through blood oxygenation, as well describing a large-scale brain

organization into ‘functional connectivity’ (FC) networks, composed of brain re-

gions whose rs-fMRI signals fluctuate in synchrony. Trying to disentangle both

the redundancy and the complementarity in the information coming from these

two imaging modalities is extremely relevant for both neuroscientific and technical

questions, e.g., 1) to characterize the functional drivers of local glucose consump-

tion, 2) to better understand the somewhat unclear physiological and metabolic

bases of the rs-fMRI signal, 3) to describe the large-scale functional network ar-

chitecture of the resting brain both in hemodynamic and in metabolic terms, 4)

to provide reliable fMRI-based proxies of glucose metabolic consumption to use

as biomarkers of disease etc.

In this thesis work, organized into three main parts, we have broadened the hori-

zon of [18F]FDG PET vs. rs-fMRI integration on multiple levels.

First, we assess the relationship between [18F]FDG standard uptake value ratio

(SUV R), a relative and semiquantitative proxy of glucose metabolism, and a

large range of fMRI-derived variables (= 50) to understand if the metabolic in-

formation probed by [18F]FDG was more related to the fMRI signal local activity

and coherence, or large-scale static and time-varying FC, expanding on previous

assessments based only on a handful of fMRI features. Also, we develop a new
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2 Abstract

methodological framework (including multiple regression and multilevel hierar-

chical modelling) to explore whether a combination of rs-fMRI variables could

meaningfully explain more of the regional metabolic variability than simple pair-

wise associations.

Then, we expand our assessment by exploring the details of metabolic physiology

thanks to full kinetic modelling of [18F]FDG dynamic PET data: in particular, we

move away from SUV R by estimating parametric maps of the [18F]FDG delivery

(K1 [ml/cm3/min]) and phosphorylation (k3 [min−1]), and evaluate their peculiar

regional distribution, never previously described at this level of spatial resolu-

tion. We proceed by assessing how these parameters, including the tracer uptake

rate (Ki [ml/cm3/min]), interact not only with rs-fMRI features, but also with

regional cerebral blood flow (CBF ) and metabolic rate of oxygen (CMRO2), to

have the most complete vision possible of these complex metabolic and hemody-

namic relationships.

Finally, we try to understand if a closer match between [18F]FDG and rs-fMRI

information can be attained at the large-scale network level by obtaining a single-

subject ‘metabolic connectivity’(MC) estimate, i.e., a PET counterpart to fMRI

FC. To do so, we provide a completely new methodological framework for single-

subject MC estimation, by employing a distance-based (and not a correlation-

based) metric, and using kinetic modelling to differentiate MC matrices based on

tracer inflow vs. metabolic events. These individual MC estimates are then com-

pared to traditional across-subject covariation matrices of [18F]FDG parameters,

and both are related to fMRI FC to understand which approach has a higher

level of similarity.



Sommario

Il cervello umano ha un notevole budget metabolico, e la gran parte del suo

consumo di glucosio e ossigeno avviene a riposo. Tuttavia, i precisi fattori che

controllano il metabolismo delle diverse regioni cerebrali nello stato di riposo

(resting state) sono ancora sconosciuti.

Due strumenti di imaging funzionale che possono fornire una finestra di osser-

vazione sui complessi meccanismi del metabolismo e dell’attività spontanea cere-

brale sono la tomografia a emissione di positroni (PET) e la risonanza magnet-

ica funzionale (fMRI). In particolare, il tracciante PET [18F]Fluorodeossiglucosio

([18F]FDG) consente di seguire i primi step del metabolismo del glucosio nel

cervello in vivo; la fMRI in resting state (rs-fMRI), dall’altro lato, ha fornito un

potente strumento non invasivo per misurare dei succedanei dell’attività spon-

tanea cerebrale basati sull’ossigenazione ematica, e per descrivere un’organizzazione

su larga scala del cervello in reti di ‘connettività funzionale’ (FC), costituite da

regioni cerebrali i cui segnali rs-fMRI fluttuano in sincronia. Cercare di dipanare

gli elementi ridondanti e quelli complementari nelle informazioni provenienti da

queste due modalità di imaging è estremamente rilevante per domande sia neuro-

scientifiche che tecniche, ad esempio, 1) per caratterizzare i substrati funzionali

del consumo locale del glucosio, 2) per comprendere meglio le basi fisiologiche

e metaboliche, ancora parzialmente non chiare, del segnale rs-fMRI, 3) per de-

scrivere l’architettura di reti funzionali su larga scala del cervello a riposo sia in

termini emodinamici che funzionali, 4) per fornire succedanei affidabili basati su

fMRI del consumo metabolico di glucosio, da usare come biomarcatori di malat-

tia, ecc.

In questo lavoro di tesi, organizzato in tre parti principali, abbiamo ampliato

l’orizzonte dell’integrazione tra [18F]FDG PET e rs-fMRI su multipli livelli.

In primo luogo, abbiamo valutato la relazione tra lo standard uptake value ratio

(SUV R) di [18F]FDG, un succedaneo relativo e semi-quantitativo del metabolismo

del glucosio, e un ampio range di variabili derivate da fMRI (= 50) per com-

3



4 Sommario

prendere se l’informazione metabolica valutata da [18F]FDG fosse maggiormente

legata all’attività e alla coerenza locale del segnale fMRI, o alla FC statica e di-

namica su larga scala, ampliando la visione rispetto ai risultati precedenti basati

solo su poche variabili fMRI. Inoltre, abbiamo sviluppato una nuova impalcatura

metodologica (che include regressione multipla e modellistica gerarchica multiliv-

ello) al fine di esplorare se una combinazione di variabili rs-fMRI potesse spiegare

in modo significativo una maggior percentuale di variabilità metabolica regionale

rispetto a semplici associazioni bivariate.

Successivamente, abbiamo espanso la nostra valutazione esplorando i dettagli

della fisiologia metabolica grazie a modelli cinetici dei dati [18F]FDG PET di-

namici: in particolare, ci siamo lasciati alle spalle il SUV R andando a stimare

mappe parametriche di ingresso (K1 [ml/cm3/min]) e fosforilazione (k3 [min−1])

del [18F]FDG, e studiando la loro peculiare distribuzione regionale, mai descritta

prima a questo livello di risoluzione spaziale. Inoltre, abbiamo valutato come

questi parametri, compresa la velocità di accumulo del tracciante (Ki [ml/cm3/min]),

interagiscono non solo con le variabili rs-fMRI, ma anche con il flusso ematico cere-

brale (CBF ) e il tasso metabolico dell’ossigeno (CMRO2) regionale, per avere

una visione il più completa possibile di queste complesse relazioni metaboliche ed

emodinamiche.

Infine, abbiamo cercato di comprendere se fosse possibile raggiungere una più

stretta corrispondenza tra informazioni [18F]FDG e rs-fMRI a livello di reti di

larga scala ottenendo una stima a singolo soggetto di ‘connettività metabolica’

(MC), cioè una controparte PET alla FC di fMRI. Per fare questo, abbiamo for-

nito una impalcatura metodologica completamente nuova per la stima della MC

a singolo soggetto, utilizzando una metrica basata sulla distanza (e non sulla

correlazione) e usando i modelli cinetici per differenziare tra matrici MC basate

sull’ingresso del tracciante da quelle basate sugli eventi metabolici. Queste stime

di MC individuali sono poi state confrontate alle tradizionali matrici di covari-

azione attraverso i soggetti dei parametri [18F]FDG, ed entrambe sono state messe

in relazione alla FC di fMRI per comprendere quale approccio avesse il maggior

livello di similarità.
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Chapter 1

Introduction and Motivation

�The mammalian brain is a complex heterogeneous organ comprising

many components with different [. . . ] levels of functional activity and

energy metabolism.� (L. Sokoloff et al. 1977)

�The brain apparently uses most of its energy for functions unac-

counted for – dark energy, in astronomical terms. What do we know

about this dark energy?”� (Marcus E. Raichle 2006)

The human brain is responsible for at least 20-25% of the body’s glucose metabolic

consumption, while accounting for only 2% of the body’s weight, and in physio-

logical conditions glucose represents its only source of energy (Kety 1957; Clarke

and Louis Sokoloff 1999).

The cerebral metabolic rate of glucose (CMRglc) is known to be coupled to the

cerebral metabolic rate of oxygen (CMRO2), as most of glucose consumption

happens through oxidative phosphorylation (Magistretti and Pellerin 1999), and

the cerebral blood flow (CBF ), responsible for carrying the nutrients necessary

to the brain. Importantly, glucose expense displays significant regional variability

in the healthy brain, but the reasons governing this heterogeneity remain largely

unexplained.

The majority of energy expenditure in terms of glucose (CMRglc) and oxygen

consumption (CMRO2) seems to happen while the brain is idle at rest (Louis

Sokoloff et al. 1955): this remarkable metabolic budget, which was famously

called ‘the brain’s dark energy ’ (Marcus E. Raichle 2006), is expected to be mainly

employed for maintaining resting potentials and subthreshold synaptic transmis-

sion (Marcus E. Raichle 2006), since most of the energy budget of a neuron is

utilized at the level of the synapses, rather than in the neuron’s body (Louis
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Sokoloff 1999). This putative importance of spontaneous activity is a key reason

for trying to integrate resting-state measurements of glucose metabolism with

complementary imaging techniques attempting to capture the patterns of brain

intrinsic activity.

Traditionally, CMRglc is calculated using positron emission tomography (PET)

and the [18F]fluorodeoxyglucose ([18F]FDG) radiotracer (L. Sokoloff et al. 1977;

Phelps et al. 1979). While full kinetic modelling is known to provide more accu-

rate and precise information (Lammertsma 2017), a simplified proxy of glucose

metabolism requiring only a short, static [18F]FDG PET scan has been devised,

i.e., standardized uptake value ratio (SUV R), now used in most clinical and re-

search studies (Hamberg et al. 1994).

On the other hand, one of the most frequently employed tools to study intrin-

sic activity in the brain is resting-state functional magnetic resonance imaging

(rs-fMRI), which is based on the so-called blood oxygen level-dependent (BOLD)

contrast resulting from changes in hemoglobin oxygenation in response to brain

activity (S. Ogawa, T. M. Lee, et al. 1990). BOLD rs-fMRI has allowed to

map many properties of the brain’s intrinsic functional architecture, in partic-

ular its ‘functional connectivity’ (FC), i.e., the statistical association between

low-frequency fluctuations of BOLD time series of different areas, which allows

to describe an organization into resting-state networks (RSNs) (M. D. Fox and

Marcus E. Raichle 2007). However, the physiological interpretation of the BOLD

signal is still difficult. Physiological models of BOLD have shown how local neu-

ral activity can give rise to BOLD signal fluctuations once convolved with the

hemodynamic response function (HRF), which involves changes in blood volume

(CBV ), CBF , and CMRO2 (Buxton, Uludağ, et al. 2004; Kim and Seiji Ogawa

2012), but many interpretation problems are left open.

Building upon the previous considerations, the relationship between the spatial

information provided by [18F]FDG PET and by rs-fMRI needs to be thoroughly

investigated with two main aims:

1) first, the sources of regional variability in glucose expense need to be bet-

ter understood, and rs-fMRI features should provide relevant insights; in partic-

ular, we might wonder how much of the brain’s energy consumption is related

to a) local activity and synchronization of spontaneous activity patterns; b) local

information on the HRF ; c) inter-regional static synchrony (FC); d) dynamic,

time-varying interactions between regions (Allen et al. 2014)?

2) second, from the opposite perspective, the physiological basis of BOLD-
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derived properties needs to be further characterized, and [18F]FDG PET can help

in this by elucidating the underlying metabolic processes. In the growing litera-

ture on [18F]FDG vs. fMRI comparisons, the main findings are an overall good

spatial match between [18F]FDG parameters (usually SUV R, rarely CMRglc)

and rs-fMRI regional homogeneity (ReHo), i.e., the local coherence of the BOLD

signal (D. Tomasi, G. J. Wang, and Volkow 2013; Marco Aiello et al. 2015;

Bernier et al. 2017; J. Wang et al. 2021). Less stable/weaker associations are

found for large-scale FC (D. Tomasi, G. J. Wang, and Volkow 2013; Marco Aiello

et al. 2015; Palombit et al. 2022). Notably, only bivariate associations have been

tested in the majority of these works.

Another possible approach to look for a match between [18F]FDG and rs-fMRI

properties is to bring them both to a ‘connectivity’ framework, which means

comparing FC to its PET counterpart, i.e., ‘metabolic connectivity’ (MC), de-

scribing the relationships between metabolic rates of different brain regions. Most

of the MC literature, however, resorts to measures of across-subject covariation

of SUV R (Horwitz, Duara, and Rapoport 1984; Yakushev, Drzezga, and Habeck

2017; Di, Gohel, et al. 2017) instead of deriving single-subject estimates that

could directly match individual-level FC. A few studies have attempted to use

dynamic PET to obtain subject-level MC estimates (Wehrl et al. 2013; Ionescu

et al. 2021; Jamadar et al. 2021), but these methodologies, though promising, are

still in their infancy.

1.1 Aim

The aim of this thesis was to explore the coupled and complementary information

that [18F]FDG PET and rs-fMRI can provide on metabolism and spontaneous ac-

tivity across the whole brain.

To this end, we first evaluated the association of [18F]FDG SUV R to a large

battery of features obtained from rs-fMRI using a new multivariable modelling

framework (chapter 4).

Then, we expanded our assessment to [18F]FDG kinetic model parameters (Ki,

K1, k3) for the first time, to evaluate how their regional variability could relate

to rs-fMRI, as well as to other metabolic properties such as CBF and CMRO2,

using the aforementioned statistical framework (chapter 5).

Finally, we moved from a local, region-based [18F]FDG analysis to a large-scale,

network -based approach, assessing different ways to compute single-subject and
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across-subject MC though the lens of PET kinetic modelling, with the hypothesis

that applying a ‘connectivity’ approach also to PET would improve the similarity

with rs-fMRI FC (chapter 6).

Several methodological challenges were addressed during this research work, re-

lated in particular to appropriate estimation of rs-fMRI features, tuning of multi-

ple regression and feature selection strategies, voxel-wise estimation of [18F]FDG

kinetic model parameters and CBF using an image-derived input function (IDIF)

(see Chapter 8), selection of the most appropriate estimation approaches for

single-subject MC.

1.2 Thesis Contributions and Outline

Here is a list which briefly describes the topics covered in each chapter of this

dissertation and the contributions made to them.

Chapter 1: Introduction and Motivation

The current chapter provides an introductory overview and motivation for the

research presented in this dissertation.

Chapter 2: [18F]FDG Positron Emission Tomography

This chapter introduces the principles of PET, in particular with reference to the

[18F]FDG tracer. A description is given of static vs. dynamic PET experiments,

and of kinetic modelling as a means of deriving specific physiological information

about the tracer delivery and binding. A brief comment on the role of the input

function (also discussed in Chapter 8) is provided. Moreover, we give an overview

of the approaches employed for across-subject and within-subject MC calculation.

Chapter 3: Resting-state Functional Magnetic Resonance Imaging

This chapter introduces the basic principles of rs-fMRI. A brief description of

the main features that can be derived from rs-fMRI, i.e., those related to the 1)

signal and its local properties, 2) HRF, 3) static FC, 4) time-varying FC, is given.

Chapter 4: Modelling the complex spatial relationship between [18F]FDG

SUVR and resting-state fMRI features

In this chapter we study the spatial coupling between [18F]FDG SUV R, a static

semi-quantitative index of glucose metabolism, and 50 different rs-fMRI features,
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representative of all the main types of information that can be obtained from the

BOLD signal, in a group of healthy individuals.

One main contribution of this study is to extend the assessment of the [18F]FDG-

fMRI coupling to a large range of rs-fMRI features (including, for the first time,

HRF-related and tvFC-based features). Moreover, for the first time, we assess

the multivariable information provided by rs-fMRI predictors of SUV R regional

variability to see how much explanatory power we can reach, both at group and

single-subject level.

Overall, we find that SUV R still contains a large portion of spatial information

which is not explained by the available rs-fMRI features, and that only local rs-

fMRI information is promising for explaining [18F]FDG metabolism.

Chapter 5: The spatial distribution of [18F]FDG delivery and phospho-

rylation, and their coupling with fMRI

This chapter builds upon the limitations of the previous analysis, which was re-

stricted to a static [18F]FDG approach and a limited number of subjects. Here,

we expand our assessment to around 50 individuals with dynamic [18F]FDG PET

acquisitions, which allow us to estimate the kinetic parameters of interest (Ki,

K1, k3) using an IDIF approach (see Chapter 8).

The main contribution of this study pertains to how the [18F]FDG kinetic pa-

rameters, which have a clear physiological interpretation (as seen above, related

to glucose uptake, delivery and phosphorylation), have been obtained at a high

level of resolution, allowing us to study their peculiar spatial distribution for the

first time. Moreover, the availability of CBF and CMRO2 estimates from 15O

PET data has allowed us to try and understand which combination of rs-fMRI

and 15O PET information could best explain the observed [18F]FDG PET spatial

patterns.

Again, even when [18F]FDG kinetic parameters are considered, we find that local

rs-fMRI variables are still the most predictive of the regional variability of glucose

metabolism.

Chapter 6: Bringing [18F]FDG PET to the ‘brain connectivity’ frame-

work to explore its match with functional connectivity

In this chapter, we move away from the region-level approach, to extend it to a

network -level, brain connectivity framework. Our main aims are: 1) to develop

an approach for estimating single-subject PET connectivity using dynamic PET
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time-activity curves (TACs), 2) to assess the relationships between our single-

subject approach and the traditional across-subject metabolic connectivity (MC),

3) to verify if a single-subject approach improves the match with rs-fMRI FC.

The main contributions of this study are the use of a new, distance-based metric

for single-subject MC calculation, the use of concepts from PET kinetic modelling

for both across-subject and within-subject MC (i.e., kinetic parameters, compart-

ment time courses, as in Chapter 5), and the demonstration of a good match with

fMRI FC, potentially implying that network -level information becomes relevant

when both PET and fMRI are brought to a connectivity framework.

Chapter 7: Conclusions

The final chapter summarizes the dissertation’s contributions and discusses some

perspectives for the topics under study.



Chapter 2

Positron Emission Tomography

In the field of functional brain imaging, PET is among the most well-known tech-

niques. Pioneered by Dr. Louis Sokoloff in the 1970s (L. Sokoloff et al. 1977), it

allows for in vivo quantification of the kinetics of enzymes and receptors by means

of injectable radiotracers such as the aforementioned [18F]FDG, which images tis-

sue glucose consumption and has such widespread use in the fields of oncology,

neurology and cardiology to have been called the “molecule of the millennium”

(Britz-Cunningham and Adelstein 2003).

Two experimental frameworks are typically employed in PET imaging, i.e., static

acquisitions, the most frequent in the clinical setting, where a single image is

reconstructed from the acquired radioactive counts in a given window of time,

and dynamic acquisitions, usually reserved to the research environment, where

a multi-frame reconstruction of the tracer kinetics over time is obtained (Figure

2.1) (Alessandra Bertoldo, Rizzo, and Veronese 2014).

PET is known to be highly sensitive and biochemically specific, with the ability

to detect concentrations of enzymes and receptors ranging up to 10−11 mol/L and

10−12 mol/L, and, differently from MRI in general, it can provide quantitative

estimates (Catana 2017; Meikle et al. 2021). On the other hand, PET conven-

tionally suffers from limited spatial resolution, which is in the order of 5-6 mm for

standard PET cameras, making it susceptible to partial volume effects (PVEs)

(Rousset et al. 2007). Moreover, its temporal resolution is traditionally in the

order of minutes, making it difficult to follow fast processes, and it also carries

(minor) radioactivity-related risk for the subjects undergoing the study. These

are among the reasons why over time it has become less popular, even leading to

some researchers calling it as a ‘dying white elephant’ (Cumming 2014).

However, in addition to its continued clinical utility, new developments in both
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hardware and software are pushing these boundaries and opening up new and

exciting scenarios for PET imaging, both in the brain and in the rest of the body

(Meikle et al. 2021; T. Feng et al. 2021).

Figure 2.1: Static vs. dynamic brain PET imaging. In static scans, the activity of the tracer is
counted over a given time window and reconstructed into a single image. In dynamic

studies, the activity of the tracer is measured at multiple time points, resulting in four-
dimensional data. Adapted from (Alessandra Bertoldo, Rizzo, and Veronese 2014).

2.1 [18F]FDG PET quantification: from

compartmental modelling to SUV R

To quantify CMRglc and other physiological parameters related to glucose metabolism,

[18F]FDG is the tracer of choice, a glucose analogue with favorable pharmacoki-

netic properties, which make it more tractable than the ideal tracer [11C]glucose

(Blomqvist et al. 1990).

Assuming glucose metabolism to be in steady state, according to tracer-tracee

theory, [18F]FDG kinetics can be described by linear time-invariant differential

equations based on considerations of mass conservation, then translated into con-

centration changes by assuming a given dilution volume (Alessandra Bertoldo,

Rizzo, and Veronese 2014). [18F]FDG kinetics is traditionally described by a

two-tissue three-rate-constant (3K) compartmental model, which was developed

by Dr. Louis Sokoloff (L. Sokoloff et al. 1977; Phelps et al. 1979), and still rep-

resents the gold-standard approach to [18F]FDG quantification (Figure 2.2). For

parameter identification, a noise-free input is typically derived by arterial sam-

pling of the [18F]FDG plasma concentration Cp(t), i.e., the so-called arterial input

function (AIF). Then, the PET measurement equation,
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Cmeasured(t) = (1− Vb)(C1(t) + C2(t)) + VbCb (2.1)

can be used to describe the total concentration of radioactivity over time, Cmeasured(t),

measured by the PET scanner, as the sum of the concentration of unmetabolized

[18F]FDG, C1(t), and metabolized (phosphorylated) [18F]FDG, C2(t), while also

accounting for the vascular volume fraction in the tissue, Vb ([%]), and the arterial

blood tracer concentration Cb(t),

Cb(t) = Cp(t)(1− 0.3H) (2.2)

obtained from Cp(t) and the subject’s hematocrit H. The differential equations

describing the rates of concentration changes for C1(t) and C2(t) are:

Ċ1(t) = K1Cp(t)− (k2 + k3)C1(t) C1(0) = 0 (2.3)

Ċ2(t) = k3C1(t) C2(0) = 0 (2.4)

All the model parameters, i.e., K1, k2, k3, Vb, are a priori uniquely identifiable

(E. Carson 2013; Cobelli and E. R. Carson 2008). Other than Vb, three single

rate constants, or microparameters, can be estimated:

• K1 ([ml/cm3/min]), which quantifies the arterial influx of [18F]FDG across

the blood-brain barrier (BBB) through glucose transporters (GLUT (Pessin

and Bell 1992; Barrio et al. 2020)) with a saturable Michaelis-Menten ki-

netics;

• k2 ([min−1]), which quantifies the venous efflux of [18F]FDG across the BBB;

• k3 ([min−1]), which quantifies the phosphorylation rate of [18F]FDG into

[18F]FDG-6-P by the hexokinase enzyme in neurons and glia.

In Sokoloff’s model, the dephosphorylation rate of [18F]FDG-6-P to [18F]FDG

(k4[min−1]) is considered negligible during standard 60-minute acquisitions, which

makes [18F]FDG a tracer with irreversible kinetics. In longer experiments (> 120

min), k4 can in fact be observed, requiring an adjustment to a four-rate-constant

reversible model (4K); if observed in experiments shorter than 2 hours, however,

k4 was demonstrated to be an artifact of tissue heterogeneity (K. Schmidt et al.

1992). The K1, k2, k3 rate constants are usually combined into a macroparameter

called net trapping rate, Ki, ([ml/cm3/min]),
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Ki =
K1k3
k2 + k3

(2.5)

which is converted to

CMRglc =
Ĉglc
p

LC
Ki (2.6)

by a simple scaling factor, comprising blood glucose (Ĉglc
p ) and the lumped con-

stant (LC), necessary to adjust for the different enzyme affinities between glucose

and the [18F]FDG tracer analogue (Reivich et al. 1985). Notably, even though this

is usually not considered, the LC displays significant regional heterogeneity, with

lower values for the cerebellum and infratentorial structures (Graham et al. 2002).

Importantly, [18F]FDG PET quantification does not limit itself to the full kinetic

description offered by compartmental modeling: less comprehensive approaches

based on linearization of compartmental model equations have been developed,

such as input-output methods and graphical methods.

Amongst the first, spectral analysis (A. Bertoldo, Vicini, et al. 1998; Cunningham

and Jones 1993) is one of the most useful, as it can provide estimates not only

of Ki, but also of other parameters (K1 and Vb). Amongst graphical methods,

Patlak’s approach for irreversible tracers can provide a robust estimate of Ki

(Patlak, Blasberg, and Fenstermacher 1983).

These approaches, however, still require an estimate of the Cp(t), which is highly

impractical to obtain, especially in a clinical context (see below).

A higher simplification is reached with semi-quantitative approaches, like the

standardized uptake value (SUV ),

SUV =
[18F]FDG concentration [kBq/ml]

injected dose [MBq]
body weight [kg]

(2.7)

which usually involves normalizing a static PET image by the injected dose and

body weight (S.-C. Huang 2000). If each voxel’s SUV (SUVtarget) is normalized

to the tracer uptake in a reference region (SUVreference), or its whole-brain aver-

age (Byrnes et al. 2014), SUV becomes its relative counterpart, the SUV ratio

(SUV R):

SUV R =
SUVtarget
SUVreference

(2.8)

While these semi-quantitative indices have been validated in healthy subjects and
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Figure 2.2: Schematics of [18F]FDG PET compartmental analysis in two brain areas with differ-
ent kinetic properties. The dynamic PET data Cmeasured(t) (black circles) measured
in the two regions can be quantified using compartmental modeling: this produces a
prediction (black line) which is given by the contribution of activity in both the first,
reversible compartment C1(t) (green line) and second, irreversible compartment C2(t)
(blue line), plus arterial blood activity VbCb(t) (red line). The two represented brain
areas display examples of different contributions of the first compartment (predominant
in the bottom region) and second compartment (predominant in the top region). In the
inset, Sokoloff’s two-tissue compartmental model (3K) for [18F]FDG is shown (circles
represent homogenous tissue compartments, while arrows indicate material fluxes be-
tween compartments due to transport, chemical transformations or both). Credits for
this image go to Dr. Erica Silvestri.

proved to be extremely useful, their careful interpretation is necessary, as they

may give a biologically confounded view of glucose metabolism (Hamberg et al.

1994; Keyes 1995; Yamaji et al. 2000; Boellaard 2009; Lammertsma 2017).

Only a handful of studies, mainly from the early decades of PET, have tried to

disentangle the contributions of the different physiological processes involved in

the whole PET signal (represented by K1, k2 and k3) (Table 2.1). Some examples

exist for healthy subjects (Heiss 1984), but also for pathological conditions such as

Alzheimer’s disease (Piert et al. 1996), epilepsy (Cornford et al. 1998), traumatic

brain injury (Hattori et al. 2003), stroke and brain tumors (Wienhard et al. 1991).

The main obstacle to a higher translational power, aside from the aforementioned
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References K1 k2 k3 Vb Input
Bowen et al. 2013 0.068± 0.023 0.18± 0.06 0.09± 0.025 − AIF
Hattori et al. 2004 0.010± 0.014 0.23± 0.08 0.175± 0.04 0.04± 0.02 AIF
Huisman et al. 2012 0.062± 0.008 0.071± 0.04 0.067± 0.03 − AIF
Heiss et al .1984 0.07± 0.1 0.13± 0.15 0.06± 0.082 − AIF
Kawai et al. 2005 0.082± 0.012 − 0.064± 0.014 − AIF

Lucignani et al. 1993 0.11± 0.02 0.07± 0.02 0.04± 0.01 − AIF
Mosconi et al. 2007 0.11± 0.03 0.3± 0.08 0.11± 0.02 − AIF

O’ Sullivan et al. 2010 0.13± 0.05 0.15± 0.1 0.1± 0.1 0.085± 0.05 AIF
Reicich et al. 1985 0.105± 0.006 0.148± 0.008 0.074± 0.005 − AIF
Sari et al. 2017 0.43± 0.1 0.22± 0.06 0.046± 0.007 0.076± 0.02 IDIF

Overall 0.12± 0.098 0.18± 0.065 0.08± 0.036 0.06± 0.024

Table 2.1: Summary of literature results of [18F]FDG compartmental modelling applied to the
time-activity curves of healthy grey matter. For each study, the estimates of the model
parameters (i.e., K1, k2, k3, Vb), as well as the type of input function (AIF, IDIF) are
reported. In the last row, the mean and standard deviation across studies are reported for
each parameter. Reproduced from (Silvestri E., PhD Thesis, 2018, http://hdl.handle.
net/11577/3426715).

issues (i.e., long scans, necessity to obtain an AIF), has surely been related to

the low spatial resolution of older scanners, and the limited number of subjects.

2.1.1 The input function problem: noninvasive

alternatives to arterial sampling

The Cp(t) is needed as the forcing function for quantification of PET data, but

due to the difficulties associated with arterial sampling, other noninvasive options

are actively being investigated.

An attractive alternative is the image-derived input function (IDIF), which is

extracted from the radioactivity of a blood pool identified within the PET im-

ages: for brain [18F]FDG studies, this is typically represented by the internal

carotid arteries. This site, however, is difficult to segment and prone to PVEs

and spillover effects from the high-activity tissue in the background in the late

phase (Zanotti-Fregonara, K. Chen, et al. 2011). In addition, IDIFs usually still

require calibration with venous blood samples, which can be employed thanks

to the fact that [18F]FDG reaches arteriovenous equilibration after 15-20 min-

utes (K. Chen et al. 1998), but these are not always available in clinical settings.

When directly compared with the gold-standard AIF, IDIFs are frequently found

to underestimate the peak and overestimate the tail of the curve, due to spill-out

and spill-in of radioactivity, respectively. Also, at least in older studies, the IDIF

approach is found to lead to biased estimates (Zanotti-Fregonara, K. Chen, et al.
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2011).

Despite these drawbacks, thanks to more refined algorithms and modern PET/CT

and PET/MR scanners with higher spatiotemporal resolution, new reports of

successful IDIF applications, especially for [18F]FDG, are emerging (Sundar et

al. 2019; Meikle et al. 2021). Our work on IDIF extraction and calibration for

[18F]FDG quantification is briefly reported in Chapter 8.

2.1.2 Voxel-wise parametric imaging for complex

compartmental models

Depending on the aim of the study, PET quantification can be performed at ei-

ther region of interest (ROI) or voxel level, both of which have pros and cons.

ROI-level analysis benefits of a higher signal-to-noise ratio (SNR), allowing for

more accurate identification of the parameters, but at the expense of the spatial

resolution and the possibility to evaluate within-region TAC variability. On the

other hand, voxel-level analysis maintains the spatial resolution of the images,

but is hampered by the typically low SNR of voxel TACs, and is computationally

intensive (due to the number of voxels to estimate) (Alessandra Bertoldo, Rizzo,

and Veronese 2014).

The gold-standard method for region-level quantification of [18F]FDG PET com-

partmental models is the weighted nonlinear least squares (WNLLS) estimator,

due to its accurate (unbiased) and precise (low-variance) estimates. In the con-

text of noisy voxel-wise estimation, however, this estimator incurs into significant

issues, such as 1) lack of convergence, 2) very high computational time, 3) unac-

ceptable precision (high variance) or 4) inaccuracy (non-physiological values) of

the estimates (Castellaro et al. 2017).

If one aims only to obtain an estimate of the Ki, Patlak’s graphical method (Pat-

lak, Blasberg, and Fenstermacher 1983) can be easily used to generate parametric

maps, as it is both fast and robust. Patlak’s Ki estimates usually agree well with

WNLLS estimates. However, Patlak’s approach does not solve the underlying

compartmental model and does not return any information on the microparam-

eters, nor on the Vb (Patlak, Blasberg, and Fenstermacher 1983).

Our group has thus developed a reliable, general-purpose parametric imaging

method, based on Variational Bayesian (VB) inference (Castellaro et al. 2017),

which can obtain parametric maps of microparameters even for the most com-

plex model structures, like the three-tissue-compartment model of [18F]FDG in

the skeletal muscle (A. Bertoldo, Peltoniemi, et al. 2001). Notably, the a priori



32 Chapter 2. Positron Emission Tomography

information employed in the VB approach is data-driven, thanks to a hierarchical

scheme: regions are first defined using an atlas parcellation or data-driven clus-

tering, then region-level estimates are obtained with gold-standard WNLLS, and

finally transferred to the voxels within each region as prior information. Varia-

tions in the parameter estimates at voxel level are still permitted: a low variance

of the prior will anchor the posterior mean to that of the prior, a high variance

will make the prior useless and the estimates will be freely derived from the noisy

data, i.e., the WNLLS solution. The variance of the priors is set to 0.5 (= equal

to half the value of the estimates obtained from region-wise WNLLS) according

to the results of a simulation study. The VB approach has also been customised

to the peculiar characteristics of PET noise distribution. See (Castellaro et al.

2017) for a detailed explanation and mathematical derivation.

2.2 From regional estimates to between-region

relationships: state of the art on

‘metabolic connectivity’

‘Metabolic connectivity’ (MC), intended as the across-subject covariation of metabolic

rates derived from [18F]FDG PET, was introduced in the 1980s (Horwitz, Duara,

and Rapoport 1984), but regained momentum in the last decade (Yakushev,

Drzezga, and Habeck 2017), thanks to the emerging fields of ‘connectomics’ and

network neuroscience, which conceive the brain as a network of nodes connected

by structural or functional links (Betzel 2022).

MC has been studied both in healthy subjects and in pathological conditions,

especially neurodegenerative disorders (Sala and Perani 2019), using approaches

that range from seed-based correlation (Passow et al. 2015), to sparse inverse

covariance estimation (Titov et al. 2017), and independent component analysis

(ICA) (Di and B. B. Biswal 2012; Savio et al. 2017). The extracted patterns of

brain regions whose metabolism covaries across subjects are then interpreted as

[18F]FDG RSNs.

Very few studies have instead attempted to exploit the dynamic PET signal to

estimate within-subject MC, in a similar fashion to BOLD FC (see Chapter 3).

Using ICA on human data, evidence was found for only two networks (cortical

and cerebellar) negatively correlated with one another (D. G. Tomasi et al. 2017).

Other works on animal models have reported a more structured pattern of con-
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nections, and a good coupling between single-subject MC and FC (Amend et al.

2019; Ionescu et al. 2021).

In recent years, we have also witnessed a rise of a new PET experimental pro-

tocol, the so-called ‘functional’ PET (fPET), which substitutes the traditional

bolus injection of [18F]FDG with a continuous infusion protocol at a constant

rate, allowing to image fluctuations of the PET signal around its baseline (R. E.

Carson 2000; Villien et al. 2014; S. Li et al. 2020). This approach, designed

mainly for improving task-related paradigms, has been successfully employed to

compute single-subject MC via approaches already employed in rs-fMRI (e.g.,

correlation, ICA) (S. Li et al. 2020; Jamadar et al. 2021). However, rs-fMRI and

PET signal time series are dramatically different, and usually some kind of stan-

dardization/normalization of the PET ‘global signal’ has been performed as a

necessary means of assessing covarying fluctuations of the signals. This, however,

can have important impact on the results, as we will discuss in Chapter 6.

The issue of MC in itself, therefore, requires further efforts, mainly in the accu-

rate definition of what MC means, in the appropriate ways to calculate it, and in

the validation of the results (Veronese et al. 2019; Sala, Lizarraga, et al. 2021).
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Chapter 3

Resting-state Functional

Magnetic Resonance Imaging

Based on the BOLD contrast, emerging the different magnetic properties of oxy-

and deoxyhemoglobin, fMRI has been increasingly employed to image brain ac-

tivity since its development in the 1990s (S. Ogawa, T. M. Lee, et al. 1990; Kwong

et al. 1992). Its development was actually driven by evidence of temporary un-

coupling of CMRO2 and CBF during task -related activity, with increases in

CBF and CMRglc far exceeding the oxygen tissue demand (P. Fox et al. 1988):

this uncoupling is the basis of the BOLD effect (P. T. Fox 2012). The BOLD

signal is therefore shaped by CMRO2 and CBF (with important contributions

from CBV ) (Kim and Seiji Ogawa 2012), and is considered as an indirect proxy

of neuronal activity (Scholvinck et al. 2010) once the effect of the HRF filter

has been considered (Buxton, Uludağ, et al. 2004); the relationship between the

underlying neural activity and the vascular response measured with BOLD is

called neurovascular coupling (Buxton and Frank 1997) (Figure 3.1). Typically,

a T2*-weighted MR sequence is used to detect the BOLD effect, due to its sensi-

tivity to the change in magnetic susceptibility of hemoglobin, from an increase in

oxy- (diamagnetic) vs. deoxy- (paramagnetic) hemoglobin in response to neural

activation (S. Ogawa, T. M. Lee, et al. 1990).

Studies using BOLD fMRI first concentrated on task -evoked activity, with semi-

nal works which employed paradigms that had been developed using PET (M. E.

Raichle 1998), and then their focus expanded to the exploration of the resting

state of the brain (S. Ogawa, Menon, et al. 1993; B. Biswal et al. 1995).

BOLD fMRI is characterized by relatively good spatial (3 mm) and temporal

resolution (1-2 s), it does not require the use of radiotracers or invasive blood

35
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sampling, and short scan durations can be easily achieved (< 15 min). This

is why it has become a widely popular functional imaging technique in recent

decades, not only for research on healthy individuals, but also on neurological

and psychiatric disorders (Sheline and Marcus E. Raichle 2013; Damaraju et al.

2014; Siegel, Shulman, and Corbetta 2017).

Figure 3.1: The complex chain of events linking CMRglc, CMRO2 and CBF to neuronal activity.
Local changes in brain activity are accompanied by changes in CBF and CMRglc

which far exceed changes in CMRO2. The CBF -CMRO2 uncoupling is the basis of
the task-based BOLD effect. Adapted from (M. E. Raichle 1998).

3.1 Basic principles of resting-state fMRI

The paradigm shift towards rs-fMRI, i.e., imaging subjects with fMRI while the

do not perform any specific task, began to happen in the 2000’s, when more re-

search began to focus on the spontaneous fluctuations of the BOLD signal, which

had been considered just background noise during task studies (Greicius et al.

2003; M. D. Fox and Marcus E. Raichle 2007).

The spontaneous activity of distant brain areas, in particular homotopic senso-

rimotor cortices (homologous areas in the two hemispheres), was shown to be

correlated, leading to the first rs-fMRI results on ‘FC’ (B. Biswal et al. 1995),

defined as the statistical dependency between the BOLD time courses of differ-
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ent regions. From these pivotal observations, many different RSNs began to be

identified, as clusters of brain areas whose rs-fMRI spontaneous activity was more

correlated than with the rest of the brain. The default mode network (DMN) was

among the first to be identified (Marcus E. Raichle 2001), starting from observa-

tions on PET data; many others were later described (Yeo et al. 2011), leading

to a high-level subdivision into ‘task-positive’, or ‘extrinsic’, i.e., RSNs related

to sensorimotor and attention processing, vs. ‘task-negative’, or ‘intrinsic’, i.e.,

RSNs more related to cognitive control, memory and internally-driven processing

(Doucet et al. 2011).

Notably, the BOLD signal significantly suffers from systemic contamination, in

particular motion, cardiac and respiratory activity, whose low-frequency fluctu-

ations can give rise to highly structured spatial patterns (J. E. Chen, Lewis,

et al. 2020), as well as vascular biomechanics, being the BOLD signal heavily

weighted towards draining veins and large pial vessels (Ugurbil 2016). Due to its

high noise content, rs-fMRI is typically subjected to a multi-step preprocessing

(Glasser, Sotiropoulos, et al. 2013), which, however, can vary significantly across

research centers, leading to inconsistencies in the results.

Moreover, the physiological interpretation of the wide variety of results provided

by BOLD fMRI, and resting-state fMRI in particular (T. T. Liu 2013), is prob-

lematic. The low-frequency fluctuations of the BOLD signal (0.01-0.1 Hz) are

considered reflective of neuronal activity (N. K. Logothetis et al. 2001): semi-

nal studies with simultaneous fMRI and electrophysiology in non-human primates

have shown that BOLD signal fluctuations reflected local field potentials, assumed

to represent peri-synaptic activity, much more than spikes (N. K. Logothetis et

al. 2001; Nikos K. Logothetis 2008); however, much more complex and nuanced

interplays between neural activity and BOLD have later been shown, making in-

terpretations less straightforward (Gauthier and Fan 2019).

Notably, only a limited number of studies have directly tested the relationship

between the BOLD-based features and CMRglc, CBF , CMRO2, so exploring

evidence of this coupling is still highly relevant.

3.2 The rs-fMRI signal and its many properties

Many different features can be extracted from the rs-fMRI signal, due to its rich-

ness in both space and time-frequency domains. While one must remember that
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a high degree of redundancy between BOLD-based features exists, with recent

attempts trying to reach a parsimonious description (Bolt et al. 2022), we have

chosen to organize BOLD-based properties into four main categories, i.e.,

1) rs-fMRI signal and its local properties

2) HRF -based information

3) static FC (sFC)

4) time-varying FC (tvFC)

which will be employed for comparison with PET-derived physiological parame-

ters and MC networks in Chapter 4, 5, 6, and are briefly discussed below.

3.2.1 Local fMRI features

We can start from the most basic statistics of the BOLD time series, i.e., its

mean, variance, and skewness. While the absolute value of the mean BOLD

signal is arbitrary and scanner/sequence-dependent, its relative pattern across

brain regions has been found to be related to cell density (Ulrich and Yablon-

skiy 2016; Wen et al. 2018). The variance of the BOLD signal is increasingly

studied as it is known to carry significant physiological information on cellular

properties (Garrett et al. 2010; Anderson et al. 2020) and also to be a correlate of

cerebrovascular reactivity (Golestani, Wei, and J. J. Chen 2016). The skewness,

which captures extreme BOLD events, has also been studied, and found to be

related to structural connectivity (SC), with more connected regions having high

negative skewness activity (Amor et al. 2015).

Moreover, nonlinear metrics of rs-fMRI temporal complexity have been also ex-

plored. Among them the approximate entropy (ApEn) (Sokunbi et al. 2011),

which quantifies the mean negative log-probability that an m-dimensional state

vector (template) will repeat itself at dimension (m + 1), and the sample en-

tropy (SampEn) (Richman and Moorman 2000) which is instead defined without

template matching, plus their modified versions, i.e., range ApEn and range Sam-

pEn, which are more robust to nonstationary signal amplitude changes and more

appropriate to evaluate self-similarity in the signal (Omidvarnia, Mesbah, et al.

2018). Additionally, if the rs-fMRI time series is modelled as a first-order au-

toregressive AR(1) process, its exponents have been found to have physiological

and cognitive relevance (G.-R. Wu, Liao, et al. 2013; Omidvarnia, Liégeois, et al.

2022).

Some local rs-fMRI measures which have enjoyed great popularity are the am-

plitude of low-frequency fluctuations (ALFF ), which quantifies BOLD spectral
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power within the [0.01; 0.1] Hz range, considered to be the richest frequency band

in terms of neural information (Q.-H. Zou et al. 2008); its fractional counterpart,

fALFF, i.e., ALFF normalized by the rs-fMRI signal amplitude over the entire

frequency range, is considered to be a better index of the neural underpinnings

of BOLD due to its lower sensitivity to the physiological noise corrupting the

frequency range > 0.1 Hz (Q.-H. Zou et al. 2008).

The local coherence of the BOLD signal, computed as the concordance among

one voxel’s time series and its neighbors, and typically called ‘regional homogene-

ity’ (ReHo) (Zang et al. 2004), is expected to represent synchronization of local

field potentials (Z. Li, Zhu, et al. 2012) and to be a proxy of local, short-range

connectivity (Jiang and Zuo 2016).

3.2.2 The hemodynamic response function

While the role of the HRF has been extensively studied in the task-fMRI liter-

ature (K. Friston et al. 1998; Buxton, Uludağ, et al. 2004), in the last decade

interest has also grown in its characterization in the resting state, using various

deconvolution approaches for its estimation (Tagliazucchi et al. 2012; G.-R. Wu,

Liao, et al. 2013; G.-R. Wu, Colenbier, et al. 2021). These methods typically

build on a description of the rs-fMRI signal as a point process, where events that

exceed a given threshold govern the dynamics, in this case called BOLD pseudo-

events (Tagliazucchi et al. 2012; Zhang, Pan, and Keilholz 2020). Drawing from

formalism on linear, time-invariant systems, the BOLD signal y(t),

y(t) = s(t)⊗ h(t) + e(t) (3.1)

is modeled as the convolution of the HRF, h(t), and the underlying neural states,

s(t), with the addition of an error term, e(t). The HRF can be estimated using the

canonical model, i.e., two gamma functions with time and dispersion derivatives

(K. Friston et al. 1998), or, more freely, as a linear combination of basis vectors for

a smooth finite impulse response (sFIR) (Goutte, Nielsen, and Hansen 2000; G.-R.

Wu and Marinazzo 2016). The HRF shape can be then described through various

parameters, such as height, full-width-at-half-maximum (FWHM), time-to-peak

etc., which were found to carry physiologically relevant information, in particular

in relation to CBF (G.-R. Wu and Marinazzo 2016; G.-R. Wu, Colenbier, et al.

2021).
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3.2.3 Static functional connectivity

When the statistical relationship between rs-fMRI signals of different brain re-

gions is assessed across a single period of time, which usually corresponds to the

entire fMRI scan, we talk about sFC. There are many different approaches to

calculating sFC, going from simple correlations (at region or voxel level), to ICA

(Calhoun et al. 2001), or clustering (Heuvel, Mandl, and Hulshoff Pol 2008).

When working at the region level, typically using a pre-defined atlas of brain

areas, sFC matrices are usually calculated as pairwise Pearson’s correlations be-

tween ROI-wise rs-fMRI time series, and then thresholded by retaining only con-

nections associated with weights over a pre-defined connection density (Wijk,

Stam, and Daffertshofer 2010).

A useful way to summarize sFC matrices at the region-level is to characterize

their topological features using graph theory (Rubinov and Sporns 2010): the

sparse FC matrix can be interpreted as a graph, G = f(N,E), consisting of a set

of nodes N (= regions), and edges E connecting node pairs (= the FC between

those regions). A graph can be either weighted (if each edge is assigned a real

number determining the strength of the connection), or unweighted/binary (rep-

resenting only the presence or absence of a link).

For each graph, many summary measures can then be quantified to describe each

node’s role in the network in terms of centrality, integration or segregation. A

brief description of the most representative nodal graph measures used in this

thesis is presented here. Node degree (DEG), defined as the number of links

connected to a node, is a node centrality measure used to characterize network

structure and local connectivity:

DEG(i) =
N
∑

j=1

δ(i, j) (3.2)

δ(i, j) =







1, W (i, j) 6= 0

0, W (i, j) = 0
(3.3)

with δ(i, j) indicating the presence or absence of a connection between node i

and nodej.

Node strength (STR), i.e., the sum of all link weights W (i, j) for each node, is

used to complement node DEG as a measure of connectivity profile:
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STR(i) =
N
∑

j=1

W (i, j) (3.4)

Eigenvector centrality (EC ), which uses eigendecomposition of the FC matrix to

measure if strong connections tend to link nodes with equally strong connections,

accounting for the importance of indirect pathways (Lohmann et al. 2010), is

another centrality measure:

EC(i) =
1

λ1

N
∑

j=1

W (i, j)µ1(j) (3.5)

with λ1 as the largest eigenvalue and µ1 as the largest eigenvector of the FC

matrix.

Betweenness centrality (BC ), calculated as the number of shortest paths between

nodes passing through a specific node (Freeman 1977), is again a centrality mea-

sure:

BC(i) =
1

(n− 1)(n− 2)

N
∑

∀j,k 6=i

ρhj(i)

ρhj
(3.6)

where ρhj is the shortest path connecting h and j, ρhj(i) is the shortest path

passing through h and connecting i and j, n is the number of nodes.

Network segregation can instead be assessed by the clustering coefficient (CC ),

which locally represents the number of triangles around an individual node over

the number of connected triples in the network (Watts and Strogatz 1998; Onnela

et al. 2005), and is calculated as:

CC(i) =
2ti

ki(ki − 1)
(3.7)

ti =
1

2

∑

j,h∈N

(W (i, j)W (i, h)W (j, h))
1

3 (3.8)

where ti is the number of triangles in the system in which the node i is one of

the vertices, and k is the number of vertices.

A measure of network integration is the global efficiency (GE ), which is the inverse

shortest path length in the network (Latora and Marchiori 2001):

GE(i) =

∑

j,h∈N d
−1
i,j

n− 1
(3.9)
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where dij is the length of the shortest path between i and j. Finally, segregation

can also be evaluated through local efficiency (LE ), i.e., the ratio of the number

of connections between a node’s neighbors to the total number of possible links

(Latora and Marchiori 2001), calculated as:

LE(i) =
1

M

∑

i∈N

GE(i) (3.10)

where GE(i) is the global efficiency of the subgraph composed of the neighbors

of node i.

Another approach to summarize the information content of sFC matrices, which

has gained substantial popularity in recent years, is the ‘functional gradients ’

analysis (Margulies et al. 2016; Tian et al. 2020). This framework works by

applying linear or nonlinear dimensionality reduction techniques (principal com-

ponent analysis (PCA), Laplacian eigenmaps etc.) to FC to extract ‘gradients’ or

‘manifolds’. These components allow to separate higher-order networks (DMN)

from the VIS networks (along gradient 1), and the VIS from the SMN (along

gradient 2) (Margulies et al. 2016; Vos de Wael et al. 2020).

3.2.4 Time-varying functional connectivity

The underlying assumption behind sFC approaches is that FC does not change

over time. Despite the presence of some controversy on the non-stationarity of

FC (Laumann et al. 2016), an increasing amount of literature has explored the

FC dynamics over time, using different approaches to estimate tvFC (Hutchison

et al. 2013; Lurie et al. 2020). These approaches can be either model-based, if

they explicitly model the neural processes putatively underlying the changes in

the FC, or data-driven, if they simply try to estimate FC changes directly from

the observed rs-fMRI signal (Lurie et al. 2020).

One of the most popular is the sliding windows approach, which estimates mul-

tiple time-resolved FC matrices over a number of overlapping time windows of

length W . The selection of the W is a crucial hyperparameter, to avoid introduc-

ing spurious fluctuations in the tvFC if the window is too small, or being unable

to capture relevant FC changes if the window is too large (Hutchison et al. 2013;

Leonardi and Van De Ville 2015). Commonly employed values for the W range

between 30 and 60 s, and the step size between adjacent windows is quite variable

(Preti, Bolton, and Van De Ville 2017).

Typically, sliding-windows tvFC matrices are clustered into brain ‘states’, i.e.,
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transient patterns of whole-brain FC (Allen et al. 2014). However, another possi-

ble way of summarizing the FC temporal variability would be to compute nodal

graph metrics (DEG, STR, EC, etc) for each window, as in sFC analysis, thus

obtaining graph metrics’ time series, and then assess their node-wise variability

across time (Chang and Glover 2010; Hellyer et al. 2017; Pedersen et al. 2017).

Importantly, tvFC has been characterized not only as changes in the covariation

of BOLD signal magnitudes, but also in the coherence of their phase (Chang and

Glover 2010): an example of this type of approach is the Leading Eigenvector

Dynamic Analysis (LEiDA) framework (Cabral et al. 2017; Lord et al. 2019).

In particular, BOLD signal phases, θ(n, t) are first estimated using the Hilbert

transform, which expresses a given signal y(t) as

y(t) = A(t) cos θ(t) (3.11)

where A(t) is the time-varying amplitude and θ is the time-varying phase. Instan-

taneous BOLD phase coherence is calculated at each single time point t (corre-

sponding to a single TR), resulting in a time series of phase-locking values (PLV )

between each pair of brain areas n and p at each time t:

PLV (n, p, t) = cos(θ(n, t)− θ(p, t)) (3.12)

Two regions with no phase difference have a PLV (n, p, t) = cos(0◦) = 1, while

a 180◦ phase difference corresponds to a PLV (n, p, t) = cos(180◦) = −1. The

leading eigenvector (LEig) of the PLV (t) matrix at time t is then computed to

capture the main orientation of regional BOLD phases over all other brain areas

(Cabral et al. 2017; Lord et al. 2019).
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Chapter 4

Modelling the complex spatial

relationship between [18F]FDG

SUV R and rs-fMRI features

4.1 Introduction

As already discussed in Chapter 1, brain glucose consumption, which can be as-

sessed in vivo by [18F]FDG PET, displays significant regional variability in the

healthy brain, but the precise factors controlling this spatial heterogeneity are

incompletely understood.

Since most of the remarkable metabolic budget of the brain is spent during rest

(Clarke and Louis Sokoloff 1999; Marcus E. Raichle 2006), we expect the regional

differences in brain glucose consumption to be explained by variability in spon-

taneous activity, which can be described by rs-fMRI (M. D. Fox and Marcus E.

Raichle 2007). In addition to local activity alone, the functional relationships

between resting-state activity patterns of different brain regions, i.e., their FC,

may play a relevant part as well (Marcus E. Raichle 2015).

Some evidence on this relationship has started to emerge from both sequential

and simultaneous [18F]FDG PET/fMRI acquisitions (Cecchin et al. 2017). In

particular, among local activity measures, ALFF and fALFF have been found to

be associated with [18F]FDG uptake (Nugent et al. 2015), especially in specific

brain regions (Marco Aiello et al. 2015; S. Deng et al. 2022). Moderate asso-

ciations between [18F]FDG PET and large-scale FC metrics were also detected

(Marco Aiello et al. 2015; D. Tomasi, G. J. Wang, and Volkow 2013), while

stronger and more consistent correlations emerge for ReHo, an index of local syn-

45
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chronization (J. Wang et al. 2021). The topological role of brain network nodes

was also found to be important, with more central regions, according to fMRI

FC, having a stronger relationship between their FC and metabolic consumption

(Marco Aiello et al. 2015; Palombit et al. 2022). In addition, some evidence for

nonlinearity (exponential or power law models) in the spatial relationship with

local and large-scale FC has been reported (D. Tomasi, G. J. Wang, and Volkow

2013; Shokri-Kojori et al. 2019).

Notably, when the [18F]FDG vs. rs-fMRI associations are tested across subjects,

instead of across space (regions or voxels), very low correlations are detected in

most studies (Marco Aiello et al. 2015; J. Wang et al. 2021). This complicates the

picture: the spatial agreement between [18F]FDG and rs-fMRI, which is present

for an average brain, seems to be weakened/lost if one wants to describe region

by region the inter-subject variability of one modality with that of the other.

Overall, somewhat inconsistent results emerge from the literature, with bivariate

spatial correlations between [18F]FDG PET and rs-fMRI metrics ranging from 0

to 64% in explained variance, and substantial differences across brain networks

(Marco Aiello et al. 2015; Shokri-Kojori et al. 2019), as well as low correlations

across subjects even in simultaneous acquisitions (Marco Aiello et al. 2015; J.

Wang et al. 2021). Moreover, only a handful of rs-fMRI features (ALFF, ReHo,

FC STR) has been tested.

Notably, no study has ever attempted a multivariable integration of rs-fMRI fea-

tures to explain local metabolism, which might allow to reach a higher explana-

tory power for the regional variability in [18F]FDG uptake, as well as a clearer

description of the multiple functional contributors to glucose consumption.

We set out to fill these gaps with a fully data-driven approach, using simultane-

ously acquired [18F]FDG PET and rs-fMRI data of 26 subjects from two published

datasets (Riedl et al. 2014; Marco Aiello et al. 2015), which we have already an-

alyzed in previous work (Palombit et al. 2022).

We chose this dataset for a number of reasons:

1. It consists of simultaneously acquired [18F]FDG PET and rs-fMRI data, al-

lowing us to probe the relationship between glucose metabolism and BOLD while

minimizing within-subject variability between sessions (Cecchin et al. 2017);

2. The [18F]FDG parameter of choice is SUV R, which, despite its limita-

tions, is the easiest to obtain from clinical PET imaging and thus has the highest

availability (Hamberg et al. 1994);

3. The [18F]FDG tracer is administered via bolus injection, which again is
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the most frequently employed PET imaging protocol, unlike constant infusion

protocols which have now been (re)discovered for task experiments (Hahn et al.

2020) and ‘MC’ studies (Jamadar et al. 2021);

4. Both the [18F]FDG and rs-fMRI data are of sufficient quality in terms of

SNR and whole-brain brain coverage, while remaining in the context of clinically

available sequences.

After preliminary assessment of a wide variety of rs-fMRI-derived variables (50),

pooled into 4 categories, i.e., 1) signal, 2) HRF, 3) sFC, and 4) tvFC (see Table

4.1 for the list of the features), we set out to address these questions:

1. which is the strength of the bivariate association between each rs-fMRI

feature and SUV R across regions? And does this coupling change according to

the ranking of brain nodes based on [18F]FDG uptake?

2. can we explain group-average SUVR variance across regions by combining

a group of rs-fMRI features in a multivariable regression model? Is the group

of selected fMRI predictors more populated by local or large-scale brain net-

work metrics? How well do the features, chosen at group-average level, account

for between-subject variability (BSV) (Hox, Moerbeek, and Schoot 2017) in this

spatial association? Finally, are the previously identified rs-fMRI features still im-

portant to explain SUV R when multilevel modelling (MLM) is performed across

fMRI RSNs, i.e., which is the between-network variability (BNV) of the SUV R-

fMRI spatial coupling?

Notably, the MLM approach, which is carried out across regions, not subjects, is

expected to be robust and statistically sound even in spite of the relatively low

sample size (n subjects = 26) (Hox, Moerbeek, and Schoot 2017).

4.2 Materials and Methods

4.2.1 Imaging protocols

The dataset includes 26 healthy subjects from two studies: 11 subjects (8 males;

52.2± 10.4 years) from dataset 1 (Riedl et al. 2014), and 15 subjects (6 males; 64.7

± 7.9 years) from dataset 2 (Marco Aiello et al. 2015). Subjects were scanned

in eyes open condition. The subjects provided their informed written consent

according to the Code of Ethics of the World Medical Association and the In-

stitutional Review Board and Ethics Committee at the Technische Universität

München (Riedl et al. 2014) and the SDN Foundation (Marco Aiello et al. 2015).
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Pools rs-fMRI variables

Signal

med-BOLD : median of the BOLD time series
MAD-BOLD : median absolute deviation (MAD) of the BOLD time series [Garrett et al. 2010]
skew-BOLD : skewness of the BOLD time series [Amor et al. 2015]
ApEn-BOLD : approximate entropy (ApEn) of the BOLD time series [Sokunbi et al. 2011]
rApEn-BOLD range ApEn of the BOLD time series [Omidvarnia, Mesbah, et al. 2018]
AR-BOLD : reflection coefficient of the AR(1) model fit to BOLD time series [Omidvarnia, Mesbah, et al. 2018]
ALFF : amplitude of low-frequency fluctuations (ALFF) of BOLD time series [Q.-H. Zou et al. 2008]
ReHo: regional homogeneity of BOLD time series [Zang et al. 2004]
MAD-ReHo: MAD of the time-varying ReHo (tvReHo) [L. Deng et al. 2016]
CV-ReHo: CV% of tvReHo [L. Deng et al. 2016]
peaks-BOLD : number of BOLD pseudo-events [G.-R. Wu, Liao, et al. 2013]

HRF

peak-HRF : height of HRF peak [G.-R. Wu, Liao, et al. 2013]
hrf-DEG : degree (DEG) of HRF correlation matrix [original ]
hrf-STR: strength (STR) of HRF correlation matrix [original ]
hrf-CC : clustering coefficient (CC) of HRF correlation matrix [original ]
hrf-BC : betweenness centrality (BC) of HRF correlation matrix [original ]
hrf-EC : eigenvector centrality (EC) of HRF correlation matrix [original ]
hrf-LE : local efficiency (LE) of HRF correlation matrix [original ]
hrf-GE : local efficiency (GE) of HRF correlation matrix [original ]]

sFC

s-DEG : DEG of sFC [Rubinov and Sporns 2010]
s-STR: STR of sFC [Rubinov and Sporns 2010]
s-CC : CC of sFC [Rubinov and Sporns 2010]
s-BC : BC of sFC [Rubinov and Sporns 2010]
s-EC : EC of sFC [Rubinov and Sporns 2010]
s-LE : LE of sFC [Rubinov and Sporns 2010]
s-GE : GE of sFC [Rubinov and Sporns 2010]
med-LEig : median of the Leading Eigenvector (LEig)’s time series [Cabral et al. 2017]

tvFC

mdiff-DEG : temporal median of the differentials (mdiff) of DEG time series [original ]
mdiff-STR: mdiff of STR time series [original ]
mdiff-CC : mdiff of CC time series [original ]
mdiff-BC : diff of BC time series [original ]
mdiff-EC : mdiff of EC time series [original ]
mdiff-LE : mdiff of LE time series [original ]
mdiff-GE : mdiff of GE time series [original ]
CV-DEG : coefficient of variation (CV%) of DEG time series [Hellyer et al. 2017]
CV-STR: CV% of STR time series [Hellyer et al. 2017]
CV-CC : CV% of CC time series [Hellyer et al. 2017]
CV-BC : CV% of BC time series [Hellyer et al. 2017]
CV-EC CV% of EC time series [Hellyer et al. 2017]
CV-LE : CV% of LE time series [Hellyer et al. 2017]
CV-GE : CV% of GE time series [Hellyer et al. 2017]
SampEn-DEG : sample entropy (SampEn) of DEG time series [Pedersen et al. 2017]
SampEn-STR: SampEn of STR time series [Pedersen et al. 2017]
SampEn-CC : SampEn of CC time series [Pedersen et al. 2017]
SampEn-BC : SampEn of BC time series [Pedersen et al. 2017]
SampEn-LE : SampEn of LE time series [Pedersen et al. 2017]
SampEn-GE : SampEn of GE time series [Pedersen et al. 2017]
MAD-LEig : MAD of LEig time series [Cabral et al. 2017]
CV-LEig : CV% of LEig time series [Cabral et al. 2017]
mdiff-LEig : mdiff of LEig time series [Cabral et al. 2017]

Table 4.1: Extracted rs-fMRI features and their categories Fifty fMRI-derived variables, divided
according to the pool to which they belong: 1) signal, 2) HRF, 3) sFC, 4) tvFC. See
Chapter 3 and Section 4.2 for full description of the features.
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Both centers simultaneously collected [18F]FDG PET and rs-fMRI data accom-

panied by a structural MR image on two identical Biograph mMR 3T scanners

(Siemens Healthcare, Erlangen, Germany) equipped with the standard-supply

head-neck coil (12-channel). The interested reader should refer to the respective

papers (Riedl et al. 2014; Marco Aiello et al. 2015) for more detailed information

on each dataset.

Dataset 1 : MRI data consisted in a magnetization prepared rapid acquisition gra-

dient echo (MPRAGE) T1-weighted (T1w) structural image (TR/TE = 2300/2.98

ms, FA = 9°, 1 mm isotropic voxel size with 0.5 mm gap), 300 volumes of T2*-

weighted gradient-echo echo-planar imaging (GE-EPI) with TR/TE = 2000/30

ms and voxel size of 3 mm isotropic (0.6 mm inter-slice gap). PET acquisition

started 30 minutes post-injection (175 ± 12 MBq), and consisted in a 10 min

scan, reconstructed with voxel size of 3.7 × 2.3 × 2.7 mm3.

Dataset 2 : MRI data consisted in a similar T1w MPRAGE structural image

and 240 volumes of GE-EPI for rs-fMRI with 4 mm isotropic voxel and TR/TE

= 1920/32 ms. Simultaneous PET/fMRI measurements started 30 min post-

injection (5 MBq/kg for whole-body scan), and static PET images were acquired

for 15 min and reconstructed with voxel size of 1.12 × 1.12 × 2.0 mm3.

4.2.2 Data preprocessing

All subjects were identically pre-processed to obtain local metabolism from [18F]FDG

PET data, and BOLD-based measures from rs-fMRI data, employing a pipeline

similar to the Human Connectome Project (HCP) minimal preprocessing pipeline

(Glasser, Sotiropoulos, et al. 2013).

Structural imaging pre-processing

Structural T1w images were N4 bias field-corrected (N. J. Tustison et al. 2010),

skull-stripped (N. Tustison et al. 2013), and segmented into grey matter (GM),

white matter (WM) and cerebrospinal fluid (CSF) using SPM12 (Ashburner and

K. J. Friston 2005). The brain cortex was delineated with Freesurfer (recon-all

volume and surface reconstruction pipelines) (Fischl, Sereno, and Dale 1999), ob-

taining pial and GM-WM interface surfaces. Manual editing was performed to

correct for surface delineation errors. Generated surfaces were resampled over

the fs LR mesh provided by Conte69 atlas (symmetric-hemisphere mesh of 32k

nodes) to obtain aligned cortical surfaces for each subject.

The Schaefer functional atlas (Schaefer et al. 2018) was used to parcellate corti-
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cal surfaces into 200 parcels, grouped according to Yeo’s 17 RSNs scheme (Yeo

et al. 2011) into Central Visual (VIS(A)), Peripheral Visual (VIS(B)), Somato-

Motor A (SM(A)), Somato-Motor B (SM(B)), Temporal Parietal (TP), Dorsal

Attention A (DAN(A)), Dorsal Attention B (DAN(B)), Salience/Ventral Atten-

tion A (VAN(A)), Salience/Ventral Attention B (VAN(B)), Control A (CTR(A)),

Control B (CTR(B)), Control C (CTR(C)), Default Mode A (DMN(A)), Default

Mode B (DMN(B)), Default Mode C (DMN(C)), Limbic A (LIMBIC(A)) and

Limbic B (LIMBIC(B). The cortical regions were supplemented by 18 subcor-

tical regions (bilaterally: Caudate, Putamen, Accumbens, Pallidum, Amygdala,

Hippocampus, Thalamus, Ventral diencephalon, Cerebellar cortex) delineated in

single-subject space employing the Multi-Atlas Label Fusion (MALF) method (H.

Wang and Yushkevich 2013). Parcels corresponding to subcortical regions were

assigned to the Subcortical (SUB) group.

PET data pre-processing

PET images were normalized to injected dose and subject’s body weight into

standard uptake value (SUV ) images (Equation 2.7). SUV images were linearly

resampled to T1w space with FSL’s flirt (Jenkinson, Beckmann, et al. 2012)

and on top of the mid-thickness cortical surface mesh with Connectome Work-

bench (Marcus et al. 2011), then intensity-normalized into SUV R by dividing

each voxel’s SUV value by the whole-brain average SUV (mean of GM, WM,

CSF) (Byrnes et al. 2014) (Equation 2.8).

SUV Rmaps were then parcellated according to the Schaefer cortical atlas and the

subcortical MALF parcels as previously described, and parcel-wise SUV R was

computed as the median value of the vertices inside a region. All pre-processing

steps avoided any further spatial smoothing on [18F]FDG data (beyond coregis-

tration), to minimize PVEs, as also suggested in many recent metabolism-flow

coupling reports (Hyder et al. 2016; Wesolowski et al. 2019; Henriksen, Gjedde,

et al. 2021; Narciso, Ssali, L. Liu, Biernaski, et al. 2021; S. Deng et al. 2022).

Functional MRI data pre-processing

The first four rs-fMRI volumes were discarded to avoid non-equilibrium magneti-

zation effects. The remaining volumes were corrected for slice timing differences

(Smith, Jenkinson, et al. 2004) and magnetic field distortion (Andersson, Skare,

and Ashburner 2003), and realigned to the median volume using FSL’s mcflirt

(Jenkinson, Beckmann, et al. 2012). A template EPI volume was obtained with
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antsBuildTemplate (Avants et al. 2011) from realigned rs-fMRI data and used

to estimate an affine transform (flirt, FSL), subsequently employed to map main

tissue segmentations obtained from the pre-processed T1w image to the native

EPI space. Nuisance signals consisted in motion traces and their first order

derivatives complemented by the first five temporal principal components, ob-

tained after PCA of WM and CSF EPI signals, explaining 70% and 50% of the

average variance across subjects, respectively (Behzadi et al. 2007), which were

regressed out from all brain voxels in native EPI space (Ciric et al. 2017). Regres-

sion residuals were finally resampled first to T1w space and then on top of the

mid-thickness cortical surface mesh with Connectome Workbench (Marcus et al.

2011). Finally, the BOLD signal was high-pass filtered with a cut-off of 0.008

Hz. No low-pass filter was applied, as the higher frequency components (0.1-0.25

Hz) of BOLD are likely to provide relevant neural information (J. E. Chen and

Glover 2015).

Motion correction was adapted to the features to be extracted. For features

where it was important to preserve the temporal structure of the BOLD signal

(e.g., tvFC, time-varying ReHo, HRF), motion-corrupted volumes were corrected

by despiking with a cubic and spline interpolation, using the icatb despike tc func-

tion from the Group ICA Toolbox GIFT (Calhoun et al. 2001) in order to avoid

extreme censoring methods that would interrupt the temporal autocorrelation

structure of the data (Hutchison et al. 2013). For features that are more ro-

bust to censoring (e.g., sFC, ReHo), motion-corrupted volumes with frame-wise

displacement (FD) higher than 0.3 mm were discarded before sFC calculation

(Power et al. 2014). Mean FD and the number of censored volumes were eval-

uated for every subject, to ensure that a sufficient number of viable frames was

available. The vertex-wise BOLD signals were parcellated in the same way as the

PET data.

4.2.3 Resting-state fMRI feature extraction

Feature extraction as well as subsequent analyses were performed in MATLAB

(ver. 2020a, The Mathworks, Natick, MA). 50 different features were obtained

from the rs-fMRI signal, either at the vertex level or directly at the parcel level.

The extracted features were chosen as descriptors of different aspects of the BOLD

1) signal, 2) HRF, 3) sFC, and 4) tvFC. A list of the features and their acronyms

is reported in Table 4.1. More context on the interpretation of these features is

reported in Chapter 3.2.
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Signal and local features

Pre-processed EPI signals were averaged within each parcel to obtain a represen-

tative time course, then z-scored across parcels. The temporal median, median

absolute deviation (MAD) and skewness of the parcel-wise BOLD signal, i.e.,

the nonparametric first-, second-, and third-moment statistics of the BOLD time

series distribution, were calculated.

Nonlinear metrics of BOLD signal complexity were computed, in particular ap-

proximate entropy (ApEn) (Sokunbi et al. 2011) and range approximate entropy

(rApEn) (Omidvarnia, Mesbah, et al. 2018). For ApEn calculation, the embed-

ding dimension m was set equal to 2, and the tolerance r was set to 0.2 multiplied

by the SD of the signal (Sokunbi et al. 2011).

An AR(1) model was also fit to the windowed BOLD time series by minimizing

the forward prediction error in the least squares sense; the Yule-Walker equations

were solved by the Levinson-Durbin recursion, obtaining the AR(1) reflection co-

efficients, whose absolute value was taken as the time dependence between y(n)

and y(n–1) (Omidvarnia, Mesbah, et al. 2018).

At the vertex level, the BOLD signal’s spectral content was quantified by ALFF

(Q.-H. Zou et al. 2008), and the local coherence of the BOLD signal was described

by ReHo (Zang et al. 2004), computed as Kendall’s W coefficient of concordance

among the time series of one vertex and its 27 neighbors. Parcel-wise ReHo and

ALFF values were then extracted as the median of the vertices within the region.

Time-varying ReHo was computed with a sliding windows approach (window size:

30 TRs, step: 1 TR), as Kendall’s coefficient of concordance amongst neighbor-

ing vertices within each time window (L. Deng et al. 2016). ReHo time courses

were extracted at the parcel level by averaging vertices within a region. Regional

ReHo variability was calculated as nonparametric MAD and coefficient of varia-

tion (CV% ) of the parcel-wise time series, i.e., CVnonpar =
MAD
median

· 100.

HRF features

The parcel-wise BOLD signal was subjected to a blind deconvolution algorithm

(G.-R. Wu, Liao, et al. 2013; G.-R. Wu and Marinazzo 2015) employing the

rs-HRF toolbox v2.0 (https://www.nitrc.org/projects/rshrf). Before de-

convolution, the high-pass filtered BOLD signal was despiked using a hyperbolic

tangent squashing function. The HRF was estimated as the linear combination

of basis vectors for a smooth finite impulse response (sFIR) (Goutte, Nielsen,
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and Hansen 2000; G.-R. Wu and Marinazzo 2016). BOLD pseudo-events were

detected using a threshold, which was set to the default value of 1 SD from the

mean of the BOLD signal, and their parcel-wise number was calculated (peaks-

BOLD). Serial correlations in BOLD time series due to aliasing of biorhythms and

unmodelled neuronal activity were accounted for using an AR(1) model during

parameter estimation (G.-R. Wu, Liao, et al. 2013). The outputs of the decon-

volution process were: A) three parcel-wise HRF parameters (height, FWHM,

time-to-peak); B) the time course of the parcel-wise HRFs (16 time points, with

time bins of 2 seconds, each corresponding to one TR); C) the time course of the

deconvolved BOLD signal.

For each subject, a pairwise Spearman’s correlation matrix was calculated from

the parcel-wise HRFs, as the matrix of zero-lag temporal correlations between

HRF time series of each pair of regions, interpreted as signals of vascular origin.

The subject-wise “HRF connectivity” matrices were Fisher r-to-z transformed,

and then thresholded retaining only connections associated with weights over a

pre-defined connection density, set to the 80th percentile (Wijk, Stam, and Daf-

fertshofer 2010).

Topological features were estimated from these matrices using the Brain Connec-

tivity Toolbox (Rubinov and Sporns 2010): node DEG, STR, EC, BC, CC, LE,

GE.

Static FC features

sFC matrices were obtained as pairwise Pearson’s correlations of the BOLD time

series across brain regions, which were subsequently Fisher r-to-z transformed.

Subject-level sFC matrices were thresholded (80th percentile (Wijk, Stam, and

Daffertshofer 2010)).

Topological features of sFC matrices (node DEG, STR, EC, BC, CC, LE, GE )

were estimated using the Brain Connectivity Toolbox (Rubinov and Sporns 2010).

In addition to the more frequently employed magnitude FC approach, we also

characterized FC as BOLD phase coherence, employing the LEiDA framework

(Cabral et al. 2017; Lord et al. 2019).

After demeaning and detrending the BOLD time series, the parcel-wise BOLD

signal phases were estimated using the Hilbert transform. BOLD phase coherence

was calculated at each single time point. Then, the leading eigenvector (LEig) of

each matrix is computed, and the parcel-wise value of the LEigs’ median across

time was obtained in every subject (med-LEig).
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Time-varying FC features

Magnitude tvFC was computed with a sliding window approach (window size:

30 TRs, step: 1 TR), as Fisher r-to-z transformed Pearson’s correlation. Sliding

windows were thresholded using the connection density threshold approach (80th

percentile): FC weights were selected on the population sFC matrix, and then

propagated to the single sliding windows, to assess the temporal variability of the

connections that are most likely to be significant at the population level. The

same nodal graph metrics used in the sFC analysis (DEG, STR, EC, BC, CC, LE,

GE ) were computed for each window in every subject. Three metrics to quantify

temporal variability across sliding windows were selected and applied to the graph

metrics’ time series at the parcel level: a) CV%, as a measure of fluctuation of

the graph metric around its average value (Arachchige, Prendergast, and Staudte

2020; Hellyer et al. 2017); b) temporal median of the absolute value of first order

differentials (mdiff ) between graph metrics’ values in adjacent sliding windows

|xit − xit−1|, divided by the absolute value of the previous window (|xit−1|) ; c)

sample entropy of graph metrics’ time series as a measure of graph metrics’ time

series complexity (Pedersen et al. 2017).

In addition to this, the regional MAD, CV% and mdiff of the LEigs were calcu-

lated as metrics of temporal variability of phase coherence.

4.2.4 Bivariate analysis of SUV R vs. rs-fMRI

Spatial coupling across all brain regions

The bivariate relationship between node-wise SUV R and rs-fMRI properties was

assessed at the group level, in the näıve average data approach (NAD), employing

the region-wise across-subject median values for SUV R and for each of the 50

extracted features. Since the rs-fMRI properties were not normally distributed

in most cases (Shapiro-Wilk test (Shapiro and Wilk 1965), p value > 0.05), the

association between fMRI features and metabolism across nodes was tested via

Spearman’s rank bivariate correlation (significance level 0.05, corrected for mul-

tiple comparisons using the Benjamini-Hochberg false discovery rate (FDR) ap-

proach (Benjamini and Hochberg 1995)). The relationship between SUV R and

each of the 50 rs-fMRI properties (fMRIip, for i = 1, . . . , 218 regions, and p =

1, . . . , 50 features) was tested with four different bivariate models:
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1) a linear model,

SUV Ri = αp + βp · fMRIip (4.1)

2) a mono-exponential model,

SUV Ri = αp · e
βp·fMRIip (4.2)

3) a power law model,

SUV Ri = αp · fMRI
βp
ip (4.3)

4) a log-linear model,

SUV Ri = αp + βp · log fMRIip (4.4)

Model selection was performed according to the residual sum of squares (RSS)

(Müller, Scealy, and Welsh 2013) to evaluate whether the SUV R-fMRI associ-

ation was better described by a linear or a nonlinear model for each of the 50

features, as an expansion of previous assessments (D. Tomasi, G. J. Wang, and

Volkow 2013; Shokri-Kojori et al. 2019). The percentualized difference in RSS

values between the nonlinear models (exp, power, log) and the linear model (lin)

were expressed as follows:

∆RSS1 =
RSSlin −RSSexp

RSSlin
· 100 (4.5)

∆RSS2 =
RSSlin −RSSpower

RSSlin
· 100 (4.6)

∆RSS3 =
RSSlin −RSSlog

RSSlin
· 100 (4.7)

Importantly, the number of model parameters is equal for the four model struc-

tures that were examined (i.e., two, intercept/amplitude αp and slope βp).

Spatial coupling in specific clusters of nodes

The spatial heterogeneity in the [18F]FDG PET-fMRI relationship was probed by

selecting clusters of nodes with increasingly high or low SUV R, and re-assessing

correlations across those nodes only. The threshold levels were determined by con-
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sidering linearly increasing percentiles of the SUV R distribution over all nodes,

in the range going from the 1st to 85th percentiles, with step 1 (from 218 to

33 nodes); moreover, in the opposite direction, nodes were selected according to

linearly decreasing percentiles of SUV R, from the 100th to the 15th percentile

(again, from 218 to 33 nodes). For each threshold level, Spearman’s correlation

between SUV R and all fMRI-derived features was calculated across the selected

nodes, and FDR-corrected for multiple comparisons across thresholds and rs-

fMRI features (significance level 0.05) (Benjamini and Hochberg 1995). Finally,

the absolute values of Spearman’s correlations were summed column-wise for

each percentile, to determine which percentile threshold led to the maximum

PET-fMRI correlation across features.

4.2.5 Multivariable SUV R vs. rs-fMRI modelling at

group level

At the NAD level, a multiple linear regression approach was employed to assess

how much of the group-wise SUV R variance across regions could be explained

by the linear combination of different fMRI-based features. The ordinary least

squares (OLS) problem was formulated as follows:

y = Xβ + ε (4.8)

where y and ε are n×1 vectors of the response/dependent variable (i.e., SUV R)

and the model error, and X ∈ R
nxp is the matrix of p regressors (i.e., log-

transformed rs-fMRI predictors, see chapter 4.3.3), or design matrix. Before

performing OLS regression, all predictors were z-scored, i.e., centered and scaled

by their SD across brain regions. The outcome variable, i.e., SUV R, was z-scored

as well, so no model intercept needed to be estimated. The solution to the OLS

problem was obtained as

β̂ = (XTX)−1XTy (4.9)

The model design matrix initially consisted of 50 parameters. The model was

formulated as follows:

SUV Ri = β1 · log fMRIi1 + β2 · log fMRIi2 + ...+ βp · log fMRIip + εi (4.10)

for each observation i=1,. . . ,n. The relationships amongst the predictors were

evaluated by Spearman’s correlation, to assess the presence of strong correlations
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(i.e., multicollinearity). Since high multicollinearity amongst predictors is known

to result in lower precision, switched signs of the coefficients, and a lack of sta-

tistical significance of the multivariable model (Belsley 1991), the ill-conditioning

of the design matrix was quantified using the condition number, i.e.,

κ(X) =
σmax(X)

σmin(X)
(4.11)

with σmax(X) and σmin(X) as the highest and lowest singular values of X, re-

spectively. As a rule of thumb, κ(X) requires attention if higher than 30 (Belsley

1991). Moreover, the variance inflation factors (VIFs) were calculated to as-

sess how much each individual predictor contributed to the multicollinearity of

the final model (Belsley 1991). The OLS fit was obtained with all the rs-fMRI

variables and interpreted as the highest possible predictive power that could be

extracted from the available features. However, it is well-known that, in the case

of overparameterized linear models, OLS is generally not useful, as many CVs%,

(i.e., percent error SD divided by the absolute value of the parameter estimates)

are too high (CVs% > 100%) and the model is not a posteriori identifiable, so it

should be rejected (E. Carson 2013). As discussed, performing feature selection

at the individual level would lead to unstable estimates, so we continued to work

at the group (i.e., NAD) level.

Feature selection

Eleven feature selection strategies were employed to identify the best multivari-

able model at the group level, with SUV R as the dependent variable, and the

rs-fMRI variables as predictors.

The employed approaches were: a) non-negative least squares (NNLS), b) elastic

net regression, c) hierarchical clustering (Ward method), d) stepwise selection,

e) general-to-specific (GETS) modelling. The following combinations of methods

were employed: 1) Ward clustering, 2) NNLS, 3) GETS, 4) Ward + NNLS, 5)

Ward + GETS, 6) Ward + stepwise, 7) Ward + elastic net, 8) NNLS + GETS,

9) NNLS + elastic net, 10) GETS + NNLS, 11) GETS + elastic net.

NNLS (a) and elastic net regression (b), which were in the chosen feature selec-

tion procedure, i.e., method 9), are detailed in the following.

A NNLS algorithm was implemented in methods 2), 4), 8), 9), 10), using the

Lawson-Hanson active-set method for convex optimization (Lawson and Hanson

1974) (lsqnonneg function in MATLAB). NNLS estimation has been shown to be

as effective in obtaining sparse estimates as the well-known LASSO (Tibshirani

1996), thanks to the non-negativity constraint, but without the need to perform



58
Chapter 4. Modelling the complex spatial relationship between [18F]FDG SUV R

and rs-fMRI features

the delicate choice of the regularization parameter (Meinshausen 2013). As a

preprocessing step, singular value decomposition (SVD) was performed (Golub

and Reinsch 1970): in order to meet the NNLS assumption that βs are non-

negative, the values of the z-scored predictors with negative weights on the first

right-singular vector V1 were multiplied by -1.

Elastic net regression (H. Zou and Hastie 2005) was implemented as a second step

in methods 7), 9) and 11). The α parameter value was set as 0.7, i.e., leaning to-

wards LASSO, but with the inclusion of the L2 penalty in order to better handle

the predictors’ multicollinearity. The selection of the regularization parameter

λ ∈ {λ1, . . . , λm} over 100 possible values, geometrically spaced between 0 and

the highest value giving a non-null model, was performed through k-fold cross-

validation (k-CV) (Stone 1974). k-CV was implemented with repeated random

sub-sampling with 1,000 Monte Carlo independent realizations.

Hierarchical cluster analysis (c), used in methods 1), 4), 6), 7), was performed on

the Spearman’s correlation matrix of the rs-fMRI predictors using Ward’s link-

age method (Ward 1963) and Euclidean distance. The dendrogram structure was

evaluated by means of the cophenetic correlation coefficient. The cluster solution

was chosen by means of a cut-off determined by an inconsistency coefficient of 1

(Jain and Dubes 1988). After choosing the cluster cut, for each cluster only the

feature with the highest Spearman’s correlation with SUV R was selected.

Stepwise selection (Hocking 1976) (d) was implemented in method 6) by starting

from the model provided by Ward clustering and using both forward and back-

ward stepwise regression to determine the final model. The general-to-specific

(GETS) modelling strategy (e) was employed in methods 3), 5), 8), 10), 11), to

overcome limitations of stepwise (Hoover and Perez 1999), such as the fact it pro-

ceeds along a single path without back-testing, its sensitivity to multicollinearity,

and its usually resulting in R2 that are biased towards high values (Desboulets

2018; Smith and Nichols 2018).

The implementation in R (R Core Team, 2018) by the package gets (Pretis,

Reade, and Sucarrat 2018) was used.

The results obtained with each feature selection strategy were evaluated (Müller,

Scealy, and Welsh 2013) in terms of: 1) number of selected features; 2) condition

number κ(X) of the design matrix after selection; 3) ordinary R2, as an indicator

of goodness of fit; 4) Bayesian Information Criterion (BIC), which proves use-

ful when models to compare result in different number of parameters; 5) RSS,

as another indicator of goodness of fit; 6) parameter CVs% as indicators of the
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precision of the estimates; 7) signs of β estimates, i.e., the concordance with the

signs of Spearman’s correlation of the rs-fMRI predictors with SUV R.

4.2.6 Full hierarchical modelling of SUV R vs. rs-fMRI

As a NAD approach like the one described so far is statistically sound and un-

biased only in case of low BSV, a MLM approach (i.e., population modelling,

linear mixed-effects (LME) modelling) was employed to characterize in a single

stage both the group-level (fixed) and individual-level (random) effects (Hox, Mo-

erbeek, and Schoot 2017) contributing to the relationship between the selected

rs-fMRI variables and SUV R. First, the link between model and SUV R was

described at individual level by the following equations:

ySi = FSi(XSi, ψSi) (4.12)

zSi = ySi + vSi (4.13)

with ySi as the SUV R model prediction for the ith subject (i=1,. . . ,m), which

is a function of XSi (the fixed-effects design matrix composed by the features

extracted from the rs-fMRI data of subject i), and the parameters ψSi to be esti-

mated for subject i; zSi is the vector of the measured SUV R data of subject i and

vSi is the within-subject variability, or residual unexplained variability, assumed

to be normally distributed with zero mean and variance σ2
i .

Second, at population level, ψSi was described by a function combining popula-

tion parameters (or fixed effects, θS), and the random variability of individual

parameters around the population mean (or random effects, ηSi), according to

the following assumptions:

ηSi ∼ N(0,ΩS) (4.14)

ψSi = θSi + ηSi (4.15)

where ηSi is assumed to be Gaussian, with zero mean, independent across in-

dividuals and with covariance matrix ΩS; as a consequence, ψSi have a normal

distribution as well. The matrix ΩS was assumed to be full. The intra-individual

(first-level) model structure was composed by the nine features selected with

the NAD approach, here at single-subject level. Data normalization was per-
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formed within subjects via z-scoring across regions. The inter-individual model

(second-level) describing the BSV of the parameters was set according to the

aforementioned assumptions.

The normality of the model residuals vSi (or a reasonable approximation thereof)

was assessed at each level by inspecting their histograms, boxplots, and Q-Q

plots. The normality of the random effects ηSi was inspected with histograms

and boxplots. This estimation requires solving a penalized least squares problem,

i.e., the penalized weighted residual sum of squares,

PWRSS(ΩS, θ, ySi|ZSi) = WRSS(ΩS, θ, ySi|ZSi)+ ‖ ySi|ZSi ‖
2 (4.16)

with ZSi as the random-effects design matrix. The optimization problem was

solved using the restricted maximum likelihood estimation method (Laird and

Ware 1982). The standard errors (SEs) were calculated for each θSi parameter

estimate as the square root of the diagonal of their covariance matrix. The overall

(näıve pooled data, NPD) and subject-wise MLM R2 were also evaluated. The

residual unexplained variability vSi was evaluated by calculating its median and

variability (CV%) across subjects.

The hierarchical modelling approach was also performed across networks (N) in

order to characterize BNV. RSNs were used as the grouping (or random) factor

instead of subjects, in a model formulated as follows:

yNj = FNj(XNj, ψNj) (4.17)

zNj = yNj + vNj (4.18)

with j as the jth network (j=1,. . . ,q). Normalization of SUV R and rs-fMRI vari-

ables was performed via z-scoring within RSNs.

The random effects ηN and the resulting individual parameters ψN were evalu-

ated in terms of their similarity structure, both across RSNs (first dimension of

ηN ) and across the nine predictors (second dimension of ψN ), by using cosine

similarity (with an arbitrary threshold equal to the 80th percentile to emphasize

high similarity values). The Gaussianity of residuals vNj and random effects ηNj

was assessed as described before.

Relative importance analysis
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Relative importance analysis (Luo and Azen 2013; Tonidandel and LeBreton

2011) was employed as a supplement to the results of hierarchical modelling. This

type of analysis allows to appropriately partition the model’s explained variance

amongst multiple predictors when there is still significant multicollinearity, which

makes typical indicators of importance (e.g., standardized regression coefficients)

flawed. Dominance analysis (DA), in particular, works by rank-ordering the pre-

dictors in term of relative importance by comparing the additional contributions

they make to the R2 of all possible subset models. Specifically, we assessed the

general dominance of the variables, which is established for one predictor over

another when the average of its conditional contributions over all model sizes is

greater than that of the other. The obtained general dominance weights are also

measures of relative effect sizes, as they sum to the model R2: the percent con-

tribution to the model R2 was therefore calculated and reported. While DA was

originally proposed for OLS models, it was later extended to MLM (Luo and Azen

2013). In order to apply DA to hierarchical models, a null model with no pre-

dictors must be provided, and the slopes of first-level models must be considered

fixed even when they are random in the identified model, to simplify dominance

evaluation. DA was used to assess the extent to which each selected variable

was driving the prediction in the context of the LME models with subjects (S)

and networks (N) as random factors, as they were still affected by non-negligible

multicollinearity.

4.3 Results

4.3.1 Resting-state fMRI feature extraction and

correlation structure

A flowchart describing the preprocessing and preliminary analysis of the [18F]FDG

PET and rs-fMRI data is shown in Figure 4.1.

The [18F]FDG variable of interest is the SUV R, calculated at individual level for

every region of the Schaefer cortical atlas (Schaefer et al. 2018), supplemented by

18 subcortical regions (H. Wang and Yushkevich 2013), which will be considered

as the dependentvariable from here onward.

We extracted 50 rs-fMRI variables at the single-subject level for the same 218

regions, and subdivided them into 4 a priori -defined pools, as reported in Table

4.1 .
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Figure 4.1: Flowchart of rs-fMRI and [18F]FDG PET processing, feature extraction and analysis.
Both rs-fMRI time series and [18F]FDG SUV R data were parceled using the Schaefer
cortical atlas and 18 subcortical ROIs. The parcel-wise rs-fMRI data were used to
extract fifty features representative of four “pools”, i.e., 1) signal, 2) HRF, 3) sFC, 4)
tvFC. The PET-fMRI spatial coupling was investigated using bivariate correlation and
multivariable MLM across subjects and across fMRI-based RSNs.

To briefly recapitulate, the signal pool (1) contains features related to the ba-

sic statistics of the regional BOLD time series, its complexity/entropy, its low-

frequency fluctuations (ALFF ), local coherence (ReHo) and high-amplitude events

(peaks-BOLD); the HRF pool (2) includes the amplitude of the HRF peak, and

the correlation between regions in terms of HRF shape (introduced here for the

first time), summarized by means of graph properties; the sFC pool (3) charac-

terizes sFC with graph theory metrics at ROI-level; the tvFC pool (4) assesses

graph metrics’ temporal variability across sliding windows (Allen et al. 2014),

and, notably, is very rich in features, because of our desire to characterize tvFC

from multiple, complementary viewpoints (variance, entropy etc.).

These metrics are expected to be representative of the vast majority of proper-

ties that can be extracted from the rs-fMRI signal and its FC in a standard EPI

acquisition.
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Preliminarily, the Spearman’s correlation matrix between the 50 rs-fMRI vari-

ables at group average level (i.e., by taking the parcel-wise median value of each

feature across subjects) was computed (Figure 4.2a), in order to assess the spatial

relationships between the extracted features and their degree of redundancy.

The clustering into 4 pools provided by a priori knowledge was fairly consistent

with the observed correlation structure, with signal, HRF and sFC features (upper

block) being clearly distinguished from tvFC features (lower block), which they

are negatively correlated with. It was also noticeable that strong correlations

between many variables were present, especially for the tvFC pool, and that a

feature selection step was going to be necessary to use these variables in a nu-

merically sound fMRI-based multivariable model of SUVR: the condition number

κ(X), which quantifies the level of correlation between predictors in a multiple

regression context (i.e., their multicollinearity), was high (κ(X) = 70.58), way be-

yond the acceptability range (Belsley 1991), which is known to result in unstable

and unreliable models.

4.3.2 SUV R vs. rs-fMRI: bivariate spatial relationships

Before moving to the multiple regression framework, we began by investigating

bivariate associations between SUV R and the extracted rs-fMRI variables at the

group level, in the so-called NAD approach, as frequently done by previous stud-

ies (D. Tomasi, G. J. Wang, and Volkow 2013; Marco Aiello et al. 2015). Here,

notably, a much wider range of fMRI-derived variables was explored. Many sig-

nificant spatial associations between SUV R and rs-fMRI features were detected

across the 218 analyzed regions, as assessed through Spearman’s rank correlation

(p = 0.05 significance level) with FDR multiple comparison correction (Benjamini

and Hochberg 1995). The correlation coefficients are reported in Figure 4.2b.

The strongest positive associations were with 1) ReHo (ρ = 0.45, p < 0.001), 2)

s-BC (ρ = 0.4, p < 0.001), and 3) SampEn-BC (ρ = 0.44, p < 0.001), respec-

tively 1) a measure of local synchronization of BOLD, 2) a sFC graph metric,

i.e., betweenness centrality (BC ), which describes a region in terms of its global

connections in the network (Rubinov and Sporns 2010), and 3) a tvFC measure

of temporal complexity of the BC time series. The strongest negative correlations

were mdiff-BC (ρ = -0.42, p < 0.001) and CV-BC (ρ = -0.42, p < 0.001) in the

tvFC pool, both measures of temporal variability of BC.

In general, it can be noted that positive associations emerged for the majority

of the signal-based, HRF and sFC-related features, while tvFC metrics, which
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Figure 4.2: Bivariate correlations among rs-fMRI variables, and between rs-fMRI variables and
SUV R. The pattern of Spearman’s correlations (FDR-corrected, non-significant values
in white) among rs-fMRI features, assessed at the group level and divided according
to the pool to which they have been assigned (1) signal, 2) HRF, 3) sFC, 4) tvFC ), is
shown in (a). The rs-fMRI features are tested for association with group median SUV R
across 218 regions via Spearman’s correlation (significant values after FDR correction
indicated with an asterisk) (b).

highlight the variability of the FC profile of each brain region, displayed a con-

sistent and never previously reported negative association with SUV R (Figure

4.2b). Exceptions amongst signal-based features are rApEn-BOLD (ρ = -0.31, p

< 0.001), a measure of rs-fMRI signal complexity, and peaks-BOLD (ρ = -0.34,

p < 0.001), which quantifies the number of signal peaks exceeding one standard

deviation from the baseline: both exhibited negative relationships with SUV R.

Among tvFC features, SampEn-BC (ρ = 0.44, p < 0.001) shows a strong posi-

tive coupling with SUV R, in contrast to the behavior of the other tvFC metrics.

Interestingly, the dynamics of local synchronization measures, i.e., MAD-ReHo

and CV-ReHo, displays a positive association with SUV R, in contrast with the
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tvFC pool.

SUV R-fMRI associations are strengthened in low SUV R nodes

Since from previous evidence we suspected the relationship between [18F]FDG

PET and rs-fMRI to be heterogeneous across regions, Spearman’s correlations

were also re-evaluated across groups of nodes selected according to linearly in-

creasing percentiles of the SUVR distribution, i.e., by retaining the nodes with

progressively higher and higher SUV Rvalues, from the 1st (all parcels) up to

the 85th percentile (33 parcels), as well as decreasing percentiles, i.e., by retain-

ing nodes with lower and lower SUV R values, from the 100th to the 15th. The

purpose of using this data-driven approach was to verify whether SUV R-fMRI

associations would be strengthened in high SUV R nodes or, conversely, in low

SUV R nodes, since [18F]FDG PET provides a ranking of brain regions that is ex-

pected to be related to important structural and functional properties (L. Sokoloff

et al. 1977; Clarke and Louis Sokoloff 1999).

Spearman’s correlations (p = 0.05 significance level, FDR-corrected) across re-

gions between SUV R and all 50 rs-fMRI features (rows) are shown in Figure 4.3a,

for each threshold level along the SUV R distribution (columns). Assessing the

correlation in nodes with progressively higher SUV R (right side of Figure 4.3a)

does not lead to any relevant effect (except for few measures): therefore, hardly

any strengthening of SUV R-fMRI relationships is detected in regions with high

[18F]FDG uptake.

Unexpectedly, however, a marked increase in many associations can be observed

by assessing correlations over nodes with progressively lower values of SUV R

(left side of Figure 4.3a), with highly significant correlations even after FDR cor-

rection.

We identified the threshold corresponding to the highest total correlation across

features: the spatial pattern of the 87 nodes that have a SUV R below the 40th

percentile is shown in Figure 4.3b. These parcels, where the SUV R-fMRI as-

sociation is emphasized, mainly belong to temporal/limbic areas (including hip-

pocampus), sensorimotor cortices, and subcortical regions, such as cerebellum

and globus pallidus.

This finding suggests the presence of nonlinear relationships between [18F]FDG

SUV R and most rs-fMRI features: tighter and more linear associations are

present across a limited range of brain regions with low-medium [18F]FDG up-
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Figure 4.3: The SUV R-fMRI correlation changes strongly in low SUV R nodes. Spearman’s correla-
tions (FDR-corrected, non-significant values in white) between SUV R and all rs-fMRI
features (y axis), evaluated across nodes selected by increasing (x axis - right) and
decreasing (x axis - left) percentiles of SUV R (a). The dashed black line shows the
percentile with maximum correlation across features (i.e., nodes in the 1st - 40th per-
centile range). The histogram on the right highlights the range of percentiles included
in the correlation. The brain regions shown on the left are the parcels over which cor-
relations are assessed (b).

take, with weaker coupling as SUV R gets higher.

This nonlinearity in the association was thus further tested by performing model

selection for all variables, expanding on previous studies which were focused on

specific networks and features (D. Tomasi, G. J. Wang, and Volkow 2013; Shokri-

Kojori et al. 2019). In particular, we explored which model structure, amongst

four options with equal number of parameters (linear, mono-exponential, power

law, log-linear), was the best at fitting each of the 50 bivariate SUV R-fMRI as-

sociations. Notably, a nonlinear relationship was identified as the winning model

for most (86%) of the SUV R-fMRI associations, with the power law as the model
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of choice for 72% of them (36/50 features). Since the log-linear model (i.e., a log-

arithmic transformation of the rs-fMRI variables):

1) would be easier to integrate in a multiple regression + feature selection

framework than a fully nonlinear model like the power law, allowing us to use a

(more robust) linear estimator;

2) was still superior to the linear model in 62% of the cases (31/50 associa-

tions);

3) displayed very small differences in RSS with respect to the power law, in

the range of [-0.05; 0.01];

we chose to perform multivariable model selection using the log-linear model.

4.3.3 SUV R vs. rs-fMRI: multivariable multilevel model

We then set out to assess which combination of rs-fMRI features was better able

to explain SUV R across brain regions, using multiple regression and MLM.

In MLM, the model structure is usually known, or selected at the lower level, i.e.,

at the individual level (Hox, Moerbeek, and Schoot 2017). However, as signifi-

cant BSV in the SUV R-fMRI association is expected, we chose to identify the

predictors at the population level (again, in a NAD approach), thus exploiting

the denoising properties of averaging. The model structure selected at the group

median level was then used on individual-level data to characterize the BSV of the

SUV R-fMRI spatial association, trying to capitalize on the fact that [18F]FDG

and rs-fMRI data were acquired in the same subjects.

Maximum rs-fMRI explanatory power for SUV R variability

To do a preliminary assessment of the maximum explanatory power provided by

the rs-fMRI features, we began by fitting an OLS regression model employing all

the available features in log-linear form (i.e., exploring the relationship between

SUV R and the log-transformed rs-fMRI explanatory variables), to account for

the detected nonlinearity. From now we will call this log-linear model.

The OLS model had an R2 value of 0.62: the maximum explanatory power the

rs-fMRI variables provide reaches around 60% of the SUV R variance, without

full saturation despite a marked overparameterization (i.e., 50 rs-fMRI predic-

tors). Due to the high number of predictors and the presence of multicollinearity,

the precision of numerous parameter estimates was, as expected, very low (CVs

> 100%) (E. Carson 2013).
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Modelling approach number of features Condition Number Ordinary R2 BIC Model RSS CV% (µ± σ) Switched signs
OLS 50 75.72 0.630 670.03 80.25 533.68 ± 1092.1 YES
Ward 50 → 12 13.23 0.472 543.02 114.57 124.27 ± 246.41 YES
NNLS 50 → 13 8.08 0.420 568.82 122.67 778.24 ± 1674.6 NO
GETS 50 → 11 12.93 0.564 495.84 94.58 26.73 ± 6.11 YES
Ward+NNLS 12 → 6 13.23 → 4.71 0.394 540.82 131.53 77.68 ± 17.89 NO
Ward+GETS 12 → 4 13.23 → 3.44 0.428 517.26 124.04 21.57 ± 3.34 YES
Ward+stepwise 12 → 6 13.23 → 5.06 0.436 525.05 122.35 42.07 ± 17.92 YES
Ward+elastic net 12 → 12 13.23 → 13.10 0.461 545.37 115.81 203.26 ± 509.03 YES
NNLS+GETS 13 → 3 8.08 → 2.39 0.390 526.23 132.48 27.62 ± 8.06 YES
NNLS+elastic net 13 → 9 8.08 → 6.56 0.411 550.01 127.40 66.73 ± 17.79 NO
GETS+NNLS 11 → 6 12.93 → 3.51 0.396 539.91 130.98 64.58 ± 35.15 NO
GETS+elastic net 11 → 11 12.93 → 12.93 0.561 497.92 95.48 28.86 ± 6.52 YES

Table 4.2: Feature selection strategies for the log-linear model at group level. For each of the
eleven feature selection methods, the table’s columns display 1) number of features af-
ter selection, 2) condition number of design matrix after selection, 3) ordinary R2, 4)
Bayesian Information Criterion (BIC), 5) model residual sum of squares (RSS), 6) mean
(µ) and standard deviation (σ) of CVs% of estimates, 7) presence of switched signs of
the coefficients. The feature selection strategy that was chosen as the most informative
(NNLS + elastic net) is highlighted in red.

A parsimonious and informative group-level multivariable model

Multiple feature selection approaches (11 methods) were then tested to reach a

mathematically sound regression model. These were compared in terms of number

of selected features, condition number κ(X) of the predictor matrix after selec-

tion, goodness-of-fit indices (R2, RSS), parsimony criteria (BIC), precision of the

estimates (mean and SD of CVs%), and presence of coefficients with switched

signs (with respect to bivariate correlations with SUV R). We also considered

other aspects of the solutions, i.e., the number of features from each rs-fMRI

pool (trying to avoid too parsimonious solutions) The details of the results are

reported in (Figure 4.4, Table 4.2).

The chosen feature selection process was performed in two stages. First, a sign-

constrained NNLS estimator (Meinshausen 2013) was employed; then, the NNLS

estimates were refined with a second stage of feature selection via elastic net

regression (H. Zou and Hastie 2005). The reached solution was optimal in com-

parison with the other ten methods, in terms of both goodness of fit (R2 = 0.411)

and precision of the estimates (CVs% µ± σ = 66.73 ± 17.79 %).

The selected rs-fMRI predictors are: 1) ApEn-BOLD, 2) rApEn-BOLD, 3) ReHo,

4) CV-ReHo, 5) peaks-BOLD, 6) hrf-LE, 7) s-BC, 8) med-LEig, 8) CV-BC. The

first five predictors belong to the signal and local synchronization pool, while the

other four to the remaining groups of rs-fMRI features, suggesting a clear and di-

rect [18F]FDG-fMRI spatial relationship mostly for local features. Notably, most

of the identified rs-fMRI predictors were chosen with high consistency across

the tested feature selection methods (ReHo in particular, in 10/11 cases), which

highlights the robustness of their association with SUV R (Figures 4.4).
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Figure 4.4: Feature selection results for the group-level log-linear model. Selected rs-fMRI variables
(top matrix, in red) and CVs% of the estimated parameters (bottom matrix, ceiling at
100%). The employed selection strategies (y axis) are: 1) Ward hierarchical clustering,
2) NNLS, 3) GETS, 4) Ward, then NNLS, 5) Ward, then GETS, 6) Ward, then stepwise,
7) Ward, then elastic net, 8) NNLS, then GETS, 9) NNLS, then elastic net, 10) GETS,
then NNLS, 11) GETS, then elastic net. The rs-fMRI features are shown on the x axis.

Multivariable multilevel model – subjects as random factor

The hierarchical modelling framework was then applied to the individual data

using the nine selected predictors, to fully characterize the BSV of the SUV R-

fMRI association. The log-linear model identified at the group level was re-

estimated using a MLM approach (Hox, Moerbeek, and Schoot 2017). Thefixed -

effect (θS) parameter estimates, which represent the equivalent of the parameters

estimated at the group level, are reported in (Figure 4.5a) with their SEs. To

get an accurate ranking of the most relevant predictors in explaining SUV R,

the estimated θS were ordered by their relative contribution to the model ex-

planatory power using dominance analysis (DA) (Luo and Azen 2013) (Figure

4.5b). In terms of general dominance, at the top was ReHo (48% of the total

R2), followed by peaks-BOLD (19%), CV-ReHo (11.74%), CV-BC (10.50%), s-

BC (8.02%), ApEn-BOLD (3.67%), med-LEig (2.60%), hrf-LE (1.47%), rApEn-

BOLD (0.02%). Notably, the features belonging to the signal pool collectively

accounted for 76.17% of the hierarchical model R2.
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The random effects (ηSi) describe the deviation of the parameters for a specific

subject i from the group value, i.e., how much the parameters of each subject

i are distant from the group-level estimates θS. We found that the BSV in the

SUV R-fMRI association is clearly non-negligible: the explained variance of the

overall model, i.e., considering the individual-level data in a NPD approach, was

lower (R2 = 0.245). The R2 values of the subject-level models display high vari-

ability (from 0.05 to 0.45).

The across-subject average of the model’s residuals vSi, which highlight how well

the SUV R of each region is explained by the identified model, can be visualized

in Figure 4.5c. Notably, high positive values are present in posteromedial cor-

tex (posterior cingulate cortex (PCC) in particular) and subcortex (putamen):

these areas identify nodes with high [18F]FDG uptake which are not satisfacto-

rily explained by the available rs-fMRI features. Importantly, this deficiency in

explanatory power is highly consistent across subjects, as evidenced by the low

BSV of the residuals in those areas (Figure 4.5d).

Multivariable multilevel model – networks as random factor

Finally, the nine rs-fMRI features, selected for their ability to globally explain

SUV R across all brain regions, were tested as predictors to describe the BNV

of the SUV R-fMRI association. Parcels were grouped according to RSNs of the

Schaefer atlas in its 17-RSN partition (Schaefer et al. 2018), supplemented by

a subcortical “network” with 18 subcortical anatomical regions (H. Wang and

Yushkevich 2013). A suboptimal way to do this would be to use a single-network

approach, i.e., to estimate the weights of each of the nine BOLD predictors for

each network separately, and then to consider the average and variability of the

results across networks. A more appropriate approach is the full MLM frame-

work, but this time with RSNs as the random/grouping factor for individual-level

data, instead of subjects.

The fixed effects θN and their SEs for the between-network model are reported in

(Figure 4.6a): ReHo and peaks-BOLD are still important parameters in describ-

ing SUV R, together with ApEn-BOLD and CV-BC ; rApEn-BOLD and hrf-LE,

instead, lose importance, and their fixed effect θN becomes irrelevant (with their

SE range crossing the zero-line). To confirm the ranking, DA was performed in

this context as well: ReHo was still the most important predictor in terms of gen-

eral dominance (explaining 23.24% of the model’s R2), followed closely by CV-

BC (19.85%), peaks-BOLD (16.39%), s-BC (15.19%), ApEn-BOLD (11.46%),



4.3 Results 71

Figure 4.5: Multilevel SUV R modelling and its BSV. Parameter estimates and SEs for the fixed

effects θS , which represent the parameters that best explain SUV R across the regions of
the whole brain at group level (a). The relative importance weights derived from domi-

nance analysis, highlighting the proportion of the multivariable MLM R2 explained by
each predictor (b). Across-subject median (c) and variability (d) of weighted residuals
vSi of the multilevel model.

med-LEig (9.65%), CV-ReHo (2.55%), hrf-LE (1.80%), rApEn-BOLD (0.13%)

(Figure 4.66b).

Notably, the R2 of model prediction considering network-wise estimates is markedly

lower than when subjects are the random factor. As shown in (Figure 4.6c), the

single RSNs are highly heterogeneous in terms of model R2, ranging from around

0 to 0.32, with an overall NPD prediction of R2 = 0.147.

The individual RSN estimates (i.e., weights of the nine rs-fMRI features) can be

obtained by combining the fixed effects with the specific variation of each RSN:

more specifically, the variability of the SUV R-fMRI association across networks

(BNV ) is measured by the random effects ηNj for each network, with some RSNs
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displaying marked distance from the fixed -effect estimates θN of the “average net-

work”. To better assess this variability, the parameter estimates ψNj (i.e., sum of

fixed effects θN and random effects ηNj for every network j) of the nine rs-fMRI

predictors were plotted (Figure 4.7a).

Figure 4.6: Multilevel SUV R modelling and its BNV – parameter estimates and explained variance.
Parameter estimates and SEs for the fixed effects θN , which represent the parameters
that best explain SUV R across regions in an average network (a). Relative importance
weights produced by DA in terms of the proportion of the between-network model R2

explained by each predictor (b). Network-wise R2 values, representing the percentage
of SUV R variance explained by the mixed-effect model at the network level (c).

We can observe that most predictors included in the model display heterogeneity

across networks in their relationship with SUV R, with either positive or nega-

tive associations depending on the specific RSN, which cannot be captured by

the average description given by the fixed effects θN of Figure 4.6a.

As some predictors seemed to show very similar spatial patterns with one another,

we assessed this consistency by calculating the cosine similarity between their

random effects across networks (Figure 4.7b). Notably, high similarity (> 80th

percentile) can be found between the patterns of ReHo, CV-ReHo, hrf-LE and
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med-LEig, with strong positive weights for somatomotor network B (SM(B)) and

also control network (CTR(C)). Another interesting pattern emerges for CV-BC,

which displays both positive (CTR(A), VIS(B)) and negative weights (TEMP/-

PAR, LIMBIC(A), SAL/VAN(A), DMN(B)), highlighting the presence of both

positive and negative associations with SUV R.

Finally, the cosine similarity of the network-wise ψNj values was evaluated across

the nine predictors this time, to assess how similar the RSNs are to one another in

terms of their multivariable SUV R-fMRI coupling (Figure 4.7c). When consider-

ing the high similarity values (> 80th percentile), an interesting pattern emerges:

some RSNs are fairly isolated from the rest of the brain in their SUV R-fMRI as-

sociation pattern (e.g. DMN(A), DMN(C), VIS(A), VIS(B), SM(A), CTR(A)),

with only 1-2 strong associations with other RSNs; other RSNs, instead, have

many associations, and thus are similar to many other networks in their SUV R-

fMRI coupling (SAL/VAN(A), DAN(A), DAN(B), CTR(C), DMN(B), SUB).

4.4 Discussion

In this work, we have thoroughly investigated and modelled the spatial coupling

between features extracted from rs-fMRI and simultaneously acquired [18F]FDG

PET, while also accounting for the variability across subjects (i.e., BSV) and

networks(i.e., BNV) in this relationship.

4.4.1 New associations between [18F]FDG PET and

rs-fMRI

In addition to the few rs-fMRI variables that have already been associated to

[18F]FDG uptake, i.e., ALFF, ReHo, sFC DEG/STR (D. Tomasi, G. J. Wang,

and Volkow 2013; Nugent et al. 2015; Marco Aiello et al. 2015; S. Deng et al.

2022; Palombit et al. 2022), we have assessed to a wider variety of previously un-

explored features, such as those related to time-varying functional connectivity

(tvFC) and the hemodynamic response (HRF) of rs-fMRI.

To our knowledge, in particular, the relationship between [18F]FDG metabolism

and FC temporal variability has never been tested before. It is known that regions

with stronger sFC tend to have higher CBF (Liang et al. 2013) and CMRglc (D.

Tomasi, G. J. Wang, and Volkow 2013; Palombit et al. 2022), possibly reflecting

the fact that they are also more strongly connected anatomically (Honey et al.
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Figure 4.7: Multilevel SUV R modelling and its BNV – multivariable network-level estimates. In-
dividual network parameter estimates (ψNj , sum of fixed effects θN and random effects
ηNj , which describe the variability from the fixed effect for each RSN j) for each predic-

tor (a). Cosine similarity matrix (values above the 10th and below the 80th percentile
set to zero – in white) between the nine predictors’ random effects ηNj across RSNs (b).

Circular graph of the cosine similarity (values below 80th percentile set to zero) among
RSNs in terms of their parameter estimates (ψNj = θN + ηNj) for the nine predictors

(c).

2009), but the tvFC coupling with glucose metabolism is not established.

We found that graph metrics’ temporal variability is negatively related to SUV R.

The interpretation of this finding can be supported by knowing that sFC and tvFC

graph metrics are also negatively correlated, as shown by the correlation betwen
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rs-fMRI measures (Figure 4.2a); in fact, the higher the strength of a correlation

across the entire rs-fMRI acquisition, the lower its temporal variability across time

windows from the same acquisition (Thompson and Fransson 2015). However,

when examining the correlations of tvFC metrics vs. sFC metrics with SUV R,

different patterns emerge, suggesting that tvFC-SUV R associations are not sim-

ply the inverse of the sFC findings. Similarly to our findings with [18F]FDG,

tvFC has been previously linked to cerebral protein levels assessed with L-[1-
11C]leucine PET, with regions having higher protein turnover displaying lower

temporal variability of their graph properties (Hellyer et al. 2017).

Additionally, one of the strongest negative relationships is found between SUV R

and the number of BOLD pseudo-events (peaks-BOLD), a metric that is related

to the description of the rs-fMRI signal as a point process, with sparse neural

events governing its dynamics (Zhang, Pan, and Keilholz 2020).

One interpretation might come from considering that higher local oxygen con-

sumption by active neurons has been found to be associated with decreased pos-

itive BOLD fluctuations (Howarth, Mishra, and Hall 2021), and therefore the

higher the number of BOLD peaks and extreme events, the lower the oxidative

metabolism (and SUV R) might be in that region, but further investigation is

required. Additionally, one might also consider a recent hypothesis on metabolic

resources representing an anticipatory allocation of energy for neural expendi-

ture, as discussed in (Mann et al. 2021) in Drosophila using calcium imaging as

a marker of neural activity and pyruvate and ATP concentration as metabolic

sensors. Under this vision, our results reporting lower glucose consumption in

parcels with more BOLD peaks and higher time-varying FC might be explained

with a decreased ability of these regions to allocate energy due to a difficulty

in anticipating higher-frequency and more variable neuronal activity. However,

while these hypotheses could be intriguing, more complex experimental settings

are required to make these assessments in human neuroimaging data.

4.4.2 The SUV R-fMRI associations are stronger in low

SUV R nodes

We then examined how these relationships are modulated by selecting parcels

according to their ranking in terms of [18F]FDG uptake. Since the spatial rela-

tionship between SUV R and rs-fMRI was previously found to be heterogeneous

across the brain (Marco Aiello et al. 2015; Shokri-Kojori et al. 2019), we chose to

evaluate the changes in correlations when selecting nodes from the SUV R stand-
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point. Unexpectedly, when choosing nodes with progressively higher SUV R we

found no increases in the the associations, which instead became significantly

stronger when progressively selecting nodes with lower and lower SUV R (Figure

4.3).

This finding suggests that only in nodes with lower glucose metabolism is the

[18F]FDG-fMRI spatial relationship emphasized, implying the presence of a non-

linear association for most of the rs-fMRI features, not just for the previously

explored metrics (D. Tomasi, G. J. Wang, and Volkow 2013; Shokri-Kojori et al.

2019). Regions with high [18F]FDG uptake remaining unexplained by the avail-

able features.

This nonlinear spatial relationship was also directly tested, and either an expo-

nential, a power law or a log-linear relationship was attributed to the majority

(86%) of the evaluated bivariate associations. The nonlinearity of the coupling

between glucose consumption and BOLD is partly expected: 1) known nonlin-

earities exist in the associations between BOLD and neuronal activity (Kim and

Seiji Ogawa 2012), to which glucose metabolism is instead linearly related (Louis

Sokoloff 1999); 2) nonlinear models (e.g., power laws) are commonly detected in

biological data, and in particular in metabolic budget (D. Tomasi, G. J. Wang,

and Volkow 2013); 3) the [18F]FDG coupling with local and large-scale FC (D.

Tomasi, G. J. Wang, and Volkow 2013; Shokri-Kojori et al. 2019) has been de-

scribed with a power law within specific areas; 4) nonlinear relationships between

CBF , a main ingredient of BOLD, and CMRglc have also been reported (Hen-

riksen, Vestergaard, et al. 2018).

What seems clear is that the nodes with the highest [18F]FDG uptake are poorly

described by rs-fMRI features, possibly implying that they are richer in prop-

erties that are not easily captured by rs-fMRI (e.g., receptor density, structural

connections, neural activity etc.?).

Further investigation on the few features that increase their correlations in high

SUV R nodes (i.e., MAD-BOLD, rApEn-BOLD, peak-HRF ) might also provide

some insight, as these are expected to be related to CBF .

4.4.3 The multivariable multilevel model: local fMRI

features are the strongest predictors

To our knowledge, this is the first study to model the [18F]FDG-fMRI coupling

using a multivariable approach, attempting to identify the best subset of metrics,

among a wide range of candidate fMRI variables, to explain SUV R variability
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across regions, and then describe their relative contributions to overall glucose

consumption. Moreover, to fully capitalize on the fact that PET and fMRI data

were acquired in the same subjects, we employed a MLM approach, with feature

selection performed at the group level, and modelling performed at the individ-

ual level, to characterize the BSV of the SUV R-fMRI association. The selected

model consisted of nine rs-fMRI variables (Figure 4.5) representing each of the

4 a priori-defined pools of features: signal (ApEn-BOLD, rApEn-BOLD, peaks-

BOLD, ReHo, CV-ReHo), HRF (hrf-LE ), sFC (s-BC, med-LEig), tvFC (CV-

BC ).

Importantly, the strongest predictors of the SUV R spatial distribution are found

to be related to the BOLD signal and its local synchronization properties (ReHo

in particular), which consistently emerged as relevant across all feature selection

methods.

The fact that the SUV R-fMRI spatial coupling is emphasized when local BOLD

variables are involved might reflect the interplay between excitatory and in-

hibitory neural populations (Muthukumaraswamy et al. 2012), and their regu-

lation of local CBF , which could play a relevant role in these rs-fMRI features

(Kim and Seiji Ogawa 2012; Tong et al. 2017). ReHo, in particular, which emerges

as important also in past PET-fMRI work (Bernier et al. 2017; J. Wang et al.

2021), is expected to represent synchronization of local field potentials (Z. Li,

Zhu, et al. 2012) and to be a proxy of local, short-range connectivity (Jiang and

Zuo 2016).

Overall, the explanatory power provided by rs-fMRI features reached only a 40%

of the SUV R variance at the group level (and 24% at individual subject level).

Zones of polarization in the model residuals emerged in subcortical, posterome-

dial, and lateral frontal regions, which could mainly be attributed to the afore-

mentioned “outliers” with higher metabolism, which are poorly explained by the

available rs-fMRI features in a consistent manner across subjects (Figure 4.5).

These results point to the idea that the BOLD signal and FC reflect the metabolic

architecture established by [18F]FDG only partially, even in simultaneously ac-

quisitions, and that large-scale FC and its graph metrics, in particular, cannot

be considered as good proxies of brain glucose metabolism.

Although most major neuroimaging initiatives (e.g., HCP, ABCD, UK Biobank)

only acquire MRI data (Elam et al. 2021), we argue that [18F]FDG PET still

provides non-redundant information that are of great value.
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4.4.4 The high variability of the [18F]FDG-fMRI

coupling across subjects

An issue that clearly emerged from MLM is that, while the group-level model R2

is moderately high (∼ 0.4), the individual model R2 values were remarkably vari-

able across subjects, ranging from 0.05 to 0.45: this highlights the fact that the

SUV R-fMRI relationship displays significant BSV, with subjects whose BOLD

signal and FC architecture are more related to SUV R across regions, and others

where there is hardly any [18F]FDG-fMRI relationship.

Why this is the case is not fully clear. Simultaneous [18F]FDG PET/fMRI ac-

quisitions are expected to reduce the within-subject variability affecting non-

simultaneous studies (e.g., (D. Tomasi, G. J. Wang, and Volkow 2013)), and also

improve the match between modalities (Cecchin et al. 2017). However, PET

measures are also known to have higher test-retest stability with respect to fMRI

(Cecchin et al. 2017), which would point to the higher variability in fMRI-derived

features being the reason for the better match in some subjects, and worse in oth-

ers. Previous work has also called into play the ‘non-ergodicity’ of neuroimaging

measurements (Jamadar et al. 2021), with group-level measures not being repre-

sentative of what happens at the subject level: with regard to this, we chose to

employ the mixed-effects population modelling approach since, despite its limi-

tations, it might help find a balance between noisier individual-level associations

and more robust group-level information.

4.4.5 The [18F]FDG-fMRI coupling changes across

networks

Finally, we used the MLM approach and the identified predictors to try to char-

acterize BNV of the [18F]FDG-fMRI association, exploiting the fMRI-derived

RSNs to group the individual data in a network-by-network fashion, i.e., the

parcels within a given network for all the subjects; this approach adds to and

enriches previous work on such network-related variability (Marco Aiello et al.

2015; Shokri-Kojori et al. 2019).

The rs-fMRI predictors selected in the previous step are shown to be mostly rel-

evant, but their ranking changes noticeably, with static and time-varying large-

scale FC features (CV-BC in particular) gaining more importance in the model.

Moreover, when the network-wise variability in the model parameters is consid-

ered, one can identify patterns of predictors with some similarity across networks,
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with a group of RSNs (subcortical, salience, dorsal attention etc.) sharing a

similar SUV R-fMRI association pattern, while other networks seem to be more

isolated (part of the default mode, visual, somatomotor etc.).

The first take-home message is that, while the spatial coupling across the whole

brain tends to favor more local fMRI features (e.g., ReHo), the fMRI FC prop-

erties do gain more relevance in explaining local metabolism within specific net-

works. While the spatial model estimated across the whole brain, gives an “av-

erage” representation of the [18F]FDG-fMRI relationship, when we focus on the

single networks, which by definition are more homogeneous in terms of FC, it is

possible for the association between [18F]FDG and large-scale network properties

(sFC, tvFC) to change and become stronger.

For what concerns the two groups of RSNs that are identified based on their

[18F]FDG-fMRI association patterns, the more peripheral role, from a topologi-

cal standpoint (Rubinov and Sporns 2010), of networks like VIS and SM, or the

enrichment in high SUV R nodes for DMN and VIS, might explain the identi-

fied ‘clusters’. Notably, the regions where SUV R-fMRI bivariate correlations are

higher (Figure 4.3b) tend to fall into networks with high R2 values in the multi-

variable model (Figure 4.6c). Other physiological variables (blood flow, neuronal

or connection density etc.), might be important to explain these differences be-

tween networks.

Overall, we find a low explanatory power (R2 from 0 to 0.32) in the network

model: this is line with the previously reported weak or absent correlations be-

tween [18F]FDG PET and rs-fMRI when assessed across subjects and not across

space (Marco Aiello et al. 2015; J. Wang et al. 2021). In our analysis, the parcels

of all subjects are pooled together within each network, and the [18F]FDG-fMRI

association is tested across both space and subjects : this might be behind the

weaker performance of fMRI measures in explaining SUV R, with respect to spa-

tial modelling across all brain regions. The reasons behind the poor match be-

tween the inter-subject variability of [18F]FDG and rs-fMRI measures might be

multifactorial (differences in time scales, spatial resolutions, sensitivity to arte-

facts, normalization strategies, between-subject reproducibility etc. among the

two modalities (J. Wang et al. 2021)).

Notably, only a significant region-by-region coupling between [18F]FDG and rs-

fMRI measures across subjects would make one modality a “replacement” of the

other at the individual level, especially for clinical purposes. Further investiga-

tion with a higher number of subjects is thus highly warranted to confirm this
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(lack of) association (see Chapter 5).

4.4.6 Limitations

A comprehensive understanding of the relationship between [18F]FDG PET and

rs-fMRI is likely to require assessing other features, such as CBF and CMRO2

(S. Deng et al. 2022) (Chapter 5).

Additionally, while the dataset employed here consists of standard rs-fMRI acqui-

sitions (single-echo, TR of 2s, voxel size 3-4 mm), more advanced fMRI denoising

methods (e.g., multi-echo imaging (Kundu et al. 2017), recordings of respiratory

volume and heart rate (J. E. Chen, Lewis, et al. 2020), and regression of the

CBF contribution (Tong et al. 2017) out of the BOLD signal features) might

significantly improve the BOLD-[18F]FDG coupling.

For what concerns [18F]FDG PET, it must of course be remembered that SUV R,

which was employed here as well as in the majority of the literature on [18F]FDG-

fMRI coupling (Nugent et al. 2015; Marco Aiello et al. 2015; J. Wang et al. 2021),

may offer a biologically confounded view of glucose consumption (Chapter 2).

PET kinetic modelling is likely to help disentangle the biological processes un-

derlying both rs-fMRI features and static PET estimates (Chapter 5).

To find better matching between [18F]FDG and fMRI measures, it is also possi-

ble that PET measurements should be brought into a large-scale ‘connectivity’

framework as well, with ongoing research on ‘MC’ offering new perspectives on

this multimodal integration (Amend et al. 2019; Jamadar et al. 2021) (Chapter

6).

As to the dataset employed in the analysis, the age range of the subjects (40-80

years old) may limit the generalizability of the findings, due to known age-related

modifications of CBF and CMRglc. Future work reassessing these findings in a

younger cohort is highly warranted.

With regard to the number of subjects (n = 26), increasing the sample size is

clearly important, especially to better assess across-subject associations between

[18F]FDG and fMRI measures. However, as the MLM modelling framework em-

ployed here was tailored to spatial associations, either across the whole brain (i.e.,

218 regions), or across regions within a network for all subjects (i.e., 26 multiplied

by the number of regions in each network), we do believe our statistical analysis

to be sufficiently powered for its purposes.
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4.5 Conclusions

In conclusion, for the first time we thoroughly investigated and modelled the spa-

tial relationship between [18F]FDG SUV R and a wide range of features derived

from rs-fMRI, pooled into 1) signal, 2) HRF, 3) sFC, and 4) tvFC-based features,

using simultaneous PET/fMRI data. Selection of low SUV R parcels led to a

strengthening of SUV R-fMRI associations, implying the presence of a nonlinear

spatial relationship. Moreover, a novel multivariable MLM framework was em-

ployed to identify the best subset of rs-fMRI predictors able to explainSUV R

variance across regions, highlighting that predictors based on the BOLD signal

local properties (ReHo and BOLD pseudo-events, in particular) are the ones that

are more tightly related to [18F]FDG SUV R across regions spanning the whole

brain.

Notably, the overall explanatory power provided by rs-fMRI on the regional

metabolic variability did not exceed 40% of the variance at the group level, with

significant variability across subjects. When MLM of the SUV R-fMRI coupling

was carried out across networks, the selected predictors were still relevant for

description of RSN metabolism, but noticeable between-network variability was

present: new positive and negative associations emerged, and large-scale sFC and

tvFC network features gained importance. In conclusion, [18F]FDG variability

across parcels is only partly expression of brain network organization described

by rs-fMRI.

This work has been published as (Tommaso Volpi, Erica Silvestri, Marco Aiello,

et al. 2021b; Tommaso Volpi, Marco Aiello, et al. 2021; Tommaso Volpi, Erica

Silvestri, Marco Aiello, et al. 2021a; Volpi, Silvestri, Aiello, et al. 2022).
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Chapter 5

[18F]FDG uptake, delivery and

phosphorylation: what changes in

the coupling with fMRI?

5.1 Introduction

The complex interplay between the brain’s glucose (CMRglc) and oxygen (CMRO2)

metabolism, CBF , and brain activity has been the subject of investigation for a

long time (Roy and Sherrington 1890; M. E. Raichle 1998; Louis Sokoloff et al.

1955), with one of the most interesting findings being the role that spontaneous

activity plays for neural metabolism (Clarke and Louis Sokoloff 1999; Marcus E.

Raichle 2006). One would thus expect a tight coupling between indices of brain

metabolism (CMRglc, CMRO2), as derived from PET experiments ([18F]FDG,

[15O]H2O, [15O]O2) (Marcus E. Raichle 1976; Hyder et al. 2016; S. Deng et al.

2022), and measures of resting-state brain activity, such as those derived from

rs-fMRI (Riedl et al. 2014; Marco Aiello et al. 2015; J. Wang et al. 2021; Tom-

maso Volpi, Erica Silvestri, Marco Aiello, et al. 2021b; Palombit et al. 2022; S.

Deng et al. 2022). Notably, while a large amount of work has focused on relat-

ing fMRI to electrophysiological signals (N. K. Logothetis et al. 2001; Nikos K.

Logothetis 2008; Scholvinck et al. 2010), only a limited number of studies have

directly tested how BOLD-based features can be mapped to hemodynamic and

metabolic physiology as measured by PET-derived CMRglc (Bernier et al. 2017;

S. Deng et al. 2022), CBF , CMRO2 (S. Deng et al. 2022).

Moreover, one must remember that the physiology of glucose metabolism as it can

be tracked by [18F]FDG is more complex than what is captured by simple semi-

83
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quantitative measures like SUV R (Chapter 2). While through [18F]FDG PET

we can only follow the initial steps of glucose metabolism, i.e., up to the first

biochemical reaction of glycolysis, we can still use compartmental modelling to

separate its delivery (K1) across the BBB through glucose transporters, from its

efflux into the venous blood (k2), and its phosphorylation rate by the hexokinase

enzyme (k3), as well as to estimate the irreversible uptake rate (Ki) microparam-

eter (L. Sokoloff et al. 1977; S. C. Huang et al. 1980; Alessandra Bertoldo, Rizzo,

and Veronese 2014), (see Equation 2.5).

The K1 of [
18F]FDG, in particular, is related to CBF (Renkin 1959; Crone 1963)

K1 = EF · CBF (5.1)

but since the single-pass capillary extraction fraction (EF ) of [18F]FDG is low

(around 18% in total GM), and variable across brain regions (Huisman et al.

2012), this coupling is not necessarily going to be strong or homogenous across

the brain. On the other hand, [18F]FDG k3 is expected to be closely related to Ki,

being weighted towards the late-phase metabolic information (L. Sokoloff et al.

1977; S. C. Huang et al. 1980), but there may still be regions where removing the

impact of tracer delivery K1 may prove very relevant.

The spatial distribution of these parameters has been investigated for the first

time in the 1980’s (Heiss et al. 1984), and in some later works (Piert et al. 1996;

Hermanides et al. 2021), but a more fine-grained assessment of the microparame-

ters regional variability, and their different roles in the association with rs-fMRI,

as well as with CBF and CMRO2, is warranted. Additionally, it has been demon-

strated that, while most of the glucose metabolism in the brain is oxidative (as

assessed by CMRO2), there is a non-negligible portion of glucose that under-

goes a purely glycolytic pathway (without oxidative phosphorylation) even in the

presence of oxygen, the so-called ‘aerobic glycolysis ’ (AG). Through combined

CMRglc and CMRO2 measurements, AG has been found to be spatially hetero-

geneous across the brain, with stronger presence in DMN regions and absence in

visual cortex and cerebellum (Vaishnavi et al. 2010; Goyal, Vlassenko, et al. 2017;

Blazey et al. 2019). Assessing the relationship between the spatial distribution

of [18F]FDG parameters and AG, as well as their interplay with rs-fMRI, might

provide interesting insights.

In this chapter, we fully exploit the physiological information that can be ex-

tracted from [18F]FDG PET data in a large dataset of healthy controls (n = 47),

to expand on our previous assessment focused on the coupling between rs-fMRI
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and [18F]FDG SUV R, which concluded that only a moderate portion of variance

of regional glucose metabolism could be explained by rs-fMRI measures, mainly

coming from local features such as ReHo (Tommaso Volpi, Erica Silvestri, Marco

Aiello, et al. 2021b) (Chapter 4).

The main questions and aims driving our work in this chapter are:

1. as a preliminary step, assessing how reproducible the fMRI-SUV R asso-

ciations reported in chapter 4 are on a new dataset with different characteristics

(non-simultaneous PET-fMRI acquisitions on different scanners);

2. estimating [18F]FDG kinetic parameters (Ki, K1, k3), using an IDIF ap-

proach (K. Chen et al. 1998) and VB inference at voxel level (Castellaro et al.

2017), to assess their spatial distribution across brain regions in a large dataset

of healthy subjects, focusing on the unique information provided by microparam-

eters K1 and k3;

3. evaluating how much the spatial relationship between rs-fMRI and [18F]FDG

PET changes when considering kinetic parameters instead of SUV R, employing

bivariate, multivariable and full mixed-effects modelling (= MLM) as in Chapter

4;

4. evaluating if (and how much) CBF and CMRO2 add to the [18F]FDG-

fMRI coupling.

5.2 Materials and Methods

5.2.1 Participants

Forty-seven healthy adults (mean age 57.4 ± 14.8 years, 17 males) underwent

[18F]FDG PET, rs-fMRI and 15O scans. Subjects were excluded if they had con-

traindications to MRI, history of mental illness, possible pregnancy, or medication

use that could interfere with brain function. The interested reader should refer

to (Goyal, Blazey, et al. 2022) for more detailed information on this dataset.

All assessments and imaging procedures were approved by Human Research Pro-

tection Office and Radioactive Drug Research Committee at Washington Univer-

sity in St. Louis. Written consent was provided from each participant.

5.2.2 Imaging protocols

For each participant, high-resolution structural images were acquired on a Siemens

Magnetom Prisma scanner using a 3D sagittal T1-weighted magnetization-prepared
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180◦ radio-frequency pulses and rapid gradient-echo (MPRAGE) multi-echo se-

quence (TE = 1.81, 3.6, 5.39, 7.18 ms, TR = 2,500 ms), TI = 1,000 ms, voxel size

0.8 × 0.8 × 0.8 mm). The final T1w image was obtained as the average of the

first two echoes (Elam et al. 2021). Additionally, T2* gradient-echo echo planar

imaging (GE-EPI) data were acquired (TR/TE=800/33 ms, flip angle 52◦, voxel

size 2.4×2.4×2.4 mm, MB 6, 375 volumes for total scan time of 5 min), together

with two spin-echo (SE) acquisitions (TR/TE=6000/60 ms, flip angle 90◦) with

opposite phase encoding directions (AP, PA).

All subjects underwent one [18F]FDG PET scan and two sets of 15O scans ([15O]CO,

[15O]H2O, and [15O]O2).

The [18F]FDG scans were performed on a Siemens model 962 ECAT EXACT

HR+ PET scanner (Siemens/CTI) (Brix et al. 1997), as previously described

(Vaishnavi et al. 2010), after i.v. bolus injection of 5.2 ± 0.4 mCi (192.4 ± 14.2

MBq) of [18F]FDG. Dynamic acquisition of PET emission data continued for 60

min.

The [15O]H2O and [15O]O2 scans were also performed on the Siemens EXACT

HR+ scanner, as previously described (Vaishnavi et al. 2010), after i.v. bolus

injection of 49.6 ± 2.3 mCi (1835.2 ± 85.1 MBq) for [15O]H2O, and inhalation in

room air of 66.5 ± 6.7 mCi (2460.5 ± 247.9 MBq) for [15O]O2. Dynamic acqui-

sition of PET emission data continued for 3 min for both [15O]H2O and [15O]O2.

Subject head movements during scanning were restricted by a thermoplastic facial

mask. All PET images were acquired in the eyes-closed waking state. No specific

instructions were given regarding cognitive activity during scanning other than

to remain awake. PET data were reconstructed via filtered back-projection as

128x128x63 matrices. Attenuation correction was performed using the subject’s

own transmission scan.

The chosen reconstruction grid for [18F]FDG consisted of 52 frames of increasing

duration (24 x 5 s, 9 x 20 s, 10 x 1 min, and 9 x 5 min frames), while for [15O]H2O

and [15O]O2 it consisted of 49 frames (35 x 2 s, 6 x 5 s, 8 x 10 s frames).

In the case of [18F]FDG, venous samples for plasma glucose determination were

obtained just before and at the midpoint of the scan to verify that glucose lev-

els were within normal range throughout the study. Also, venous samples were

collected to assess [18F]FDG plasma concentration, with two possible sampling

schedules: for most subjects, sampling occurred 20, 30, 45 minutes after injection

of the radiotracer, whereas, for a minority of subjects (n = 9), samples were ac-

quired after 30, 40 and 50 minutes. Each sample consisted of about 2 ml, half of



5.2 Materials and Methods 87

which was used to measure radioactivity in plasma. Radioactivity counter mea-

surements was given in counts per 12 seconds. The counter’s efficiency (0.2707

cps/Becquerels) was experimentally determined (Tommaso Volpi, J. J. Lee, et al.

2022).

5.2.3 MRI preprocessing

Structural T1w images were N4 bias field-corrected (N. J. Tustison et al. 2010),

skull-stripped (N. Tustison et al. 2013), and segmented into GM, WM and CSF

(Ashburner and K. J. Friston 2005). T1w images were normalized to the symmet-

ric MNI152 2009c atlas (Fonov et al. 2011) via nonlinear diffeomorphic registra-

tion (Avants et al. 2011). The Schaefer functional atlas (200 parcels, 17 networks)

(Schaefer et al. 2018) was registered to T1w space by inverting the obtained non-

linear transformation. The Schaefer ROIs were supplemented by 16 subcortical

ROIs taken from the Hammers atlas (Hammers et al. 2003) (bilateral hippocam-

pus, amygdala, caudate, accumbens, putamen, pallidum, thalamus, cerebellum).

The fMRI data were analyzed in a similar way to the HCP minimal preprocess-

ing pipeline (Glasser, Sotiropoulos, et al. 2013): the first four volumes were dis-

carded to avoid non-equilibrium effects, while the remaining volumes underwent

1) slice timing correction (Smith, Jenkinson, et al. 2004), 2) distortion correc-

tion (Andersson, Skare, and Ashburner 2003), 3) regression of nuisance signals

(motion parameters and their first order derivatives, plus the first 5 temporal

principal components of WM and CSF EPI signals (Behzadi et al. 2007), 4) high-

pass filtering (cut-off of 0.008 Hz). The rs-fMRI preprocessing was identical to

what reported in Chapter 4.2.2), except for the resampling onto cortical surfaces

(Freesurfer, Connectome Workbench).

ROI-level pre-processed EPI signals were obtained within each parcel from the

Schaefer + Hammers atlas (linearly mapped from T1w to EPI space), by aver-

aging over voxels within the GM segmentation (probability > 0.8 of belonging

to GM). Motion correction was adapted to the rs-fMRI features to be extracted

(Chapter 4.2.2).

5.2.4 PET kinetic modelling

[18F]FDG PET

Dynamic PET data were motion-corrected using an in-house combination of

PMOD (www.pmod.com) and FSL’s mcflirt (Jenkinson, Bannister, et al. 2002).
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A static PET image was obtained by summing late PET frames (40-60 min) after

motion correction. The static image was linearly registered to T1w space using

FSL’s flirt (Jenkinson, Bannister, et al. 2002), and normalized by injected dose

and weight into a SUV image (Equation 2.7). The SUV image was intensity-

normalized into SUV R by dividing each voxel’s value (SUVtarget) by the whole-

brain [18F]FDG average uptake (SUVreference) (Byrnes et al. 2014) (Equation 2.8).

To perform PET kinetic modelling, an IDIF was extracted from dynamic PET

data using a semi-automatic pipeline (Erica Silvestri et al. 2022):

• segmentation of the internal carotid arteries is performed on a pseudo-

angiography image (obtained by summing dynamic PET frames up to an

adaptive threshold of one frame before the peak time for venous vessels),

on which a vesselness algorithm (Jerman filter) (Jerman et al. 2016) is run

to generate a vessel mask;

• selection of “hot voxels” within the mask, according to their peak amplitude

and time-to-peak;

• parametric clustering (Peruzzo et al. 2011) (k-means algorithm, k = 2,

squared Euclidean distance, 500 replicates) on seven parameters calculated

on the TAC of each voxel (peak amplitude, slope of rising part before peak,

slope of tail, area under the curve before and after the peak, tail average

value, TAC standard deviation), with the cluster having the highest peak

centroid being selected and used to derive the raw IDIF;

• IDIF model fitting is performed using a modified version of Feng’s model (D.

Feng, S.-C. Huang, and X. Wang 1993; Tonietto et al. 2015) with maximum

a posteriori estimation of the exponential decay parameters;

• Chen’s spillover correction (K. Chen et al. 1998) is applied to the fitted

IDIF curves using three venous samples (obtained after arteriovenous equi-

libration, i.e., after 20 min post-injection) and a background tissue TAC,

obtained as the highest activity cluster centroid within a background mask

(obtained from morphological dilation of the vesselness mask);

• IDIF shift correction, to correct for delay between the carotids and the voxel

of interest.

Notably, Chen’s approach is still the ‘gold-standard’ approach for [18F]FDG IDIF

calibration with older scanners like HR+, and was found to be the only one
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with the recognized potential for calculating accurate microparameters (Zanotti-

Fregonara, Fadaili, et al. 2009).

Voxel-wise estimation of Sokoloff’s model parameters was performed using the

VB approach (Chapter 2.1.2) (Castellaro et al. 2017), according to the following

pipeline:

• a k-means clustering approach is applied to the dynamic PET data, extract-

ing 6 GM and 5 WM clusters (as from the tissue segmentations linearly

mapped to PET space);

• conventional nonlinear estimation of Sokoloff’s model using WNLLS, with

weights chosen as the inverse of the variance of the PET measurement error

(Alessandra Bertoldo, Rizzo, and Veronese 2014), is performed at the region

level, i.e., on the 11 cluster centroids;

• voxel-wise estimation of the model parameters via VB inference using prior

distributions derived from cluster-wise estimates.

Parametric maps of K1, k2, k3, Vb were obtained for each subject. The paramet-

ric map of Ki was obtained by the solving Equation 2.5) at the voxel level. The

group-average voxel-wise maps of SUV R, Ki, K1, k3 are reported in Figure 5.2).

From the Ki estimate we also derived the CMRglc (Equation 2.6), with the LC

set at 0.65 (H. Wu 2003).

The SUV R, Ki, K1, k3 parametric maps were parceled at the subject level with

the Schaefer + Hammers atlas: ROI-level parameter estimates were extracted

from the Schaefer and Hammers parcels, which had been linearly mapped from

T1w to PET space, by averaging over voxels within the GM segmentation (prob-

ability > 0.8). Importantly, the GM segmentation provided by SPM, being quite

conservative, allows to extract an average TAC which is as free of PVEs as pos-

sible (Rousset et al. 2007). Moreover, spatial smoothing of the PET data during

processing was avoided, further minimizing PVEs.

The region-wise SUV R, Ki, K1, k3 values were within-subject normalized via

z-scoring, i.e., centered with respect to their mean and divided by the standard

deviation across ROIs (Yan et al. 2013). Their averages across subjects, rescaled

to a [0;1] range, can be seen in (Figure 5.2).

[15O]H2O and [15O]O2 PET

The differential equation of the [15O]H2O tracer’s one-tissue compartment model
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(Kety and C. F. Schmidt 1945; M. E. Raichle et al. 1983)

Ċ1(t) = K1Cp(t)− k2C1(t) (5.2)

with C1(t) as the tissue tracer concentration and Cp(t) as the AIF, was linearized

as follows:

C1(t) = K1

∫ t

0

Cp(τ)dτ − k2

∫ t

0

C1(τ)dτ (5.3)

to identify the K1 [ml/cm3/min] (inflow of the tracer), which in the case of

[15O]H2O corresponds to the CBF , and k2 [min−1] (efflux of the tracer).

Since arterial samples were not available, and the data were too noisy to extract

an IDIF from the carotid signals like we did for [18F]FDG, we used a model-based

IDIF approach similar to (Ssali et al. 2018; Narciso, Ssali, L. Liu, Jesso, et al.

2022), which reconstructs the Cp(t) by rearranging Equation 5.2 as follows:

Cp(t) =
1

CBFWB
ĊWB

1 (t) +
kWB
2

CBFWB
CWB

1 (t) (5.4)

with CWB
1 (t) as the whole-brain average tissue TAC from dynamic [15O]H2O data,

CBFWB as whole-brain average CBF value, and
kWB
2

CBFWB corresponding to 1
λ
(λ is

the blood-brain partition coefficient for water). The values for CBFWB and λ are

chosen a priori as 0.5 ml/cm3/min and 0.9 ml/cm3, respectively (M. E. Raichle

et al. 1983). The raw IDIF curve was fit with a Gamma-variate function similarly

to (J. J. Lee et al. 2010; Peruzzo et al. 2011; Rizzo et al. 2017) to regularize its

noisy shape.

Since [15O]H2O K1 is directly dependent on the amplitude of the Cp(t) (Treyer

2003), the final mean CBF value will be approximately close to the chosen value

for whole-brain K1. This makes the result of this approach a relative CBF map.

However, for our analyses, we do not need absolute estimates of CBF as we

only aim to compare relative spatial distributions between [18F]FDG parameters,

fMRI variables, and CBF and CMRO2.

To estimate CMRO2, a reference-tissue modelling approach (Narciso, Ssali, Iida,

et al. 2021; Narciso, Ssali, L. Liu, Biernaski, et al. 2021) was employed. Voxel-wise

CMRO2 values are obtained via the following equation:
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CMRO2i = CMROWB
2

∫ T

0
C1i(t)dt+

CBFi

λ

∫ T

0

∫ t

0
C1i(u)dudt

∫ T

0
CWB

1 (t)dt+ CBFWB

λ
)
∫ T

0

∫ t

0
CWB

1 (u)dudt
for i = 1, ..., p voxels

(5.5)

with CMROWB
2 as whole-brain average CMRO2 value, C1i as the voxel-wise

[15O]O2 tissue TAC, CBFi as the voxel-wise CBF values, obtained from [15O]H2O

PET modelling, CWB
1 as the whole-brain [15O]O2 tissue TAC. The CMROWB

2

value was obtained by

CMROWB
2 = CO2

a CBFWB (S
O2

a − SO2

v )

SO2

a

(5.6)

with CO2

a as the O2 arterial tension, set to the literature value of 90 mmHg, and

SO2

a as the O2 arterial saturation, set to 98% (Narciso, Ssali, L. Liu, Jesso, et al.

2022). Due to the use of literature values for CO2

a , SO2

a , CBFWB, the result of

this approach is a relative CMRO2 map as well.

The glycolytic index (GI), calculated as the residuals of the voxel-wise regression

of CMRO2 on CMRglc standardized by the variance of CMRglc, was used as a

measure of AG (Vaishnavi et al. 2010).

Since two runs of [15O]H2O and [15O]O2 PET scans were available for each subject,

the average CBF , CMRO2, GI parametric maps across the two runs were used

for further analysis.

The group-average maps of CBF , CMRO2, GI are reported in Figure 5.1). The

CBF , CMRO2, GI parametric maps were parceled at the subject level with the

Schaefer + Hammers atlas (GM-masked to minimize PVEs). Spatial smoothing

of the PET data was avoided. The region-wise CBF , CMRO2, GI values were

within-subject normalized via z-scoring, i.e., centered with respect to their mean

and divided by the standard deviation across ROIs (Yan et al. 2013). Their

averages can again be visualized in Figure 5.2).

5.2.5 Resting-state fMRI feature extraction

The aforementioned 50 fMRI features, divided a priori into 4 categories, i.e., 1)

signal, 2) HRF, 3) sFC, 4) tvFC, were extracted for all subjects.

For a detailed description of the extracted rs-fMRI features, see Chapter 4).
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Figure 5.1: Group-average parametric maps (n = 47) for [18F]FDG SUV R (A), Ki (B), K1 (C),
k3 (D), [15O]H2O-derived CBF (E), [15O]O2-derived CMRO2 (F), and GI (G).

5.2.6 Assessing the reproducibility of the SUV R-fMRI

associations

First, we assessed similarities and differences between the new dataset (labelled

as ‘Dataset B’) and the one described in chapter 4 (‘Dataset A’), which are age-

matched (A: 59.8 ± 10.9 yo, B: 57.4 ± 14.8 yo) and identically preprocessed for

what concerns [18F]FDG SUV R and rs-fMRI features. Only the 200 cortical re-

gions of the Schaefer atlas were considered in this reproducibility study, in order

to have direct comparability (subcortical regions are defined in slightly different

ways in the two datasets).

Reproducibility of SUV R and rs-fMRI features

The [18F]FDG SUV R and each of the 50 rs-fMRI features from Dataset B
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Figure 5.2: Group-average (n = 47) [18F]FDG SUV R (A), Ki (B), K1 (C), k3 (D), CBF (E),
CMRO2 (F), and GI (G) regional values plotted on the Schaefer cortical parcels and
subcortex, and rescaled to the 1-100% relative range.

were correlated with their equivalent from Dataset A (Spearman’s ρ correla-

tion, p < 0.05). With regard to the 50 rs-fMRI features, the correlation p-

values were FDR-corrected using the Benjamini-Hochberg approach (Benjamini

and Hochberg 1995). The linear regression between SUV R of Dataset A vs.

Dataset B was used to assess the percentage of variance of SUV R – A explained

by SUV R – B (ordinary R2). The difference in amplitude of SUV R values

between the ROIs of Dataset A and Dataset B was assessed via the Wilcoxon

rank sum test (p < 0.05), while the differences in SUV R variability (expressed

as MAD) were evaluated via the Brown-Forsythe test (p < 0.05) (Brown and

Forsythe 1974). Outliers were identified in the SUV R values of Dataset A and

Dataset B, as nodes with values distant from the median SUV R by more than
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3 MADs), and divided into positive (above the median) and negative (below the

median). The Spearman’s correlation matrix among rs-fMRI features was also

calculated and compared between the two datasets.

Reproducibility of bivariate SUV R-fMRI associations

Bivariate Spearman’s correlations (p < 0.05, FDR-corrected) were computed

across cortical regions between SUV R and each of the 50 rs-fMRI features for

both datasets. The similarity between the patterns of SUV R-fMRI Spearman’s

correlations from the two datasets was also assessed via Spearman’s correlation

(p < 0.05). SUV R-fMRI Spearman’s correlations (p < 0.05, FDR-corrected)

were also tested across nodes selected according to linearly increasing percentiles

(from 1st to 85th) of the SUV R distribution, as well as to decreasing percentiles

(from 100th to 15th) (see chapter 4.2.4) for a more detailed description of this

approach).

Model selection was performed both in Dataset A and B to compare a linear vs.

nonlinear (exponential, power law) description of the SUV R vs rs-fMRI bivariate

spatial relationships. The differences in RSS between the linear model and both

the power (Equation 4.6) and exponential model (Equation 4.5) were percentual-

ized and used for model selection: in case of positive ∆RSS1 and ∆RSS2 values,

a power law or exponential model, respectively, describes the data better than a

linear model.

Reproducibility of multivariable MLM outcomes

Moving to the multivariable modelling scenario at the group-average level (i.e.,

taking the across-subject median of each feature), a logarithmic transformation

of the fMRI predictors (log-linear model) was performed (see chapter 4.2.5). We

first compared the ordinary R2 of the multivariable model built using 1) all 50

rs-fMRI predictors, and 2) the 9 previously selected rs-fMRI features, in the two

datasets. Then, we used the same 9 features in a full MLM framework (see

chapter 4) for details). Both the MLM with subjects and the one with networks

as random/grouping factors were tested. The fixed effects with their weights,

signs, and SEs, the correlation amongst the random effects, the individual and

NPD model R2, and the Gaussianity of the residuals were evaluated for Dataset

A and B in both cases.
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5.2.7 The spatial distribution of [18F]FDG parameters

To investigate the spatial distribution and regional variability of Ki, K1 and k3,

the group-average vectors of the z-scored Ki, K1 and k3 values were obtained.

The top and bottom 20% values of each vector were identified as ‘high’ and ‘low’

clusters of the related parameters. These parcels were visualized on the cortex

and subcortex. The percentage of ‘top’ and ‘bottom’ nodes belonging to each

RSN was also computed.

Across-region Spearman’s correlations (p < 0.05) between the group-average pa-

rameters (z-scored) were computed, as were the linear regression models between

Ki and the two microparameters K1 and k3. The models’ weighted residuals

(WRES) were plotted to assess the presence of regional mismatches, showing

only the values exceeding the [-1; 1] range.

Across-subject Spearman’s correlations (p < 0.05, FDR-corrected) between each

pair of [18F]FDG parameters were also calculated region by region (after within-

subject z-scoring); the average and variability (median ± MAD) of the absolute

values of these correlations were computed, after Fisher r-to-z transformation, as

indices of the overall strength of association across brain regions.

Similarly, group-average GI was related to Ki, K1 and k3 via 1) group-average

across-region Spearman’s correlation (p < 0.05), 2) linear regression model by

plotting the WRES, 3) region-wise across-subject correlations (Spearman’s, p <

0.05, FDR-corrected) and their median ± MAD absolute value.

5.2.8 Bivariate and multivariable [18F]FDG vs. rs-fMRI

analysis

Bivariate across-region Spearman’s correlations (p < 0.05, FDR-corrected) be-

tween [18F]FDG kinetic parameters and rs-fMRI features were calculated across

regions. The average and variability (median ± MAD) of the correlation absolute

values were computed, after Fisher r-to-z transformation, as indices of the overall

strength of association across fMRI variables. The differences among [18F]FDG

kinetic parameters in the amplitude of their correlation with rs-fMRI features

were assessed via the Wilcoxon rank sum test (p < 0.05), while differences in

variability were evaluated via the Brown-Forsythe test, (p < 0.05). Spearman’s

correlations (p < 0.05, FDR-corrected) were also tested across nodes selected ac-

cording to linearly increasing percentiles (from 1st to 85th) of the Ki, K1 and k3

distribution, as well as to decreasing percentiles (from 100th to 15th).
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Model selection was performed to compare a linear vs. nonlinear (exponential,

power law) description of the bivariate spatial relationships between rs-fMRI and

[18F]FDGKi, K1 and k3. The differences in RSS of the linear vs. power (∆RSS1),

and linear vs. exponential model (∆RSS2) were percentualized and used for

model selection as previously described.

Across-subject Spearman’s correlations (p< 0.05, FDR-corrected) between [18F]FDG

parameters and rs-fMRI features were computed region by region (after within-

subject z-scoring). The number of regions with significant [18F]FDG-fMRI asso-

ciations was calculated for each feature.

Multivariable modelling was performed at the group-average level with log-transformed

rs-fMRI features as predictors, and each [18F]FDG kinetic parameter (Ki, K1 and

k3) as outcome, separately.

Two different feature selection strategies (chapter 4.2.5) were tested:

- sign-constrained NNLS followed by elastic net regression;

- sign-constrained NNLS followed by GETS modelling;

and compared in terms of 1) number of selected features; 2) condition number

κ(X) of the design matrix after selection; 3) ordinary R2; 4) BIC; 5) RSS; 6)

parameter precision (CVs%); 7) signs of the estimated coefficients. We opted for

the more parsimonious NNLS+GETS approach, and only its results are therefore

presented.

A full MLM approach, using the features selected in the previous step, was em-

ployed to explain the spatial distribution of Ki, K1 and k3, with subjects as the

grouping factor. The fixed effects θS with their weights, signs, and SEs, the cor-

relation amongst the random effects ηSi, the individual and NPD model R2, and

the Gaussianity of the residuals vSi were evaluated. We refer to chapter 4.2.6) for

further details. The individual-level R2 were tested for association with the sub-

jects’ age (Spearman’s correlation, p < 0.05). The group average of each model’s

vSi was computed and standardized to the variance of the outcomes (i.e., Ki, K1

and k3) to make it comparable to other explanatory models of the same outcome

parameter. The average of vSi were plotted on the brain cortex and subcortex,

highlighting the regions outside the [-1;1] range to verify which regions are strong

outliers not fully interpreted by the chosen rs-fMRI features.
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5.2.9 Including CBF and CMRO2 in the [18F]FDG-fMRI

model

Bivariate across-region Spearman’s correlations (p < 0.05, FDR-corrected) be-

tween group-average CBF , CMRO2, and the [18F]FDG kinetic parameters were

calculated, as well as with the 50 rs-fMRI features (p < 0.05, FDR-corrected).

Across-subject Spearman’s correlations (p< 0.05, FDR-corrected) between [18F]FDG

parameters and CBF , CMRO2 were computed region by region; the average and

variability (median ± MAD) of the correlation absolute values were computed,

after Fisher r-to-z transformation. The number of regions with significant CBF

vs. [18F]FDG or CMRO2 vs. [18F]FDG associations was calculated.

Addition of CBF or CMRO2 to the group-level multivariable model, with the

previously selected rs-fMRI features, was tested and assessed according to the

aforementioned criteria. Addition of CBF or CMRO2 to the full MLM frame-

work for Ki, K1 and k3 was also tested. The fixed effects, the correlation amongst

the random effects, the individual and NPD model R2, and the Gaussianity of

the residuals were evaluated. As before, the group average of each model’s vSi

was standardized to the variance of the outcomes (i.e., Ki, K1 and k3), to make

it comparable to the fMRI-only model.

5.3 Results

5.3.1 The reproducibility of the SUV R vs. rs-fMRI

spatial model

As a first step, we moved to assess similarity and differences between the new

dataset (Dataset B, 47 subjects) and the previous one (Dataset A, 26 subjects,

see chapter 4), by attempting to replicate some of the key steps of our SUV R vs.

fMRI study. Importantly, both [18F]FDG PET and rs-fMRI data were identically

(pre)processed in Dataset A and B. The similarity of the findings was assessed

for the 200 Schaefer cortical regions to ensure the regions were exactly the same.

Reproducibility of SUV R and rs-fMRI features

To start with, we assessed the reproducibility of SUV R and rs-fMRI features at

the group-average level (Figure 5.3). The 50 rs-fMRI features are pooled into 4

categories, i.e., 1) signal, 2) HRF, 3) sFC, 4) tvFC, as in chapter 4.
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Figure 5.3: Reproducibility of group-level SUV R and rs-fMRI features for the 200 Schaefer cortical
regions. Plot of the group-average regional SUV R values for Dataset A (red) and
Dataset B (blue) (A). Spearman’s correlation values between each group-average rs-
fMRI feature from Dataset A vs. Dataset B. Significant correlations (p < 0.05, FDR-
corrected) are highlighted with an asterisk (B). The correlation values from the features
of the model selected on Dataset A are highlighted in (C).

The Spearman’s correlation across regions between SUV R of Dataset A and B is

0.62 (p < 10−9), Pearson’s correlation is 0.78 (p < 10−9) with an R2 value of 0.61.

When comparing the SUV R values from the two datasets (Figure 5.3A), there is

overall good agreement in the relative spatial distribution, but a clear difference

in amplitude, with Dataset B having higher SUV R values (Wilcoxon rank sum

test, p < 10−9). Moreover, there are more high SUV R nodes (positive outliers,

distant from the median by more than 3 MADs) in Dataset A (n = 11) than in

B (n = 8), while there are more low SUV R (negative outliers, distant from the

median by more than 3 MADs) in Dataset B (n = 19) than in A (n = 12).

With regard to rs-fMRI features (Figure 5.3B), we find overall good group-level

reproducibility for signal, sFC and tvFC features, despite varying degrees of corre-

lation. Interestingly, ALFF of Dataset B is moderately but negatively correlated

with the one of Dataset A. HRF features, on the other hand, have very low re-

producibility, with the exception of peak-HRF.

When focusing on the 9 features selected for the previously presented SUV R

model (chapter 4.3.3), we find good to high reproducibility (ρ 0.5) for ApEn-

BOLD, ReHo, CV-ReHo, peaks-BOLD, s-BC. However, lower reproducibility is

found for rApEn-BOLD and CV-BC, while hrf-LE and med-LEig are completely

uncorrelated in the two datasets. These discrepancies are also evident when com-
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paring the Spearman’s correlation matrix between the 50 group-average rs-fMRI

features in Dataset A and B (Figure 5.4). The correlations both within and be-

tween signal and HRF features are weaker in Dataset B. The HRF features, in

particular, have a different pattern of correlations with the rest of the variables.

The tvFC features have overall similar correlations in the two datasets, with the

exception of the graph metrics CV% and the phase coherence-derived variables,

which have weaker and stronger correlations with the rest of the variables, re-

spectively.

Figure 5.4: Spearman’s correlation matrices among rs-fMRI features in Dataset A (A) and Dataset
B (B).

Reproducibility of bivariate SUV R-fMRI associations

We then moved to evaluate the associations between group-level SUV R and rs-

fMRI features in the two datasets.

We first evaluated Spearman’s correlations (p < 0.05, FDR-corrected) across all

200 cortical regions (Figure 5.5A): the pattern of correlations in the two datasets

is very similar (Spearman’s correlation 0.88, p < 10−9), but their amplitude is

different in some cases. In Dataset B we find stronger positive and negative cor-

relations in the signal and tvFC pools, in particular. The HRF pool, as seen in

the previous paragraph, is markedly different in the two datasets: the moderate

positive correlations with SUV R in Dataset A are missing in Dataset B (again,

with the exception of peak-HRF ).
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Then, we assessed SUV R-fMRI Spearman’s correlations (FDR-corrected, p <

0.05) across nodes selected according to increasing (from 1st to 85th) as well as

decreasing percentiles (from 100th to 15th) of the SUV R distribution: this is to

verify whether the SUV R-fMRI coupling is stronger in lower SUV R nodes, as

already demonstrated in Dataset A (chapter 4.3.2). We replicated our previous

findings that the strongest spatial correlations between SUV R and rs-fMRI tend

to emerge when high SUV R nodes are removed, i.e., when moving to the left,

away from the centerline in both matrices of (Figure 5.5B). HRF features are

again uncorrelated with SUV R across all percentiles in Dataset B, while even

stronger correlations emerge for signal-related (see ApEn-BOLD, ReHo, peaks-

BOLD) and tvFC features (including the block of phase coherence measures).

Finally, we performed model selection for both Dataset A and B to assess whether

a linear or nonlinear (exponential, power law) model would better describe the

SUV R vs rs-fMRI bivariate spatial relationships across cortical regions. The

model selection procedure was performed by evaluating the difference in residual

sum of squares between the linear model and both the power (∆RSS1) and ex-

ponential model (∆RSS2). In 70% of the cases for Dataset B (80% for Dataset

A), positive ∆RSS1 and ∆RSS2 values are detected, representing the cases when

the nonlinear models describe the data better than the linear. This confirms a

tendency towards nonlinearity in the SUV R vs. rs-fMRI bivariate associations.

Reproducibility of multivariable MLM outcomes

We finally moved to the multivariable modelling scenario, testing how well the lin-

ear combination of rs-fMRI features could explain the regional SUV R variability,

both at the group level and in individual data, after logarithmic transformation

of the predictors (log-linear model).

First, we checked the R2 of the multivariable model built using all 50 rs-fMRI pre-

dictors at group level, which is 0.675 for Dataset A, and 0.84 for Dataset B. This

would imply that, in the case of Dataset B, either the rs-fMRI features have more

overall explanatory power, or the group-wise SUV R variability is lower. How-

ever, there was no significant difference in SUV R variability between Dataset A

and B (Brown-Forsythe test, p = 0.407), which leads to think that indeed the

rs-fMRI variables may be more informative.

When the 9 previously selected rs-fMRI features were used as predictors, the R2

of the group level multivariable model becomes 0.70 for the Dataset B, while it is

0.48 for Dataset A, again with a marked difference in explanatory power (Figure
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Figure 5.5: Bivariate Spearman’s correlations between group-average SUV R and rs-fMRI features
assessed in Dataset A and B: correlations (p < 0.05, FDR-corrected) are assessed both
across all cortical regions (A), and across nodes selected according to increasing and
decreasing percentiles of the SUV R distribution (B).

5.6A).

When the same features were included in the full MLM, the NPD R2 was 0.25 for

Dataset A, and 0.35 for Dataset B. In Dataset B, the model is therefore able to

explain more of the SUV R information across all individual data. When looking

at the the fixed effects (Figure 5.6B), we can appreciate that ReHo clearly has

the highest weight in both datasets; most other features maintain similar roles,

with the exception of CV-BC (which changes its sign) and rApEn-BOLD (which

becomes non-significant in Dataset B).

We also assessed how the MLM changes when the grouping factor is chosen to be

the RSN: in this case, the NPD R2 is 0.145 for Dataset A, and 0.148 for Dataset

B, thus demonstrating poor explanatory power in both datasets. Among the

fixed effects (Figure 5.6C), ReHo is again quite important in both datasets, but

in the case of Dataset B many parameters become non-significant (rApEn-BOLD,
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CV-ReHo, hrf-LE, med-LEig).

Figure 5.6: Assessment of the multivariable multilevel log-linear model, using the 9 fMRI predictors
selected on Dataset A: model fit of group-average SUV R (A), fixed effects (and their
SEs) for the MLM with subjects as the grouping factor (B) and with networks as the
grouping factor (C).

5.3.2 The spatial distribution of [18F]FDG uptake rate,

delivery and phosphorylation

We then moved to the kinetic model parameters estimated from [18F]FDG dy-

namic data, i.e., Ki, K1 and k3. We decided to assess their spatial distribution

and regional variability across the chosen parcellation, to better understand where

they map in the brain and which additional and unique information they can pro-

vide.

First, we looked at the parcels representing the top and bottom 20% values of the

averaged z-score maps of Ki, K1 and k3 (Figure 5.7), as well as which fMRI-based

RSNs these nodes fall into.

Both Ki and k3 have many top nodes in lateral prefrontal areas (CTR(A),

CTR(B)), inferior parietal and posteromedial cortex (DMN(A)), while K1 has

mainly a strong distribution of top posteromedial nodes in both DMN and VIS

networks, but also in the medial sensorimotor areas (SM(A)). When looking at

the bottom nodes, limbic areas, both at the level of the temporal poles and an-

terior cingulate cortex, are represented for all three parameters; however, k3 has

strong presence of bottom nodes in the visual cortex, and presents additional low
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Figure 5.7: Binary representation of top (red) and bottom (blue) 20% weights of the group-average
maps of Ki, K1 and k3.

nodes in the frontal cortex (both motor and cognitive areas) and insula. When

focusing on the subcortex, we again find a similar pattern for Ki and k3, with the

putamen as a top parcel, and cerebellum as a bottom one. However, the caudates

are bottom nodes only for Ki, and the thalamus is for k3. In the case of K1, we

find agreement in the putamina, which are top parcels, and the caudate, which

is a bottom node like in the case of Ki; the thalamus and cerebellum are instead

among the top regions.

Also, when partitioning brain functional RSNs into extrinsic (VIS, SMN) vs. in-

trinsic (DMN, CTR), which respectively indicate lower order sensorimotor areas

vs. higher order cognitive regions (Doucet et al. 2011), another marked distinction

between K1 and k3 emerges: while K1 is significantly higher in extrinsic RSNs

(Wilcoxon rank sum, p = 4.2 10−4), k3 is higher in intrinsic RSNs (Wilcoxon rank

sum, p = 2.1 10−4), as is Ki, albeit with lower significance (Wilcoxon rank sum,

p = 0.01).

The spatial correlations (Spearman’s ρ) between the group-average [18F]FDG pa-

rameters (z-scored) across the chosen parcellation are as follows:

- Ki vs. K1: ρ = 0.489 (p < 10−9);

- Ki vs. k3: ρ = 0.809 (p < 10−9);

- K1 vs. k3: ρ = 0.151 (p = 0.026);

To better quantify the extent of the regional mismatch between the macroparam-

eter Ki and the microparameters K1 and k3, we plotted the WRES of the two

linear regression models (K1 or k3 as predictor, Ki as outcome), by showing only
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the positive or negative residual values exceeding the [-1; 1] range, to emphasize

the strongest distances from Ki (Figure 5.8).

Figure 5.8: Weighted residuals of the linear regression of group-average K1 (left) and k3 (right) on
Ki; weighted residual values in the [−1; 1] range are set to zero.

This again confirms that K1 has very high values in posteromedial areas (motor

cortex, posterior cingulate, visual cortex, thalamus and cerebellum), while it fails

to follow the high Ki values in lateral frontal areas and caudate nuclei. As to k3,

it has markedly lower values in visual cortex and cerebellum than expected by Ki,

but also in thalamus; instead k3 values exceed Ki mainly in the caudate nuclei,

but also in insular and lateral cortical areas. This shows that, although Ki and

k3 are highly correlated at group level, there is an interesting spatial distribution

that makes the quantification of k3 non-redundant.

We also assessed the across-subject correlations (Spearman’s ρ) amongst the

[18F]FDG parameters region by region (Figure 5.9). The correlations of Ki with

the microparameters are moderate to high, both for Ki-K1 (median ± MAD of

absolute ρ values: 0.561 ± 0.089) and Ki-k3 (0.636 ± 0.078). The microparame-

ters, instead, are overall uncorrelated with one another (K1-k3: 0.128 ± 0.109).

Finally, we also had the possibility to evaluate how indices of aerobic glycolysis

(e.g., GI) could map onto the [18F]FDG kinetic parameters, which represent the

overall glucose metabolism, both oxidative and glycolytic.

The Spearman’s correlations between group-average GI and Ki, K1 and k3 are

0.78 (p < 10−9), 0.185 (p = 0.006) and 0.828 (p < 10−9), respectively (R2 = 0.746

for Ki, 0.07 for K1, 0.795 for k3). The WRES of the linear regression between

GI and k3 show how the glycolytic index exceeds what predicted by k3 in regions

of the peripheral VIS and DMN networks, as well as in the putamen; instead the

k3 overestimates GI in regions of SMN, SAL e CTR.
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Figure 5.9: Across-subject Spearman’s correlations (p < 0.05, FDR-corrected) between [18F]FDG
parameters (Ki, K1 and k3) assessed region by region

As to region-wise across-subject correlations (Spearman’s ρ, p < 0.05 FDR-

corrected), K1-GI associations (median ± MAD of absolute ρ values: 0.353 ±

0.122) peak in DMN and caudate, while k3-GI associations are high in DMN,

VIS, SAL, and most subcortical regions (0.513 ± 0.103).

5.3.3 The different fMRI-based models for [18F]FDG Ki,

K1 and k3

Bivariate associations with rs-fMRI

The Spearman’s correlations (p < 0.05, FDR-corrected) between group-average

[18F]FDG kinetic parameters and rs-fMRI features are presented in Figure 5.10.

In the signal pool, moderate-to-strong positive or negative correlations are present

for Ki and k3 with ALFF, ReHo and its variability, and peaks-BOLD, while K1

shows weaker coupling with these features related to rs-fMRI local properties.

Notably, peak-HRF, which represents a blood flow-related information, is signif-

icantly, though weakly correlated with K1 and Ki, but not with k3. Moreover,

the HRF network features are only related to K1, while they lack any significant

associations with Ki and k3. Interestingly, all sFC measures display significant

associations with K1, but not with k3, while Ki presents a mixed situation, as

expected. Finally, in the case of the tvFC pool, the pattern of correlations is sim-

ilar for the three [18F]FDG parameters, albeit with stronger correlations for Ki.

When assessing the absolute values of correlations (median ± MAD), Ki (0.328

± 0.158) and K1 (0.339 ± 0.074) have similar magnitudes, while k3 (0.229 ±
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0.137) has significantly lower correlations with rs-fMRI features (Wilcoxon rank

sum test, p = 0.008). However, Ki and K1 correlation distributions have different

dispersion (Brown-Forsythe test, p = 0.002).

Figure 5.10: Spearman’s correlations (p < 0.05, FDR-corrected) between group-average [18F]FDG
parameters (Ki, K1 and k3) and rs-fMRI features across all brain regions.

Then we reassessed [18F]FDG-fMRI Spearman’s correlations (p < 0.05, FDR-

corrected) across nodes selected according to linearly increasing (from 1st to 85th)

as well as decreasing (from 100th to 15th) percentiles of each parameter’s distribu-

tion (Ki, K1 and k3: this was done to expand our finding that the SUV R-fMRI

coupling is stronger in lower SUV R nodes (see chapter 4 and Figure 5.5B).

The SUV R pattern is faithfully reproduced by Ki, with strong and significant

correlations mainly in the left portion of the matrix (Figure 5.11, left panel),

linearly decreasing percentiles of Ki, i.e., after removing more and more high Ki

nodes). A similar, although noticeably weaker, pattern of correlations emerges

for k3 (Figure 5.11, right panel), while K1 is enriched by significant correlations

with ALFF and CBF -related features (MAD-BOLD, peak-HRF ) in the high-K1

area, i.e., on the right of the K1 matrix (Figure 5.11, middle panel), as well as

with the other HRF features. Overall, this is a confirmation that a nonlinear-

ity exists in the relationship between [18F]FDG kinetic parameters and rs-fMRI

features across brain regions.

So, we again performed model selection to assess whether a linear, exponential, or

power law model would best describe the bivariate spatial relationships between
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Figure 5.11: Spearman’s correlations (FDR-corrected) between group-average [18F]FDG parame-
ters (Ki, K1 and k3) and rs-fMRI features across brain regions selected by linearly
increasing and decreasing percentiles of the corresponding [18F]FDG parameters.

group-average [18F]FDG kinetic parameters and rs-fMRI features (Figure 5.12).

The model selection procedure was performed by evaluating the percentualized

differences in RSS between the linear model and both the power (∆RSS1) and

exponential model (∆RSS2). The positive ∆RSS1 and ∆RSS2 values (%) are

shown in Figure 5.12A for Ki (left), K1 (middle), and k3 (right): the nonlinear

models describe the data better than the linear in 48% of the cases forKi, 56% for

K1, and 54% for k3 (Figure 5.12B). This confirms a tendency towards nonlinearity

in the [18F]FDG vs. rs-fMRI bivariate associations in around half of the features,

with the strongest nonlinear (power law) associations coming from the sFC and

tvFC pools. For this reason, we employed a nonlinear (log) transformation of all

the features, as in chapter 4.

Multivariable modelling at group level

We then moved to evaluating which combinations of rs-fMRI features could best

explain the regional variability of Ki, K1 and k3. Using a more restrictive feature

selection approach (NNLS + GETS modelling) than in chapter 4, motivated by

the higher condition number of the predictors’ design matrix (κ(X) = 107.98),

we reached the following log-linear multivariable models:

- for group-average Ki: R2 = 0.724, with 6 chosen fMRI features (ApEn-

BOLD, ReHo, CV-ReHo, CV-BC, SampEn-GE, MAD-LEig);

- for group-average K1: R
2 = 0.386, with 4 chosen fMRI features (AR-BOLD,

s-EC, CV-BC, SampEn-GE );

- for group-average k3: R
2 = 0.509, with 4 chosen fMRI features (ReHo, s-LE,
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Figure 5.12: Assessment of nonlinearities in the bivariate associations between [18F]FDG parame-
ters (Ki, K1 and k3) and rs-fMRI features: percentualized differences between linear
and power model (∆RSS1) and between linear and exponential model (∆RSS2) for
each rs-fMRI feature (A), and pie chart with the percentage of features (out of 50)
whose association with each [18F]FDG parameter is best described by a linear, expo-
nential, or power law model (B).

CV-BC, SampEn-GE ).

All parameter estimates had acceptable precision (CVs < 100%). Interestingly,

CV-BC and SampEn-GE are selected in all three cases, while ReHo is a chosen

features for both Ki and k3.

Full mixed-effects modelling

The full MLM approach (Figure 5.13) with the features selected in the previous

step allowed to explain a significant proportion of subject-level variability in the

spatial distribution of Ki (NPD R2 = 0.35), but less so in the case of K1 (NPD

R2 = 0.147) and k3 (NPD R2 = 0.19). Overall, our finding that there is high

between-subject variability in individual R2 values for SUV R is also confirmed

here for Ki, K1 and k3 (Figure 5.13C). The individual R2 do not correlate sig-

nificantly with subjects’ age for any of the parameters (p > 0.05). AR-BOLD (a

parameter describing the autocorrelation structure of the rs-fMRI signal), which

has a positive weight in the group-level model of K1 (0.31), inverts its sign in

the full MLM. ReHo is confirmed as the most important explanatory parameter

in the case of Ki and k3 (Figure 5.13A). Importantly, at the group-average level,

ReHo explains a large proportion of variance for both Ki (R
2 = 0.552) and k3

(R2 = 0.407). If we recompute the MLM estimates using only ReHo as a pre-

dictor, we obtain a NPD R2 of 0.302 for Ki, and 0.177 for k3: this implies that,
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for these two parameters, ReHo explains the vast majority of the variance in the

multivariable model.

If we look at the group average of the model residuals vSi, focusing on the regions

outside the [-1;1] range (Figure 5.13B), we can see that they still bear significant

resemblance to the top and bottom 20% regions of each parameter (Figure 5.7):

this implies that the high and low outlier nodes are not well interpreted by the

chosen rs-fMRI features. This is true especially for K1, which shows high residual

values (> 2) in posteromedial cortex and cerebellum, but also for Ki and k3, with

high values in the putamina and low (< -2) in the cerebellum.

Figure 5.13: Assessment of the fMRI-based MLM results for the [18F]FDG parameters (Ki, K1 and
k3): fixed effects and their SE (A), group average of the standardized residuals (values
outside the [−1; 1] range are shown) (B), and boxplots of the individual subjects’ R2

(C), for each [18F]FDG parameter.

5.3.4 The role of CBF and CMRO2 in the [18F]FDG vs.

fMRI model

Bivariate associations with CBF and CMRO2

We finally moved to evaluating the impact of including PET-derived estimates of

CBF and CMRO2 into the fMRI-based models explaining the regional variability

of [18F]FDG kinetic parameters.

The spatial correlation (Spearman’s ρ) of group-average CBF vs. CMRO2 is

0.857 (p < 10−9). The group-average spatial correlations (Spearman’s ρ) with

the [18F]FDG kinetic parameters (Ki, K1 and k3) are:

- for CBF , 0.362 (p < 10−6), 0.311 (p < 10−6), 0.175 (p = 0.01), respectively;
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- for CMRO2, 0.525 (p < 10−9), 0.515 (p < 10−9) and 0.204 (p = 0.003),

respectively;

while the linear model R2 for the same associations are:

- for CBF , 0.182, 0.147, 0.061, respectively;

- for CMRO2, 0.364, 0.371, 0.105, respectively.

We thus find only moderate correlations with CBF and CMRO2 when Ki and

K1 are considered, while k3 has low correlations with both.

The group-average spatial correlations (Spearman’s ρ) of CBF and CMRO2 with

the 50 rs-fMRI features (p < 0.05, FDR-corrected) are shown in Figure 5.14.

Figure 5.14: Spearman’s correlations (p< 0.05, FDR-corrected) between group-average CBF (left),
CMRO2 (right) and rs-fMRI features across all brain regions.

Interestingly, if drawing comparisons with Figure 5.10, some key differences emerge.

CBF and CMRO2 are significantly correlated with med-BOLD, which describes

the average rs-fMRI signal of each region, while [18F]FDG kinetic parameters

are not; also, CBF is significantly positively correlated with ALFF, which has

negative associations with [18F]FDG Ki and k3. ReHo is correlated only with

CMRO2 (though weakly), but not with CBF . Moreover, moderate significant

correlations are present between CBF , CMRO2, and MAD-BOLD and peak-

HRF, both blood flow-related indices (G.-R. Wu and Marinazzo 2016). Overall,

correlations with the HRF and sFC pool are significant and stronger than for

[18F]FDG Ki and k3, while a similar pattern is present for tvFC. Notably, the

CMRO2-fMRI correlations are higher (0.312 ± 0.058) than the CBF -fMRI cor-
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relations (0.174 ± 0.057), as assessed via the Wilcoxon rank sum test (p < 10−6).

We then assessed the across-subject correlations (Spearman’s ρ, p < 0.05, FDR-

corrected) between the [18F]FDG parameters and CBF , CMRO2 region by re-

gion. Again, Ki and K1 have higher and more significant correlations (Ki vs.

CBF : 0.242 ± 0.117; K1 vs. CBF : 0.198 ± 0.105; Ki vs. CMRO2: 0.243 ±

0.094; K1 vs. CMRO2: 0.234 ± 0.091) with respect to k3 (k3 vs. CBF : 0.111 ±

0.068; k3 vs. CMRO2: 0.099 ± 0.066), as assessed via Wilcoxon rank sum test.

This finding was also assessed in comparison to rs-fMRI (Figure 5.15).

Figure 5.15: Number of significant region-wise across-subject Spearman’s correlations between
[18F]FDG parameters (Ki, K1 and k3 and rs-fMRI features (plus CBF or CMRO2):
p < 0.05, uncorrected (range of y axis: 0-100) (A) and after FDR correction (range of
y axis: 0-10) (B).

In the case of across-subject correlations between rs-fMRI and [18F]FDG parame-

ters, no regions have any significant associations (p < 0.05, FDR-corrected), inde-

pendently of the pool to which rs-fMRI features belong, or the chosen [18F]FDG

parameter (Figure 5.15B). Instead, when associations with CBF and CMRO2

are considered, around 5-10 regions have significant correlations, both for Ki and

K1 (but not k3). This trend is even clearer when considering the uncorrected

results (Figure 5.15A), with a number of 50-100 regions with p < 0.05 only in the

case of CBF , CMRO2 vs. Ki and K1 associations.

Multivariable MLM with CBF and CMRO2

We conclude our assessment by including CBF or CMRO2 into out multivariable

modelling framework with rs-fMRI features as predictors of the spatial distribu-

tion of [18F]FDG parameters.

At group-average level, the addition of CBF increases the R2 of Ki from 0.724
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to 0.795, the R2 of K1 from 0.386 to 0.446, and the R2 of k3 from 0.509 to 0.536.

Parameters’ precision remains within an acceptable range (CVs < 150%). The

inclusion of CMRO2, on the other hand, increases the R2 of Ki from 0.724 to

0.786, the R2 of K1 from 0.386 to 0.519, and the R2 of k3 from 0.509 to 0.514.

Parameters’ precision remains within an acceptable range (CVs < 150%), with

the exception of SampEn-GE (CV = 307%), which would be eliminated from the

K1 model.

Overall, CBF and CMRO2 lead to similar improvements in the Ki and k3 mod-

els (moderate and minor, respectively). However, CMRO2 importantly improves

the K1 model.

We then assessed how these improvements impact the full MLM framework.

Notably, the addition of CMRO2 to the previously selected models leads to a

marked increase in explained variance of the individual-level data for Ki (from a

NPD R2 of 0.35 to 0.468) and K1 (from 0.147 to 0.268), with minor improvement

also for k3 (from 0.19 to 0.22). The individual subjects’ model R2 can be visual-

ized in Figure 5.16C, and their improvements with respect to Figure 5.13C can

be appreciated. When we look at the fixed effects, ReHo and CMRO2 have the

strongest weights in the Ki model, while in the k3 model, ReHo becomes the most

relevant parameter, as does CMRO2 in the K1 model (Figure 5.16A). If we look

at the group average of the model residuals vSi, focusing on the regions outside

the [-1;1] range (Figure 5.16B), we can see the improvement in explanatory power

with respect to the fMRI-only model (Figure 5.13B). This is true for Ki, which

no longer shows high residual values in posteromedial cortex, as well as for K1,

with improvements in posterior DMN, thalamus and putamen.

Adding CBF , on the other hand, leads to a similar increase in explained variance

of the individual-level data for Ki (R
2 = 0.456) and k3 (R2 = 0.245), while the

benefit is lower for K1 (R2 = 0.222), as anticipated by the group-average multi-

variable modelling results.

Importantly, if we minimize the number of predictor variables, using only ReHo

(previously shown to be the strongest rs-fMRI predictor) and CMRO2, we reach

a NPD R2 of 0.434 for Ki, and 0.212 for k3; using only ReHo and CBF , the NPD

R2 of Ki is 0.42, and the R2 of k3 is 0.202.
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Figure 5.16: Assessment of the fMRI-based MLM results for the [18F]FDG parameters (Ki, K1

and k3) after CMRO2 is added to each set of selected rs-fMRI predictors: fixed effects
and their SE (A), group average of the standardized residuals (values outside the
[−1; 1] range are shown) (B), and boxplots of the individual subjects’ R2 (C), for each
[18F]FDG parameter.

5.4 Discussion

In this work, we have evaluated the regional variability of [18F]FDG kinetic

model parameters (Ki, K1 and k3) describing different kinetic events of glucose

metabolism, for the first time at a fine-grained spatial resolution. Furthermore, we

have fully investigated the relationships ofKi,K1 and k3 with CBF and CMRO2,

as well as with a plethora of rs-fMRI measures of both spontaneous activity and

FC, to better understand if the peculiar spatial patterns of [18F]FDG Ki, K1 and

k3 can be explained by combination of information on oxygen metabolism, blood

flow, and spontaneous activity.

5.4.1 Reproducibility of SUV R-fMRI coupling

We started by assessing how reproducible the SUV R-fMRI spatial coupling, de-

scribed in chapter 4 (Tommaso Volpi, Erica Silvestri, Marco Aiello, et al. 2021b),

is on a new dataset.

First, it must be noted that, despite similar subject age and application of the

same preprocessing pipelines, key differences in the two datasets are present,

i.e., Dataset A (chapter 4) was obtained through simultaneous PET-fMRI ac-

quisitions on a Siemens Biograph mMR scanner, while Dataset B was derived

through sequential measurements (PET on a ECAT HR+ scanner, MRI on a
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Siemens Prisma scanner).

With regard to SUV R regional values, we found a good overall match between

Dataset A and B. However, we noticed how Dataset A has lower average SUV R,

but more high-SUV R outlier nodes, while Dataset B has more low-SUV R out-

liers. Why this is the case might be related to the different scanners and related

PVEs. Further work applying region-wise partial volume correction (PVC), e.g.,

via the geometric transfer matrix approach (Sattarivand et al. 2012), and quan-

titatively assessing the spatial autocorrelation of the SUV R maps (Markello and

Misic 2021) will be carried out to better understand these effects.

With regard to rs-fMRI features, which underwent identical preprocessing in the

two datasets, we found varying degrees of reproducibility depending on the vari-

able under investigation.

Importantly, rs-fMRI data from the two datasets are different in terms of spatial

resolution (Dataset A: voxel size = 3/4 mm iso-voxel; Dataset B: voxel size =

2.4 mm iso-voxel), sampling frequency (Dataset A: TR = 2s; Dataset B: TR =

0.8 s), and scan duration (Dataset A: 7.5/10 min; Dataset B: 5 min). This seems

to have had a strong impact on HRF-related variables in particular, but also on

other feature pools, such as entropy measures (e.g., rApEn-BOLD) and phase-

based FC (e.g., med-LEig).

Further work is required to better understand the reasons. Possibly, the use

of band-pass (instead of high-pass) filtered data might change the match with

PET-derived variables. Also, averaging features across multiple EPI runs might

strengthen the estimate of the features’ spatial distribution, making them more

similar to those of Dataset A.

When attempting to reproduce the multivariable modelling at group and indi-

vidual level using the MLM framework, we found that the new rs-fMRI features

had higher explanatory power (up to 70% of the SUV R variance at group level).

This seems to suggest that the higher quality of the rs-fMRI data in Dataset

B (Prisma vs. Biograph mMR scanner) improves the match between regional

glucose metabolism and BOLD-derived information, despite the acquisitions not

being simultaneous. A reassessment of this relationship after PVC is, however,

warranted.
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5.4.2 A fine-grained assessment of [18F]FDG Ki, K1, k3

spatial distributions

We want to point out again that this is the first time that [18F]FDG kinetic

parameters, in particular the microparameters (K1 and k3) have been obtained

and studied at this level of spatial resolution. Most frequently, only SUV R is

employed as an index of glucose consumption; despite it being a good proxy of

Ki in healthy subjects, it is both relative and semi-quantitative, and is known to

be susceptible to bias for multiple technical and physiological reasons (Hamberg

et al. 1994; S.-C. Huang 2000).

Only early studies in the 1980s have attempted to characterize the different spatial

distributions of K1 and k3 (Heiss et al. 1984). Actually, there is some agreement

between our results and what was described on much more coarse-grained regions

(Heiss et al. 1984), e.g., on the markedly posterior distribution of K1. However,

we can find more fine-grained differences, such as in the subcortex, where the

putamina are top parcels for all kinetic parameters, while the adjacent caudate

appears to be among the lowest K1 and Ki regions. At the cortical level, there

does not seem to be a clear RSN hierarchy for these parameters, as previously

determined for SUV R (Palombit et al. 2022). High Ki and k3 nodes are how-

ever enriched in ‘intrinsic’, or task-negative networks (DMN, CTR), while K1 has

many top nodes in ‘extrinsic’, or task-positive areas (VIS, SMN), as also previ-

ously described for aerobic glycolysis indices (Glasser, Goyal, et al. 2014). Limbic

areas (including hippocampus and amygdala) are consistently among the bottom

nodes.

We also regressed the spatial map of k3 on Ki, to better show which additional

information k3 is providing: this showed that not only k3 relatively underesti-

mates Ki in visual cortex (VIS(A) and VIS(B)), cerebellum, and thalamus, but

also overestimates Ki in the caudate, insular and frontoparietal cortex. Despite

group-average Ki and k3 being highly correlated across regions (0.8), k3 is differ-

ently expressed in a series of areas, where the impact of K1 and k2 make Ki a

biased predictor of the glucose phosphorylation events. The repercussions of these

findings remain to be thoroughly understood, as these parameters have never been

previously assessed in more than a handful of subjects with low-resolution PET

data.

We believe the maps of [18F]FDG kinetic parameters we obtained to be faithful

representations of the physiological parameters’ spatial distribution, at least at

the group level. Despite the low spatial resolution of the HR+ scanner and high
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noise level in the data, the Variational Bayesian approach (Castellaro et al. 2017)

is capable of retrieving accurate and precise estimates at the voxel level (provided

that the input function is reliable). Of course, re-assessing these results in a more

ideal framework, using a PET scanner with higher spatiotemporal resolution, will

be important to assess the reproducibility of these spatial distributions and pos-

sibly capture higher detail in these maps (see preliminary results on a Biograph

mMR PET/MR dataset from Padova, Figure 5.17).

Figure 5.17: Average K1 (A) and k3 (B) parametric maps in a small sample of healthy subjects (n
= 4) acquired on a Siemens Biograph mMR in Padova.

Different physiological drivers could be called into play to explain the peculiar spa-

tial patterns of K1 and k3, which is more marked than could be näıvely expected

for two putatively coupled processes (i.e., delivery and utilization of glucose).

Some hypotheses might include

- the vascular distribution (K1 has higher values in the posterior cerebral

artery territory, as already noted by (Heiss et al. 1984);

- the expression of different isoforms of glucose transporters (GLUT1, mainly

expressed at the BBB, and GLUT3, mainly present in neurons (Pessin and Bell

1992), but also SGLT transporters expressed almost exclusively in the cerebellum

(Barrio et al. 2020)) forK1, and of the hexokinase enzyme (HK1, HK2) for k3, but

possibly also genes related to cell proliferation (e.g., CDK2, VEGF-A (Strauss

et al. 2011));
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- the expression of specific gradients of histological and molecular phenotypes

(Paquola et al. 2021);

- the dominance of different electrophysiological rhythms (higher vs. lower

frequencies in EEG/MEG) in different brain networks (e.g. posterior dominance

of the alpha rhythm).

We have started to investigate some of these possibilities, but a clear answer is

still lacking.

Despite the difficulties associated with longer dynamic PET acquisitions, the mi-

croparameters might have significant importance and impact on different types of

neurological and psychiatric disorders (see e.g., (Piert et al. 1996) on Alzheimer’s

disease; (Hermanides et al. 2021) on traumatic brain injury), and the increasingly

high spatial resolution of new PET scanners (Meikle et al. 2021) will allow for

more accurate assessment of specific deficits in glucose delivery (K1) and phos-

phorylation (k3). Glucose phosphorylation by hexokinase, being the rate limiting

step for glucose utilization, is of particular pathophysiological relevance (Furler

et al. 1991; Piert et al. 1996).

We have also studied the differences between k3, representative of both oxidative

and glycolytic metabolism, and GI, which describes only the glycolytic portion.

Interestingly, the GI has a slightly stronger spatial consistency with k3 rather

than Ki (80% explained variance, against 75% for Ki), despite being the result

of regressing CMRglc (= scaled Ki) against CMRO2. However, when across-

subject correlations are tested, we find high consistency in many, but not all,

brain areas.

Substituting indices of aerobic glycolysis, which require the burdensome acquisi-

tion of [18F]FDG plus 15O tracers, with parameters obtained by [18F]FDG only

(e.g., k3) would be an interesting endeavor to pursue, but the same sensitivity to

pathology and age-related changes (Goyal, Vlassenko, et al. 2017) should first be

demonstrated.

5.4.3 [18F]FDG uptake and phosphorylation are spatially

coupled to fMRI local coherence

When we assessed the spatial relationships of [18F]FDG parameters with rs-fMRI

variables, we found an overall consistency with our previous findings on SUV R

(chapter 4):

1) variable degrees of association with rs-fMRI variables was present, with

strongest match for signal-related features (Figure 5.10);
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2) evidence of nonlinearity emerges from [18F]FDG-fMRI correlations across

clusters of nodes selected according to increasing and decreasing percentiles of

each parameter (Figure 5.11), which is confirmed by linear vs. nonlinear model

selection (Figure 5.12);

3) when moving to multivariable and full MLM context, we find that the top

and bottom regions of each [18F]FDG parameter are still difficult to interpret us-

ing only rs-fMRI features (Figure 5.13B); also, there is significant between-subject

variability in the [18F]FDG-fMRI spatial association (Figure 5.13C), which is not

easily explainable by subject-specific covariates (e.g., age, sex).

However, there are many aspects which are peculiar this work.

First, the model R2 are overall higher in this case than in our previous work (i.e.,

Dataset A), as already seen in the SUV R-fMRI reproducibility analysis, so the

same considerations apply (fMRI data quality, higher smoothing/PVE levels in

the HR+ [18F]FDG data).

ReHo emerges as the rs-fMRI variable having the strongest spatial match with

[18F]FDG kinetic parameters, as for SUV R, which is also consistent with various

publications (Marco Aiello et al. 2015; Nugent et al. 2015; J. Wang et al. 2021),

two of which actually comparing ReHo to fully quantitative Ki (Bernier et al.

2017; S. Deng et al. 2022). Here, ReHo alone is capable of explaining 55% of Ki

variance at group level, and 30% on individual subject data (for k3: 40% at group

level, 18% at individual-subject level). This confirms the moderate-to-strong spa-

tial coupling between glucose metabolism and features of BOLD fMRI local signal

coherence, as recently and thoroughly discussed by (S. Deng et al. 2022) for ReHo

and fALFF ; sFC and tvFC features, instead, provide much weaker contribution,

especially in multivariable associations (Figure 5.10, Figure 5.13).

However, despite being remarkably reproducible (Z. Li, Kadivar, et al. 2012),

ReHo does not escape the lack of across-subject (instead of across-region) associ-

ations between [18F]FDG and rs-fMRI assessed for each region separately (Figure

5.15). This absence of across-subject coupling has already been previously re-

ported for SUV R (Marco Aiello et al. 2015; J. Wang et al. 2021). More careful

assessment of [18F]FDG microparameters vs. fMRI across-subject associations

and possible confounding factors (e.g., data normalization) at the voxel level (S.

Deng et al. 2022) is highly warranted.

When focusing on K1 and its relationship with BOLD, the picture changes. In

terms of bivariate associations, it is the only parameter that has significant as-

sociations with most HRF and sFC features. This is a nice confirmation of the



5.4 Discussion 119

relationship between features of the HRF and CBF , since K1, as the delivery

rate of [18F]FDG, is a proxy of perfusion (though biased) (Huisman et al. 2012).

More interesting is the consistent relationship with sFC, which seems to imply

that the large-scale FC network structure is more dependent on CBF rather than

on glucose metabolism. In the same direction, sFC features have the most marked

nonlinear associations with [18F]FDG parameters, especially Ki and k3. Notably,

a sFC feature (eigenvector centrality, s-EC ), which has a high correlation withK1

(ρ > 0.5) (Figure 5.10), is also selected in the multivariable model, and displays

one of the most relevant weights together with the exponent of rs-fMRI signal

autocorrelation (AR-BOLD) (Figure 5.13). Nonetheless, BOLD-based informa-

tion does not seem to provide extensive explanation of the spatial distribution of

K1 (group-average R2 ∼ 0.4, näıve pooled R2 ∼ 0.15).

5.4.4 [18F]FDG uptake and delivery are partially coupled

to CMRO2 and CBF

Finally, we tested the hypothesis that the independent addition of CBF and/or

CMRO2 to the models of the [18F]FDG parameters’ spatial variability would

significantly improve on the explanatory power given by rs-fMRI alone. Our

hypothesis was that the [18F]FDG delivery (K1) would have a relatively strong

relationship with CBF , while k3 might possibly better match with CMRO2 (rep-

resenting oxidative glucose metabolism), andKi would have a high similarity with

both CBF and CMRO2, as predicted by previous studies (Vaishnavi et al. 2010;

Hyder et al. 2016).

At group-average level, we find only moderate spatial correlations for Ki and K1

with CMRO2 (ρ ∼ 0.5) and even lower with CBF (ρ ∼ 0.3-0.4). On the other

hand, k3 has low correlations with both (ρ ∼ 0.2). When moving to across-subject

correlations, no k3 vs. CBF or k3 vs. CMRO2 correlations survive FDR correc-

tion (and very few are even significant when uncorrected p-values are considered,

exactly like the rs-fMRI vs. [18F]FDG across-subject correlations), while Ki and

K1 do have higher and more significant correlations with both CBF and CMRO2

(Figure 5.15). When we try adding CBF or CMRO2 to the fMRI-only models,

an important impact is obtained on Ki and K1, with an increase of more than

10% in the explained variance of the individual data, and a marked amelioration

of the pattern of the average residuals, especially in the areas with the strongest

positive values, i.e., posterior cingulate for Ki, and posteromedial cortex for K1

(Figure 5.16).
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The strong role of CMRO2 in explaining [18F]FDG K1 is interesting and deserves

attention. From a physiological standpoint it represents a match between the de-

livery of glucose (K1) and the delivery and consumption of oxygen (CMRO2),

with highest values in medial and posterior regions. This finding is also con-

sistent with previous reports of [18F]FDG K1 and CMRO2 spatial distribution

(Glasser, Goyal, et al. 2014; Hermanides et al. 2021). However, some key differ-

ences emerge, especially in the subcortical areas and cerebellum, which is one of

the highest hotspots only for K1. In the case of the cerebellum, peculiar phys-

iological characteristics might come into play to explain its very high [18F]FDG

delivery, such as its different glia-to-neuron ratio (Herculano-Houzel 2014), den-

sity and type of glucose transporters (Barrio et al. 2020), different LC (Graham

et al. 2002; Barrio et al. 2020), higher EF (Huisman et al. 2012) and permeability-

surface product (preliminary data), etc.

It also interesting to underline that the informative power provided by rs-fMRI,

both alone and supplemented by CBF and CMRO2, is not enough to satisfac-

torily explain the spatial distribution of k3 (maximum R2 values: ∼ 0.5 at group

level, ∼ 0.25 at NPD level).

For what concerns the relationship of CBF and CMRO2 with k3, our results are

consistent with what recently described by (Hermanides et al. 2021), who showed

that k3 remained relatively constant for the healthy range of CBF and CMRO2

values. Only local rs-fMRI indices (i.e., ReHo), possibly tracking some features

of synaptic activity, seem to satisfactorily describe the hexokinase activity. In

the future, investigating the match of k3 with markers of synaptic density, e.g.,

[11C]UCB-J (Aalst et al. 2021), or mitochondrial distribution, e.g., [18F]FCPP-EF

(Venkataraman et al. 2022), might provide additional insights on the physiologi-

cal underpinnings of this parameter.

Notably, the correlations between CBF , CMRO2 and [18F]FDG Ki were some-

what weaker than expected, especially for CBF (e.g., Glasser, Goyal, et al. 2014;

Hyder et al. 2016; S. Deng et al. 2022). This could be due to a number of rea-

sons, including the use of different quantification approaches for CBF (and also

CMRO2), i.e., the absolute quantitative parameter (Hyder et al. 2016), a relative

quantitative parameter (as in our case), or a semiquantitative SUV R (as in Vaish-

navi et al. 2010). As a next step on this, we are going to explore the match be-

tween our relative CBF , CMRO2 parameters and [15O]H2O and [15O]O2 SUV R.

When checking group-average associations with [18F]FDG SUV R, nonetheless, a

higher match was detected (SUV R vs. CBF R2 = 0.26; SUV R vs. CMRO2 R
2
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= 0.432), especially when the SUV R from Dataset A was considered (SUV RA

vs. CBF R2 = 0.488; SUV RA vs. CMRO2 R2 = 0.487). Moreover, recent re-

ports in the quantitative PET literature talk of a moderate (Spearman’s ρ = 0.56)

and nonlinear association between CMRglc (= Ki) and CBF , with higher CBF

in thalamus, cerebellum and medial temporal lobe than predicted by CMRglc

(Henriksen, Vestergaard, et al. 2018).

On a final note, we have also assessed the spatial relationships between CBF ,

CMRO2 and rs-fMRI features expanding on previous assessments (S. Deng et al.

2022).

Interestingly, both CBF and CMRO2 are significantly correlated with the base-

line rs-fMRI signal of each region, while [18F]FDG kinetic parameters are not,

and CBF is positively correlated with ALFF ), which has negative associations

with [18F]FDG Ki (as in S. Deng et al. 2022) and k3. We find ReHo to be weakly

correlated with CBF , differently from (S. Deng et al. 2022); however, this is still

in line with their hypothesis of a stronger coupling of ReHo with CMRglc than

with CBF .

Importantly, significant correlations are present between CBF and blood flow-

related indices such as MAD-BOLD and peak-HRF (G.-R. Wu and Marinazzo

2016). Moreover, similarly to [18F]FDG K1, correlations with the HRF and sFC

pool are significant and stronger than for Ki and k3, which again seems to imply

that FC network measures are more supported by blood flow and blood oxygena-

tion than by glucose metabolism.

5.4.5 Limitations

There are some limitations in this work that need to be considered.

First, the PET and rs-fMRI data were not acquired simultaneously. While simul-

taneous PET/fMRI acquisitions are expected to provide superior performance in

integrating multiple modalities by reducing between-scan variability (Cecchin et

al. 2017; Z. Chen et al. 2018), sequential scans have been employed in many PET

vs. fMRI studies (e.g., D. Tomasi, G. J. Wang, and Volkow 2013; S. Deng et al.

2022). In our case, a higher spatial match between PET and rs-fMRI variables

was actually found in the non-simultaneous case (Chapter 5) with respect to the

simultaneous case (Chapter 4), possibly due to higher-quality fMRI acquisitions.

Secondly, despite our extensive efforts, the PET modelling estimates on this

dataset cannot be considered fully quantitative.

With regard to [18F]FDG, our image-derived input function approach, fully de-
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tailed in (Erica Silvestri et al. 2022), and fine-tuned here to the peculiarities of

this dataset, allows to retrieve an input function that is sufficiently accurate,

but is likely to still be affected by PVEs due to the limited spatial resolution

of the ECAT HR+ scanner (FWHM 5 mm) (Zanotti-Fregonara, K. Chen, et al.

2011). This makes the Ki, K1 and k3 estimates biased. However, we believe

their relative spatial distribution to be accurate, which is what is required for

the spatial modelling approach we have presented, where demeaned or z-scored

input data are employed. The bigger impact is on across-subject associations,

since within-subject z-scoring of the parameters is removing the individual-level

effects, making it possible to only evaluate PET-fMRI correspondences in terms

of how similar the relative ranking of a given region across different subjects is for

the two modalities. Hopefully, in the future we will have the opportunity to ana-

lyze fully quantitative data (i.e., with arterial sampling, or IDIF extraction on a

high-resolution PET scanner) and be able to avoid within-subject normalization

altogether. PVC of the [18F]FDG parametric maps is ongoing, to minimize the

effects related to the low spatial resolution of the scanner.

With regard to [15O]H2O and [15O]O2 data, the same reasoning applies. Further

assessment of the [15O]H2O and [15O]O2 quantification results is required to eval-

uate their reliability.

With regard to the rs-fMRI analysis, we have opted for a granular assessment of

the different fMRI features, as in chapter 4, to have the best chance of discovering

a relevant coupling with [18F]FDG, but, especially in light of new perspectives

on a more unitary representation of the rs-fMRI features (Bolt et al. 2022), we

are also exploring other summary features such as FC gradients (Margulies et al.

2016; Vos de Wael et al. 2020) (Figure 5.18) to verify if they improve the match

with glucose metabolic parameters.

5.5 Conclusions

In this chapter, we have fully assessed the physiological information contained

in [18F]FDG dynamic PET data from a large dataset of ∼ 50 healthy subjects,

estimating both the macroparameter Ki (uptake rate), and the single rate con-

stants K1 and k3, describing the delivery and phosphorylation of glucose, with

unprecedented spatial detail.

The combination of rs-fMRI (mainly local features, i.e., ReHo) and CBF , CMRO2

allows to explain a significant portion of spatial variance for [18F]FDG Ki, while
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Figure 5.18: Representation of the first (A) and second (B) gradients (G1 and G2) of the group-
average FC matrix (n = 47) of the dataset in question, plotted on the cortical surface;
scatter plot of G1 vs. G2, with nodes divided according to RSN (C).

K1 is mostly sensitive to the information provided by CMRO2, and k3 by ReHo.

Overall, this work enriches the landscape of research on the interplay between

PET- and BOLD-derived variables, as well as on the interactions between brain

metabolism (CMRglc, CMRO2), blood flow (CBF ), and neural activity.

Future assessment of glucose delivery (K1) and hexokinase activity (k3) via [
18F]FDG

PET, in healthy and pathological populations, is promising thanks to the im-

provements in both hardware and software which make parameter estimates more

reliable and sensitive.

Part of this work has been published as (Volpi, J. Lee, et al. 2022).
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Chapter 6

Bringing [18F]FDG PET to the

‘brain connectivity’ framework to

explore its match with FC

6.1 Introduction

The rise of the field of ‘connectomics’, which aims at characterizing the struc-

tural and functional connections between brain areas, typically using diffusion

magnetic resonance imaging (dMRI) and fMRI (Betzel 2022), has opened new

scenarios for brain [18F]FDG PET, which has been employed to obtain estimates

of the so-called ‘MC’, defined as the similarity between different brain regions in

terms of their metabolic activity.

In most studies, only a group-level MC estimate is obtained, as the covariation

of [18F]FDG PET uptake across subjects (Yakushev, Drzezga, and Habeck 2017;

Veronese et al. 2019). This ‘subject series MC’ (ss-MC) approach (Jamadar et al.

2021) differs significantly, both in the calculation and in the interpretation, from

what is typically done to calculate fMRI FC (Smith, Miller, et al. 2011), where

adjacency matrices are derived at the single-subject level.

As we have shown in chapter 4 and 5, FC measures tend display a somewhat

weak similarity with regional [18F]FDG kinetic parameters: this is why applying

a ‘large-scale connectivity ’ framework to PET data instead might improve the

match with fMRI-based connectomes.

As anticipated in Chapter 2, only a handful of studies have attempted to use

dynamic PET data to derive MC from the PET signal TACs at the individual

level, i.e., time series MC (ts-MC), in humans (D. G. Tomasi et al. 2017; Jamadar

125
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et al. 2021) and animal models (Wehrl et al. 2013; Amend et al. 2019; Ionescu

et al. 2021).

Importantly, handling dynamic PET time series comes with peculiar challenges as

compared to fMRI time series or static PET subject series (Tommaso Volpi, Er-

ica Silvestri, Corbetta, et al. 2021): the strong collinearity amongst tissue TACs,

which all share a positive trend related to the tracer irreversible uptake, makes

it difficult to directly employ simple correlation analysis. To overcome this issue,

it was suggested to perform some sort of TAC standardization, or detrending,

both for traditional bolus injection and for continuous infusion fPET protocols;

the detrending approach has been especially employed on the latter, where MC

is becoming very popular due to the higher temporal resolution fPET data are

reconstructed to (Amend et al. 2019; S. Li et al. 2020; Jamadar et al. 2021; Voigt

et al. 2022). This approach, however, is problematic, as it removes the main sig-

nal in PET TACs leaving only the fluctuations around it, which may be related

more to physical and statistical noise than to biologically informative variability.

Another relevant point to address is that, in virtually all previous MC studies,

only a semi-quantitative measure of [18F]FDG uptake is employed, i.e., SUV or

SUV R. Resorting to full kinetic modelling, instead, might provide important

physiological information, such as the tracer’s Ki and microparameters K1, k2,

k3 (L. Sokoloff et al. 1977; S. C. Huang et al. 1980; Alessandra Bertoldo, Rizzo,

and Veronese 2014). Interestingly, by using kinetic modelling we can also recon-

struct the TACs of the first (C1) and second compartment (C2), i.e., the tissue

concentration of unphosphorylated and phosphorylated [18F]FDG, respectively.

This multi-parametric information, which allows to separate tracer delivery from

its actual metabolism in the PET signal, might prove relevant for more accurate

MC estimation, but this has never been tested so far.

With these premises, we set out to provide a more comprehensive framework for

[18F]FDG PET MC, using traditional bolus injection data from a large dataset

(> 50 subjects) of dynamic [18F]FDG PET studies in healthy individuals.

To obtain single-subject ts-MC estimates, we started by comparing different TAC

standardization strategies and similarity metrics to select the best approach, and

then we proceeded to derive ts-MC matrices not only from the full tissue TACs

(0-60 min), but also from their early part (0-10 min) and late part (40-60 min),

to characterize MC networks more related to inflow (early) or metabolism (late)

(see Figure 6.1, bottom). Then, we carried out [18F]FDG kinetic modelling, using

an IDIF calibrated with venous plasma samples (K. Chen et al. 1998) (Chapter
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5), and the reconstructed TACs of C1 and C2 were also used to derive ts-MC

estimates.

Then, ts-MC (group average) were compared to ss-MC matrices, derived not only

from SUV R, but also from macro- (Ki) and microparameters (K1, k3) (see Figure

6.1, top). The comparison was run at multiple levels, i.e., a) similarity of matrix

structure, b) similarity of ‘hub’ nodes (Rubinov and Sporns 2010), c) match with

[18F]FDG kinetic parameters, d) match with other connectivity estimates, i.e.,

SC (from an average template (Yeh et al. 2018)) and, in particular, FC from

rs-fMRI data acquired in the same subjects.

Figure 6.1: Analysis pipeline for estimating single-subject (ts-MC) and across-subject (ss-MC) MC.
A static SUV R image (top left) is derived from the 40-60 min window of the [18F]FDG
PET dynamic data; in parallel, compartmental modelling is applied to dynamic PET
data to estimate [18F]FDG kinetic parameters, in particular Ki, K1 and k3 (center)
and reconstruct the time courses of compartments 1 and 2 (bottom center). From the
subject series of parameters SUV R, Ki, K1 and k3 we calculate across-subject MC
via Pearson’s correlation (top right), while from the time series of the tissue TAC,
compartments 1 and 2, single-subject MC is obtained via Euclidean similarity (bottom
right).

6.2 Materials and Methods

6.2.1 Participants

Fifty-four healthy adults (mean age 57.4 ± 14.8 years, 24 males) underwent

[18F]FDG PET scans. Subjects were excluded if they had contraindications to

MRI, history of mental illness, possible pregnancy, or medication use that could

interfere with brain function. All assessments and imaging procedures were ap-
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proved by Human Research Protection Office and Radioactive Drug Research

Committee at Washington University in St. Louis. Written consent was pro-

vided from each participant.

6.2.2 Imaging protocols

For each participant, a multi-echo T1w MRI scan, T2* GE-EPI scan, two SE

scans were acquired on a Siemens Magnetom Prisma scanner. One-hour dynamic

[18F]FDG scans were performed on a Siemens ECAT EXACT HR+ scanner,

after i.v. bolus injection of 5.1 ± 0.3 mCi (187.7 ± 12.1 MBq) of [18F]FDG. The

reconstruction grid consisted of 52 frames (24 x 5 s, 9 x 20 s, 10 x 1 min, and

9 x 5 min frames). Venous samples were collected to assess [18F]FDG plasma

concentration.

For all the additional details on these acquisitions, see chapter 5.

6.2.3 MRI preprocessing

Structural T1w images underwent the same pre-processing as in chapter 5.

The Hammers anatomical atlas (Hammers et al. 2003) and the Schaefer functional

atlas (100 parcels, 7 networks) (Schaefer et al. 2018) were registered to T1w space

by inverting the obtained nonlinear transformation.

For the Hammers atlas, 74 ROIs (out of the original 83) were kept for further

analysis, after removing WM- and CSF-only ROIs. For simpler visualization and

interpretation, the regions were divided into 7 anatomical clusters, i.e., 1) frontal

lobe, 2) temporal lobe, 3) parietal lobe, 4) occipital lobe, 5) insula and cingulate

gyri, 6) subcortical structures, 7) cerebellum.

For the Schaefer atlas, the 100 ROIs were supplemented by 12 subcortical ROIs

taken from the Hammers atlas (bilateral caudate, accumbens, putamen, pallidum,

thalamus, cerebellum).

As to rs-fMRI data, GE-EPI images underwent the same pre-processing as in

chapter 5.

Pre-processed EPI signals were obtained within each parcel from the Hammers

and Schaefer atlases, which had been linearly mapped from T1w to EPI space,

by averaging over voxels within the SPM (Ashburner and K. J. Friston 2005) GM

segmentation (probability > 0.8 of belonging to GM).
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6.2.4 PET kinetic modelling

For detailed steps of PET data analysis and kinetic modelling on this dataset,

see chapter 5.

A static PET image was obtained by summing late PET frames (40-60 min) after

motion correction, and normalized first into a SUV image, then into an SUV R

dividing by the whole-brain average uptake (Byrnes et al. 2014).

To perform full kinetic modelling, an IDIF was extracted from dynamic PET data

using a semi-automatic pipeline (Volpi, Silvestri 2022) and corrected for spillover

(K. Chen et al. 1998). Voxel-wise estimation of Sokoloff’s model parameters was

performed using a VB approach (Castellaro et al. 2017). Parametric maps of

K1, k2, k3, Vb were obtained for each subject. The parametric map of Ki was

computed by the solving Equation 2.5 at the voxel level.

The voxel-wise time courses of C1 and C2 were reconstructed with the following

equations (L. Sokoloff et al. 1977; Phelps et al. 1979):

C1(t) =
K1k2
k2 + k3

+ e−(k2+k3)t ⊗ Cp(t) (6.1)

C2(t) = Ki

∫ t

0

Cp(t)dt (6.2)

6.2.5 Time series metabolic connectivity (ts-MC)

ROI-level PET signals ([18F]FDG tissue TACs, C1 and C2 TACs) were extracted

from the Hammers and Schaefer parcels, which had been linearly mapped from

T1w to PET space, by averaging over voxels within the GM segmentation (prob-

ability > 0.8 of belonging to GM).

The first 24 5 s frames (120 s in total) of the parcel-wise tissue TACs were fil-

tered in the temporal dimension by averaging them in triplets, due to their high

noise content. Denoising was not performed on the TACs of C1 and C2, as they

are noise-free by construction. The signals (tissue TACs, C1 and C2 TAC) were

interpolated on a uniform virtual grid (5 s step), obtaining a subject-wise matrix

X ∈ R
p×T , where p is the feature size (72 parcels) and T is the sample size (690

time points).

To calculate ts-MC, we tested and compared several methods for

• TAC standardization (detailed in Figure 6.2):

1. Dividing by the whole-brain average TAC, i.e., mean TAC across ROIs

(D. G. Tomasi et al. 2017; Amend et al. 2019), to emphasize the fluctuations
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of the signal of each ROI with respect to the metabolic baseline;

2. Z-scoring across regions (i.e., subtracting the mean TAC across ROIs

and dividing by the SD TAC across ROIs), followed by demeaning across

time points (i.e., subtracting the mean across time, ROI by ROI), again to

emphasize the fluctuations of the signal with respect to the baseline;

3. Demeaning across regions (i.e., subtracting the mean TAC across ROIs),

followed by z-scoring across time points (i.e., subtracting the mean across

time and dividing by the SD across time, ROI by ROI), to emphasize the

fluctuations of the signal with respect to itself;

4. Dividing by the Cp(t), i.e., by the IDIF time course, to remove the

vascular information from the tissue TACs;

5. Dividing by the integral of Cp(t),
∫ t

0
Cp(t), to emphasize the vascular

information in the TACs;

• MC matrix estimation (Pearson’s correlation, Cosine Similarity, Euclidean

distance).

The selected MC estimation approach is based on Euclidean distance dx1,x2 :

dx1,x2 =

√

√

√

√

T
∑

i=1

(xi,1 − xi,2)2 with T = number of time points (6.3)

between each pair of TACs xi,1 and xi,2. From dx1,x2 we derived a measure of Eu-

clidean similarity (ES), as the complement to 1 of the normalized dx1,x2 (divided

by its maximum). Due to the markedly heavy-tailed (left-skewed) distribution of

ES values, a Fisher z-transformation was applied, and then the values were again

rescaled to the [0;1] range dividing by their maximum.

To fully evaluate the different physiological information contained within PET

TACs, ts-MC matrices were calculated at the single-subject level from

a) the full tissue TACs (0-60 min)

b) the early part of the tissue TAC (0-10 min)

c) the late part of the tissue TAC (40-60 min)

d) the full TACs of C1

e) the full TACs of C2

and then averaged across subjects into 5 group-level MC matrices.

The BSV of a)-e) ts-MC was calculated edge by edge as the CV%, i.e., the per-

centualized MAD/median ratio across subjects. An overall index of the BSV was

obtained from the median ± MAD of the CVs% for each matrix.
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The association between each pair of ts-MC matrices was tested via Pearson’s

correlation coefficients, calculated between the upper triangular portions of each

matrix, both without sparsification and after imposing a threshold (80th per-

centile), as is typical in connectivity studies (Wijk, Stam, and Daffertshofer 2010).

The significance of the Pearson’s correlation values was assessed via the Mantel’s

test, which is used to evaluate the correlation between two symmetric similarity

matrices obtained from multivariate data (Mantel and Haenszel 1959). Mantel

statistics were tested for significance by 15,000 permutations, and then p-values

were Bonferroni-corrected (10 comparisons) (Shaffer 1986).

Figure 6.2: Group-average time series MC matrices (Hammers atlas) obtained at individual level
from the full tissue TAC, using Pearson’s correlation as a similarity metric. The non-
normalized case is compared with five different normalizations: division by mean TAC
µWB (1), z-scoring across regions followed by demeaning across time points (2), de-
meaning across regions (removing µWB) followed by z-scoring across time (3), division
by IDIF (Cp) curve (4), division by IDIF integral curve (5).

6.2.6 Subject series metabolic connectivity (ss-MC)

The SUV R, Ki, K1, k3 parametric maps were parceled at the subject level with

the Hammers and Schaefer atlas as described in chapter 5. The region-wise

SUV R, Ki, K1, k3 values were within-subject normalized via z-scoring, i.e., cen-

tered with respect to their mean and divided by the standard deviation across

ROIs, in accordance with previous PET connectivity work (Veronese et al. 2019).

ss-MC matrices for SUV R, Ki, K1, k3 were computed with Pearson’s correlation

(see Figure 6.1, top). The association between each pair of ss-MC matrices was

tested via Pearson’s correlation coefficients (upper triangle), both without spar-
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sification and after imposing a threshold (80th percentile). The significance of

the p-values was assessed via the Mantel’s test: Mantel statistics were tested for

significance by 15,000 permutations, and then p-values were Bonferroni corrected

(6 comparisons).

6.2.7 Multilevel comparison of ts-MC vs. ss-MC

We now have five average ts-MC matrices, i.e., a) full TAC, b) early TAC, c) late

TAC, d) C1, e) C2 MC, and four ss-MC matrices, i.e., a) SUV R, b) Ki, c) K1,

d) k3-based MC. The complementary information provided by the time series vs.

subject series approaches was assessed via multiple strategies: at edge level by

calculating the Pearson’s correlation between the matrix elements, and at region

level by comparing the graph metrics and derived hub nodes of each MC matrix.

Moreover, the match with a SC template (Yeh et al. 2018) and group-average FC

was assessed.

Comparing ts-MC vs. ss-MC: matrices

For direct matrix-to-matrix comparison, Pearson’s correlation coefficients were

calculated between the upper triangular portions of each ts-MC vs. ss-MC ma-

trix, both without sparsification and after imposing a threshold (80th percentile).

The significance of the p-values was assessed via the Mantel’s test: Mantel statis-

tics were tested for significance by 15,000 permutations, and p-values were Bon-

ferroni corrected (20 comparisons).

Comparing ts-MC vs. ss-MC: graph metrics and hub nodes

To identify hub nodes, all matrices were thresholded at the 80th percentile.

Region-wise graph metrics were computed, i.e., DEG and EC (see chapter 3).

The regional EC values from both ts-MC and ss-MC matrices were plotted against

the across-subject mean [18F]FDG parameters (SUV R, Ki, K1, k3) to assess their

relationships.

Then, hubs were identified on each matrix as the nodes belonging to the top 20%

of the distribution of the two graph metrics (DEG and EC) simultaneously, thus

highlighting nodes with both high local and global connectivity (Rubinov and

Sporns 2010).

For comparison of hubs across matrices, the Dice Similarity coefficient (DSC)

between pairs of binary hub vectors of ts-MC and ss-MC was computed.
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Comparing ts-MC vs. ss-MC: match with structural and functional connectivity

A publicly available tractography atlas was used to create a group-level SC matrix

(Yeh et al. 2018), whose entries represent the number of white matter tracts

between each pair of parcels. As for MC, the sparsity level of the matrix was set

to 20%. To assess the agreement between the estimated metabolic connections

and the underpinning structural connections, the DSC between the binarized SC

and each binarized ts-MC (group average) and ss-MC network was computed.

For each subject, the FC matrix was obtained by means of Pearson’s correlation

computed between the pre-processed fMRI time series of each pair of parcels. FC

matrices were then Fisher z-transformed and averaged across subjects to obtain

the group-averaged FC (see chapter 5). As for MC, the sparsity level was set at

20%.

To assess the agreement between the estimated metabolic connections and the

FC structure, the DSC between binarized FC and each binarized ts-MC (group

average) and ss-MC network was computed.

6.3 Results

6.3.1 Time series MC maps from PET time-activity

curves

When we compared different MC estimation (ES, Pearson’s correlation, Cosine

Similarity) and TAC standardization approaches (Figure 6.2), the ES method

emerged as the only one capable of retrieving structured MC matrices even with-

out any signal normalization: in particular, in all the matrices reported in Figure

6.3 (Hammers anatomical atlas) and Figure 6.4 (Schaefer functional atlas), both

a) a block-diagonal structure along the main matrix diagonal, and b) enhanced

secondary diagonals are clearly present, representing within-‘network’ connections

and interhemispheric homotopic connections (i.e., between homologous regions)

respectively. Therefore, the ts-MC matrices obtained via the ES approach will

be presented and used for further analysis.

Representative examples of ts-MC derived via Pearson’s correlation are shown in

Figure 6.2. Similar results were obtained with Cosine similarity (not shown). A

discussion of the issues related to TAC normalizations and other MC estimation

approaches can be found in (Tommaso Volpi, Erica Silvestri, Corbetta, et al.

2021).
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Figure 6.3: Time series MC matrices (Hammers atlas). We report the group-average (n = 54) MC
matrices obtained at the individual level from the full tissue TAC (A), its early part
(B) and late part (C), the kinetics of C1 (D) and C2 (E), via the Euclidean similarity
metric. We also report the Pearson’s correlation matrix between the edges of the 5
ts-MC matrices (upper triangle) (F).
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Figure 6.4: Time series MC matrices (Schaefer atlas). We report the group-average (n = 54) MC
matrices obtained at the individual level from the full tissue TAC (A), its early part
(B) and late part (C), the kinetics of C1 (D) and C2 (E), via the Euclidean similarity
metric. We also report the Pearson’s correlation matrix between the edges of the 5
ts-MC matrices (upper triangle) (F).

When visually assessing the ts-MC matrices from the full TAC (Figure 6.3A), the

late part (Figure 6.3C), and C2 (Figure 6.3E), areas of strong within-‘network’

connections are located in the frontal and occipital cortex, but also in medial

temporal lobe regions.
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However, this network structure is clearly modified in the ts-MC from the early

part of the TAC (Figure 6.3B), and C1 (Figure 6.3D): the occipital lobe loses

‘connectivity’, and the temporal and parietal areas become highly connected both

within and between ‘network’.

Notably, subcortical structures tend to always display lower ts-MC than cortical

areas.

The BSV of the obtained ts-MC matrices, shown at the single edge level in Figure

6.5, is overall low for all approaches, being lowest for the full TAC (CVs% median

± MAD: 8.3 ± 28.9), and highest for C2 (CVs% median ± MAD: 47.7 ± 9.4).
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Figure 6.5: Across-subject variability of time series MC matrices (Hammers atlas). report the
edge-level across-subject coefficients of variation (%) of MC matrices obtained from the
full tissue TAC (A), its early part (B) and late part (C), the kinetics of C1 (D) and C2

(E).

If we assess the Pearson’s correlation between the edges of average ts-MC matri-

ces, we can see how the full TAC ts-MC has strong correlations with the early

part, C2 and especially the late part of the TAC. Notably, the C1 MC has weaker

relationships with the other ts-MC matrices, except for a high correlation (r =

0.73, Mantel’s test, p < 10−9, Bonferroni corrected) with the early TAC MC

(Figure 6.3F).

To sum up, by using dynamic PET TACs and the ES metric, it is possible to ob-

tain single-subject MC estimates characterized by within-network and homotopic

connections, a low BSV, and to highlight different physiological information (i.e.,

full signal, early vs. late portions, and the kinetics of the model compartments).

Overall, these results are consistent across different atlases.
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6.3.2 Subject series MC maps: SUV R and kinetic

parameters

The ss-MC matrices are displayed in Figure 6.6 (Hammers) and Figure 6.7 (Schae-

fer). The ss-MC of [18F]FDG kinetic model parameters (Ki, K1, k3) is presented

here for the first time, extending on typical ss-MC approaches based on SUV R.

From a visual standpoint, some similarities are shared between the different pa-

rameters, especially between SUV R and Ki MC (r = 0.82, Mantel’s test, p <

10−9, Bonferroni corrected), as expected due to their high spatial correlation, with

strong within-‘network’ connections are present in temporolimbic areas. The k3

ss-MC is instead quite different, with enhanced ‘connectivity’ in frontal areas

and also subcortical structures, and is in fact the least correlated with the oth-

ers, especially with SUV R MC (r = 0.43, Mantel’s test, p < 10−9, Bonferroni

corrected).
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Figure 6.6: Subject series MC matrices (Hammers atlas). We report the across-subject Pearson’s
correlation matrices for SUV R (A), Ki (B), K1 (C) and k3 (D). We also report the
Pearson’s correlation matrix between the edges of the 4 ss-MC matrices (upper triangle)
(E).

6.3.3 Similarity of ts-MC and ss-MC matrices and hubs

When the ts-MC and ss-MC networks were related to each other via Pearson’s

correlation (Table 6.1), some significant correlations are found, especially between

ts-MC matrices and K1 and k3 ss-MC. However, the correlation values are gen-

erally low, with a maximum of 0.37. Even lower correlations are found for the

Schaefer atlas (maximum 0.28). SUV R ss-MC seems to carry no meaningful

relationships with ts-MC approaches.
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Figure 6.7: Subject series MC matrices (Schaefer atlas). We report the across-subject Pearson’s
correlation matrices for SUV R (A), Ki (B), K1 (C) and k3 (D). We also report the
Pearson’s correlation matrix between the edges of the 4 ss-MC matrices (upper triangle)
(E).

Pearson’s R SUV R ss-MC Ki ss-MC K1 ss-MC k3 ss-MC
Full TAC ts-MC 0.17* 0.2* 0.29* 0.29*
First 10’ ts-MC 0.06 0.11* 0.26* 0.25*
Last 20’ ts-MC 0.16* 0.17* 0.26* 0.25*

C1 ts-MC 0.18* 0.22* 0.37* 0.33*
C2 ts-MC 0.2* 0.23* 0.29* 0.33*

Table 6.1: Across-edge Pearson’s correlations between group-average time series (rows) and subject

series (columns) MCmatrices (Hammers atlas, upper triangle, 80th percentile threshold).
Significant correlations (Mantel’s test, p < 0.05, Bonferroni corrected) are reported as *.

We then moved to identifying ‘hub’ nodes, i.e., highly connected and representa-

tive nodes in each MC network, as is typically done in the field of connectomics.

With regard to ts-MC hubs (Hammers atlas), they are mainly located in frontal

and temporal areas, with the exception of C1 with more parietal involvement

(Figure 6.8A). As to the ss-MC hubs, while SUV R, Ki and K1 have a similar

hub distribution, mainly in temporal, insular and cingulate cortices, k3 hubs fall

in frontal and subcortical areas (Figure 6.8B). When we look at the DSC between

hub vectors of ts-MC vs. ss-MC matrices, again we find a lack of match between

SUV R MC and ts-MC hubs, with higher overlap in the case of K1 and especially

k3.
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6.3.4 Relationship with [18F]FDG kinetic parameters

After relating the ts-MC and ss-MC results to one another, we tried to assess the

level of similarity between summary measures derived from these networks and

the [18F]FDG kinetic parameters, which are more directly interpretable from a

physiological standpoint. In particular, the regional values of the EC graph met-

ric of all ts-MC and ss-MC matrices, which describe the level of ‘connectedness’

of a region in each MC network, were plotted against the across-subject mean

values of [18F]FDG SUV R, Ki, K1, k3 (Figure 6.9).

While the EC of ss-MC matrices (Figure 6.9B) have overall weak relationships

with [18F]FDG parameters, typically with a negative sign, the EC of ts-MC ma-

trices (Figure 6.9A) have positive relationships with the parameters, which are

highly nonlinear especially for the full TAC, late part, and C2 vs. SUV R (well

described by a quadratic fit, as reported in Figure 6.9A).

6.3.5 Relationship with structural and functional

connectivity

Finally, we assessed the similarity between the ts-MC and ss-MC networks and a)

a SC template (Yeh et al. 2018), b) the group-average FC from the same subjects,

to understand if underlying a) structural or b) fMRI functional connections might
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relate to the identified metabolic relationships.

When looking at SC (Figure 6.10A), the Dice similarity values are higher for

ts-MC matrices, especially for the early part of the TAC (DSC = 0.47), C1 (DSC

= 0.39) and C2 (DSC = 0.39). Amongst the ss-MC matrices, k3 has the highest

similarity (DSC = 0.37), while SUV R the lowest (DSC = 0.27). In the case of

the Schaefer atlas, the ts-MC vs. ss-MC difference is instead not present (DSC

values ranging from 0.24 to 0.3).

Notably, when we look at the match with FC, the ts-MC matrices have even

higher similarity (early TAC: DSC = 0.63, C1: DSC = 0.54, C2: DSC = 0.55),

while ss-MC maintain lower values (k3: DSC = 0.39, SUV R: DSC = 0.24) (Figure

6.10B). Importantly, this result on the Hammers atlas is reproduced also with the

Schaefer atlas (full TAC: DSC = 0.44; early TAC: DSC = 0.38, C1: DSC = 0.42,

C2: DSC = 0.40; SUV R: DSC = 0.35; k3: DSC = 0.33).
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6.4 Discussion

In this chapter, we have reassessed the concept of ‘MC’ from a PET kinetic mod-

elling perspective, trying to capitalize on the multifaceted information provided

by dynamic [18F]FDG data.
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Figure 6.10: Stem plot of the Dice Similarity values between the group-average ts-MC (red) and
ss-MC (blue) binarized matrices (80th percentile) and the SC template (A) and group-
average FC matrix (B), for the Hammers atlas.

6.4.1 A new approach for single-subject MC estimation

from dynamic PET data

The first issue we wanted to tackle was to select a feasible approach to esti-

mate single-subject MC from PET time series (i.e., ts-MC). The methods used

in the fMRI literature to assess single-subject FC conventionally rely on corre-

lation/covariance, i.e., variance-based methods, designed to identify signals that

vary together over time (Smith, Miller, et al. 2011). These approaches, directly

borrowed from fMRI, are used in the small amount of works which estimate

single-subject MC from dynamic PET (Amend et al. 2019; Ionescu et al. 2021;

Jamadar et al. 2021). However, variance-based methods tend to perform poorly

on dynamic PET data (Figure 6.2), where signal fluctuations are likely to be

related to noise without relevant physiological value, while the positive trend in

the signal and its amplitude, which are used for kinetic modelling, are clearly

more biologically informative (R. E. Carson 2000; Alessandra Bertoldo, Rizzo,

and Veronese 2014).

On the other hand, Euclidean similarity, i.e., our method of choice for ts-MC

calculation, identifies signals that are close to one another in a Euclidean sense.

Notably, when used on dynamic PET data at the voxel level (both in chapter 5

and 6 as pre-steps to VB estimation), Euclidean distance/similarity has already

proven to be effective at identifying biologically meaningful clusters (Liptrot et al.

2004). Here, we have repurposed it from a hard cluster assignment to a continu-

ous space, in order to highlight pharmacokinetic similarities across brain regions,
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producing matrices with 1) a block-diagonal structure on the main diagonal and

2) secondary diagonals for homotopic connections, which are considered the hall-

marks of brain connectivity (Betzel 2022).

Importantly, the BSV of the MC matrices estimated via ES is remarkably low,

which highlights the robustness of the chosen approach and its potential for ap-

plication as a biomarker.

Another relevant advancement in the presented ts-MC matrices was the emphasis

on the different kinds of physiological information that dynamic PET data can

provide: in particular, the early TAC and the time course of C1 are more related

to inflow and blood-to-tissue exchanges, while the late TAC and C2 are more

associated with metabolic exchanges. This was aimed to overcome the limita-

tion of ts-MC approaches based solely on the raw tissue TAC, which combines

the tracer’s specific binding with non-specific binding and delivery information

(Veronese et al. 2019). Overall we find good overlap between the late tissue TAC

and C2, i.e., concentration of phosphorylated [18F]FDG, while the C1 ts-MC is the

least similar to the other approaches, implying that full compartmental modelling

might still provide additional information for single-subject MC calculation with

respect to simpler tissue TAC analysis.

6.4.2 The many faces of subject series MC: SUV R vs.

kinetic model parameters

An additional aim was to use kinetic modelling to provide a new look on subject

series MC, which has always been based on SUV R, i.e., the easiest parameter to

obtain from a single static scan (Yakushev, Drzezga, and Habeck 2017; Veronese

et al. 2019): as we have shown, there are relevant differences in the estimated

matrices when the chosen [18F]FDG parameter is not SUV R, but Ki, K1 and

especially k3, which produces a remarkably unique ss-MC matrix.

Notably, in the case of other PET tracers, kinetic model parameters (e.g., VT ,

BPND) have already been employed to assess ss-MC (Veronese et al. 2019; Fang

et al. 2021) but this has never been tried before with [18F]FDG. While SUV R

and Ki are typically considered to be the most important [18F]FDG parameters

to summarize [18F]FDG metabolism, there is evidence that the long-forgotten

microparameters (e.g., K1 and k3) might bear additional meaning, both in phys-

iology (Heiss et al. 1984) and in pathology (Piert et al. 1996; Sari et al. 2022), as

we have thoroughly discussed in chapter 5.
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6.4.3 Time series and subject series MC information

are not redundant

A crucial point was the evaluation of how similar the two MC frameworks (ts-

MC and ss-MC) are to one another. Since the ss-MC approach, with the SUV R

parameter in particular, is the most frequently employed in the literature, it is

highly relevant to confirm whether the across-subject estimates also reflect the

single-subject information.

When we assess the match between across-subject (ss-MC) and within-subject

(ts-MC) matrices, some weak-to-moderate correlations are found, especially with

K1 and k3 MC, which is consistent with the microparameters being more sensitive

to the physiological processes probed by ts-MC. The correlation with SUV R MC

is instead very low.

Moreover, when we move to identifying the putative ‘hubs’ of the MC networks,

again we find different distributions for ts-MC and ss-MC: while ts-MC hubs are

more concentrated in frontotemporal areas, the ss-MC hubs are temporal and

limbic for SUV R, Ki and K1.

Notably, ts-MC hubs identified with fPET (albeit obtained via correlation be-

tween PET signal fluctuations) were also located in frontotemporal regions (Ja-

madar et al. 2021). Notably, again SUV R hubs do not match at all with the

structure of ts-MC matrices.

Additionally, when relating the EC graph metric of MC matrices to the mean

values of the [18F]FDG parameters across regions, we find a positive correlation

for ts-MC, while ss-MC matrices have negative correlations.

When we look at the scatter plots of the ts-MC EC vs. [18F]FDG parameters

(especially SUV R, Ki and K1), we find a nonlinear, non-monotonic relationship

which seems to imply that the regions whose TACs are similar to the rest of the

brain signals also have average glucose metabolism and transport, while nodes

with tissue TACs that are very dissimilar from the rest (and thus have low EC)

have very high or very low metabolism.

While further investigation is necessary to understand if there is a viable physio-

logical interpretation to this unusual pattern, what is clearer is that ss-MC graph

measures have no interesting relationship with the original [18F]FDG parameters.

In summary, as already shown with fPET (Jamadar et al. 2021), across-subject

approaches do not seem to be well representative of single-subject MC.
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6.4.4 Matching metabolic networks to structural and

functional connectomes

As a final step, we provided a ‘validation’ of our MC connectomes by comparing

them to other typical measures of brain connectivity, i.e., SC and FC.

While it is clear that, at least at a global level, there is not a high overlap between

MC and SC, we found a higher match for ts-MC (especially C1 and C2), at least

for the Hammers atlas. Among the ss-MC matrices, the highest overlap was with

k3, while SUV R MC, which is the most frequently reported in the literature, and

has already been related to SC (Yakushev, Ripp, et al. 2022), is actually the one

with the lowest similarity with the underlying structural network. This seems to

additionally cast doubt on the widespread use of this index of MC. The reasons

of the different readout given by the Hammers vs. Schaefer parcellation will be

thoroughly investigated, possibly using different SC templates.

Importantly, the match with FC is higher for ts-MC, both in the Hammers and

Schaefer atlases, and, notably, higher than the ts-MC vs. ss-MC match itself

(Table 6.1). This echoes previous findings for both bolus and fPET protocols in

rodents (Amend et al. 2019), as well as fPET results in humans (Jamadar et al.

2021). While this will require further investigation of the FC-MC coupling at a

finer scale (e.g., region by region, network by network), our findings suggest the

individual-level MC captures more of the functional network information than its

across-subject counterpart.

As anticipated, the match between metabolism, as described by [18F]FDG PET,

and fMRI large-scale FC, which seems to be somewhat limited when considering

only local metabolic measures like SUV R (Tommaso Volpi, Erica Silvestri, Marco

Aiello, et al. 2021b) (chapter 4, 5), seems to become stronger when both [18F]FDG

and fMRI are brought to a ‘connectivity’ framework.

6.4.5 Limitations

This work is not without limitations.

With regard to absolute quantification of Sokoloff’s model parameters, and the

problems associated with the input function in this dataset, we refer to Chap-

ter 5.4.5. Moreover, one must remember that in the case of across-subject MC

estimates, it is not the absolute value of the parameters that is of interest (as

it would be for drug development or clinical studies), but their relative spatial

distribution across regions, which is likely to be preserved.
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Also, our approach does not solve the inherent problem of connectomic anal-

yses: while one can retrieve networks with plausible structure, their biological

underpinnings and physiological interpretation remain elusive. The attempts at

‘validation’ presented here (relating MC to SC/FC, and MC graph measures to

[18F]FDG parameters) provide only a partial understanding of the underlying

mechanisms. Further efforts aimed at validating these connectomes are highly

warranted, possibly using interventional approaches in animal models to better

elucidate causative links.

6.5 Conclusions

In this work, we provided a new distance-based approach to calculate single-

subject MC from dynamic PET data, and evaluated different portions of the

signal and the underlying compartment kinetics, to build metabolic connec-

tomes related to the multiple aspects of the [18F]FDG tracer physiology (inflow

vs. metabolism). The same idea was applied to across-subject covariation of

[18F]FDG parameters, building four different ss-MC matrices.

We thoroughly assessed the relationships between ts-MC and ss-MC at multiple

levels, i.e., in terms of matrix and hub similarity, and match with [18F]FDG pa-

rameters and FC and SC matrices. We found the two MC frameworks (ts-MC

and ss-MC) to provide different and somewhat complementary information, with

ts-MC having higher match with FC networks from the same individuals.

In the future, we will attempt to further explore the promising match with fMRI

functional networks, as well as apply ts-MC approaches to clinical populations to

verify if they can provide useful biomarkers.

Part of this work has been published as (Tommaso Volpi, Erica Silvestri, Cor-

betta, et al. 2021; Tommaso Volpi, Erica Silvestri, Hammers, et al. 2021; Volpi,

De Francisci, et al. 2022; Tommaso Volpi, Vallini, et al. 2022).



Chapter 7

Conclusions

The remarkable metabolic budget spent at rest by the human brain, famously

called ‘the brain’s dark energy ’, was an intriguing discovery which motivated our

work trying to integrate resting-state measurements of glucose metabolism, as as-

sessed by [18F]FDG PET, with fMRI imaging of the brain’s spontaneous activity

fluctuations.

Acquisition of [18F]FDG dynamic PET data, combined with appropriate mathe-

matical modelling, can provide physiologically informative parameters describing

the initial steps of glucose metabolism, from simpler indices like SUV R to the

more refined microparameters K1 and k3. Additionally, estimates of ‘metabolic

connectivity’ can be obtained from [18F]FDG PET studies, typically as a group-

level measure only.

On the other hand, rs-fMRI studies have painted a rich characterization of brain’s

functional architecture during rest, but the interpretation of these results has been

made difficult but a lack of full understanding of their physiological and metabolic

underpinnings.

Starting from these premises, we have explored the coupling between [18F]FDG

PET- and BOLD fMRI-derived parameters under multiple frameworks:

• first, we assessed the spatial coupling between SUV R and a range of both

local and large-scale fMRI variables, trying to increase the amount of SUV R

explained variance with a multivariable combination of fMRI features;

• secondly, we extended our exploration to [18F]FDG microparameters, to

achieve a richer physiological description of glucose consumption in relation

to BOLD, while also considering the role of additional metabolic informa-

tion from CBF and CMRO2;

145
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• finally, we brought [18F]FDG PET from a local activity to a large-scale

connectivity scenario, working on a method to estimate single-subject MC

to directly compare it with fMRI FC.

A brief summary of the results we obtained in these chapters is reported.

• In Chapter 4, we used a new integration framework between SUV R and

fMRI-based variables, with feature selection at group level, and multilevel

modelling at individual level. We found an overall moderate spatial cou-

pling using a combination of 9 fMRI predictors, in particular local fMRI

variables (e.g., ReHo), but with significant between-subject and between-

network differences.

• in Chapter 5, besides assessing the reproducibility of the SUV R vs. fMRI

model on a new dataset, we described the spatial distribution of [18F]FDG

delivery and phosphorylation for the first time at this level of spatial res-

olution. While the overall metabolic rate Ki is nicely explained by the

combination of fMRI (again, ReHo) and CBF or CMRO2 information

(around 50% of the individual-level variance), the delivery and phosphory-

lation rates are more difficult to describe: K1 is found to be mainly related

to CMRO2, and k3 to ReHo.

• in Chapter 6, we explored the ‘connectivity’ framework on [18F]FDG, with

the hope to ameliorate its match with the large-scale fMRI FC information

which was shown to have a somewhat weaker coupling with SUV R and

kinetic parameters. In this work, we devised a new method to estimate

single-subject MC from dynamic PET time series, using not only the raw

signal but also model-based kinetics of tissue compartments, effectively sep-

arating delivery from metabolic information in the PET signal and in the

resulting MC matrices. We then compared time series MC with conven-

tional across-subject correlations of SUV R, but also Ki and microparam-

eters. We found a limited match between individual-level and group-level

MC, and the single-subject approach was shown to have a higher similarity

with fMRI FC, as we had hypothesized.

Overall, these results confirm the strong spatial association between regional glu-

cose metabolism and local coherence of the BOLD signal, with the additional

comfort given by findings on the direct measure of tracer phosphorylation (k3),

which we have provided for the first time. ReHo is thus a promising feature to
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be explored even further as a simple, non-invasive and fast readout of metabolic

processes. Nonetheless, the marked between-subject variability in the associa-

tion, already highlighted in the literature with different approaches, continues to

underline how the two modalities are complementary rather than substitutive,

and how [18F]FDG PET still provides additional, non-trivial information.

Moreover, we believe voxel-wise [18F]FDG microparameter estimates, the applica-

tion of which has so far been limited due to lack of appropriate methods for input

function extraction and voxel-level parameter identification, could provide im-

portant insights into healthy function and pathological mechanisms, and the new

technological advances in PET imaging, such as total-body and brain-dedicated

PET scanners with superior sensitivity and spatial resolution, are going to allow

to finally exploit this unexplored potential.

With regard to the research on ‘metabolic connectivity’, we have provided a rigor-

ous framework based on PET kinetic modelling and used it to obtain physiology-

based MC networks, separating tracer delivery from metabolic events. Poten-

tially, this approach can be applied to any PET tracer, allowing to obtain single-

subject connectomes of receptor density, enzyme activity, synaptic density, and

so on. Also, using Euclidean distance, we have chosen a metric that allows to

obtain PET connectivity matrices without any brute-force signal normalization,

even with a limited number of time points; with the high temporal resolution

of new PET scanners, it will be interesting to reassess whether a variance-based

approach like correlation can provide more valuable results. Overall, the match

found with FC seems very promising, and requires further exploration.

On a final note, the story of the studies on the interactions between brain

metabolism (CMRglc, CMRO2), blood flow (CBF ), and neuronal activity, and

how these physiological variables are captured by [18F]FDG PET and BOLD

fMRI, has been long and complex, and it has not reached a satisfying conclusion

yet. With our comprehensive assessment of the many features that can be ex-

tracted from the two imaging modalities, working both at a local and large-scale

network level, we believe we have opened up new perspectives and provided useful

tools to reach a better understanding of this problem.
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Chapter 8

Appendix: other activities

In this section, we briefly present three additional projects that were carried out

during the PhD.

8.1 Image-derived input functions in brain

[18F]FDG PET studies: comparing three

extraction sites

The aim of this work was to develop an innovative automatic pipeline to extract

IDIF from three vascular sites, i.e., internal carotids (syphon portion), as is typ-

ical in the literature, and two alternative sites, i.e., common carotids, available

thanks to the large axial FOV of the Siemens Biograph hybrid PET/MR scanner,

and the superior sagittal sinus (a venous site).

The three IDIFs were extracted from a large dataset of 39 glioma patients under-

going dynamic [18F]FDG PET acquisitions on a hybrid PET/MR scanner. The

extracted IDIFs were compared in terms of their between-subject variability, peak

and tail amplitude, and impact on quantification of Ki. The common carotid,

which is easy to segment and surrounded by low-activity tissue, is found to have

less spillover and lower between-subject variability, and is a promising vascular

extraction site for IDIF in new, larger FOV PET scanners.

This work was presented as an Oral Presentation at IEEE EMBC 2022 (https:

//embc.embs.org/2022/), and published as (Erica Silvestri et al. 2022).
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8.2 Predicting venous [18F]FDG plasma

samples for IDIF calibration with

Nonlinear Mixed-Effects Modelling

Venous plasma samples are used for IDIF calibration and spillover correction in

[18F]FDG PET studies. These are, however, not always available, and, when they

are, they may be noisy and sparse measurements.

Analyzing a large dataset of venous samples from 54 healthy individuals, we

applied nonlinear mixed-effects modeling (NLMEM) to obtain robust estimates

in the presence of sparse sampling and, most importantly, to relate the BSV of the

model parameters to participant-specific covariates (e.g., age, sex, weight etc.),

allowing to predict missing venous data at the individual level, with the aim of

avoiding blood sampling altogether.

With this NLMEM approach, we show that the variability in the amplitude of

venous plasma [18F]FDG concentration is explained mainly by sex and body

surface area, allowing us to predict venous plasma data in healthy subjects with

good reliability.

This work was presented as an Oral Presentation at IEEE EMBC 2022 ((https:

//embc.embs.org/2022/), chosen as finalist for the Student Paper Competition,

and published as (Tommaso Volpi, J. J. Lee, et al. 2022).

8.3 The role of neuroreceptor systems in

explaining regional glucose utilization:

evidence from brain PET studies

Research is increasing on the complex organization of neurotransmitter systems

across brain regions, as well as their relationship with other structural and func-

tional properties of the brain.

In this work, we have related [18F]FDG metabolic rates, i.e., SUV R, Ki, K1, k3,

to a range of PET templates covering 8 different neurotransmitter systems, to

understand how macroscale neurotransmitter organization relates to regional vari-

ability in glucose metabolism. We explored this relationship using bivariate and

multivariate approaches to understand which pattern of receptor systems could

explain a significant amount of variance of [18F]FDG parameters. While gluta-
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mate receptors (NMDAR, mGluR5) emerge as relevant predictors of tracer deliv-

ery (K1), the metabolic rates (Ki, k3) are more tightly coupled with cannabinoid

receptors (CB1) and, negatively, with the inhibitory 5HT1A serotonin receptor.

Further exploration is required to overcome issues related mainly to PET tem-

plates with different image quality and kinetic parameters (SUV R, VT , BPND).

This work was presented as an Oral Presentation at Brain and Brain PET 2022

(https://brain2022.scot), and published in (Volpi, Silvestri, J. Lee, et al.

2022).
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