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Abstract

Adverse events associated with drugs are one of the leading causes of morbidity

and mortality in the world, and statistics has always been an essential tool to con-

trast them. In this thesis, we focus on the set of statistical models and techniques

used in pharmacovigilance, i.e. the detection of adverse e↵ects of drugs after they

have been approved and placed on the market. The first part of this thesis will

describe the process that results in the approval of a drug by pharmacovigilance

authorities. Next, the typical pharmacovigilance data collection system, based on

the spontaneous report of adverse drug events, will be illustrated. The statistical

models used mainly in the analysis of spontaneous data (known as disproportion-

ality models) in the literature will then be reviewed and commented on. In the

second part of the thesis, a new model for pharmacovigilance data will be proposed.

This model, based on a lasso-penalized regression, is designed to analyze pharma-

covigilance data and find new associations between drugs and adverse drug events,

including drug-drug interactions, that may cause adverse events themselves. The

model was tested on both simulated and real data. In the third part of the thesis,

a new approach to statistics applied to pharmacovigilance is discussed. We show

how the ability to find new associations between drugs and adverse events can

be increased by including information from the biochemical structure of drugs.

Specifically, techniques peculiar to natural language processing were used to map

a drug into an embedding space of latent variables that describes its biochemical

characteristics. The use of these latent variables, when properly combined with

spontaneous data, can be a turning point in pharmacovigilance procedures.





Sommario

Gli eventi avversi associati ai farmaci sono una delle principali cause di malat-

tia e decesso al mondo e la statistica è, da sempre, uno strumento essenziale per

contrastarli. Questa tesi si concentra sull’insieme di modelli e tecniche statistiche

usate in fase di farmacovigilanza, ovvero l’individuazione degli e↵etti avversi di

farmaci dopo che questi sono stati approvati e messi sul mercato. Nella prima

parte della tesi verrà descritto il processo che porta all’approvazione di un far-

maco da parte delle autorità di farmacovigilanza. Successivamente, si illustra il

sistema di raccolta dati tipico della farmacovigilanza, basato sulla raccolta spon-

tanea delle segnalazioni degli e↵etti collaterali di farmaci. Verranno quindi passati

in rassegna e commentati i modelli statistici principalmente usati nell’analisi dei

dati spontanei (noti come modelli di disproporzionalità) presenti in letteratura.

Nella seconda parte della tesi verrà proposto un nuovo modello per l’analisi dei

dati di farmacovigilanza. Questo modello, basato su una regressione con penaliz-

zazione lasso, è stato pensato per analizzare i dati di farmacovigilanza e trovare

nuove associazione fra farmaci ed e↵etti avversi, includendo anche le interazioni

fra i farmaci, che possono a loro volta provocare degli e↵etti avversi. Il modello

è stato testato sia su dati simulati che su dati reali. Nella terza parte della tesi

si discute di un nuovo approccio alla statistica applicata alla farmacovigilanza. Si

mostra come la capacità di trovare nuove associazione fra farmaci ed eventi avver-

si può essere incrementata includendo le informazioni provenienti dalla struttura

biochimica dei farmaci. In particolare, sono state usate tecniche proprie del natu-

ral langue processing per proiettare un farmaco in uno spazio di variabili latenti

che ne descrive le caratteristiche biochimiche. L’utilizzo di queste variabili latenti,

se debitamente a�ancato ai dati spontanei, può essere un punto di svolta nelle

procedure di farmacovigilanza.
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Introduction

Overview

For their very nature, drugs not only provide benefits, but also cause harm. An

adverse drug event (ADE) is defined as (Edwards and Aronson, 2000):

“An appreciably harmful or unpleasant reaction, resulting from an in-

tervention related to the use of a medicinal product, which predicts

hazard from future administration and warrants prevention or specific

treatment, or alteration of the dosage regimen, or withdrawal of the

product.”

Most of these events are discovered during the long phases of drug development and

are therefore already known by the time a drug is launched on the market. Other

events, on the other hand, are only noticed in the post-marketing phase, making

them a major source of morbidity and even mortality worldwide, sometimes even

causing a drug to be withdrawn from the market – some notable cases are described

in McBride (1961); Charatan (2001); Qureshi et al. (2011). This claim is widely

established in the literature and has been the subject of many studies for several

decades (Bates et al., 1995; Ross, 2001; Shojania et al., 2002; Nebeker et al., 2004).

Statistical analysis plays a crucial role in helping to discover new associations

between drugs and ADEs by analyzing spontaneous data collected during the

post-marketing phase. Spontaneous data have the peculiarity of having only cases

and not controls, so unique statistical models that simulate the presence of a

denominator have to be used. For more than two decades, pharmacovigilance

authorities have used a variety of statistical techniques, known as disproportionality

models, to systematically scan drug safety data.

For this purpose, basic statistical methods such as reporting odds ratio and pro-

portional reporting ratio were deployed (Evans et al., 2001; Rothman et al., 2004).

3



4 Overview

These methods are extremely simple and fast to evaluate the association between

a drug and an ADE as they require only a few calculations. Furthermore, their

result is always interpretable from an epidemiological point of view. On the other

hand, basic methods such as the reporting odds ratio are inconvenient if they have

to be used to scan a very large database, such as spontaneous pharmacovigilance

databases. Indeed, this would require the construction of a number of frequency

tables equal to the number of drug-ADE pairs, which is often extremely high.

Hence, some other models (mostly Bayesian) have been introduced with the

aim of analyzing spontaneous large-scale pharmacovigilance data. The best known

model is gamma-Poisson shrinkage model, introduced by DuMouchel in the late

1990s (DuMouchel, 1999) and then later developed with several extensions (Du-

Mouchel and Pregibon, 2001; Fram et al., 2003). Another important model, with

a shrinkage mechanism similar to the previous model, is the Bayesian confidence

propagation neural network (Bate et al., 1998; Norén et al., 2006).

The advantages of Bayesian disproportionality models over classical dispropor-

tionality models are many. For example, they use a prior distribution to introduce

a useful shrinkage to correct the estimated association between a drug and an

ADE; they can be modified to account for drug-drug interaction (Szarfman et al.,

2002); they can adjust the estimates to control for demographic variables (Du-

Mouchel and Harpaz, 2012) and they are faster at scanning an entire database.

However, they are computationally more intensive: the implementation of these

methods requires many more calculations than the reporting odds ratio or the pro-

portional reporting ratio. In addition, their outcome is not easily interpreted due

to shrinkage. The measures they produce are not exactly interpretable as known

epidemiological measures, as is the case with classical methods (e.g. the reporting

odds ratio can be interpreted as a classical odds ratio).

Finally, with the predominance of machine learning and deep learning in every

area of data analysis, many uses of this class of models have been observed in

recent years. For example, tree models, such as random forest and boosting, are

discussed in Pham et al. (2019) and lasso and class-imbalanced subsampling lasso

are successfully deployed by Ahmed et al. (2016). Some authors have recently

presented tools that combine disproportionality models (especially the gamma-

Poisson shrinkage model) with statistical techniques from other fields, such as

the Synthetic Minority Oversampling Technique (SMOTE) correction or the E-M

algorithm (Xiao et al., 2018; Wei et al., 2020).
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The study of statistical models for disproportionality analysis aims at iden-

tifying new associations between drugs and ADEs more accurately. Therefore,

contributions on this topic are valuable because they can help pharmacovigilance

authorities, research institutes, pharmaceutical companies, or other stakeholders

better identify new associations between drugs and adverse reactions. In this

thesis, we present some contributions in the area of statistics applied to pharma-

covigilance.

Main contributions of the thesis

A drug safety signal is defined as an association between a drug and an adverse

drug event found using disproportionality analysis. The task of disproportionality

models is the reporting (signaling) of new drug-ADE associations to pharmacovig-

ilance authorities, which might proceed to verify the association using other data.

The signals coming from drug-drug interactions are also important, but at the

same time are more di�cult to detect using the models mentioned above, for this

reason there are fewer models dedicated to interactions detection in the literature.

The original contribution of this thesis is an attempt to improve the way signals

are generated, without neglecting the presence of interactions and through the use

of alternative data sources.

First, we introduce a new model for the identification of drug safety signals.

Specifically, we identify drug-ADE pairs and drug-drug interaction pairs using a

lasso regression, which uses the Bayesian Information Criterion (BIC) for variable

selection. Next, we extend the model for the selection of variable interactions to

capture ADEs associated with a drug-drug interaction.

To assess the performance of the model, we use a simulation study. Then, the

method is tested on real data from the FDA Adverse Event Reporting System

database, the database of spontaneous reports managed by the U.S. pharmacovig-

ilance authority Food and Drug Administration (FDA). We compare the results

with a state-of-the-art Bayesian disproportionality model as a benchmark, and we

find that our results are competitive, although we noticed several di�culties in

establishing the accuracy of disproportionality models because of the lack of gold

standards in this field.

We notice that the proposed model, like many other disproportionality mod-

els, does not show outstanding performance. Indeed, as recently shown in some



6 Main contributions of the thesis

comparative studies on one of the very few gold standards available, very complex

disproportionality models do not exceed simpler ones in accuracy and precision

(Pham et al., 2019). Similarly, more sophisticated machine learning models often

have lower performance than simple reporting odds ratios. The reason for these

results is due to many biases induced by the poor quality of the spontaneous data

on drug safety.

To overcome the di�culties imposed by spontaneous data as the sole data

source, we introduce a new technique to predict the presence of adverse drug

events. Typically, surveillance is based on the disproportionality analysis of spon-

taneous reporting system databases, but their voluntary nature causes multiple

biases that induce a limited predictive performance of statistical models. Alterna-

tive data sources can help overcome this limitation.

We used data on the biochemical structure of the drugs alongside spontaneous

pharmacovigilance data to obtain a better overall performance. To represent the

chemical structure of the drug’s active ingredients, we used MACCS vectors and

SMILES strings. The Molecular Access System (MACCS) is a 166-bit mathemat-

ical representation of a chemical compound, obtained with only binary features.

The Simplified Molecular Input Line Entry System (SMILES) is a textual rep-

resentation of a chemical compound, obtained by an algorithm that translates a

two-dimensional graph (the structure of the molecule) into plain text.

We used MACCS vectors as a set of latent binary features to predict the pres-

ence of a latent adverse event. We used SMILES strings to derive an embedding

space using a model similar to the Bidirectional Encoder Representations from

Transformers (BERT), known as ChemBERTa. We compared the predictive power

of these two sets of latent features and found that the ChemBERTa embedding

space provides higher performance. Then we combined the features obtained from

the embedding space with data from the FAERS spontaneous database to predict

the presence of an adverse event with a performance equal to or better than the

usual disproportionality models. Since statistical models used in disproportional-

ity analysis are limited by the spontaneous nature of the data, we can conclude

that the use of an endogenous data source reduces the bias and leads to better

results.

The thesis is concluded with a discussion of the results obtained. As innova-

tive as our results are, much remains to be done to improve the performance of

statistical models used in pharmacovigilance, both from the perspective of data
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sources and modeling. Therefore, many future developments may bring interest-

ing contributions to this field, which remains of paramount importance to public

health.





Chapter 1

Disproportionality analysis: the

role of statistics in drug safety

1.1 The drug development process

From the conception of a drug, every stage of its development is focused on safety.

In this chapter, we provide a general introduction to the drug safety procedure

through each of its phases, with special attention to the post-marketing phase.

As stated by the U.S. Food and Drug Administration (FDA) and the Euro-

pean Medicines Agency (EMA), the classical drug development process consists

of several steps:

1. Drug discovery. The potential number of possible biochemical compounds

that could be used as a drug is extremely large. Today, very sophisticated

techniques are used to filter out possible compounds and focus on those that

are really promising, including models of machine learning, deep learning,

and natural language processing (NLP) models (Chen et al., 2018).

2. Preclinical research step. Once a promising compound is found, several

experiments are conducted in a laboratory environment to assess its mech-

anisms of action, benefits, toxicity, and interaction with other compounds.

During the preclinical phase, many studies are conducted both in vitro (con-

trolled environment) and in vivo (animal testing).

3. Clinical research step. The crucial step in the development of any drug is

clinical research and consists of a series of trials carried out by administering

9



10 Section 1.1 - The drug development process

the potential drug to people. Typically, clinical research is divided into three

phases; these di↵er in sample size and study duration.

(a) Phase I. The potential drug is tested on healthy volunteers1, with a

sample size typically smaller than 80 and a study duration of some

months. The main goal of phase I studies is to collect data on the

interactions of the potential drug with the human body. Preclinical in

vivo data is used to assess the best dosage and the trade-o↵ between

beneficial e↵ects and side e↵ects. The first adverse drug events, espe-

cially the more serious ones, are usually noticed in this phase. Special

attention is paid to how the potential drug is absorbed, metabolized,

and disposed of by the body. The FDA estimates that ⇠ 70% potential

drugs can move on to the next stage (FDA, 2018a).

(b) Phase II. The potential drug is tested on patients with the target dis-

ease, with a sample size typically on the order of hundreds and a study

duration that can range from a few months up to two years. The

dosage is the one recommended during therapy and is based on dara

from phase I and preclinical stage. In some cases, a control group is

involved, with placebo or standard treatment administration. Similarly

to phase I, phase II is also aimed at drug safety; the sample size is not

large enough to demonstrate whether the drug is e↵ective, but many

adverse events are noticed compared to the previous phase. The FDA

estimates that around ⇠ 33% potential drugs can move on to the next

stage.

(c) Phase III. The last phase is the core of the clinical research step. The

clinical dosage of the potential drug is tested in several thousands of

patients with the target disease in the presence of a control group. The

study duration is usually one to four years, but it can be even longer.

A larger sample size allows for di↵erent subpopulations; therefore, sta-

tistical analyses can be more complex and allow for the evaluation of

unexplored aspects of both the risks and benefits of the potential drug.

Most of the drug safety data are provided by phase III studies. The

1With the exception of cancer drugs, which are always tested on patients, given their serious
side e↵ects.
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FDA estimates that approximately 25% - 30% potential drugs will suc-

cessfully complete phase III.

The phases of clinical research described above are considered standard pro-

cedures by pharmacovigilance authorities. However, nowadays, with the

advancement of precision medicine and the use of increasingly developed

biomarkers, many clinical trials can follow alternative procedures – some

well-known examples being basket and umbrella trials, typically used in on-

cology (Park et al., 2020).

4. Agency approval and post-marketing surveillance. Once enough data

have been collected from the clinical research phases and the safety and e�-

cacy of the drug have been proven, the company that developed the potential

drug can submit an approval to market it from the competent pharmacovig-

ilance authority.

(a) Review. The pharmacovigilance authority starts a detailed review of

the whole process. A panel of experts is assembled to evaluate both the

e�cacy and safety of the potential drug using all available data. Since

most drugs have known adverse reactions from the clinical phases, the

panel must consider the trade-o↵ between positive and negative e↵ects.

If this trade-o↵ is considered beneficial, the drug can be commercialized.

The review process can be expedited in di↵erent ways. For example,

the FDA provides a fast track for breakthrough therapies or drugs that

fulfill an unmet medical need. A comprehensive description of FDA

accelerated approvals is available on the agency’s website (FDA, 2018b).

(b) Post-marketing surveillance. Although clinical research provides many

safety data, once a drug is on the market, more adverse drug reactions

previously ignored can be observed. This phenomenon is due to the fact

that the drug is administered in quantities that far exceed the sample

sizes of the clinical stages, so the probability of observing rare cases in-

creases considerably. In addition, the drug now acts in an uncontrolled

environment. Even though phase III studies collect data from a hetero-

geneous population, it is impossible to control the enormous number of

variables in the world outside the controlled context of a trial. For that

reason, pharmacovigilance authorities, such as the FDA and the EMA,
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constantly monitor drugs already available on the market so that they

are ready to recall them (temporarily or permanently) if a new adverse

reaction makes the trade-o↵ between positive and negative e↵ects no

longer beneficial. The post-marketing surveillance process is also known

as phase IV to emphasize its continuity with the clinical research phase.

The method used for this surveillance practice consists of two steps: the

collection of spontaneous data and their analysis with statistical dispropor-

tionality models. Both of these steps will be explored in more detail later in

this thesis.

Phase IV continuously monitors a drug after its approval; therefore, the avail-

ability of up-to-date safety data is of paramount importance.

1.2 The key role of spontaneous databases

The major pharmacovigilance authorities collect data needed for drug safety anal-

yses in large databases known as spontaneous databases. Each authority maintains

a di↵erent database, but this database does not necessarily collect only reports

from its territory, as it can also collect reports from di↵erent territories. For ex-

ample, the database maintained by the FDA, known as FAERS (FDA Adverse

Event Reporting System), contains data not only from the United States but also

from other states around the world.

Moreover, FAERS is the only large spontaneous database whose download is

totally public. Therefore, it is often used to develop and test new statistical

and data mining techniques on pharmacovigilance data. Data access of other

spontaneous databases (like the EMA database EudraVigilance) is granted only

under special conditions. For this reason, whenever reference is made to drug

safety data in this thesis, it means data from the FAERS database, unless otherwise

specified.

1.2.1 Relevance and issues of spontaneous data

Since their creation, spontaneous databases have been shown to be of great use

in pharmacovigilance (Lu, 2009). However, they have very special characteristics

that make their analysis particularly complex and unusual (Zorych et al., 2013).
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As the name suggests, spontaneous databases have a spontaneous data collection

mechanism: anyone can submit an adverse drug reaction report. Most records are

submitted by physicians or patients, but no one is required to report an adverse

drug reaction2; spontaneity itself is the main cause of the problems of drug safety

data collection. Some problems will be explored in more detail in the following

sections.

1.2.1.1 Absence of control data

The most immediate consequence of spontaneous data collection is the absence of

control data; only data on the drug taken and the symptoms that have occurred

since its administration are collected. For example, there are no data on patients

who did not experience a certain symptom after receiving a drug or data on pa-

tients who did not receive the drug and experience the symptom. This implies

that it is impossible to use the many statistical methods for case-control studies

or to calculate the classical epidemiological measures of occurrence (e.g., preva-

lence, incidence) and association (e.g., risk ratio, odds ratio). Ad hoc models,

called disproportionality models, must be used as an alternative.

1.2.1.2 Underrepresentation, Weber e↵ect and notoriety bias

Only a small fraction of ADEs is collected in spontaneous databases, which su↵er

from a constant underrepresentation of the cases count. In addition, after a drug

is released on the market, there is increasing concern about possible ADEs, which

are reported more frequently. However, after the drug has been on the market for

a certain period of time, concern about side e↵ects wanes, leading to even greater

underrepresentation.

This phenomenon is also known as the Weber e↵ect, first highlighted by Weber

(1984) and then further explored on spontaneous data by other authors. The

Weber e↵ect is a cycle that a↵ects almost all drugs, which see a rapid increase in

spontaneous reports for about the first year and a half to two years after marketing.

Subsequently, a decrease is observed, despite the fact that prescriptions for the

drug will continue to increase for a long time (Wallenstein and Fife, 2001; Hartnell

and Wilson, 2004).

2An exception is made for some pharmaceutical industries, which are required by the FDA
to report the ADEs of their products already on the market (FDA, 2022).
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In some cases, the number of spontaneous reports may undergo another sharp

increase induced by the sudden notoriety of a drug and/or its side e↵ect. This

notoriety can result from a new scientific discovery related to the drug or even

from a piece of news that raises awareness among patients and healthcare sta↵.

This second phenomenon is known as notoriety bias or publicity bias (Neha et al.,

2019).

Therefore, as some authors argue, the reliability of spontaneous data is high

only in the first four years after the drug is introduced to the market (Stephenson

and Hauben, 2007).

1.2.1.3 Other issues of spontaneous data

Spontaneity induces incompleteness of data: an inexperienced reporter (someone

who does not work in health care or someone who has never reported before)

can easily miss some details of their report, resulting in the presence of missing

values. For the same reason, some sources of records are considered more reliable

than others. Another problem already debated in the literature is the presence of

duplicate records, and drug-naming issues can also be observed, as manufacturers

may use di↵erent names for the same drug.

If missing data and duplicate records can be addressed with statistical tech-

niques (Banda et al., 2016), the drug-naming issue could be solved by using bio-

chemical data from the active ingredient of the drug.

1.2.1.4 Is it still worth using spontaneous databases?

Despite the multiple biases that a↵ect spontaneous databases, there is no alterna-

tive data source to completely replace them. However, these biases must be taken

into account, which is why increasingly sophisticated disproportionality models

have been developed over time; caution is needed throughout the process, always

remembering that any results obtained from these models will be a↵ected by the

problems of data spontaneity. So, as some authors propose, it is still worthwhile to

use spontaneous databases, but those who use them for research must always keep

in mind their limitations (Stephenson and Hauben, 2007). Although abandon-

ing spontaneous data is currently unthinkable, integrating them with data from

alternative sources could lead to a more precise identification of ADEs.
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1.2.2 The FDA Adverse Event Reporting System (FAERS)

In order to support the FDA post-marketing safety surveillance for pharmaceuti-

cals, a spontaneous database has been created. As stated by the FDA: “The FDA

Adverse Event Reporting System (FAERS) is a database that contains adverse

event reports, medication error reports and product quality complaints resulting

in adverse events that were submitted to FDA” (FDA, 2018c).

FAERS has collected FDA spontaneous reports since the fourth quarter of 2012,

replacing the previous AERS database. The database is updated quarterly and can

be freely consulted and downloaded; to date (December 2022), the total number

of available records slightly exceeds 18 million.

FAERS database consists of six di↵erent tables, each containing di↵erent infor-

mation.

1. Demographic Table with the data of the patient to whom the drug was

administered, such as age, sex, or country of residence.

2. Drug Table with drug data, such as its commercial name, the name of

the active principle, the dosage, the route of administration, or the batch

identification number.

3. Reaction Table with description of adverse drug reaction events. Adverse

events are encoded using MedDRA terminology, which details the type of

reaction (Brown, 2007).

4. Outcome Table with data on the outcome of the patient after ADE (e.g.

hospitalization, death. . . ).

5. Report sources Table with details on the ADE reporter.

6. Therapy Table with details on the therapy, if any, to which the drug ad-

ministered pertained.

These tables are connected by primary keys, as shown in Figure 1.1.

So far, the number of FAERS records has grown over time. In 2013 (the first

full year of data gathering), there were about 1.07 million registered cases. In

2022, the registered cases were about 2.33 million. Typically, the vast majority of

reporters are equally divided between drug consumers and healthcare profession-

als (Figure 1.2a). About two-thirds of the cases are permanently from the United

States, while the remaining third are from other countries (Figure 1.2b).



16 Section 1.2 - The key role of spontaneous databases

Figure 1.1: Relational structure of FAERS database.

a

b

Figure 1.2: a) Number of FAERS reports by type of reporter from 2013 to
2022, third quarter. b) Number of FAERS reports by reporter region (Domestic:
U.S. only, Foreign: rest of the world) from 2013 to 2022, third quarter.
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Since the amount of spontaneous data is growing, we need increasingly accurate

statistical models for its analysis. The next chapter is devoted to a review of the

most prominent disproportionality models in the field literature.

1.3 Review of statistical models for dispropor-

tionality analysis

1.3.1 Background and notation

The underlying idea of any statistical application in pharmacovigilance is that if

a drug and an ADE are observed together a disproportionate number of times,

then there could be an association between the two (which is why it is called

disproportionality analysis). Once an association is identified in a spontaneous

database, it is the responsibility of pharmacovigilance authorities to investigate

the association using other data such as, for example, data from previous clinical

trials.

Suppose that a spontaneous database has n rows corresponding to n ADE re-

ports. We can denote three sets of binary variables (or features): (Xi,1, Xi,2, . . . , Xi,p)

indicates whether the administration of a certain drug appears in the i-th report,

(Yi,1, Yi,2, . . . , Yi,q) indicates the presence in the i-th report of a certain ADE, and

(Zi,1, Zi,2, . . . , Zi,r) denotes a set of demographic information concerning the pa-

tient to whom the i-th report is referred (such as age or gender). Consequently,

the total data size will be (p+ q + r)n.

Given a drug Xk and an adverse drug event Yl, a naive approach to the problem

is to define a disproportionality when the probability of observing the adverse event

given the drug is greater than a fixed baseline value B. Therefore, when

Pr (Yl = 1|Xk = 1) =
Nk,l

Nk
� B (1.1)

with Nk =
Pn

i=1 Xi,k and Nk,l =
Pn

l=1 Xi,kYj,l. Since it is di�cult to consider

all drug-ADE pairs, an approach to speed up association mining would be to use

an association rule algorithm. The literature on association rules is highly devel-

oped, especially in other fields, such as basket analysis or text mining (Agrawal
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and Srikant, 1994). For example, the most famous algorithm for finding asso-

ciation rules (Apriori) can be used successfully in spontaneous pharmacosurveil-

lance databases. However, these methods are heavily influenced by the choice of

threshold B, which would be an arbitrary threshold that varies from time to time

depending on the drug being considered. Furthermore, some authors have made

criticisms regarding the di�culties of association rule algorithms in adjusting for

events with di↵erent frequencies (see, for example, Silverstein et al. (1998)).

As seen, it is di�cult to approach the problem as a simple search for association

rules. Thus, since the late 1990s, the literature has mainly developed around two

classes of models: basic disproportionality methods (which we also refer to as

frequentist models) and Bayesian models.

1.3.2 Basic methods

In a classic case-control study, the simplest way to assess an association between

dichotomous variables is to use a contingency table. From the contingency table,

many association measures can be calculated, such as the odds ratio or the relative

risk. Statistical tests can also be used, both with an approximate null distribution,

such as the �2 test, or with an exact distribution, such as Fisher’s exact test

(Ahmed et al., 2010). Since the main limitation of spontaneous drug safety data

is the absence of control data (patients who took drugs but had no adverse events,

or patients who had adverse drug events without taking drugs), the idea underlying

the basic methods is indeed to build some sort of surrogate to the controls.

A surrogate contingency table leverages the fact that spontaneous databases

are very large, and so a lot of di↵erent drugs and adverse drug events are recorded.

Given a drug Xk and an adverse drug event Yl, a table can be constructed using

reports from patients who did not receive the drug Xk and did not experience the

side e↵ect Yl (Table 1.1).

Table 1.1: Surrogate contingency table for drug Xk and adverse drug event
Yl.

Drug Xk Other drugs Total
ADE Yl n11 n10 n1.

Other ADEs n01 n00 n0.

Total n.1 n.0 n
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From this table, several measures of association can be calculated. The relative

risk and the odds ratio, commonly used in epidemiology, when calculated from

spontaneous data are referred to as proportional reporting ratio (PRR) and the

reporting odds ratio (ROR)

PRR =
n11/(n11 + n01)

n10/(n10 + n00)
(1.2)

ROR =
n11n00

n10n01
(1.3)

described, for example, in Evans et al. (2001) and Rothman et al. (2004).

The PRR is the ratio between the occurrence of Yl among all ADEs recorded

after the administration of Xk over recorting the event of another ADE after the

administration of any other drug. The ROR is the ratio between the ratio of the

count of Xk reported with Yl over the count of Xk reported with other ADEs

and the ratio of the count of other drugs reported with Yl over the count of other

drugs reported with other ADEs. Both indicators are greater than 1 if the drug

is associated with the adverse drug event. Although the two measures are very

similar (the odds ratio is asymptotically equivalent to the relative risk for small

probabilities), ROR is generally preferred in pharmacovigilance (Waller et al.,

2004). The interpretation of ROR and PRR is equivalent to their counterparts in

case-control studies. For example, if ROR = 2.53, then reports with Yl observed

after the administration of drug Xk occur 2.53 times more frequently than reports

with Yl observed after the administration of other drugs.

For both statistics, the confidence interval (CI) can be computed, useful to

identify which signals are significant; a signal is considered significant when the

lower bound of the interval is greater than 1. Since both PRR and ROR have

zero as the lower bound and no upper bound, their distribution is asymmetric

and the confidence interval is constructed using a Gaussian approximation of their

logarithm. For example, a confidence interval with level ↵ for the PRR statistics

is given by

CI(↵) = exp

⇢
log(PRR)± z↵/2

r
1

n11
+

1

n01
� 1

n11 + n10
� 1

n01 + n00

�
(1.4)
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and, similarly, with level ↵ for the ROR statistics is given by

CI(↵) = exp

⇢
log(ROR)± z↵/2

r
1

n11
+

1

n10
+

1

n01
+

1

n00

�
(1.5)

with z↵/2 quantile of the standard normal distribution.

PRR and ROR statistics can take into account demographic variables using a

Mantel-Haenszel approach. If we treat the demographic variables as confounders

variables and suppose that they generate S strata, we denote by ns the number

of observations in stratum s and by as = n11s , bs = n10s , cs = n01s , ds = n00s the

components of the surrogate contingency table restricted to the single stratum.

The adjusted ROR (aROR) is defined as

aROR =

PS
s=1

asds
nsPS

s=1
bscs
ns

(1.6)

and its confidence interval with level ↵ is defined as

CI(↵) = exp

8
<

:log(aROR)± z↵/2

vuut
PS

s=1
(as+bs)(cs+ds)(as+cs)(bs+ds)

n2
s(ns�1)PS

s=1
asbs
ns

PS
s=1

csds
ns

9
=

; . (1.7)

The derivation of the adjusted PRR and its confidence interval is similar.

The main advantages of PRR and ROR are their ease of implementation. To

measure the association between a drug and an adverse e↵ect, it is su�cient to

construct the surrogate contingency table and perform some simple calculations.

Moreover, their interpretation is straightforward. However, there are also several

drawbacks, mostly originating from the extreme unbalance of the surrogate con-

tingency table. It is easy to notice how their confidence intervals are subject to

the assumption of Gaussianity on the logarithm and the consequent need to have

the counts in the surrogate contingency matrix su�ciently large. Although it is

unlikely since the data size is usually large, if the frequencies are particularly low,

n10 or n01 can be zero and it would not be possible to calculate the statistics.

Finally, these methods can consider only a drug and an ADE at a time and are

di�cult to implement if we want to detect the association between the interac-

tion between two di↵erent drugs and an ADE. Nevertheless, PRR and ROR are

currently used for the analysis of spontaneous drug safety data (Ang et al., 2016;

Shan et al., 2020; Diaby et al., 2021).
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Once a surrogate contingency table for a drug and ADE is obtained, association

tests can also be performed. For example, �2 and Yule’s Q tests of independence

can be used for association mining purposes (Silverstein et al., 1998; van Pui-

jenbroek et al., 2002). In addition, a probabilistic approach can be used. The

probability of the number of records with a specific drug-ADE pair can be calcu-

lated as a mean of the Poisson probability - see, for example, Tubert et al. (1992),

but this approach requires the strong assumption that there is no relationship

between ADE and the drug.

Association tests still su↵er from the same disadvantages as association mea-

sures, first and foremost the challenge of including drug-drug interaction. Their

use in the literature is moderate compared to PRR and ROR, which are by far

the most widely used non-Bayesian methods in data analysis (Montastruc et al.,

2011).

1.3.3 Bayesian models

1.3.3.1 Gamma-Poisson Shrinkage model

One way to mitigate the extreme unbalance of the surrogate contingency table

is to place a prior distribution on the counts of the cells of the tables. For this

reason, the most widely used models for spontaneous drug safety data (besides

PRR and ROR) are Bayesian. A popular and intuitive Bayesian model is known

as the Gamma-Poisson Shrinkage (GPS) (DuMouchel, 1999).

Let Ni =
Pn

l=1 Xi,l be the random variable counting the number of total re-

ports with Xi, and let Ni,j =
Pn

l=1 Xi,lYj,l be the random variable counting the

number of times drug Xi has been recorded with ADE Yj. A basic association

measure between Xi and Yj is the spontaneous data equivalent to the SMR, or the

indirect standardized mortality rate, known in drug safety under the name relative

reporting rate (RR),

RRi,j = Ni,j/E (Ni,j) = Ni,j/Ei,j (1.8)

where Ei,j is the expected counts of reports with Xi and Yj observed together

and serves as baseline. If RRi,j � 1 an association between drug and ADE is

supported by the data. Under the null hypothesis of independence between Xi
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and Yj

Ei,j = Pr (Xi = 1)Pr (Yj = 1)n =
NiNj

n
. (1.9)

It is reasonable to assume the count of reports as Poisson distributed Ni,j ⇠
Pois(µi,j), with µi,j = �i,jEi,j. The parameter �i,j acts as a multiplicative factor

on Ei,j: if �i,j > 1 then RRi,j � 1.

On �i,j, a mixture of gamma distributions can be assumed as a prior distribu-

tion. The density function of the mixture is defined as

⇡ (�i,j;↵1, �1,↵2, �2, P ) = g (�i,j;↵1, �1)P + g (�i,j;↵2, �2) (1� P ) (1.10)

with ↵1, �1,↵2, �2 > 0, P 2 (0, 1) and g density of the gamma distribution. Since

the family of gamma distributions is conjugated with the Poisson distribution, the

posterior distribution is a mixture of gamma itself and the marginal distribution

of each Ni,j is a mixture of two negative binomial distributions with parameters

↵ and Ei,j/(� + Ei,j). The posterior distribution for �i,j can be derived as

⇡(�i,j|Ni,j = ni,j) = g (�i,j;↵1 + ni,j, �1 + Ei,j)Qn

+ g (�i,j;↵2 + ni,j, �2 + Ei,j) (1�Qn) (1.11)

with Qn posterior probability of �i,j coming from the first component of the mix-

ture given Ni,j = ni,j. Thanks to Bayes’ theorem

Qn =
f (n;↵1, �1, Ei,j)P

f (n;↵1, �1, Ei,j)P + f (n;↵2, �2, Ei,j) (1� P )
(1.12)

where f(·) is the density of a negative binomial distribution with parameters ↵ and

Ei,j/(� +Ei,j). The final number of hyperparameters is five ✓ = (↵1, �1,↵2, �2, P )

which are usually estimated via maximum likelihood

L(✓) =
Y

ij

[f (Ni,j;↵1, �1, Ei,j)P + f (Ni,j;↵2, �2, Ei,j) (1� P )] . (1.13)

The posterior means of �i,j and log �i,j are

E (�i,j|Ni,j = ni,j) =
↵1 + n

�1 + E
Qn +

↵2 + n

�2 + E
(1�Qn) (1.14)



Chapter 1 - Disproportionality analysis: the role of statistics in drug safety 23

and

E (log �i,j|Ni,j = ni,j) = [ (↵1 + n)� log(�1 + E)]Qn

+ [ (↵2 + n)� log(�2 + E)] (1�Qn) (1.15)

where  is the digamma function (derivate of the logarithm of �(x)). The quantity

EB log 2i,j = E (log2(�i,j|Ni,j = ni,j))

= E (log(�i,j|Ni,j = ni,j)) / log 2
(1.16)

is the empirical Bayesian (EB) counterpart of log2(RRi,j). To obtain a quantity

on the same scale as the RR, the exponential transformation of the EB can be

computed

EBGMi,j = 2EB log 2i,j (1.17)

where EBGM stands for empirical Bayes geometric mean.

Since the posterior distribution of �i,j is known, its percentile can be calculated

to obtain a credibility interval for the EBGM measure. For example, if we are

interested in a 95% interval, we can obtain the EBGM lower and upper bound

using the 5th and 95th percentile of �i,j. Then, if �0.05
i,j > 1 the data support the

hypothesis of an association between the drug and the ADE involved.

EBGMi,j and RRi,j have the same behavior and interpretation, the di↵erence

being that if Ni,j is small, EBGMi,j decreases regardless of the baseline causing

a shrinkage (Church and Hanks, 1990). The introduction of this shrinkage com-

ponent is crucial and brings several positive features in parameter estimation,

especially when the target drug or ADE is not reported frequently (DuMouchel,

1999).

Due to this shrinkage, GPS overcomes a drawback of PRR and ROR. More-

over, it provides an interpretable measure, although the interpretation is not as

immediate as its frequentist counterpart. Like PRR and ROR, the main down-

side of the EBGM measure is that it can be applied to only one drug-ADE pair

at a time and is di�cult to deploy if the goal is to test drug-drug interactions.

The measure can be adjusted for demographic covariates with stratification, but

this kind of adjustment is computationally intensive since its implementation re-

quires many calculations (5-dimensional likelihood maximization). To overcome
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the problem of taking into account drug-drug interaction, the Multi-Item Gamma-

Poisson Shrinkage (MGPS) model was later proposed (Szarfman et al., 2002).

1.3.3.2 Bayesian Confidence Propagation Neural Network

A Bayesian Confidence Propagation Neural Network (BCPNN) is a two-layer feed-

forward neural network that was originally proposed to associate drugs and ADEs

(Lansner and Holst, 1996; Bate et al., 1998). In this network, the units in the

first stratum correspond to the drug variables and those in the second stratum

correspond to the ADE variables. It turns out that the network is transparent,

the value of the weights corresponds to a quantity known as information component

(IC). Given a drug Xi and an adverse drug event Yj, we can show that

ICi,j = log2
Pr (Xi, Yj)

Pr (Xi) Pr (Yj)
(1.18)

and if ICi,j > 0 an association between the drug and the ADE is plausible. For

the purpose of computing the information component, the estimation of the neural

network can be ignored.

It is reasonable to assume that the four cells in the surrogate contingency table

are generated by a multinomial distribution Mn(n, p11, p10, p01, p00) with probabil-

ity mass function

p(n11, n10, n01, n00;n, p11, p10, p01, p00) =
pn11
11 pn10

10 pn01
01 pn00

00

n11!n10!n01!n00!
n!. (1.19)

A Dirichlet distribution

f(p11, p10, p01, p00;↵11,↵10,↵01,↵00) =
p↵11�1
11 p↵10�1

10 p↵01�1
01 p↵00�1

00

B(↵11,↵10,↵01,↵00)
(1.20)

is assumed as a prior distribution on the parameters p11, p10, p01, p00, with

B(↵11,↵10,↵01,↵00) =
4Y

i=1

�(↵i)/�(
4X

i=

↵i). (1.21)

Since the Dirichlet distribution is conjugate to the multinomial distribution, the

posterior distribution will be Dir(�11, �10, �01, �00) with �i,j = ↵i,j + ni,j. Due to

the properties of the conjugate model, the marginal distributions for p11, p1. and
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p.1 are beta-distributed and can be easily calculated:

p11 ⇠ Beta(�11, �10 + �01 + �00), (1.22)

p1. ⇠ Beta(�11 + �10, �01 + �00), (1.23)

p.1 ⇠ Beta(�11 + �01, �10 + �00). (1.24)

Therefore, under the assumption of independence between p1. and p.1, an approx-

imation of the expected value of the information component can be obtained via

a Taylor expansion

E (ICi,j) ⇡ log2
E (p11)

E (p1.) E (p.1)
= log2

�11(�11 + �10 + �01 + �00)

(�11 + �10)(�11 + �01)
. (1.25)

Since the closed form of the distribution of the information component is unknown,

to estimate the bounds of its credibility intervals Monte Carlo simulations are

usually used.

After the introduction of the information component as a measure of dispro-

portionality, the BCPNN model was improved using the moderating prior distri-

butions

↵11 =
1

2
↵10 =

1

2

n.0 + 0.5

n.1 + 0.5
↵01 =

1

2

n0. + 0.5

n1. + 0.5
↵00 =

1

2

n.0 + 0.5

n.1 + 0.5

n0. + 0.5

n1. + 0.5
.

(1.26)

Norén et al. (2006) showed that the use of the moderating prior distribution is

equivalent to adding an additional data set where the drug and ADE co-occur half

the time and where the marginal frequencies are the same as in the original data.

The use of these prior distributions generates an e↵ect similar to GPS shrinkage

leading to better estimates.

The information component has the same advantages and drawbacks as the

GPS. Both models are more computationally demanding than frequentist meth-

ods, but the increasing power of modern computers has induced most pharma-

covigilance authorities to integrate them in their phase IV pipeline since they

provide better estimation than PRR and ROR (DuMouchel and Harpaz, 2012;

Pham et al., 2019).
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1.3.4 Regression models and data mining methods

Basic methods (such as PRR and ROR) and Bayesian methods (such as GPS and

BCPNN and their extensions) are currently used by pharmacovigilance authorities,

such as FDA or EMA. Nevertheless, today modern research is looking for new

approaches that, although not developed for disproportionality analysis, fit the

data well.

An easy way to tackle spontaneous data analysis is through logistic regression

(DuMouchel et al., 2008). Binary variables that indicate the presence of drugs in

the reports act as covariates and those that indicate ADE are used as dependent

variables in the regression form

log
Pr (Yj = 1)

Pr (Yj = 0)
= ↵ +

pX

i=1

�iXi (1.27)

with Yj ADE and X1, X2, . . . , Xp drugs. The associations between drugs and ADE

are given by �1, �1, . . . , �p, which can be tested with the well-known regression

coe�cient tests.

Such an approach has two main advantages. First, it allows us to analyze the

associations between all drugs and a given side e↵ect at once; this is of great help

to take into account co-prescribed drugs. For example, if drug Xi is associated

with ADE Y and drugs Xi and Xj are often administered together, it is likely

that the methods based on the surrogate contingency table incorrectly associate

Xj with Y . In this case, drug Xj is defined as innocent bystander (Dijkstra et al.,

2020). Because a regression associates an independent variable with a covariate net

of the e↵ect of the other covariates, the risk of generating signals from innocent

bystanders is reduced. Second, demographic variables can also be included in

the regression without using stratification. Considering drug interactions can be

computationally onerous, since including interactions among all (or only some)

covariates greatly increases the number of parameters in the regression.

Logistic regression can be combined with GPS to obtain the regression-adjusted

GPS (RGPS) (DuMouchel and Harpaz, 2012). In RGPS, the usual t-test used to

test the significance of the regression parameters is replaced by GPS, making the

regression better for low frequencies and unbalanced surrogate contingency tables.

RGPS has been shown to perform better than both logistic regression and GPS

(Harpaz et al., 2013). However, the computational cost of the model is very high
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and the di�culty of analyzing drug-drug interactions remains.

An alternative to logistic regression and RGPS may be the use of the logistic

lasso and adaptive lasso (Ahmed et al., 2016). The lasso and adaptive lasso allow

for a better selection of drugs significantly associated with ADEs, introduce a

shrinkage similar to that introduced by GPS and BCPNN, and can be easily

modified to account for interactions. For this reason, these models will be discussed

in detail in the next chapter.

In addition to regression models, other methods have been used, such as al-

gorithms developed to perform data mining and machine learning. Tree models

and combinations of trees were used: Random Forest, Gradient Boosting, and Ad-

aBoost have been successfully used on spontaneous data, sometimes combined with

SMOTE correction (Wei et al., 2020; Chandak and Tatonetti, 2020). However, as

much as using tree models has proven useful, the results are not competitive with

the models listed above.

1.4 Discussion

The collection and statistical analysis of pharmacovigilance data are somewhat

atypical. Even after a drug has received the necessary approvals to be put on

the market, it still needs to be monitored to notice any adverse event that went

unnoticed during the drug development stages. The way drug safety data are

collected during phase IV is spontaneous, which is why ad hoc statistical models

have been developed for their analysis. These models, known as disproportionality

models, aim to generate a signal when a drug and an adverse event have been

reported together a suspected number of times in spontaneous databases.

Disproportionality models are typically classified into basic models and Bayesian

models. Models developed in the late 1990s, despite undergoing some modifica-

tions over time, are still used by major pharmacovigilance authorities3. In par-

ticular, the problem of drug-drug interaction analysis remains open since not all

models can e↵ectively address it.

3Currently, FDA performs data mining using PRR and MGPS and EMA using ROR (FDA,
2018d; EMA, 2016).





Chapter 2

A hierarchical lasso-BIC model

for drug-drug interaction

detection

2.1 Introduction

As seen in Chapter 1, the statistical methods currently used in the analysis of drug

safety data are basic (frequentist) or Bayesian disproportionality models. However,

as technology progresses, new methods are being introduced to attempt to make

the process of identification of ADEs more e�cient. As mentioned above, the

alternatives that have been most explored in recent years are machine learning

algorithms and data mining methods. Among these methods, one that has a

suitable structure for drug safety data analysis is the logistic regression with lasso

penalization presented in Tibshirani (1996) and developed later with contributions

from di↵erent authors.

Both stepwise variable selection and lasso regression are commonly used meth-

ods for variable selection in logistic regression. However, the best approach for

variable selection depends on the specific data and research question at hand.

Stepwise selection can help to identify a smaller set of variables that are most pre-

dictive of the outcome, which can improve the model’s interpretability and reduce

overfitting. Moreover, stepwise variable selection may be more appropriate when

there are relatively few predictors and a clear hypothesis about which predictors

are important. Lasso regression, on the other hand, can help to select a smaller

29
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set of variables that are most predictive of the outcome and can handle collinear

predictors better than stepwise selection. In general, lasso regression tends to

be more robust and e↵ective for variable selection when there is a large number

of predictors or when predictors are highly correlated (Harrell, 2017; Steyerberg

et al., 2010).

The main reason why a lasso-penalized regression is here preferred to a step-

wise logistic regression is that the lasso introduces a penalty into the parameter

estimation that allows, at the same time, variable selection and shrinkage of the

coe�cients. This procedure results in a better variable selection than the classic

logistic regression with stepwise selection of parameters in this specific field. Lasso

also turns out to be a computationally e�cient solution to fit a logistic regression

with high-dimensional data.

First, we will present the lasso method as a tool for disproportionality analysis.

Then, we will discuss a new adaptive lasso model proposed by Courtois et al.

(2021) based on the Bayesian information criterion (BIC) for variable selection

(lasso-BIC).

Drug-drug interaction is currently estimated to be responsible for approxi-

mately 30% of adverse drug events (Noguchi et al., 2019); therefore, we will extend

the model to address the problem of drug-drug interaction using a method specif-

ically designed to identify interactions between variables proposed by Yuan and

Lin (2006) and Lim and Hastie (2015).

The performance of the model will be compared with simulation studies. An

initial simulation study is presented to evaluate the ability of the lasso method to

identify pairs of drug-ADE. Subsequently, the ability of the model to identify not

only individual pairs but also possible drug-drug interactions will be investigated

in a second simulation study. Finally, an application to spontaneous data from

the FAERS database will be presented.

2.2 Methods

2.2.1 Lasso and logistic lasso for spontaneous data

In a general context, let (xi, yi) beN pairs where xi = (xi1, xi2, . . . , xip)T are covari-

ates and yi is the response variable for the ith element. Let �̂ = (�̂1, �̂2, . . . , �̂p)T,
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the lasso estimates are defined as

(↵̂, �̂) = argmin
↵,�

NX

i=1

 
yi � ↵�

pX

j=1

�jxij
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|�j|  s (2.1)

where s � 0 is referred to as hyperparameter or regularization parameter. Notice

that we can rewrite the minimization problem in the Lagrangian form

(↵̂, �̂) = argmin
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where � is a hyperparameter with a one-to-one correspondence with s (Hastie

et al., 2013).

Since, for each value of s or �, we can reparametrize the intercept ↵ by standard-

izing the covariates to obtain ↵̂ = ȳ, we can then ignore the intercept without loss

of generality. The hyperparameter controls the amount of shrinkage applied to the

estimates. Let �̂0
j be the ordinary least-squares estimates and let s0 =

Pp
j=1 |�̂0

j |,
some value of s < s0 will cause shrinkage of the solutions toward zero, while some

other coe�cients will be exactly zero.

The hyperparameter in the lasso regression can be selected in di↵erent ways,

depending on the data with which the model is used. Some examples of methods

for the choice of s are cross-validation, generalized cross-validation, and the use

of estimators of prediction error (such as the Akaike information criterion or the

Bayesian information criterion).

In the context of spontaneous pharmacovigilance data, N denotes the number

of spontaneous reports and p denotes the number of drugs (used as covariates). Let

X be the matrix N⇥p that has, as columns, the binary variables that indicate the

presence of the drugs in each report and y the binary vector of length N indicating

if the adverse drug event of interest is present in the reports. We can fit a logistic

lasso regression such as

�̂ = argmin
�

"
�`(�, y,X) + �

pX

j=1

|�j|
#

(2.3)
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with `(�, y,X) log-likelihood of the logistic model

log
Pr (yi = 1)

Pr (yi = 0)
=

pX

j=1

�jxij. (2.4)

The nonzero estimated coe�cients are coupled with the drugs associated with the

ADE. Furthermore, since we are not interested in detecting the protective e↵ect

of drugs on ADE, we can discard strictly negative coe�cients. The value of the

remaining strictly positive coe�cients indicates the level of association between

the drug with which they are associated and the ADE of interest.

There are several strategies for selecting hyperparameters using spontaneous

data. The first is classic cross-validation. Each cycle of cross-validation involves

partitioning the data into nf subsets, known as folds. Specifically, the nf � 1

subsets are used to fit the model (the model is estimated based only on these

data), and the remaining subset is used to validate the model obtained through a

metric chosen to evaluate its predictive performance, such as a measure calculated

from a confusion matrix. The procedure is repeated f times, so that all subsets

of the data serve both as train sets and as test sets. In a lasso regression, cross-

validation is performed for each potential � value. The best � will be the one

associated with the best performance according to the chosen metric.

Another approach, based on permutations, was proposed by Sabourin et al.

(2015). Let ⇡l be a permutation of the set {1, 2, . . . N}, and let y⇡l
be the per-

muted version of y according to ⇡l. If a lasso regression is fitted using the original

covariates as regressors and each permutation of y as a response variable, we can

obtain �min(y⇡l
), the smallest value of the hyperparameter such that zero covari-

ates are selected in the regression on the permuted response variable y⇡l
. Then, we

can use the median value of the vector (�min(y⇡1),�min(y⇡1), . . . ,�min(y⇡K )) as se-

lected �. K is the maximum number of permutations, the authors suggest setting

K = 20.

An alternative approach, proposed by Courtois et al. (2021), relies on the

Bayesian information criterion (BIC). For a candidate �0 in the set of all potential

� values, we can compute

BIC�0 = �2`�0 + |�̂�0 6= 0| log(N) (2.5)

with `�0 log-likelihood of a logistic model, whose covariates are those associated
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with the strictly positive coe�cients of the lasso logistic regression fitted with

�0. The � associated with a lower BIC is preferred. The authors showed that

this method of selecting the hyperparameter, compared to the other two methods,

is particularly suitable for spontaneous pharmacovigilance data, especially in the

presence of many drugs (high dimensionality).

2.2.2 Adaptive lasso extension

An optimal variable selection procedure should have the following properties (known

as oracle properties): identify the correct subset of true predictors and produce

unbiased estimates. Fan and Li (2001) showed that the regular lasso regression

does not have these properties, and in some situations, the selection of variables

done by the model may be inconsistent. Indeed, it is observed that with the same

penalty value for all covariates, the lasso regression tends to over-penalize the most

important ones and may produce estimates that are biased.

Adaptive lasso is an alternative implemented to improve variable selection,

consisting of the use of adaptive weights (AW) to penalize covariates di↵erently

from the usual lasso penalization (Zou, 2006). The minimization process is then

defined as

�̂ = argmin
�

"
�`(�, y,X) + �

pX

j=1

!j|�j|
#

(2.6)

where `(�, y,X) is, once again, the log-likelihood of the model 2.4 and the penalty

applied to the jth covariate is defined by !j� = �j. The variable xj will be

penalized according to the weight !j: the higher the value, the lower the chances

that the variable will be selected.

Courtois et al. (2021) proposed an AW suitable for the lasso-BIC procedure.

Weights are defined as

!lb
j =

8
<

:
|�̂BIC

j |�1 if �̂BIC
j 6= 0

1 if �̂BIC
j = 0

(2.7)

where �̂BIC
j is the jth coe�cient estimated with a lasso-BIC regression (without

AW). The use of these weights is further justified by the fact that they lead to an

estimator similar to the one recently proposed by Li et al. (2021). The authors

demonstrate several favorable characteristics of this estimator. Specifically, it
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is reliable for variable selection tasks, exhibits an oracle property for parameter

estimation, and has a grouping property for highly correlated covariates.

2.2.3 Hierarchical lasso for drug-drug interaction detec-

tion

The models mentioned above use lasso regression to mine spontaneous pharma-

covigilance data to find associations between drugs and ADEs. However, none

of them are extended to include associations between drug-drug interactions and

ADE. It is possible to use a lasso regression to select drug-drug interactions asso-

ciated with the ADE of interest by including the statistical interactions between

the covariates in the model and selecting them using the lasso penalty. However,

this approach may lead to a great computational cost since the dimensionality

would increase disproportionately; by including interactions between variables,

the regression matrix becomes

X =

2

66664

x11 x12 . . . x1p x11 : x12 x11 : x13 . . .

x21 x22 . . . x2p x21 : x12 x21 : x13 . . .

. . . . . . . . . . . . . . . . . . . . .

xN1 xN2 . . . xNp xN1 : x12 xN1 : x13 . . .

3

77775
. (2.8)

A more e�cient way is to adopt an interaction selection approach similar to the

hierarchical lasso, which can be combined with the adaptive lasso and hyperpa-

rameter selection based on the BIC. If we want to determine whether there is an

association between drugs x1, x2, and an ADE y considering also the interaction

x1:2, a minimization problem using a constrained grouped lasso logistic loss has to

be solved (Yuan and Lin, 2006):

(↵̂1, ˆ̃↵1, ↵̂2, ˆ̃↵2, ↵̂1:2) = argmin
↵1,↵̃1,↵2,↵̃2,↵1:2

�
h
yT
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h
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i h
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⇣
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n
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h
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iTo⌘i
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✓
k↵1k2 + k↵2k2 +
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◆
(2.9)



Chapter 2 - A hierarchical lasso-BIC model for drug-drug interaction detection35

under the sets of constraints
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and
2X

i=1

↵ij
1:2 = 0 for a fixed j

2X

j=1

↵ij
1:2 = 0 for a fixed i. (2.11)

where k·k2 denotes the Euclidean norm. The final estimates are given by �̂i =

↵̂i + ˆ̃↵i (for i = 1, 2) and �̂1:2 = ↵̂1:2.

Furthermore, we can use Theorem 1 from Lim and Hastie (2015), which proves

that the constrained hierarchical lasso loss (2.9) is equivalent to the simpler un-

constrained loss

(�̂1, �̂2, �̂1:2) = argmin
�1,�2,�1:2

�
h
yT (x1�1 + x2�2 + x1:2�1:2)+log (exp {x1�1 + x2�2 + x1:2�1:2})

i

+ � (k�1k2 + k�2k2 + k�1:2k2) (2.12)

therefore, the optimization problem is much easier to solve. This loss can be

generalized to include the desired number of drugs and the interactions between

them. To select the best �, the lasso-BIC procedure can be used.

2.3 Simulations

2.3.1 Simulations without interactions

To test the ability of the hierarchical lasso-BIC to detect associations between

both drugs, drug-drug interactions, and ADE, we used some simulated data to

mimic the structure of spontaneous drug safety data. Data were simulated via

directed acyclic graph (DAG), using the algorithm proposed by Dijkstra et al.

(2020) modified to also generate drug-drug interactions.

First, we investigate the ability of the model to detect drug-ADE pairs (exclud-

ing drug-drug interactions) using a plain lasso regression trained with a 10-fold

cross-validation as a benchmark comparison. The simulated data set consists of

10000 reports, with a number of drugs equal to 10 and a number of ADEs equal

to 10, and the number of pairs of drug-ADE that are associated is 10 out of 100.
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Specificity
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Hierarchical lasso-bic
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Figure 2.1: Boxplots of 100 replications of a 10000 reports simulation with
10 associated drug-ADE couples.

We repeat the entire simulation 100 times. For each simulated ADE, the confu-

sion matrix was calculated to determine the performance of the models. From the

confusion matrix, we calculated four statistical measures: specificity, sensitivity,

precision, and the F1 score (harmonic mean between precision and sensitivity)

defined as follows

specificity =
true negative

true negative + false positive

sensitivity =
true positive

true positive + false negative

precision =
true positive

true positive + false positive

F1 score = 2
precision · sensitivity
precision + sensitivity

where false positive is the number of drug-ADE couples identified by the model

but not truly associated, while false negative is the number of drug-ADE couples

not identified by the model but truly associated.

The results are shown in Figure 2.1. Both models appear to perform well,

particularly in terms of precision and the F1 score. The hierarchical lasso-BIC,

however, has a wide range of specificity since it has a specificity equal to one in

the majority of cases and a specificity equal to zero in fewer cases (31 out of 100).
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On the other hand, the lasso with the hyperparameter selected via cross-validation

has a sensitivity equal to one in almost every simulation (97 out of 100). Although

high sensitivity or specificity may seem like a good indicator of model performance,

the fact that it is always zero or one is not always a good sign. This is presumably

because the number of negatively associated drug-ADE pairs is di�cult to detect,

leading to zero false negatives or false positives. However, we can notice that,

concerning the precision and F1 score values, the hierarchical lasso-BIC turns out

to be the one that gives the best performance and the least variability in the 100

simulations.

2.3.2 Simulations with interactions

To further investigate the ability of hierarchical lasso-BIC regression to detect

associations between drug-drug interactions and ADEs, we simulated an additional

data set with 10000 reports, a number of drugs equal to 10, and the number of

adverse drug events equal to 4. To obtain various scenarios, drugs are associated

with ADE in di↵erent ways:

• the first adverse drug event (ADE1) is associated with five di↵erent drugs

but no drug-drug interactions,

• the second and third adverse drug events (ADE2, ADE3) are associated with

five di↵erent drugs and one interaction between two of them,

• the fourth adverse drug event (ADE4) is associated with five di↵erent drugs

and all interactions between all the drugs.

As the number of possible drug-ADE pairs has increased significantly compared

to the previous simulation and, with it, also the size of the design matrix needed

to estimate the models, we fitted only the hierarchical lasso-BIC.

As we can notice from the model performance (Table 2.1) the results trace

those obtained in the case without interactions. The specificity once again takes

on problematic values, this time focusing only on values close to zero; the measure

reaches zero in the scenario in which all interactions between drugs are associ-

ated with the ADE. This confirms the di�culty of the model in identifying true

negatives, i.e., pairs that are not truly associated. Fortunately, the importance of

detecting not associated pairs is not a priority over detecting associate pairs; in
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Table 2.1: Performance of the hierarchical lasso-BIC model on 10000 simulated
reports and four di↵erent scenarios of the association of drug and drug-drug
interactions.

Adverse drug event Specificity Sensitivity Precision F1 score

ADE1 0.00 1.00 0.90 0.95
ADE2 0.18 0.92 0.91 0.91
ADE3 0.19 0.91 0.93 0.92
ADE4 0.13 0.94 0.89 0.91

other words, sensitivity is to be considered more important than specificity in this

context. The other performance measures are better and indicate a good ability

of the model to identify truly associated couples.

These simulations are useful to define whether the hierarchical model is suitable

for pharmacovigilance data. However, unfortunately, simulating the complexity of

pharmacovigilance data is very di�cult, as there are many drugs in spontaneous

databases but, at the same time, their frequency is small compared to the total

number of records. For example, in the 2019 FAERS data, there are about 58

thousand drugs against more than two million reports (even fewer are the adverse

e↵ects, approximately 12 thousand). Simulating such a large number of reports,

drugs, and adverse drug events is computationally di�cult and, at the same time,

would not guarantee the same amount of complexity reached in non-simulated

data, especially if simulations need to be repeated several times to control their

variability (Dijkstra et al., 2020). Therefore, in addition to knowing the perfor-

mance of a model on simulated data, it is necessary to test it on real data.

2.4 Spontaneous data application

After verifying through simulation studies that a hierarchical lasso-BIC regression

can be used for pharmacovigilance data, we will use it to analyze real spontaneous

data. Specifically, the model will be applied to the 2019 FAERS data (1727296

unique records) to test its potential to identify associated pairs of drug and adverse

drug events and drug-drug interactions.

To define the model performance, it is necessary to use a gold standard. In

the case of pharmacovigilance, this should be a set of drug-ADE pairs whose

association is known a priori. Having this kind of gold standard is di�cult since
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the only solution is to resort to manually curated data sets of established drug-

ADE pairs (Ryan et al., 2013). Unfortunately, to date, there are no manually

curated data sets that include drug-drug interactions.

For this reason, the TwoSIDES data set is used. TwoSIDES is a data collection

of drug-drug-ADE relationships, extracted from publicly available health records

(Tatonetti et al., 2012b). Although TwoSIDES does not represent a proper gold

standard, it still allows us to dispose of associations retrieved from sources external

to the spontaneous data. TwoSIDES only contains information on drug-drug

interactions, a similar data set for associations between single drugs and ADE is

O↵SIDES, created by the same authors with the same criteria.

From the 2019 FAERS data, we selected six di↵erent adverse drug events:

bronchitis, anemia, myocardial infarction and three types of liver disease (chronic

kidney failure, kidney injury and acute kidney injury). We search for possible

associations between these ADEs and all drugs and drug interactions in the FAERS

data. The O↵SIDES database is used as the gold standard for the associations

between drugs and adverse drug events, while TwoSIDES is used for interactions.

The results of the classification are contained in Table 2.2.

Table 2.2: Performance of the hierarchical lasso-BIC model in the 2019 FAERS
data. O↵SIDES and TwoSIDES are used as gold standard for adverse drug event
detection (O↵SIDES) and drug-drug interaction detection (TwoSIDES).

Adverse drug event Specificity Sensitivity Precision F1 score

Bronchitis 0.09 0.58 0.49 0.53
Anemia 0.08 0.67 0.53 0.59
Myocardial infarction 0.14 0.48 0.43 0.45
Chronic kindey failure 0.09 0.57 0.48 0.52
Acute kidney injury 0.12 0.46 0.42 0.44
Kidney injury 0.03 0.30 0.40 0.34

The values of all indicators are lower than those obtained with the simulated

data. As expected, specificity takes low values, while the other metrics (sensitivity,

precision and F1 score) are at higher levels, signaling that the model is less likely

to detect a false negatively associated pair than a false positively associated pair.
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2.5 Discussion

Analysis of spontaneous data is crucial to discover new associations between drugs

and ADEs and becomes particularly important if includes also the e↵ect of drug-

drug interactions. Methods currently used by pharmacovigilance authorities (such

as the Proportional Reporting Ratio, the Reporting Odds Ratio, the Gamma-

Poisson Shrinkage, and the Bayesian Confidence Propagation Neural Network)

struggle to account for interactions, which complicate the model fitting, limit

their e�ciency, and increase the computational cost.

For this reason, we chose to use a penalized regression approach. The lasso

penalty, which has already been proven to be useful in the pharmacovigilance

context, was used in combination with the hyperparameter selection method based

on the BIC index. To account for interactions more e�ciently, the model was

modified using the hierarchical group-lasso approach.

We tested the model in several simulated scenarios to evaluate its performance;

first, data were simulated with associations between single drugs and ADEs (no

interaction). In this scenario, the lasso-BIC hierarchical model performs well in

terms of sensitivity (which in most cases falls in the interval [0.50, 1]), and preci-

sion (which mostly takes values close to one). Specificity takes discordant values

(zero or one); this suggests that the model has a reduced ability to classify neg-

atively associated pairs. However, a high F1 score leads to an overall positive

evaluation of the model, which has better performance than a lasso model with

the hyperparameter selected through cross-validation.

Next, data were simulated including drug-drug interactions. Again, the speci-

ficity is at much lower values than the sensitivity, indicating that the model has

the same weaknesses regarding false negative detection that were found in the

case without interactions. However, the precision and the F1 score are still at

high levels, indicating a good fit of the model to the simulated data.

Since the simulated data are not enough to evaluate the performance of the

model, data from the FAERS spontaneous database (year 2019) were also used to

try to predict associations between drugs, drug-drug interactions and six ADEs

(bronchitis, anemia, myocardial infarction, chronic kidney failure, acute kidney

injury and kidney injury). In the absence of a gold standard, we used O↵SIDES

and TwoSIDES databases, which collect data from adverse drug events and drug-

drug interactions from publicly available health records.
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In this case, the observed model performance is poorer than the one observed

in the simulated contexts. Specificity has, again, low values, while sensitivity has

moderate values indicating that the model has more di�culty in predicting truly

associated pairs than the simulated data context; similarly, the accuracy and the

F1 score have smaller values than simulations.

Other attempts to identify drug-drug interactions have been developed over

time, using approaches other than the use of spontaneous data, such as the bio-

chemical similarity between drugs (Vilar et al., 2014; Kim and Tatonetti, 2021).

However, the approach presented here has the advantage of being regression-based;

it is therefore very practical for quickly associating drugs and their interactions

with an ADE through the use of spontaneous data. Furthermore, it could be easily

adapted to include external variables, such as demographic characteristics of the

patient or information on who filed the report, without resorting to stratification

procedures.

However, it is worth mentioning that the performance of the model on real data

is not high enough to justify its use by pharmacovigilance authorities, which require

high-precision and already well-established instruments. So, the hierarchical lasso-

BIC model could be used as a tool for an initial filter of pharmacovigilance signals

to then implement methods such as BCPNN (or other Bayesian disproportionality

methods) for a second identification of significant pairs.





Chapter 3

Improving adverse drug event

prediction using biochemical

features extracted with

ChemBERTa

3.1 Introduction

As mentioned in previous chapters, careful monitoring of drug safety is essential

to detect ADEs that may follow drug administration. Many drugs’ ADEs are dis-

covered during clinical trial phases, particularly during phases II and III, but the

relatively low sample size used in those stages causes a variety of infrequent e↵ects

to go unnoticed. Therefore, identifying associations between drugs and adverse

events during the post-marketing phase (phase IV) is of paramount importance.

Spontaneous databases such as FAERS are imperfect tools, but, despite the limi-

tations (first among all the lack of control data), their analysis remains the main

instrument for detecting adverse e↵ects in a post-marketing setting.

Part of the literature is devoted to comparing the performance of the aforemen-

tioned models (Bate and Evans, 2009; Harpaz et al., 2013; Ding et al., 2020). In

particular, Pham et al. (2019) performed a multimodel comparison on the man-

ually curated reference standard set provided by the Observational Medical Out-

comes Partnership (Ryan et al., 2013); their findings prove that no model is capable

of high performance, reaching a maximum AUROC < 0.70. The reason why many
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models do not perform well is due to the fact that the data are heavily biased,

as argued extensively in Chapter 1. The spontaneous nature of the data causes

a number of biases including lack of controls (and, consequently, scarcity of gold

standard databases), under-representation, publicity bias, Weber e↵ect, presence

of many confounding variables, and infeasibility of proving causality. The use of

alternative and unbiased data sources to supplement spontaneous databases can

increase the performance of ADE prediction.

In this chapter, we propose to process data from the biochemical structure of

drugs using a deep learning model to support classic spontaneous pharmacovigi-

lance data. Machine learning and deep learning have recently been used to analyze

the structure of drugs to predict chemical properties or perform molecule genera-

tion and drug discovery, but its use to discover new ADEs is still unexplored (Hiro-

hara et al., 2018; Arús-Pous et al., 2019; Jo et al., 2020; Manne, 2021). Therefore,

we extracted valuable features from the drugs of the OMOP reference standard

set using two di↵erent mapping systems, one based on MACCS fingerprint vec-

tors and one based on SMILES strings. Then, we used these features to predict

whether there is an association between drugs and adverse e↵ects contained in the

OMOP database.

3.2 Data

3.2.1 OMOP reference set

A sensitive issue related to pharmacovigilance data is related to the lack of gold

standard databases. To overcome this problem, manually curated data are used,

such as the OMOP reference standard set introduced by Ryan et al. (2013). Its

latest version consists of 183 drugs and 4 ADEs (Acute Kidney Injury, Acute Liver

Injury, Acute Myocardial Infarction, and Gastrointestinal Bleed) extracted from

the drug’s product labels to collect 165 positively associated and 134 negatively

associated drug-ADE pairs. The OMOP reference set has been used to test the

new approach presented later.

3.2.2 Alternative use of FAERS data

The FAERS (FDA Adverse Event Reporting System), already fully described in

Chapter 1 is the main spontaneous reporting database completely available to the
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public and therefore is the most widely used to obtain information on drugs ADE.

We downloaded the four quarters of the 2019 FAERS raw data (1727296 unique

records) using the faers.db R library (Lanera et al., 2022), we chose not to use

more recent data to avoid bias related to the COVID-19 pandemic. From the raw

data, we selected the drug-ADE pairs found in the OMOP reference set. Then we

selected only the most frequent (> 0.1%) adverse events. We treated those events

as variables to represent each selected drug in a manner similar to Tatonetti et al.

(2012a) and Lorberbaum et al. (2015). So, we obtained a matrix having as rows

398 drug-ADE pairs, as columns 198 frequent adverse drug events and, in each

cell, the value of the relative frequency of the adverse event with respect to each

drug.

3.2.3 MACCS vectors

There is more than one way to encode endogenous information from a chemical

compound, one of the most widely used is the representation of molecules as binary

vectors, also known as chemical fingerprints.

The most popular fingerprint encoding is the Molecular Access System (MACCS),

a 166-bit representation of a molecule introduced in the early 2000s (Durant et al.,

2002). MACCS fingerprint forms a mathematical representation of a chemical

compound allowing, for example, the calculation of dissimilarity measures be-

tween molecules. Furthermore, since each bit of the binary vector represents a

chemical feature of the compound, MACCS fingerprints can be interpreted as a

feature space that describes the drug endogenously (Kuwahara and Gao, 2021).

This chemical representation has been used to estimate the absorption, distribu-

tion, metabolism, and excretion (ADME) properties of a molecule, but has never

been used to predict ADEs (Shen et al., 2010).

We derived fingerprint vectors using rcdk 3.6.0 (Guha, 2007), an R interface to

the CDK Java framework for chemoinformatics (Steinbeck et al., 2003). This

framework allows us to load molecular information from the public ChEMBL

database (Gaulton et al., 2017) and obtain a MACCS fingerprint for each drug in

the OMOP reference set.

Although a MACCS vector can be interpreted, its understanding is quite com-

plex, because each bit represents a substructure of a molecule, an atom property,

or an atomic bond property. For example, bit # 49 denotes the presence of an
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electric charge and # 60 denotes the presence of sulfur monoxide. A complete list

of the correspondence between bits and molecular features can be found in Table

A.1.

3.2.4 SMILES strings

Another way to retrieve endogenous drug data is through the Simplified Molecular

Input Line Entry System (SMILES) and consists of a text string that describes the

compound (Weininger, 1988). Since SMILES are derived from the 2D graphical

representation of a molecule, the representation is not unique and can be done

using a number of equivalent SMILES strings.

Therefore, some algorithms were developed to generate unique (also known as

canonical) SMILES strings. Di↵erent algorithms have di↵erent canonical SMILES,

but they ensure a unique representation of a chemical compound as long as there is

consistency in the use of the algorithm (O’Boyle, 2012). The canonicalization algo-

rithm we used is the one developed by the CDK framework; it was chosen because

of its popularity and because we also used it for MACCS vector extraction (Stein-

beck et al., 2003). For example (Figure 3.1), the ethanol molecule (CH3CH2OH)

has three possible SMILES (CCO, OCC and C(O)C) but its canonical SMILES

obtained via the CDK algorithm is unique (CCO). From now on, any reference

Ethanol

(CH!CH"OH)

Possible SMILES

CCO
OCC

C(O)C

Canonical SMILES

CCO

Figure 3.1: The ethanol molecules represented using SMILES string.
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to SMILES will be intended as canonical SMILEs obtained using the CDK algo-

rithm. Similarly to what we did for the MACCS fingerprints, we obtained the

drugs’ SMILES from the ChEMBL database using the CDK framework.

3.3 Embedding SMILES strings with ChemBERTa

3.3.1 Transformer models for embedding space represen-

tation

SMILES strings can be viewed as a chemical language capable of defining the

composition of a drug, its molecules, atoms, and bonds, with a simple dictionary

(made up of ASCII symbols) and syntactic rules. Similarly to what is done with

language texts, a set of SMILES strings can be processed with a Natural Language

Processing (NLP) algorithm to form an embedding space where drugs can be

mapped using a set of latent features.

We choose a Bidirectional Encoder Representations from Transformers (BERT)

class model for the embedding space representation. Since its introduction in 2018,

BERT has established itself as the best model for self-supervised representations

of text, outperforming pre-existing NLP models in several tasks (Devlin et al.,

2018; Ra↵el et al., 2020). BERT takes full advantage of a transformer architecture

with L number of layers and A number of attention heads (Vaswani et al., 2017).

Firstly, a vast unlabelled text corpus is employed to perform a pretrain, then the

model is finetuned throughout task-specific labelled data.

During the self-supervised pretraining phase, the model aims to achieve both

the masked language and the next sentence prediction tasks. To perform the

masked language prediction task, a random sample of the input text is masked

and a cross-entropy loss is minimised to predict the masked tokens; similarly, to

perform the next sentence prediction task, some negative and positive examples are

generated from the text corpora to try to predict, using a binary loss, whether two

segments follow each other. The whole model is optimised using the well-known

Adam optimisation algorithm, details of the parameters chosen for optimisation are

contained in the original article (Kingma and Ba, 2014).
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3.3.2 ChemBERTa usage to predict adverse drug events

Since its emergence, BERT has been adapted to di↵erent text corpora, including

clinical text corpora for use in pharmacoepidemiology; a notable case is MTT-

LADE, a transformer for the extraction of adverse events from clinical text (dris-

siya El-allaly et al., 2021). The pretraining phase has been modified as well. For

example, the recent model RoBERTa does not employ next sentence prediction

and focusses only on the masking pattern to obtain better performance (Liu et al.,

2019).

We adapted RoBERTa to create an embedding space for the SMILES chemical

language. In 2020, RoBERTa has been pre-trained on 100k SMILES strings from

the zinc15 database (Irwin and Shoichet, 2005; Sterling and Irwin, 2015), with

L = 6 and A = 12, resulting in ChemBERTa (v. 1), a transformer model for

chemical compounds available on HuggingFace (Chithrananda, 2020). The gen-

erated latent space has been used in other biochemical tasks (prediction of brain

barrier permeability, clinical toxicity, ability to inhibit HIV replication, stress-

response pathway activation), where its performance approaches the baseline re-

sults (Chithrananda et al., 2020). Therefore, we assume that this space can also

be used in ADE prediction.

After mapping the drugs of the OMOP reference set on a 768-dimensional latent

space generated by ChemBERTa, we fine-tuned the model to predict whether or

not a drug is associated with an ADE.

3.3.3 Parsing algorithms, software and libraries

Before feeding the SMILES string to ChemBERTa, we performed a text parsing.

Parsing is a common pre-processing phase in NLP, useful to separate the raw string

of text into smaller components based on some syntactic rules. Classical parsing

algorithms cannot be used in this setting because they are based on grammatical

linguistic rules. Therefore, we made use of a specific parsing algorithm described

in Appendix C of Sidorova and Garcia (2015).

To generate the latent space and map the drugs in it, we use Python 3.8.2 with

the transformers 4.18.0 library (Wolf et al., 2020). To generate the MACCS

fingerprints, analyze the latent features, perform the classification task, and plot

the results, we used R 4.1.0 “Camp Pontanezen” (R Core Team, 2022).
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3.4 Results

3.4.1 Comparison between MACCS and ChemBERTa fea-

tures

We used the pre-trained ChemBERTa model available on HuggingFace, fed with

the SMILES strings derived from the drugs found in the OMOP reference set. The

result is a matrix with, as rows, 398 drug-ADE pairs and, as columns, 768 latent

features describing the related chemical compounds. We also extracted MACCS

fingerprint vectors from the same chemical compounds, which encode information

about drugs in a set of 166 binary features.

To compare the predictive power of these two sets of features, we used them

to predict the presence of the individual ADEs listed in the previous section. We

trained a support vector machine classifier and evaluated using a 70/30 train/test

split, repeated 5 times. To evaluate the model performance, we calculated both

the area under the receiver operating characteristic curve (AUROC) and the area

under the precision-recall curve (AUPRC). We also obtained a 95% confidence

interval for the evaluation metrics using 1000 bootstrap replications.

We saw a substantial equivalence between the results obtained from the two

sets of features (Figure 3.2, Table A.2). Nevertheless, we chose to proceed consid-

ering only the ChemBERTa set of features because they provide greater flexibility

because of their continuous nature. The computational times of the classifica-

tion task are only slightly slower when ChemBERTa features are used, probably

because of the higher dimensionality.

3.4.2 ADE prediction with ChemBERTa features and FAERS

data

We joined the ChemBERTa feature matrix with the one obtained from the 2019

FAERS data to further increase the classification accuracy. We trained the same

model with only the ChemBERTa features and then only the 2019 FAERS data

features and compared it with the entire set of features.

Regarding acute myocardial infarction (AMI) ADE, the classification perfor-

mance obtained with just ChemBERTa features (AUROC: 0.61 [0.38 – 0.80];

AUPRC: 0.66 [0.35 – 0.89]) is lower than the one obtained with FAERS features
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Figure 3.2: Result of the support vector machine classifier on the OMOP Gold
Standard Database. Comparison between the set of features originated from the
ChemBERTa and MACCS fingerprint vectors. AMI: Acute Myocardial Infarc-
tion, AKI: Acute Kidney Injury, ALI: Acute Liver Injury, GB: Gastrointestinal
Bleed.
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(AUROC: 0.81 [0.58 – 1]; AUPRC: 0.83 [0.52 – 0.95]) or the entire set of FAERS

+ ChemBERTa features (AUROC: 0.78 [0.62 – 0.95]; AUPRC: 0.85 [0.68 – 0.96]).

About acute kidney injury (AKI), acute liver injury (ALI), and gastrointestinal

bleed (GB) ADEs, the classification performance using the FAERS + ChemBERTa

set of features is generally higher and more precise - with smaller confidence inter-

vals - than the one obtained with a single set of features (Figure 3.3, Table A.3).

This result is observed in both the AUROC and the AUPRC.

Regarding the AKI ADE, we observed a 0.11 increase in the AUROC and a

0.13 increase in the AUPRC with respect to the use of the ChemBERTa features

alone, and a 0.08 increase in the AUROC and a 0.05 increase in the AUPRC with

respect to the use of the FAERS data alone. Regarding the ALI ADE, we observed

a 0.59 increase in the AUROC and a 0.10 increase in the AUPRC with respect to

the use of the ChemBERTa features alone, and a 0.14 increase in the AUROC and

a 0.08 increase in the AUPRC with respect to the use of the FAERS data alone.

Finally, regarding the GB ADE, we observed a 0.16 increase in the AUROC and a

0.05 increase in the AUPRC with respect to the use of the ChemBERTa features

alone, and a 0.09 increase in the AUROC and a 0.02 increase in the AUPRC with

respect to the use of the FAERS data alone.

3.5 Discussion

The sole statistical analysis of the spontaneous pharmacovigilance data can be

used to predict ADE, but there is room for improvement. Therefore, we made

use of endogenous data to incorporate and improve the usual disproportionality

analysis models. The data found in the chemical structure of drugs convey implicit

information about the compounds of their active ingredients and can be used in

ADE prediction task.

Our results suggest two novel conclusions. The first is that data from the

biochemical structure of a drug constitute a data source that can be used to predict

ADE. Specifically, the use of features obtained from SMILES strings has predictive

power similar to that of pharmacovigilance data alone. To extract those features,

we mapped the chemical compound of a drug active ingredient to a latent feature

space generated by ChemBERTa, a BERT-like transformer model. The latter is

that these features, combined with spontaneous data, lead to better performance

in ADE forecasting.
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Figure 3.3: Result of the support vector machine classifier on the OMOP
Gold Standard Database. Comparison between the set of features originated
from ChemBERTa, 2019 FAERS data, and both above. AMI: Acute Myocardial
Infarction, AKI: Acute Kidney Injury, ALI: Acute Liver Injury, GB: Gastroin-
testinal Bleed.
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Taking these encouraging results into account, many unanswered questions re-

main. We know that spontaneous data are extremely biased and that data from

the biochemical structure of drugs improve the overall data quality, leading to

greater accuracy. But with this work it was not possible to determine why this

happens, that is, which biases (if any) are mitigated by the presence of endogenous

data. Moreover, because of the relatively small size of the OMOP reference set,

it was not possible to study in detail the impact of biochemical data on di↵erent

drug classes to investigate if there are common structures that contribute to the

detection of ADE. Finally, we could not create any visualisation of the embedding

space obtained, as common techniques (such as PCA or t-SNE) failed to produce

any meaningful drug clusters.

This study suggests several possible further steps. A structured pipeline can

be designed for pharmacovigilance agencies to systematically include biochemical

data in the routine already implemented in ADE discovery. Furthermore, existing

Bayesian disproportionality models (such as BCPNN and GPS) could be modified

to include these data in their prior assumptions. Moreover, with more labelled

data available, it might be possible to investigate which bias is resolved using

endogenous data.

Our results show that the use of alternative data sources in pharmacoepidemi-

ology can improve the outcome of the classical disproportionality models based

only on the analysis of spontaneous data. In addition, it is particularly useful

in this framework, where data can often be underrepresented, to have a way to

leverage a constant, always available source of data such as the one obtained from

the structure of the chemical compound. We suggest a combined use of the two

data sources to achieve better performance in an ADEs detection procedure.





Conclusions

Discussion

This manuscript investigated several aspects of statistical applications in the field

of pharmacovigilance. The drug safety monitoring process does not end once the

drug has been released on the market, but goes on through continuous monitoring.

These surveillance procedures are essential to guarantee the safety of patients and

consumers, especially in a context, which is the case of many countries, of popu-

lation aging and consequent reliance on increased medical and drug treatment.

In Chapter 1, we described the two pillars of post-marketing drug safety:

spontaneous data and disproportionality analysis. Spontaneous databases are of

paramount importance, as they are the main tools currently used by pharmacovig-

ilance authorities to collect data on drugs during phase IV. However, their avail-

ability depends on the spontaneous reporting of adverse drug reactions, and this

spontaneity leads to the presence of numerous biases. For this reason, spontaneous

data consist of only cases and no controls, they su↵er from constant underrepre-

sentation and are subject to publicity bias and several confounding variables. To

analyze this particular type of data, specially designed models (disproportionality

models) are used. In this thesis, we reviewed the main statistical models currently

used for disproportionality analysis, discussed their strengths and weaknesses, and

pointed out their limitations.

In Chapter 2, we developed an innovative model for the analysis of pharma-

covigilance data with the goal of not only finding new associations between drugs

and adverse drug events, but also including drug-drug interactions. The model is

a lasso-penalized regression, with interaction selection based on the hierarchical-

grouped lasso and hyperparameter selection obtained via BIC index optimization.

We tested the performance of the model on both simulated and real data coming

from the publicly available spontaneous pharmacovigilance database maintained

55
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by the FDA (FAERS). The results obtained show that the model is capable of

identifying adverse events and drug interactions, but its performance is not good

enough to be used alone in the analysis of spontaneous data.

The aim of Chapter 3 was to go beyond the paradigms of disproportionality

analysis by proposing a new approach for the identification of new associations

between drugs and adverse drug events. Since most of the limitations of the

disproportionality models arise from the many biases inherent in spontaneous data

(Stephenson and Hauben, 2007), we propose the use of endogenous data to improve

the prediction of adverse drug events. The data used are extracted from the

biochemical structure of the drugs; we used both MACCS vectors and SMILES

strings to represent the drug structure. SMILES strings have been innovatively

treated as a language and mapped into an embedding space of latent variables

using ChemBERTa, a deep learning transformer model. In our analysis, we showed

that the use of data extracted with ChemBERTa from the chemical structures

of drugs combined with spontaneous data leads to a better performance in the

detection of adverse drug events. This procedure, if properly standardized, could

be of great help to the pharmacovigilance authorities during phase IV of drug

surveillance.

Future directions of research

Some future developments of the research work presented in this thesis ought to be

mentioned. Regarding the approach presented in Chapter 2, several improvements

could be made to the model. Being based on regression, it could be modified

to take into account the demographic variables of the subjects who experienced

the adverse drug event, including the proper covariates. Furthermore, to obtain

better predictive performance, the BIC-based hyperparameter selection could be

replaced with the permutation-based selection mentioned in Section 2.2.1, since

it was considered a valid alternative to the BIC selection by some authors in a

non-interaction scenario (Sabourin et al., 2015; Courtois et al., 2021).

The novel approach proposed in Chapter 3 paves the way for many more devel-

opments in pharmacovigilance. First, it can be extended to also address drug-drug

interactions, incorporating, for example, the large-scale prediction procedures dis-

cussed by Vilar et al. (2014). In addition, another method can be developed to

include patient demographic characteristics in predictive features. Similarly to the
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hierarchical lasso-bic model, the procedure that includes the biochemical data of

the drugs can also be validated using the O↵SIDES and TwoSIDES data frames,

which contain more data than the reference set already used. The inclusion of

biochemical features of drugs in the pharmacovigilance process to take place must

be included in an automated workflow. An interesting future development could

be the study of a standardized algorithm to be implemented in phase IV that

merges spontaneous data with biochemical data when a new data batch arrives

in a pharmacovigilance data set. Finally, new Bayesian disproportionality models

that include the drug’s biochemical structures could be investigated Our proposed

procedure ultimately combines the two types of data; a Bayesian model, on the

other hand, would have the advantage of incorporating the endogenous informa-

tion as a priori component, which is very consistent with factual reality.
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Appendix A

A.1 List of MACCS 116-bit features

Table A.1: List of MACCS features with description and corresponding
SMARTS (SMILES arbitrary target specification). SMARTS is a language for
substructural patterns of chemical compounds, closely related to SMILES.

No. Description SMARTS of pattern

1 ISOTOPE (’?’,0)

2 ISOTOPE Not complete (’[#103,#104]’,0)

3 Group IVa,Va,VIa Periods 4-6 (’[Ge,As,Se,Sn,Sb,Te,Tl,Pb,Bi]’,0)

4 actinide (’[Ac,Th,Pa,U,Np,Pu,Am,Cm,Bk,Cf,Es,Fm,Md,No,Lr]’,0)

5 Group IIIB,IVB (’[Sc,Ti,Y,Zr,Hf]’,0)

6 Lanthanide (’[La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu]’,0)

7 Group VB,VIB,VIIB (’[V,Cr,Mn,Nb,Mo,Tc,Ta,W,Re]’,0)

8 QAAA@1 (’[!C;!c;!#1]1⇠*⇠*⇠*⇠*1’,0)

9 Group VIII (’[Fe,Co,Ni,Ru,Rh,Pd,Os,Ir,Pt]’,0)

10 Group IIa (’[Be,Mg,Ca,Sr,Ba,Ra]’,0)

11 4M Ring (’*1⇠*⇠*⇠*⇠*1’,0)

12 Group IB,IIB (’[Cu,Zn,Ag,Cd,Au,Hg]’,0)

13 ON(C)C (’[O,o]⇠[N,n](⇠[C,c])⇠[C,c]’,0)

14 S-S (’[S,s]-[S,s]’,0)

15 OC(O)O (’[O,o]⇠[C,c](⇠[O,o])⇠[O,o]’,0)

16 QAA@1 (’[!C;!c;!#1]1⇠*⇠*⇠*1’,0)

17 CTC (’[C,c]#[C,c]’,0)

18 Group IIIA (’[B,Al,Ga,In,Tl]’,0)

19 7M Ring (’*1⇠*⇠*⇠*⇠*⇠*⇠*⇠*1’,0)

20 Si (’[Si]’,0)
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21 C=C(Q)Q (’[C,c]=[C,c](⇠[!C;!c;!#1])⇠[!C;!c;!#1]’,0)

22 3M Ring (’*1⇠*⇠*⇠*1’,0)

23 NC(O)O (’[N,n]⇠[C,c](⇠[O,o])⇠[O,o]’,0)

24 N-O (’[N,n]-[O,o]’,0)

25 NC(N)N (’[N,n]⇠[C,c](⇠[N,n])⇠[N,n]’,0)

26 C$=C($A)$A (’[C,c]=;@[C,c](@*)@*’,0)

27 I (’[I]’,0)

28 QCH2Q (’[!C;!c;!#1]⇠[CH2]⇠[!C;!c;!#1]’,0)

29 P (’P’,0)

30 CQ(C)(C)A (’[C,c]⇠[!C;!c;!#1](⇠[C,c])(⇠[C,c])⇠*’,0)

31 QX (’[!C;!c;!#1]⇠[F,Cl,Br,I]’,0)

32 CSN (’[C,c]⇠[S,s]⇠[N,n]’,0)

33 NS (’[N,n]⇠[S,s]’,0)

34 CH2=A (’[CH2]=*’,0)

35 Group IA (’[Li,Na,K,Rb,Cs,Fr]’,0)

36 S Heterocycle (’[$(S@*),$(s@*)]’,0)

37 NC(O)N (’[N,n]⇠[C,c](⇠[O,o])⇠[N,n]’,0)

38 NC(C)N (’[N,n]⇠[C,c](⇠[C,c])⇠[N,n]’,0)

39 OS(O)O (’[O,o]⇠[S,s](⇠[O,o])⇠[O,o]’,0)

40 S-O (’[S,s]-[O,o]’,0)

41 CTN (’[C,c]#[N,n]’,0)

42 F (’F’,0)

43 QHAQH (’[!C;!c;!#1;H,H2,H3,H4]⇠*⇠[!C;!c;!#1;H,H2,H3,H4]’,0)

44 OTHER (’?’,0)

45 C=CN (’[C,c]=[C,c]⇠[N,n]’,0)

46 BR (’Br’,0)

47 SAN (’[S,s]⇠*⇠[N,n]’,0)

48 OQ(O)O (’[O,o]⇠[!C;!c;!#1](⇠[O,o])(⇠[O,o])⇠*’,0)

49 CHARGE (’[-,-2,-3,-4,+,+2,+3,+4]’,0)

50 C=C(C)C (’[C,c]=[C,c](⇠[C,c])⇠[C,c]’,0)

51 CSO (’[C,c]⇠[S,s]⇠[O,o]’,0)

52 NN (’[N,n]⇠[N,n]’,0)

53 QHAAAQH (’[!#6;!#1;!H0]⇠*⇠*⇠*⇠[!#6;!#1;!H0]’,0)

54 QHAAQH (’[!#6;!#1;!H0]⇠*⇠*⇠[!#6;!#1;!H0]’,0)

55 OSO (’[O,o]⇠[S,s]⇠[O,o]’,0)

56 ON(O)C (’[O,o]⇠[N,n](⇠[O,o])⇠[C,c]’,0)

57 O Heterocycle (’[$(O@*),$(o@*)]’,0)
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58 QSQ (’[!C;!c;!#1]⇠[S,s]⇠[!C;!c;!#1]’,0)

59 Snot%A%A (’[S,s]!:*:*’,0)

60 S=O (’[S,s]=[O,o]’,0)

61 AS(A)A (’*⇠[S,s](⇠*)⇠*’,0)

62 A$!A$A (’*@*!@*@*’,0)

63 N=O (’[N,n]=[O,o]’,0)

64 A$A!S (’*@*!@[S,s]’,0)

65 C%N (’[C,c]:[N,n]’,0)

66 CC(C)(C)A (’[C,c]⇠[C,c](⇠[C,c])(⇠[C,c])⇠*’,0)

67 QS (’[!C;!c;!#1]⇠[S,s]’,0)

68 QHQH (’[!#6;!#1;!H0]⇠[!#6;!#1;!H0]’,0)

69 QQH (’[!C;!c;!#1]⇠[!#6;!#1;!H0]’,0)

70 QNQ (’[!C;!c;!#1]⇠[N,n]⇠[!C;!c;!#1]’,0)

71 NO (’[N,n]⇠[O,o]’,0)

72 OAAO (’[O,o]⇠*⇠*⇠[O,o]’,0)

73 S=A (’[S,s]=*’,0)

74 CH3ACH3 (’[CH3]⇠*⇠[CH3]’,0)

75 A!N$A (’*!@[N,n]@*’,0)

76 C=C(A)A (’[C,c]=[C,c](⇠*)⇠*’,0)

77 NAN (’[N,n]⇠*⇠[N,n]’,0)

78 C=N (’[C,c]=[N,n]’,0)

79 NAAN (’[N,n]⇠*⇠*⇠[N,n]’,0)

80 NAAAN (’[N,n]⇠*⇠*⇠*⇠[N,n]’,0)

81 SA(A)A (’[S,s]⇠*(⇠*)⇠*’,0)

82 ACH2QH (’*⇠[CH2]⇠[!#6;!#1;!H0]’,0)

83 QAAAA@1 (’[!C;!c;!#1]1⇠*⇠*⇠*⇠*⇠*1’,0)

84 NH2 (’[NH2]’,0)

85 CN(C)C (’[C,c]⇠[N,n](⇠[C,c])⇠[C,c]’,0)

86 CH2QCH2 (’[CH2][!C;!c;!#1][CH2]’,0)

87 X!A$A (’[F,Cl,Br,I]!@*@*’,0)

88 S (’[S,s]’,0)

89 OAAAO (’[O,o]⇠*⇠*⇠*⇠[O,o]’,0)

90 QHAACH2A (’[!#6;!#1;!H0]⇠*⇠*⇠[CH2]⇠*’,0)

91 QHAAACH2A (’[!#6;!#1;!H0]⇠*⇠*⇠*⇠[CH2]⇠*’,0)

92 OC(N)C (’[O,o]⇠[C,c](⇠[N,n])⇠[C,c]’,0)

93 QCH3 (’[!C;!c;!#1]⇠[CH3]’,0)

94 QN (’[!C;!c;!#1]⇠[N,n]’,0)
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95 NAAO (’[N,n]⇠*⇠*⇠[O,o]’,0)

96 5 M ring (’*1⇠*⇠*⇠*⇠*⇠*1’,0)

97 NAAAO (’[N,n]⇠*⇠*⇠*⇠[O,o]’,0)

98 QAAAAA@1 (’[!C;!c;!#1]1⇠*⇠*⇠*⇠*⇠*⇠*1’,0)

99 C=C (’[C,c]=[C,c]’,0)

100 ACH2N (’*⇠[CH2]⇠[N,n]’,0)

101 8M Ring or larger (’[r8,r9,r10,r11,r12]’,0)

102 QO (’[!C;!c;!#1]⇠[O,o]’,0)

103 CL (’Cl’,0)

104 QHACH2A (’[!#6;!#1;!H0]⇠*⇠[CH2]⇠*’,0)

105 A$A($A)$A (’[!C;!c;!#1]@*(@*)@*’,0)

106 QA(Q)Q (’[!C;!c;!#1]⇠*(⇠[!C;!c;!#1])⇠[!C;!c;!#1]’,0)

107 XA(A)A (’[F,Cl,Br,I]⇠*(⇠*)⇠*’,0)

108 CH3AAACH2A (’[CH3]⇠*⇠*⇠*⇠[CH2]⇠*’,0)

109 ACH2O (’*⇠[CH2]⇠[O,o]’,0)

110 NCO (’[N,n]⇠[C,c]⇠[O,o]’,0)

111 NACH2A (’[N,n]⇠*⇠[CH2]⇠*’,0)

112 AA(A)(A)A (’*⇠*(⇠*)(⇠*)⇠*’,0)

113 Onot%A%A (’[O,o]!:*:*’,0)

114 CH3CH2A (’[CH3]⇠[CH2]⇠*’,0)

115 CH3ACH2A (’[CH3]⇠*⇠[CH2]⇠*’,0)

116 CH3AACH2A (’[CH3]⇠*⇠*⇠[CH2]⇠*’,0)

117 NAO (’[N,n]⇠*⇠[O,o]’,0)

118 ACH2CH2A >1 (’*⇠[CH2]⇠[CH2]⇠*’,1)

119 N=A (’[N,n]=*’,0)

120 Heterocyclic atom >1 (’[!C;!c;R]’,1)

121 N Heterocycle (’[(N@⇤),(n@*)]’,0)

122 AN(A)A (’*⇠[N,n](⇠*)⇠*’,0)

123 OCO (’[O,o]⇠[C,c]⇠[O,o]’,0)

124 QQ (’[!C;!c;!#1]⇠[!C;!c;!#1]’,0)

125 Aromatic Ring >1 (’?’,0)

126 A!O!A (’*!@[O,o]!@*’,0)

127 A$A!O >1 (’*@*!@[O,o]’,1)

128 ACH2AAACH2A (’*⇠[CH2]⇠*⇠*⇠*⇠[CH2]⇠*’,0)

129 ACH2AACH2A (’*⇠[CH2]⇠*⇠*⇠[CH2]⇠*’,0)

130 QQ >1 (’[!C;!c;!#1]⇠[!C;!c;!#1]’,1)

131 QH >1 (’[!#6;!#1;!H0]’,1)
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132 OACH2A (’[O,o]⇠*⇠[CH2]⇠*’,0)

133 A$A!N (’*@*!:[N,n]’,0)

134 X (HALOGEN) (’[F,Cl,Br,I]’,0)

135 Nnot%A%A (’[N,n]!:*:*’,0)

136 O=A>1 (’[O,o]=*’,1)

137 Heterocycle (’[!C;!c;R]’,0)

138 QCH2A>1 (’[!C;!c;!#1]⇠[CH2]⇠*’,1)

139 OH (’[OH,OH2,OH3]’,0)

140 O >3 (’[O,o]’,3)

141 CH3 >2 (’[CH3]’,2)

142 N >1 (’[N,n]’,1)

143 A$A!O (’*@*!@[O,o]’,0)

144 Anot%A%Anot%A (’*!:*:*!:*’,0)

145 6M ring >1 (’*1⇠*⇠*⇠*⇠*⇠*⇠*1’,1)

146 O >2 (’[O,o]’,2)

147 ACH2CH2A (’*⇠[CH2]⇠[CH2]⇠*’,0)

148 AQ(A)A (’*⇠[!C;!c;!#1](⇠*)⇠*’,0)

149 CH3 >1 (’[CH3]’,1)

150 A!A$A!A (’*!@*@*!@*’,0)

151 NH (’[N!H0]’,0)

152 OC(C)C (’[O,o]⇠[C,c](⇠[C,c])⇠[C,c]’,0)

153 QCH2A (’[!C;!c;!#1]⇠[CH2]⇠*’,0)

154 C=O (’[C,c]=[O,o]’,0)

155 A!CH2!A (’*!@[CH2]!@*’,0)

156 NA(A)A (’[N,n]⇠*(⇠*)⇠*’,0)

157 C-O (’[C,c]-[O,o]’,0)

158 C-N (’[C,c]-[N,n]’,0)

159 O>1 (’[O,o]’,1)

160 CH3 (’[CH3]’,0)

161 N (’[N,n]’,0)

162 Aromatic (’a’,0)

163 6M Ring (’*1⇠*⇠*⇠*⇠*⇠*⇠*1’,0)

164 O (’[O,o]’,0)

165 Ring (’[R]’,0)

166 Fragments (’?’,0)
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A.2 Result of the support vector machine classi-

fier on the OMOP Gold Standard Database.

Table A.2: Result of the support vector machine classifier on the OMOP
Gold Standard Database. Comparison between the set of features originated
from ChemBERTa and MACCS fingerprint vectors.

ADE Feature set AUROC lowAUROC uppAUROC

AMI ChemBERTa 0.61 0.38 0.80
AMI MACCS 0.59 0.38 0.79

AKI ChemBERTa 0.82 0.36 0.97
AKI MACCS 0.73 0.43 0.80

ALI ChemBERTa 0.59 0.40 0.79
ALI MACCS 0.53 0.37 0.70

GB ChemBERTa 0.74 0.41 0.93
GB MACCS 0.63 0.31 0.83

AUPRC lowAUPRC uppAUPRC

AMI ChemBERTa 0.66 0.35 0.89
AMI MACCS 0.54 0.22 0.84

AKI ChemBERTa 0.70 0.19 0.96
AKI MACCS 0.77 0.21 1

ALI ChemBERTa 0.81 0.58 0.94
ALI MACCS 0.77 0.51 0.93

GB ChemBERTa 0.64 0.23 0.92
GB MACCS 0.49 0.29 0.71
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Table A.3: Result of the support vector machine classifier on the OMOP
Gold Standard Database. Comparison between the set of features originated
from ChemBERTa, 2019 FAERS data and both above.

ADE Feature set AUROC lowAUROC uppAUROC

AMI ChemBERTa 0.61 0.38 0.80
AMI FAERS 0.81 0.58 1
AMI ChemBERTa + FAERS 0.78 0.62 0.95

AKI ChemBERTa 0.82 0.36 0.97
AKI FAERS 0.85 0.38 1
AKI ChemBERTa + FAERS 0.93 0.84 1

ALI ChemBERTa 0.59 0.40 0.79
ALI FAERS 0.63 0.40 0.82
ALI ChemBERTa + FAERS 0.77 0.65 0.91

GB ChemBERTa 0.74 0.41 0.93
GB FAERS 0.81 0.49 0.93
GB ChemBERTa + FAERS 0.90 0.74 1

AUPRC lowAUPRC uppAUPRC

AMI ChemBERTa 0.66 0.35 0.89
AMI FAERS 0.83 0.52 0.95
AMI ChemBERTa + FAERS 0.85 0.68 0.96

AKI ChemBERTa 0.70 0.19 0.96
AKI FAERS 0.78 0.40 1
AKI ChemBERTa + FAERS 0.83 0.69 1

ALI ChemBERTa 0.81 0.58 0.94
ALI FAERS 0.83 0.62 0.93
ALI ChemBERTa + FAERS 0.91 0.76 0.98

GB ChemBERTa 0.64 0.23 0.92
GB FAERS 0.67 0.21 0.98
GB ChemBERTa + FAERS 0.69 0.75 0.99
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