
Citation: Di Nunzio, G.M.; Minzoni,

R. A Thorough Reproducibility Study

on Sentiment Classification:

Methodology, Experimental Setting,

Results. Information 2023, 14, 76.

https://doi.org/10.3390/

info14020076

Academic Editor: Ralf Krestel

Received: 21 December 2022

Revised: 14 January 2023

Accepted: 18 January 2023

Published: 28 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

A Thorough Reproducibility Study on Sentiment Classification:
Methodology, Experimental Setting, Results
Giorgio Maria Di Nunzio 1,*,† and Riccardo Minzoni 2,†

1 Department of Information Engineering, University of Padova, 35122 Padova, Italy
2 Department of Mathematics, University of Padova, 35122 Padova, Italy
* Correspondence: giorgiomaria.dinunzio@unipd.it; Tel.: +39-049-827-7613
† These authors contributed equally to this work.

Abstract: A survey published by Nature in 2016 revealed that more than 70% of researchers failed in
their attempt to reproduce another researcher’s experiments, and over 50% failed to reproduce one of
their own experiments; a state of affairs that has been termed the ‘reproducibility crisis’ in science.
The purpose of this work is to contribute to the field by presenting a reproducibility study of a Natural
Language Processing paper about “Language Representation Models for Fine-Grained Sentiment
Classification”. A thorough analysis of the methodology, experimental setting, and experimental
results are presented, leading to a discussion of the issues and the necessary steps involved in this
kind of study.

Keywords: reproducibility; natural language processing; sentiment classification; language models

1. Introduction

Due to advances in knowledge and technology, the fields of Artificial Intelligence
(AI) and Machine Learning (ML) have grown in recent years, leading to a significant
increase in published papers. Since then, one of the new challenges in machine learning
research has been to ensure that presented and published results are sound and reliable [1].
Reproducibility, that is obtaining similar results as presented in a paper or talk, using the
same code and data (when available), is a necessary step in verifying the reliability of
research findings. Indeed, it must be considered as one of the cornerstones of scientific
research: an inability to reproduce certain results is, with few exceptions, seen as casting
doubt on their validity. Reproducibility is also an important step in promoting open and
accessible research, thereby allowing the scientific community to quickly integrate new
findings and convert ideas to practice. It also promotes the use of robust experimental
workflows, which potentially reduce unintentional errors. Nevertheless, a 2016 survey [2]
revealed that more than 70% of researchers failed in their attempt to reproduce another
researcher’s experiments, and over 50% failed to reproduce one of their own experiments;
a state of affairs that has been termed the ‘reproducibility crisis’ in science. After the
publication of this article, the research community has started to pay more and more
attention to this problem. Some examples are the following: (for this brief review of
the literature, we searched on Google Scholar for the most important articles, in terms
of high-impact journals in Computer Science, for each year from 2017 until 2023 about
“reproducibility crisis” in “computer science”).

• The main aim of [3] is to make a library of semantic similarity measures publicly
available for the first time, together with a set of reproducible experiments whose
aims are the exact replication of three experimental surveys. In addition, the authors
propose a self-contained experimental platform which can be easily used for extensive
experimentation, even with no software coding.

Information 2023, 14, 76. https://doi.org/10.3390/info14020076 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14020076
https://doi.org/10.3390/info14020076
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-9709-6392
https://orcid.org/0000-0002-1079-5594
https://doi.org/10.3390/info14020076
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14020076?type=check_update&version=3

Information 2023, 14, 76 2 of 36

• In [4], the authors present a number of controllable environment settings that often
go unreported, and illustrate that these are factors that can cause irreproducibility of
results as presented in the literature. These environmental factors have an effect on the
effectiveness of neural networks due to the non-convexity of the optimization surface.

• In the study proposed by [5], the focus is on the communication aspect, investigating
students’ current understanding of reproducibility, whether they are able to com-
municate reproducible data analysis, and if not, what skills are missing and what
types of training can be helpful. Training on reproducible data analysis should be an
indispensable component in data science education.

• The authors of [6] review the extent and causes of the replication crisis in many areas
of science, with a focus on issues relating to the use of null hypothesis significance as
an evidentiary criterion. They also discuss alternative ways for analyzing data and
present evidence for hypothesized effects. They also argue for improved openness
and transparency in experimental research.

• In [7], the authors attempt a complete reproduction of five automatic malware de-
tectors from the literature, and they discuss to what extent they are reproducible.
In particular, they provide insights on the implications around the guesswork that
may be required to finalize a working implementation.

• A survey of machine learning platforms with the aim of studying whether they provide
features that simplify making experiments reproducible out-of-the-box [8] showed
that none of the studied platforms support this feature set; moreover, the experiment
reveals a statistically significant difference in results when the exact same experiment
is conducted on different data sets.

• In [9], the authors propose a methodological approach that not only provides a replica-
ble experimental analysis but also provides researchers with a workflow using existing
tools that can be transposed to other domains with only little manual work.

In Table 1, we show a summary of the main findings of these papers.

Table 1. Overview of the latest research on reproducibility issues.

Reference Year Main Objective, Issues, and Results

[3] 2017 Library of semantic similarity measures publicly available for
the first time, together with a set of reproducible experiments.

[4] 2018
A number of controllable environment settings that often go
unreported can cause irreproducibility of results as presented in
the literature

[5] 2019
Investigating students’ skills and understanding of
reproducibility, whether they are able to communicate
reproducible data analysis.

[6] 2020
Issues relating to the use of null hypothesis significance and
discussion on alternative ways to analyze data and present
evidence for hypothesized effects.

[7] 2021
A complete reproduction of five models and insights on the
implications around the guesswork that may be required to
finalize a working implementation.

[8] 2022
A survey of machine learning platforms to study whether they
provide features that simplify making experiments reproducible
out-of-the-box.

[9] 2023
A methodological approach for a replicable experimental
analysis and a workflow using existing tools that can be
transposed to other domains.

Information 2023, 14, 76 3 of 36

The past few years have seen an impressive range of new initiatives and events in the
fields of Natural Language Processing (NLP) and Information Retrieval (IR) that address
how reproducibility should be defined, measured and addressed. For instance, in 2019,
the Neural Information Processing Systems (NeurIPS) (https://reproducibility-challenge.
github.io/neurips2019/ (accessed on 19 January 2023)) conference, the premier interna-
tional conference for research in machine learning, introduced a reproducibility program,
designed to improve standards across the community for how we conduct, communicate,
and evaluate machine learning research. The program contained three components: a code
submission policy, a community-wide reproducibility challenge, and the inclusion of the
Machine Learning Reproducibility checklist as part of the paper submission process [10],
later also adopted by EMNLP’20 (https://2020.emnlp.org/blog/2020-05-20-reproducibility
(accessed on 19 January 2023)) and AAAI’21 (https://aaai.org/Conferences/AAAI-21
/reproducibility-checklist/ (accessed on 19 January 2023)). Other conferences have fore-
grounded reproducibility via calls, chairs’ blogs, special themes and social media posts.
Sharing code, data and supplementary material providing details about data, systems,
and training regimes is firmly established in the ML/NLP/IR community, with virtually
all main events now encouraging and making space for it (https://ecir2020.org/call-for-
reproducibility-papers/, https://sigir.org/sigir2022/call-for-reproducibility-track-papers/
(accessed on 19 January 2023)).

The purpose of this work is to contribute to this field of research by reproducing
the experiment and results from the 2020 paper “Language Representation Models for
Fine-Grained Sentiment Classification” [11]. The chosen NLP task is sentiment classification,
where the aim is detecting positive or negative sentiments in text [12]. The discussion will
be centered on the methodology employed during the experiment, and the techniques used
to replicate the results and the evaluation methods applied by the authors. The project
is mainly focused on the BERT architecture (Bidirectional Encoder Representation from
Transformers) created by Google AI [13], which is a neural network that relies entirely on
attention mechanism, and its alternatives, by means of several approaches.

We will discuss the (few) flaws and inconsistencies of the original paper and comment
on the source code step by step. We will reason about the mistakes, what derived from
such errors, and suggest a method for recovering from that, after trying to reproduce the
stated results with the available tools. We also provide the source code of our paper (https:
//github.com/riccardominzoni/reproducibilitycasestudy (accessed on 19 January 2023)).

The paper is organized as follows: First of all, in Section 2, we define the terminology
used to define what reproducibility means at the international level; in Section 3, we
introduce the original article and present the task, the dataset, and the methodology used.
Section 4 describes the setting of the experiment in detail to reproduce the original paper,
while in Section 5, the results of the reproducibility experiment are discussed. We give our
final remarks in Section 7.

2. Terminology for Reproducing Experiments

Before going any further, it is worth defining a few terms that have been used
(sometimes interchangeably) to describe reproducibility and related concepts. Repro-
ducibility research uses a wide range of closely related terms, often with conflicting
meanings, including reproducibility, repeatability, replicability, recreation, re-run, ro-
bustness, repetition, and generalizability. The two most frequently used ‘R-terms’, re-
producibility and replicability, are also the most problematic, with several different def-
initions. For instance, the ACM (Association for Computing Machinery, 2020) (https:
//www.acm.org/publications/policies/artifact-review-badging (accessed on 19 January
2023)), has stated that results have been reproduced if “obtained in a subsequent study by a
person or team other than the authors, using, in part, artifacts provided by the author”, and
replicated if “obtained in a subsequent study by a person or team other than the authors,
without the use of author-supplied artifacts”. The definitions are tied to team and software
(artifacts), but it is unclear how much of the latter have to be the same for reproducibility,

https://reproducibility-challenge.github.io/neurips2019/
https://reproducibility-challenge.github.io/neurips2019/
https://2020.emnlp.org/blog/2020-05-20-reproducibility
https://aaai.org/Conferences/AAAI-21/reproducibility-checklist/
https://aaai.org/Conferences/AAAI-21/reproducibility-checklist/
https://ecir2020.org/call-for-reproducibility-papers/
https://ecir2020.org/call-for-reproducibility-papers/
https://sigir.org/sigir2022/call-for-reproducibility-track-papers/
https://github.com/riccardominzoni/reproducibilitycasestudy
https://github.com/riccardominzoni/reproducibilitycasestudy
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

Information 2023, 14, 76 4 of 36

and how different the team needs to be for either concept. Instead, “Reproducing the result
of a computation means running the same software on the same input data and obtaining
the same results. [. . .] Replicating a published result means writing and then running new
software based on the description of a computational model or method provided in the orig-
inal publication, and obtaining results that are similar enough to be considered equivalent”.
are the definitions tied to new vs. original software given by Rougier et al. [14]. It is clear
from the many reports of failures to obtain the ‘same results’ with the ‘same software and
data’ in recent years that the above definitions raise practical questions, such as how to tell
the ‘same software’ from ‘new software’, and how to determine the equivalence of results.
Wieling et al. [15] define reproducibility as “the exact re-creation of the results reported in a
publication using the same data and methods”, but then discuss (the failure of) replicating
results without defining that term. In contrast, some scientists, i.e., Whitaker [16], decided
to tie definitions to data as well as code; see Table 2.

Table 2. Whitaker’s definitions of R-Terms [16] (table adapted from [17]).

Data

Same Different

Code
Same Reproducible Replicable

Different Robust Generalisable

The International Vocabulary of Metrology (VIM) [18] offers a common terminological
denominator thanks to extreme precision of the definitions used. The VIM definitions of
reproducibility and repeatability (no other R-terms are defined) are entirely general, made
possible by two key differences compared to the NLP/ML definitions above. Firstly, in a key
conceptual shift, reproducibility and repeatability are properties of measurements (not of
systems or abstract findings). The important difference is that the concept of reproducibility
now references a specified way of obtaining a measured quantity value (which can be an
evaluation metric, statistical measure, human evaluation method, etc. in NLP). Secondly,
reproducibility and repeatability are defined as the precision of a measurement under
specified conditions, i.e., the distribution of the quantity values obtained in repeat (or
replicate) measurements.

In VIM, repeatability is the precision of measurements of the same or similar object
obtained under the same conditions, as captured by a specified set of repeatability con-
ditions, whereas reproducibility is the precision of measurements of the same or similar
object obtained under different conditions, as captured by a specified set of reproducibil-
ity conditions. To make the VIM terms more recognizable in an NLP context, we also
call repeatability reproducibility under the same conditions, and (VIM) reproducibility
reproducibility under varied conditions [17].

Reproduction under the same conditions means the closest thing to an exact recreation
or reuse of an existing system and evaluation set-up, as well as a comparison of results,
while reproduction under varied conditions can be explained as a reproduction study with
deliberate variation of one or more aspects of the system and/or measurement, as well as
a comparison of results. Since in our experiment, there is variation of aspects of the system
and variation inside the code, we will refer to our work as a reproducibility study.

3. Case Study

This reproducibility study began around the second semester of 2021. At that time,
we carried out a search of the most recent papers on sentiment classification that had
the following requirements: a standard benchmark, source code available in Python, and
state-of-the-art results. The paper that met all these conditions was “Language Represen-
tation Models for Fine-Grained Sentiment Classification” [11], published in May 2020 by
Cheang et al. The paper under examination was posted on the ‘Papers with code’ platform
(https://paperswithcode.com/paper/language-representation-models-for-fine (accessed

https://paperswithcode.com/paper/language-representation-models-for-fine

Information 2023, 14, 76 5 of 36

on 19 January 2023)), and the dataset also has a track record as one of the best performing
models in terms of accuracy (https://paperswithcode.com/sota/sentiment-analysis-on-
sst-5-fine-grained (accessed on 19 January 2023)).

As the title suggests, the scope of the work was to perform a sentiment classification
using a fine-grained dataset in a Natural Language Processing task. The work was in-
tended to be a replication and subsequent extension of the work previously described in
Munikar et al. (2019) [19]. It shows how the embedding tool “Bidirectional Encoder Rep-
resentations from Transforms” allows a simple model to achieve state-of-the-art accuracy
in the classification task using the Stanford Sentiment Tree (SST) dataset. Munikar et al.
performed binary and fine-grained sentiment classifications exploiting the recently (at the
time) implemented BERT model in its first two versions, BERTBASE and BERTLARGE. Since
the publication of this paper in 2019, several alternatives for the BERT architecture have
been published, with the three primary ones being AlBERT [20] (Lan et al., 2019), Distil-
BERT [21] (Sanh et al., 2019) and RoBERTa [22] (Liu et al., 2019). The authors of our case
study examined whether there is an improvement when it is applied to a novel task, namely
fine-grained classification, since these models reported some improvements over BERT on
the popular benchmarks GLUE, SQuAD, and RACE [23], but, none of them have had been
applied to the sentiment classification task yet.

The following sections describe a detailed analysis of their work: from the sentiment
classification task to the dataset and the models used to classify the data.

3.1. Task: Fine-Grained Sentiment Classification

The work published in the article focused on fine-grained sentiment classification and,
in particular, a multi-class classification task where text can be categorized into five classes.
The task is to predict whether the text (a document, a sentence, a phrase, etc.) expresses
either a positive or negative sentiment.

The aim of the paper is to train a neural model (a BERT model) to classify movie re-
views into five classes (negative, somewhat negative, neutral, somewhat positive, positive)
based on the phrase context.

3.2. Dataset: Stanford Sentiment Tree (SST)

In 2013 Socher et al. [24] introduced the Stanford Sentiment Tree (SST) dataset, a collec-
tion of phrases and sentences that would become one of the most used due to its particular
structure. It is the first corpus with fully labeled parse trees, which allows for a complete
analysis of the compositional effects of sentiment in language.

It is based on the dataset introduced by Pang and Lee (2005) [25]. It includes 11,855 sen-
tences extracted from movie reviews and subsequently parsed with the Stanford parser
(Klein and Manning, 2003) [26], resulting in a total of 215,154 unique texts of varying
lengths from those parse trees. At least three human judges labeled each word, displayed
individually or in 10-g, 20-g, and full sentences on a scale from 1 to 25 (respectively very
negative to very positive), paying extreme attention to not interfering with labeling and
being as objective as possible.

Figure 1 shows an example with a clear compositional tree structure, with the whole
sentence as the root node and the individual words as leaf nodes, and a unique label for
every word, branch, and node (−−, −, 0, +, ++). We can see how the right branch is mainly
labeled as positive but how, in reality, at the root level the sentence assumes a negative
meaning. This is the actual meaning of compositional structure: based on the branch we are
considering, the meaning of a sentence could be negative or positive, but once we encounter
a negation term, the complete sentiment changes. Hence, the unique tree architecture can
capture the effects of composition on sentence semantics.

https://paperswithcode.com/sota/sentiment-analysis-on-sst-5-fine-grained
https://paperswithcode.com/sota/sentiment-analysis-on-sst-5-fine-grained

Information 2023, 14, 76 6 of 36

Figure 1. Sample sentiment tree from SST-5 (figure from the original paper [11]).

The name SST-5 is used when the range from 1 to 25 is binned into five classes: very
negative, negative, neutral, positive, and very positive. In Table 3, we show a breakdown
of the number of labels in the dataset.

Table 3. SST-5 label distribution.

Set Label 1 Label 2 Label 3 Label 4 Label 5 Total

Training 1092 2218 1624 2322 1288 8544
Validation 139 289 229 279 165 1101

Test 279 633 389 510 399 2210

3.3. Transformers

Neural models such as transformers [27] are able to dispense with recurrence and
convolutions entirely because they rely solely on attention mechanisms to draw global
dependencies between input and output. The models exploited in the article are based
entirely on these two concepts: attention mechanism and Transformers, and on transfer
learning, a process in which a model is pre-trained and then fine-tuned for a downstream
task. In recent years, thanks to their unique and innovative composition, these advanced
the state-of-the-art in many popular NLP tasks, confirming the fact that transfer learning
has officially become the de facto standard in almost every field of data science. Indeed,
the possibility of exploiting algorithms and models which would require an enormous
computational capability to be trained, but instead are already trained on general pur-
poses, meaning that almost every computer could fine-tune them with just a few hours
of training, is revolutionary. Additionally, nowadays the most famous models can be
easily downloaded from their official sites, so that everyone can use them for any specific
task. Our discussion continues in more detail for each model and its architecture in the
following subsections.

3.3.1. BERT

At Google AI in 2019, Devlin et al. [13] created Bidirectional Encoder Representation
from Transformers, BERT, a conceptually simple but, at the same time, empirically powerful
architecture able to obtain new state-of-the-art results on eleven natural language processing
tasks over the years. BERT is designed to pre-train deep bidirectional representations from
unlabeled text by jointly conditioning on both the left and right context in all layers. This
distinctive feature allows the pre-trained model to be globally prepared for any NLP
task. Indeed, it can be fine-tuned with just one additional output layer at the end of the
architecture in order to perform a wide range of tasks with a minimal difference between
the pre-trained structure and the final downstream one. BERT’s model architecture is

Information 2023, 14, 76 7 of 36

a multi-layer bidirectional Transformer encoder based on the original implementation
described in Vaswani et al. (2017) [28].

It follows an overall encoder–decoder structure: the encoder maps an input se-
quence of symbol representations (x1, . . . , xn) to a sequence of continuous representations
z = (z1, . . . , zn). Given z, the decoder generates an output sequence (y1, . . . , ym) of sym-
bols one element at the time. At each step, the model is autoregressive, consuming the
previously generated symbols as additional input when generating the next. In the left and
right halves of Figure 2 the encoder and decoder, respectively, are shown. They both exploit
stacked self-attention and pointwise, fully connected layers, giving the usual symmetrical
structure but, in addition, a third layer is present in the decoder which performs a further
attention mechanism. The details of the design are described as follows:

• Encoder:
Composed of a stack of N = 6 identical layers, each one with the two sub-layers
of a multi-head self-attention mechanism and a position-wise fully connected feed-
forward network. A residual connection around the sub-layers, followed by layer
normalization, is implemented, that is, the output of each sub-layer is LayerNorm(x +
Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer itself.
Outputs of the fixed dimension dmodel = 512 are produced by all sub-layers and the
embedding layers in order to facilitate these residual connections.

• Decoder:
Composed of a stack of N = 6 identical layers, as well as the encoder. In addition to
the two sub-layers, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, they employ
residual connections around each of the sub-layers, followed by layer normalization.
The self-attention sub-layer in the decoder stack is modified in order to prevent
positions from attending to subsequent positions. This masking, combined with the
fact that the output embeddings are offset by one position, ensures that the predictions
for position i can depend only on the known outputs at positions less than i.

Figure 2. Model Architecture of Transformer (figure adapted from [29]).

Information 2023, 14, 76 8 of 36

3.3.2. Word Embeddings

Since BERT can handle a variety of downstream tasks, the input representation is able
to unambiguously represent both a single sentence and a pair of sentences (e.g., 〈Question,
Answer〉) in one token sequence. A “sequence” refers to the input token sequence to BERT,
which may be a single sentence or two sentences packed together. In order to define an
input and output representation, at first WordPiece embeddings [30], with a 30,000 token
vocabulary, is exploited. Next, two custom embeddings are implemented. The first token
of every sequence is always a special classification token ([CLS]). The final hidden state
corresponding to this token is used as the aggregate sequence representation for classifica-
tion tasks. Furthermore, sentence pairs are packed together into a single sequence. They
differentiate the sentences in two ways. First, they separate them with a special token
([SEP]). Second, they add a learned embedding to every token indicating whether it belongs
to sentence A or sentence B. For a given token, its final input representation is constructed
by summing the corresponding token, segment, and position embeddings. A visualization
of this construction can be seen in Figure 3.

Figure 3. BERT input representation (figure adapted from [31]).

3.3.3. Pre-Training and Fine-Tuning

There are two existing strategies for applying pre-trained language representations
to downstream tasks: f eature-based and f ine-tuning [32]. The feature-based approach
uses task-specific architectures that include the pre-trained representations as additional
features. The fine-tuning approach introduces minimal task-specific parameters, and is
trained on the downstream tasks by simply fine-tuning all pre-trained parameters. The two
approaches share the same objective function during pre-training, where they use unidi-
rectional language models to learn general language representations. There have been
discussions about the fact that current techniques restrict the power of the pre-trained
representations, especially for the fine-tuning approaches. The major limitation is that
standard language models are unidirectional, and this limits the choice of architectures that
can be used during pre-training. Such restrictions are suboptimal for sentence-level tasks,
and could be very harmful when applying fine-tuning based approaches to token-level
tasks, for example, question-answering tasks, where it is crucial to incorporate context from
both directions. For this reason, BERT’s creators did not use traditional approaches but
instead, they decided to pre-train the model using two unsupervised tasks:

• Masked LM:
Standard conditional language models can only be trained left-to-right or right-to-
left, since bidirectional conditioning would allow each word to indirectly “see itself”,
and the model could trivially predict the target word in a multilayered context. In order
to train a deep bidirectional representation, the authors simply mask some percentage
of the input tokens at random, and then predict those masked tokens.
In all of the experiments, they mask 15% of all WordPiece tokens in each sequence
at random, and they only predict the masked words rather than reconstructing the
entire input. Although this allows them to obtain a bidirectional pre-trained model,
a downside is that they create a mismatch between pre-training and fine-tuning, since

Information 2023, 14, 76 9 of 36

the [MASK] token does not appear during fine-tuning. To mitigate this, they do not
always replace “masked” words with the actual [MASK] token.
The training data generator chooses 15% of the token positions at random for predic-
tion. If the i-th token is chosen, the i-th token is replaced with (1) the [MASK] token
80% of the time, (2) a random token 10% of the time (3), and the unchanged i-th token
10% of the time. Then, the model predicts the original token with cross-entropy loss.

• Next Sentence Prediction:
In order to train a model that understands sentence relationships, the model is pre-
trained for a binarized next sentence prediction task that can be trivially generated
from any monolingual corpus. Specifically, when choosing the sentences A and B for
each pretraining example, 50% of the time B is the actual next sentence that follows
A (labeled as IsNext), and 50% of the time it is a random sentence from the corpus
(labeled as NotNext).
Despite its simplicity, pre-training towards this task is very beneficial for many impor-
tant downstream tasks that are based on understanding the relationship between two
sentences, which is not directly captured by language modeling.

The pre-training corpus is composed by the BooksCorpus [33] (800 M words) and English
Wikipedia (https://github.com/jind11/word2vec-on-wikipedia (accessed on 19 January 2023))
(2500 M words), for which they remove the lists, tables and headers and keep only the text
passages. This method of using a document-level corpus rather than a shuffled sentence-level
corpus allows the retrieval of long contiguous sequences.

During the training, an Adam optimizer [34] with β1 = 0.9, β2 = 0.98 and ε = 10−9

is implemented. The learning rate was varied over the course of training, according to
the formula:

lrate = d−0.5
model ·min(step_num−0.5, step_num · warmup_steps−1.5) (1)

This corresponds to increasing the learning rate linearly for the first warmup_steps
training steps, and decreasing it thereafter proportionally to the inverse square root of the
step number. The variable warmup_steps was set to 4000.

Fine-tuning is relatively inexpensive and straightforward since the self-attention
mechanism in the Transformer allows BERT to model many downstream tasks—whether
they involve single text or text pairs—by swapping out the appropriate inputs and outputs.
For applications involving text pairs, a common pattern is to independently encode text
pairs before applying bidirectional cross attention. BERT instead uses the self-attention
mechanism to unify these two stages, as encoding a concatenated text pair with self-
attention effectively includes bidirectional cross attention between two sentences. For each
task, one simply has to plug in the task-specific inputs and outputs into BERT and fine-tune
all the parameters end-to-end. At the input, sentence A and sentence B from pre-training
are analogous to (1) sentence pairs in paraphrasing, (2) hypothesis–premise pairs in
entailment, (3) question–passage pairs in question answering, and (4) a degenerate text–∅
pair in text classification or sequence tagging. At the output, the token representations
are fed into an output layer for token level tasks, such as sequence tagging or question
answering, while the [CLS] representation is fed into an output layer for classification, such
as entailment or sentiment analysis.

3.3.4. BERT Alternatives

In 2019, Devlin et al. introduced the first two versions of BERT, BERTBASE and BERTLARGE.
In the same year, other alternatives were created. In particular, we will describe in brief:
AlBERT (Lan et al., 2019) [20], DistilBERT (Sanh et al., 2019) [21], and RoBERTa (Liu et al.,
2019) [22].

In the original paper, Cheang et al. aimed to expand Munikar et al.’s experiments with
those new alternatives, since no such results regarding fine-grained sentiment classification

https://github.com/jind11/word2vec-on-wikipedia

Information 2023, 14, 76 10 of 36

had been published yet, and those alternatives were known to have achieved improvements
over BERT on several benchmarks, such as GLUE, SQuAD, and RACE [23].

In this section, we define the number of layers (i.e., Transformers blocks) as L, the hid-
den size as H, and the number of self-attention heads as A.

As Table 4 shows, BERTBASE and BERTLARGE have respective sizes of (L = 12, H = 768,
A = 12, Total Parameters = 110 M) and (L = 24, H = 1024, A = 16, Total Parameters = 340 M).
The model’s creators chose the size of BERTBASE to be the same as OpenAI GPT, Generative
Pre-Trained Transformer (Radford et al., 2018, [35]), since they wanted to compare their
model with one already popular Transformer. However, these two models have a signif-
icant difference: the BERT Transformer uses bidirectional self-attention, while the GPT
Transformer uses constrained self-attention, where every token can only attend to context
to its left. The BERTLARGE model has more than 3× the trainable parameters with respect
to the BASE version. Inevitably, this feature leads to an increase in training time and the
computation capability required by the model to be trained or fine-tuned, but, on the other
hand, its structure is able to retrieve patterns and characteristics on the training dataset that
the BERTBASE model cannot recognize. Indeed, in each NLP benchmark, it outperformed
its BASE version based on every possible evaluation metric, at the expense of an increase in
training time.

Table 4. Model Comparison (table adapted from [11]).

Model No. Layers No. Hidden Units No. Self-Attention Heads(Total Trainable Parameters)

BERTBASE 12 768 12
(110 M)

BERTLARGE 24 1024 16
(340 M)

AlBERTBASE 12 768 12
(12 M)

DistilBERTBASE 6 768 12
(66 M)

RoBERTaBASE 12 768 12
(125 M)

RoBERTaLARGE 24 1024 16
(355 M)

4. Experimental Settings for Reproducibility

Setting up a project for reproducibility purposes is an articulate procedure composed
of different phases, each necessary for the completion of the experiment. Unfortunately,
the majority of published papers do not pay enough attention to this aspect. Usually, the
papers focus on the results achieved during the experiment or the main settings, such as
architectures and models implemented, omitting other information that can be decisive in
works like the one presented in this paper.

In this section, we are going to list every point needed to set up the experiment to
be as similar as possible to the one performed by the authors of the original paper. We
will discuss the difficulties and pitfalls encountered in this process. The section is divided
into two main parts: the first part is related to the environment in which the experiment
will run, its components and to how properly set up an environment in this specific case;
the second one is related to the source code that is the core component of an experiment,
the scripts implemented therein taking into consideration every type of aspect that could
alter the reproducibility of the experiment.

4.1. Environment

With the term environment, we define the system in which the codes and scripts will
be run. We can consider several tools as part of their structure:

• Hardware;

Information 2023, 14, 76 11 of 36

• Programming language;
• Libraries and packages imported.

The authors of the article taken into consideration provided some information about
the system used, for example the hardware exploited, and obviously the programming
language, but they left smaller details out that could have helped us in order to perfectly
recreate their experiment environment, as we will see.

The first thing that can be noted is the tool used to write the scripts. All the codes
are written using Jupyter Notebook (https://jupyter.org (accessed on 19 January 2023)).
In this project, it was used with the Python 3 programming language. Since notebook
documents are both human-readable documents containing the analysis description and
the results (figures, tables, etc.), as well as executable documents which can be run to
perform data analysis, they have been considered as one of the most user-friendly tools for
reproducibility purposes.

A summary of the comparison of the environments of the two experiments is shown in
Table 5. The source code of the reproduced experiment with additional details about
the experimental setting is shared on GitHub (https://github.com/riccardominzoni/
reproducibilitycasestudy (accessed on 19 January 2023)).

Table 5. A summary of the environment used by the original paper and the reproduced experiment.
The version of Python and Jupyter notebook of the original paper were deduced by the date of the
submission of the paper and the date of the source code uploaded on GitHub.

Item Original Paper Our Experiment

GPU NVIDIA GeForce GTX 1080 NVIDIA GeForce GTX 1650 Ti
Language Python v3.8 Python v3.11
Software Jupyter notebook v6.0 Jupyter notebook v6.5

4.2. Hardware

As suggested by the creators of BERT, GPU hardware is recommended in order to
train the architecture. They claimed in [13] that the pre-training lasted several days with
the advantage of tens of GPU NVIDIA P100 and stated that, in order to fine-tune the model,
“a few hours on a GPU is sufficient”. This information suggests the possibility of using
different and more powerful hardware than a simple CPU.

Hence, even in the analyzed experiment, the authors decided to fine-tune all the
versions of BERT thought an NVIDIA GPU. However, at first it is not clear which one.
Indeed, in the paper we can find a reference to the hardware at two different points.
In Table 3 of page 4 ([11]), the caption states the use of an “NVIDIA GeForce GTX 1000”
and subsequently, on page 6, under the section “RoBERTaLARGE”, there is an affirmation in
which they assume the use of an “NVIDIA GeForce GTX 1080”. Since the official NVIDIA
website does not list the NVIDIA GeForce GTX 1000, we assume from now on that they
exploited the NVIDIA GeForce GTX 1080.

For this work, the main tool used was our personal computer, a Dell Inspiron 15 7501
mounted with an NVIDIA GeForce GTX 1650 Ti GPU with a computing capacity equal to
7.5, which satisfies all the necessary initial conditions set by the authors. In addition, by
relating the two pieces of hardware used, it seems that ours is more powerful than the one
used by Cheang, et al.

The first necessary step is downloading the CUDA Toolkit, a resource that provides
everything needed to develop GPU-accelerated applications, from the NVIDIA website.
The CUDA Toolkit includes GPU-accelerated libraries, a compiler, development tools and
the CUDA runtime. It must be relative to the specific mounted GPU and its compute
capacity, and not the latest version. Indeed, by default, the Python library pytorch installs
the latest version of CUDA, but not in every situation is this supported by the processor,
and hence must be downgraded to the supported version. For instance, our GPU supports
at most Toolkit 10.0, so we installed that version. After that, another installation is required:

https://jupyter.org
https://github.com/riccardominzoni/reproducibilitycasestudy
https://github.com/riccardominzoni/reproducibilitycasestudy

Information 2023, 14, 76 12 of 36

NVIDIA cuDNN, a GPU-accelerated library of primitives for deep neural networks. The
cuDNN library provides highly tuned implementations for standard routines such as
forward and backward convolution, pooling, normalization, and activation layers. Deep
learning researchers and framework developers worldwide rely on cuDNN for high-
performance GPU acceleration. It allows them to focus on training neural networks and
developing software applications rather than spending time on low-level GPU performance
tuning, as cuDNN accelerates widely used deep learning frameworks including Keras,
PyTorch, and TensorFlow. It has different versions based on the downloaded Toolkit, so the
corresponding one needs to be installed.

Our next step was to create a new environment on Anaconda. Usually, when a new
project starts from the beginning, it is reasonable to implement an empty environment
in which only the required packages and libraries will be installed. This is done for two
reasons: first, it is possible that there are some restrictions on the versions of the packages—
maybe some libraries are not compatible with other ones and, second, and applicable in
this case, if someone wants to try to reproduce or replicate an experiment, knowing all the
libraries and packages with their versions needed for the work makes reproducibility easier,
and in most cases results are going to be more similar and reliable than if different versions
are used.

In our case, the necessary libraries are listed but, unfortunately, informations on the
versions is missing. Hence, there could be some differences between our packages and
the ones the authors used. Picking up on the discussion of CUDA and the NVIDIA GPU,
from this point of view we have to deal with some restrictions in order to install packages.
A crucial passage to make the switch of processors works is the installation of the right
library versions. Every NVIDIA GPU and its Toolkit are compatible with specific versions,
for example, we are forced to download not the latest released Python library but version 3.7
because Toolkit 10.0 supports that version at most. For the same reason, we installed
pytorch 1.2.0. Since our GPU and the one used in the article have a slight difference in
computational capacity, we were forced to install other versions of CUDA tools (Toolkit
and cudNN), and hence we suppose that there could be slight differences between the
packages versions. This is a factor that could lead to alterations in the final outcomes and
must be taken into consideration.

Once all these steps are taken, CUDA become available and the GPU can be used. This
procedure allowed us to parallelize the computational work through the GPU units, and
the model could be fine-tuned in just a few hours, instead of days, making reproducibility
feasible. Indeed, thanks to the application, we were able to compare our training times
with the ones reported in the article since a similar processor was exploited, and times were
of the same order of magnitude.

However, even if the GPUs were used, there were some problems regarding a pair
of BERT models. In the examined paper, 1 of the 5 models, namely RoBERTaLARGE, in
fact has a huge number of trainable parameters (355 M). This is such a high number that
their processor, despite the fact that it was a GPU, could not handle it due to its lack of
computational capacity. Therefore, they decided to use Google Colab, a product from
Google Research (https://colab.research.google.com (accessed on 19 January 2023)). Colab
is a hosted Jupyter notebook service that requires no setup to use, while providing access
free of charge to computing resources including GPUs. Its cloud-computational processors
fixed the problem and allowed them to complete the experiment. In the same way, our
hardware, even if more powerful than theirs, was not effective enough in order to deal with
that kind of architecture and an additional machine was necessary for training the model.
Regardless, what is strange is that our GPU should manage more complex architectures
but controversially, we were not able to train another model in addition to RoBERTa,
BERTLARGE. It seemed like 340 M parameters were still too much to handle. Actually, there
is only a 15 M difference between the two models, but it is not understandable without
further information how they managed such a model.

https://colab.research.google.com

Information 2023, 14, 76 13 of 36

In order to recover from this lack of processors, a first trial was made with the use of
Google Colab, trying to follow the path of our predecessors, but the free-of-charge version
allows use of their machines for just a few hours straight, and the usage time can change
based on the demand of other users. Hence, we failed to complete the fine-tuning of the
two remaining BERT versions. Fortunately, the paid Pro version, the one that allows at most
uninterrupted 12 h of GPU usage, depending on availability and usage patterns, is made
available in Europe starting from 2022. In addition to the greater amount of computation
time available, the Pro version allows the user to exploit the Premium GPUs, more powerful
and faster processors able to compute demanding calculations. Google assigns a GPU
based on actual availability. This GPU is often a K80 in the free-of-charge version of Google
Colab while Colab Pro provides mostly T4 and P100 GPUs. These machines are the solution
to our problem, and indeed, thanks to them we were able to perform the fine-tuning of
the two remaining models (BERTLARGE and RoBERTaLARGE) and collect the last results in
order to conclude our experiments.

4.3. Source Code

Since our goal is to reproduce an experiment already performed and not to create
an algorithm based on published research with regard to possible implementations, we
needed to retrieve the author’s implementation of the algorithms. In the paper. they
provide a Github link that allows downloading a compressed folder containing all the
experiment scripts.

Notebook Files

First of all, we want to describe the structure inside each model’s notebook. We
can find three main cells: one dedicated to the creation of a class in which the data pre-
processing was implemented, one that defines the architecture of the model and focuses on
fine-tuning through the main algorithm’s part, and one that actually runs the experiment
defining the parameterizable variables.

To start, all the necessary libraries are imported. Apart from basic python packages,
such as os, numpy, pandas and matplotlib, the significant ones that need to be imported are
pytreebank, used for download, import and visualization of the Stanford Sentiment Tree-
bank dataset, transformers, provided by Huggin Face, which contains over 30 pre-trained
models and 100 languages, along with eight major architectures for natural language un-
derstanding (NLU) and natural language generation (NLG), such as all the BERT versions,
GPT, and GPT-2 from OpenAI, and pytorch, which is an open-source machine learning
framework based on the Torch library, used for applications such as computer vision
and natural language processing, on top of which Huggin Face’s Transformers are built.
Furthermore, the pytorch package is ideal for our goal because it is mainly focused on
tensor computing (like NumPy), with strong acceleration via graphics processing units and
providing maximum flexibility and speed in deep-learning approaches. However, another
main import must be made before the initialization of the class. In order to pre-process a
text-value data, the employment of a tokenizer is fundamental. A transformer package has
specific names for each model’s functions, and we need to import the right ones, hence, for
example, the tokenizer designated for DistilBERT is called DistilBertTokenizer and must
be imported.

Subsequently, a configurable “SSTDataset” class is defined, which has the aim of
preparing the data in order to feed the model. It is composed of several custom functions,
such as one for the right padding of the sentences, a procedure that fixes the dimension
of an input to a determined value, one that converts fine-grained labels to binary labels
wrapping up the categories of each side and excluding the neutral one (Listing 1), and the
tokenizer, able to transform, thanks to the previously cited BertTokenizer, a string value
into a sequence of numbers based on a corpus defined in the training of the model. This
technique can be summarized as the process of tokenization and embedding.

Information 2023, 14, 76 14 of 36

Listing 1. Right Padding and Get Binary Label function.

1 def rpad(array , n=70):
2 """ Right padding."""
3 current_len = len(array)
4 if current_len > n:
5 return array[: n - 1]
6 extra = n - current_len
7 return array + ([0] * extra)
8

9

10 def get_binary_label(label):
11 """ Convert fine -grained label to binary label."""
12 if label < 2:
13 return 0
14 if label > 2:
15 return 1
16 raise ValueError("Invalid label")

The class is designed to permit extraction of each type of data needed, starting from
training, validation, or test set. Depending on the particular task, binary or fine-grained
label can be chosen, and since our dataset has a unique structure, one can decide on
considering root-level-labeled sentences or node-labeled sentences, according to what kind
of analysis is supposed to be done, and lastly, one can choose how long the phrases must be.
In the code shown in Listing 2, there is a piece of code that shows how it is implemented
and the lines of code necessary to retrieve a root-level binary dataset.

Listing 2. Initial part of SSTDataset class with the root-level binary choise for the dataset.

1 class SSTDataset(Dataset):
2 """ Configurable SST~Dataset.
3

4 Things we can configure:
5 - split (train / val / test)
6 - root / all nodes
7 - binary / fine -grained
8 """
9

10 def __init__(self , split="train", root=True , binary=True):
11 """ Initializes the dataset with given~configuration.
12

13 Args:
14 split: str
15 Dataset split , one of [train , val , test]
16 root: bool
17 If true , only use root nodes. Else , use all nodes.
18 binary: bool
19 If true , use binary labels. Else , use fine -grained.
20 """
21 logger.info(f"Loading SST {split} set")
22 self.sst = sst[split]
23

24 logger.info("Tokenizing")
25 if root and binary:
26 self.data = [
27 (
28 rpad(
29 tokenizer.encode("[CLS] " + tree.to_lines ()[0] + "

[SEP]"), n=66
30),
31 get_binary_label(tree.label),
32)
33 for tree in self.sst
34 if tree.label != 2
35]

Information 2023, 14, 76 15 of 36

In the second cell, we enter the actual model’s implementation with its three phases.
Reflecting how the pytorch framework is constructed, each phase has its own implemented
function, and this setting differs, for example, from the tensorflow framework in which we
do not have two distinct functions for training and evaluation, but just the defined model.
However, in our case, the algorithm completes three explicit stages in each epoch: training
of the model, evaluation of the hyperparameters, and evaluation of the model on the test
set. We are going to discuss this structure later in the article, while here we only want to
present the main aspect.

The three stages are gathered together into a main function, called train(). At the
beginning of the function before the epochs start, the model is defined through the trans-
formers package and there are specific command lines for each different model as the
tokenizer. For example, DistilBERT is configured as shown in Listing 3. The config vari-
able defines the model configuration initialization, the feature of every layer, and several
aspects of the architecture, such as if a dropout technique is employed, what kind of activa-
tion function in the hidden layers is used, the number of layers and the vocabulary size.
As the image shows, since our task is a fine-grained classification, we had to change the
number of final labels to 5 in order to properly predict our outputs and define the number
of final probabilities in the softmax output layer function. In contrast, the model variable
retrieves the actual architecture of the model based on the configuration just defined and
on the chosen version of the model. Then, since our task is a classification problem, we
employ a cross-entropy loss function that calculates the distance between probabilities and
adjusts the model’s weights minimizing loss, that is, the main goal in a classification task,
and finally, an Adam optimizer with a learning rate equal to 1−5 is exploited, equivalent to
the one used by the creators of BERT.

Listing 3. Configuration of DistilBERT.

1 config = DistilBertConfig.from_pretrained(bert)
2 if not binary:
3 config.num_labels = 5
4

5 model = DistilBertForSequenceClassification.from_pretrained(bert ,
config=config)

6

7 # switch to GPU if available
8 model = model.to(device)
9

10 lossfn = torch.nn.CrossEntropyLoss ()
11 optimizer = torch.optim.Adam(model.parameters (), lr=1e-5)

After the initial definitions, the epochs can start, and during each of them, the three
phases occur. The training phase is the first one, while the second and third ones are
identical to the first one, but what changes is the part of the dataset used for the evaluation,
as shown in Listing 4.

The key differences between the two functions are the lines model.train(), model.ev
al(), and torch.no_grad(): model.train() sets the modules in the network in training
mode. It tells our model that we are currently in the training phase, so the model keeps
some layers, like dropout and batch-normalization, which behaves differently depending
on the current phase, active. The line model.eval() does the opposite. Therefore, once
model.eval() has been called, our model deactivates such layers, so that the model outputs
its inference as expected. Furthermore, the wrapper with torch.no_grad() temporarily set
the attribute reguireds_grad of tensor to False and deactivates the Autograd engine which
computes the gradients with respect to parameters. This wrapper is recommended for use
in the test phase as we do not need gradients in test steps, since the parameter updates were
done in the training step. Using ‘torch.no_grad()’ in the test and validation phase yields
faster inference (speeding up computation) and reduced memory usage (which allows us
to use larger batch sizes). Each function ends with returning the actual loss and accuracy
calculated over the predicted labels of the batch inputs and their ground truth.

Information 2023, 14, 76 16 of 36

Listing 4. Training and evaluation phases.

1 def train_one_epoch(model , lossfn , optimizer , dataset , batch_size =32):
2 generator = torch.utils.data.DataLoader(
3 dataset , batch_size=batch_size , shuffle=True
4)
5 model.train()
6 train_loss , train_acc = 0.0, 0.0
7 for batch , labels in tqdm(generator):
8 batch , labels = batch.to(device), labels.to(device)
9 optimizer.zero_grad ()

10 loss , logits = model(input_ids = batch , labels=labels)[:2]
11 err = lossfn(logits , labels)
12 loss.backward ()
13 optimizer.step()
14

15 train_loss += loss.item()
16 pred_labels = torch.argmax(logits , axis =1)
17 train_acc += (pred_labels == labels).sum().item()
18 train_loss /= len(dataset)
19 train_acc /= len(dataset)
20 return train_loss , train_acc
21

22

23 def evaluate_one_epoch(model , lossfn , optimizer , dataset , batch_size =32):
24 generator = torch.utils.data.DataLoader(
25 dataset , batch_size=batch_size , shuffle=True
26)
27 model.eval()
28 loss , acc = 0.0, 0.0
29 with torch.no_grad ():
30 for batch , labels in tqdm(generator):
31 batch , labels = batch.to(device), labels.to(device)
32 logits = model(batch)[0]
33 error = lossfn(logits , labels)
34 loss += error.item()
35 pred_labels = torch.argmax(logits , axis =1)
36 acc += (pred_labels == labels).sum().item()
37 loss /= len(dataset)
38 acc /= len(dataset)
39 return loss , acc

At the end of each epoch, all the measures of accuracy and loss are appended into lists
in order to keep traces of the training trend, and there is a last implementation that, only if
the current epoch is a multiple of 10, saves the model in a .pkl file. This way, at the end of
training, 3 different fine-tuned models are available to be exploited for further inferences.

The last cell’s aim is to start the fine-tuning of our model, returning, first of all, as the
output the model, but also the actual duration of the training in number of epochs, as
well as each loss and accuracy value per epoch as lists in order to subsequently plot the
related trends of the model and discover potential problems in the algorithm, such as
possible overfitting/underfitting problem. Since all the functions used parameterizable
variables, we can determine the nature of our experiment through the definition of the
most important variables in this command, as shown in Listing 5, such as the type of data,
their labels, the version of BERT, number of epoch, batch size, patience, and if enabled the
saving procedure.

Listing 5. Tuning the model.

1 ... , test_accuracies , epoch = train(root=True ,
2 binary=False ,
3 bert="distilbert -base -uncased",
4 epochs =30,
5 batch_size =8,
6 patience = 30,
7 save=True)

Information 2023, 14, 76 17 of 36

4.4. Syntax Errors

The notebooks provided by the authors of the article failed to run due to a couple
of minor syntax errors. In particular, the error occurred inside the train_one_epoch()
function. After the training phase is started, it begins a for loop in which the dataset
is managed by a generator implemented before through the utility functions of pytorch.
Batches of data and their labels are selected and sent to the model through the command

model(input_ids = batch, labels = labels)[:2]

that gives as output a tuple composed of a tensor of shape (1,) with the value of the
loss function for the current epoch and by the logits that are a tensor of shape (batch_size,
config.num_labels), corresponding to the predicted probabilities per each label of each batch
input, plus other possible outputs such as hidden_states tensor and attention tensor that
need to be specified. This line is what causes the error in the execution. The downloaded
scripts did not have the [: 2] final part, but the model() function gave as output 6 values
to be assigned to some variables, hence it crashed, because only the first two variables
were assigned. With [: 2], we force it to consider only the first two outputs that we are
looking for, the loss and the logits. Maybe it could have happened that previously it was
not necessary to explicitly set [: 2] if the last two parameters had not been defined, but in
the current version, it was perhaps made mandatory to insert that part of the code.

Another error, or inaccuracy, was also made during the preprocessing of the SST-5
dataset. Inside each notebook, in the SSTDataset class of the algorithm, we can find a
procedure that enables the dataset to be compatible with BERT as its input. Machine
Learning models cannot actually “read” strings and categorical values, they are algorithms
and therefore can deal only with numbers. Indeed, the categorical variables must be
transformed into numerical variables first and then the model can understand the inputs.
This method is called tokenization and it converts each word inside a string (our input
sentence) to a number based on a corpus of words with which the model has been trained.
Each corpus has a unique number assignment to words, depending on its vocabulary. In the
procedure, the phrases were split into singular words, removing the inflectional endings of
words and the eventual punctuation and finally converting the verbs to their infinite form,
making words as simple and generic as possible.

As we said in the previous chapter, BERT is constructed in a way that requires its
inputs to have a [CLS] token at the beginning of the sentence and a [SEP] token every time
two sentences are separated, or at the end of a phrase. It leads, in our case, to a [CLS] token
starting each input and a [SEP] ending it, since we are considering root-level full sentences.
According to this, during the tokenization, the authors added those two tokens to each
phrase, forcing them at the beginning and end of the lists of tokens. What they did not
know and did not notice is that the BertTokenizer does the addition in an automatic way
during the tokenization itself, hence it is not necessary to add these extra tokens. For this
reason, their resulting pre-processed sentences had a pair of [CLS] and [SEP] tokens.

4.5. Inconsistencies

During a reproducibility study, not only explicit errors or severe mistakes are observed.
Indeed, it is important to also note the minor inconsistencies that could lead to changes
in the experiment’s outcome. In the work by Cheang et al., we found a few differences
between what they wrote in the paper and what they really implemented in the algorithms.

The first thing that we want to mention concerns data. Once one has read the article,
one would expect to find a dataset composed of root-level-labeled full sentences without
any sort of restrictions to words, length or format. On the contrary, the authors created a
function which is able to force the length of each input data to a certain number of words,
i.e., the right padding function shown previously in Listing 1. This is a simple but efficient
algorithm that truncates a tokenized sentence if it exceeds a certain defined length or if it is
shorter than the value, as an amount of zeros is added until the input dimension reaches
a specific value. The parameter which sets how long the sentence fed into the model is
was set by default to 70 but during the work, the authors decided to set it to 66. Since we

Information 2023, 14, 76 18 of 36

wanted to understand the reason for this choice, and there were no apparent explanations
written in the paper, we further examined the SST dataset. It turned out that root-level full
sentences are no longer than 65 words. Indeed, the maximum value found in the dataset’s
partitions, training set, validation set and test set were 65, 55, and 64, respectively. Hence
we are dealing with a function that in our case does not, actually, truncate our input but
instead, it does fix the input length to be equal to the maximum possible value found in the
entire tokenized dataset and eventually, it adds an amount of zeros to the end of sentences
that do not reach the desired length.

Moving forward in our analysis, we discovered another absence, and this time a
significant part that may change the results. It all starts from a statement in the article:

“After noticing the test accuracy tended to fluctuate randomly over 30 epochs,
neither improving nor getting worse as training loss converged, and getting
different patterns on different machines, we decided that the original model
training process led to significant over f itting on the train set, so we decided to
implement an early-stoppage protocol in our analysis. This practice also let us
analyze how quickly models would converge in terms of epochs.”

The early stopping procedure allows stopping the training of a model when specified
conditions are satisfied. In general, what early stopping does is simply to stop the training
if there is no improvement in the validation loss for N. The choice of the value does usually
depend on the slope of the loss when the phenomenon starts. If the loss is a steep upward
curve, it is better to set N to a low number in order to avoid an extreme reduction of the
model’s accuracy while if it is simply unstable, a large value is the right choice to allow the
model to find its true path and not stop the training early without reasons.

However, in their source code there is no early stopping at all. Instead, the models are
defined to be trained for 30 epochs whatever the behavior of the loss function. They decided
to keep track of progress saving models every epoch. The way in which the algorithm is
constructed allows one to evaluate the model through the test set at each epoch and save
the metrics, hence after saving all the desired models related to specific epochs, they can
simply confront the performances and decide what is their best model. In our opinion, this
is the most critical part because they reported to reach the best metrics and best models
thanks to the early stopping procedure, but, in reality, we cannot confirm their achievement
in the way it was stated.

Since we wanted to try to reproduce their actual results claimed in the article and
there really is an overfitting problem during training (Figure 4), we decided to implement
a true early-stopping procedure. As Listing 6 shows, first of all, three variables need to
be defined:

• last_loss is just a random big enough value to initialize the procedure;
• Patience is the previously cited number N that determine how many epochs there can

be with no improvements;
• trigger_times is another value that needs to be set equal to 0 at the start of the training

and behaves like a flag. Every time there is an increase in the validation loss during
an epoch, this number is increased by 1.

After that, we enter the for loop where the actual training begins. At the end of each
epoch, the resulting losses are obtained and the validation one is kept for the procedure:
there must be N consecutive epochs in which the loss does not decrease to stop the training,
and the trigger_times variable keeps count of the times. If such a situation occurs, the re-
sulting model will be the one at the current epoch even if the training is not finished. This
is one of the simplest but most effective ways to prevent overfitting, and it is extremely
commonly employed in deep learning algorithms.

Information 2023, 14, 76 19 of 36

Figure 4. Overfitting behavior through losses in DistilBERT.

Listing 6. Early-Stopping Procedure.

1 # Early stopping parameters
2 last_loss = 100
3 patience = patience
4 trigger_times = 0
5

6 for epoch in range(1, epochs +1):
7 (TRAINING AND VALIDATION)
8 ...
9

10 # Early Stopping
11 current_loss = val_loss
12 if current_loss > last_loss:
13 trigger_times += 1
14 logger.info(f"Trigger Times: {trigger_times}")
15

16 if trigger_times >= patience:
17 logger.info(f"Done with Early Stopping at epoch {epoch}!")
18 return train_losses , val_losses , test_losses ,

train_accuracies , val_accuracies , test_accuracies , epoch
19

20 else:
21 logger.info(’Trigger Times: 0’)
22 trigger_times = 0

The last thing that we wanted to highlight is another fundamental absence in the
original source code. In reproducibility studies, we have to be sure that the results achieved
can be re-obtained once the experiment is done by someone else at other times and through
different devices. In Machine Learning, and more generally data science projects, it is
useful to keep in mind that many random factors could affect the final outputs. One way
to do address this is fixing the randomness of calculation with a function that is called
random seed. The aim is to force the random processes to start at the same point every
time, so in the splitting case, we would have the three subsets composed by the same data
every time the experiment is initialized. Since data is divided in batches by a generator
before the training, the generator exploits the pseudo-random calculus of the machine to
create those batches and since there was no random_seed, at each run it creates different
batches that lead to changes in the model’s training. Usually, it is one of the first procedures
to be implemented in an experiment in order to avoid small fluctuations of results and
to eliminate any hint of randomness. Below in Listing 7, it can be seen that a version of
random seeding is implemented our code. The seed_value can be set to any number, it is
not important which one, but once a number is chosen it always has to remain the same
because it is the only way to follow the same order by which the pseudo-randomness starts.

Information 2023, 14, 76 20 of 36

Listing 7. Random-Seed Function.

1 ### random seed
2 def set_seed(seed_value =42):
3 """ Set seed for reproducibility.
4 """
5 random.seed(seed_value)
6 np.random.seed(seed_value)
7 torch.manual_seed(seed_value)
8 torch.cuda.manual_seed_all(seed_value)

Even if we did implement the function, we decided to not use it since we do not
know how they generated the batches or how many runs they did before classifying
their results as reliable. A simpler method for ensuring a reliable result and reducing
traces of randomness that does not exploit random_seed is to compute N different trials
and then average the results, since the mean is known to recover outliers. Usually this
process is called K-means cross-validation, and the dataset is split just once in K parts
and subsequently, K− 1 parts are exploited for the model’s training while the remaining
part is used to evaluate the model. Then the training is performed K times, and each time
a different section of the dataset is considered for the evaluation phase. In the end, the
average of all the results is taken as the final result and this has a more reliable output
compared to a single round of training-and-test.

In our case, the dataset is already divided and all the related published achievements
used the original division. Hence, we cannot perform an actual K-means cross-validation.
What we did in our study is to simply perform fine-tuning for each model 5 times and
merge with the average every final result. The only thing that can change is how the data
are divided in batches to feed the model due to the random split performed by the generator,
so the losses and accuracy cannot highly diverge. However, this method provides more
certainty in the final results.

5. Experimental Results

In this section, we go through the conclusions made by the authors of the article
alongside our outcomes, and we discuss the differences found. This section is divided into
five sections, each one related to a corresponding model. First, we will discuss the two basic
versions of BERT and after that, the newer alternatives AlBERT, DistilBERT and RoBERTa.

5.1. A Note of Caution: Test Accuracy

Before starting with the comparisons, we want to focus on a fundamental issue in the
evaluation approach proposed in the original paper during the model’s training. As we
discussed earlier, there is no early-stopping in the source code even if this is described in
the paper. As a consequence, the best result in the paper derives from a post-hoc analysis
of the best test accuracy. Indeed, the approach employed was not based on the study
of the progress of validation loss and the subsequent stop of training; instead, it merely
consisted of an assessment of several models’ training and their related accuracy measures,
assessing the best performance only by trial and error. In Figure 5, the declared losses and
the corresponding accuracy are displayed for each model’s versions. We will show that
the best performances in each model stated by the authors are just the peaks found in the
bottom-right graph of the figure and do not follow any particular selection method.

This is not exactly the correct methodology for the training/validation/test approach
in Machine Learning. In fact, one would:

• Train the parameters of the model with the training set;
• Optimize the hyper-parameters of the model with the validation set;
• Select the model that obtains the best performance on the validation set;
• Test the selected model on the test set.

Information 2023, 14, 76 21 of 36

Figure 5. Plots of case study loss and accuracy per epoch for the 5 comparison models (figure adapted
from the original work [11]).

In order to show the differences with the original paper, in the following section we
will show test accuracy across the different epochs, keeping in mind that this would not be
the correct approach.

After discussing the fundamental definitions for evaluating classification tasks (see for
example Figure 6), for each model, we will present the following information:

• A table with training times and test accuracy for 30 epochs and for a (supposedly)
early-stopping approach (for example, Table 6a);

• A Figure with training/validation/test loss and accuracy (for example, Figure 7a);
• A Figure with the average training/validation/test loss and accuracy (for example,

Figure 7b);
• A Figure with the confusion matrix for the five classes (for example, Figure 8).

5.2. Evaluation Metrics

Based on the task at hand, several metrics and scores have to and can be considered.
In classification tasks, our aim is to understand and calculate how many correct predictions
the model makes. Indeed, since the data of the sentiment classification task are grouped into
classes and the outcomes of the model are probabilities that correspond to the probability
of being related to one category, we can only compare labels. In this way, we will have
a situation in which some predictions are equal to the actual label and some predictions
are wrong with respect to the actual category. For each class, those options are called true
positive and f alse positive. For instance, in binary classification we usually define a label
as the positive output and the other category as the negative one. Hence, at the end of the
prediction we are going to have four different categories: True Positive (TP), an outcome
where the model correctly predicts the positive class, False Positive (FP), an outcome where
the model incorrectly predicts the positive class, False Negative (FN), an outcome where the

Information 2023, 14, 76 22 of 36

model incorrectly predicts the negative class, and True Negative (TN), an outcome where
the model correctly predicts the negative class. The metric that collects and displays such
distributions is called a confusion matrix (Figure 6). It helps to visualize how good the
model’s prediction works and which class is predominant by the choices of the algorithm,
if there is one, and based on the purpose of the research it allows rebalancing the model by
managing the thresholds for probabilities, for example.

Figure 6. Confusion matrix for binary classification.

The four possible categories and the related distributions can be combined to obtain
other measures that help to define the goodness of a model. In the original work, and in
this paper, we use Accuracy as the proportion of the correct answers (TP + TN) compared
to the total number of answers (TP + TN + FP + FN). In general, this measure is useful when
all classes are of equal importance and the dataset is balanced, because if not, the accuracy
for a class could be higher than for the other, leading to a misinterpretation of the overall
performance of the model.

5.3. BERT_BASE

Our discussion about the experimental performances starts from the first published
version of BERT architecture, i.e., the BERTBASE. The authors of the paper distinguished
two main approaches. Since their work was partially also a reproducibility study, they first
focused on the execution of all the 30 epochs for training and subsequently, they showed
results for their so-called early-stopping procedure. We want to follow this pattern with
the same type of approach.

The first aspect that we notice from Table 6a is the training time per epoch in minutes.
The results are quite similar (5.38 their algorithm, 6 min our algorithm). There is a difference
of few tens of seconds between the two, but we obtained the same order of magnitude,
and hence we consider the results comparable. Although our GPU was, computationally
speaking, more powerful, our run took more time to complete an epoch. This is probably
due to the specific software used for the experiment, the package versions, and also the
way in which the GPU was exploited. This is because even if a GPU is available, there are
several techniques in which its usage can be optimized, and maybe they found a way to
get the maximum capability out of their processor. These slight differences aside, we can
state that the amount of time needed for the training of an epoch was reproduced.

Information 2023, 14, 76 23 of 36

Table 6. Training times and performance for each model. (a) BERTBASE results for classification task
on SST-5 root nodes. (b) BERTLARGE results for classification task on SST-5 root nodes. (c) AlBERT
results for classification task on SST-5 root nodes. (d) DistilBERTBASE results for classification task on
SST-5 root nodes. (e) RoBERTaLARGE results for classification task on SST-5 root nodes.

(a)

Model Training Time (epoch) Test Acc. (30 epochs) Test Acc. (Early-Stopping)

Authors’ model 5.38 0.538 0.549
Our model 6.00 0.521 0.532

(b)

Model Training Time (epoch) Test Acc. (30 epochs) Test Acc. (Early-Stopping)

Authors’ model 12.38 0.529 0.562
Our model 4.26 (Colab) 0.534 0.543

(c)

Model Training Time (epoch) Test Acc. (30 epochs) Test Acc. (Early-Stopping)

Authors’ model 3.16 N/A 0.490
Our model 4.11 0.443 0.453

(d)

Model Training Time (epoch) Test Acc. (30 epochs) Test Acc. (Early-Stopping)

Authors’ model 2.54 N/A 0.532
Our model 2.57 0.509 0.518

(e)

Model Training Time (epoch) Test Acc. (30 epochs) Test Acc. (Early-Stopping)

Authors’ model N/A N/A 0.602
Our model 1.32 (Colab) 0.565 0.575

The test accuracy after 30 epochs is stated in the article as 0.538, while our average
test accuracy is 1.7% lower, that is 0.521, which does not deviate much from the reported
accuracy of 0.532 in the original paper [19]. Such a difference is very likely caused by a
different random seed (as all the subsequent results) and therefore, their results could be a
fortuitous case. For instance, if we observe the last subplot of Figure 7a, we can see how one
of those five runs (red line) reaches a 0.530 value at the end of the 30 epochs. The expected
accuracy (as the average of all the possible runs) is shown in Figure 7b. We can clearly
observe a generic pattern in this figure: the trend starts with a low value but suddenly it
reaches the peak of values, followed by a sharp decrease after a few epochs. Then, there is
a slight increase again, characterized by a swinging and unclear movement and ending
with the last small decrease. Comparing this with the remaining graphs in the same figure,
it is obvious that the model suffers from overfitting.

This is a behavior also described by the authors, as we know, and it is the reason for
the second approach. In the article they state:

“The performance did not peak until the 13th epoch and BERTBASE achieved a
0.549 accuracy on the SST-5 test set.”

If we take a look at Figure 7a, one run (the blue line) did actually reach its peak at the
13th epoch but, in any case, this does not represent the application of an early-stopping
procedure. Indeed, if we observe the top-right panel in the same figure, it seems clear
where the loss starts increasing heavily and where the optimization (validation phase)
should stop.

Instead, if we perform a correct training/validation procedure, we would choose the
optimal model after two epochs of the validation phase, and obtain a test accuracy of 0.532.

Information 2023, 14, 76 24 of 36

(a)

(b)
Figure 7. Performance in the training, validation, and test set for BERTBASE. (a) Loss and Accuracy
per run and per epoch. (b) Mean loss and mean Accuracy per epoch.

The last thing that we want to show is the confusion matrix related to the accuracy
obtained with the early stopping procedure. Although the accuracy reached was not like
the one stated in the article, it achieved the same value of the original result, and in Figure 8
the predictions in relation with the actual labels can be seen, and also how the model can
identify the differences between the categories rather well. The dark diagonal means that,
in general, positive sentences are predicted correctly and the same is true for the negative
sentences. There are some confusions between near classes, such as 0 and 1 or 3 and 4, but
most of them are correctly classified. The opposite labels are well-differentiated, meaning
that negative and positive words are identified excellently.

Information 2023, 14, 76 25 of 36

Figure 8. Confusion matrix for BERTBASE.

5.4. BERT_LARGE

The second model analyzed in the article was BERTLARGE. Table 6b reports the values
we obtained and, since for this model we were forced to use Colab Pro and its premium
GPUs, the training time cannot be comparable. Indeed, there is an extreme difference
between the two values. For instance, we can notice that the amount of time required for
our training is practically equal to the one required for the AlBERT model training, which
has 300 M fewer parameters than BERTLARGE.

Focusing on the accuracy measures reported in the table, we can clearly see the
similarities inside the second column, i.e., the 30 epoch results. Our measure, collected by
averaging the five-run results, is comparable to the one observed in the article. However,
a larger difference can be seen when we consider the early-stopping procedure. The authors
stated a value of 0.562, but in this case, too, there is no connection between the value and
the trend of the related loss. In Figure 9a, there is one run (orange line), which shows the
accuracy of 0.562 at the 12th epoch. However, it is ten epochs away from the lowest loss,
the point in which theoretically the model performs at best.

Furthermore, during the training, we encountered some difficulties due to unexpected
behavior of the model and its losses. Figure 9a displays the 5 runs revealing how some
runs (two in our case) failed to converge and instead caused stationary behavior in which
the losses stay around 0.2 and the accuracy stays between 0.2 and 0.3. We tried to repeat
the same test multiple times and we always found the same behavior despite the different
initial starting point of the generator. It seems that in certain runs, the model fails to reach
a converging point, leading to the stationary status.

For this reason, we decided to study the average performance without the non-
converging ones. Indeed, in Figure 9b, the value reached with the early-stopping procedure
is 0.441, a value too low to be considered comparable with the one published.

Information 2023, 14, 76 26 of 36

(a)

(b)

Figure 9. Performance in the training, validation, and test set for BERTLARGE. (a) Loss and Accuracy
per run and per epoch. (b) Mean loss and mean Accuracy per epoch after non-converging runs
are removed.

Lastly, Figure 10 reports the confusion matrix on the test data. As for BERTBASE,
the matrix shows three macro squares that characterize how the model fails to predict the
correct label. Strongly negative and strongly positive sentiments were mis-categorized
as weakly negative and weakly positive sentiments, respectively, roughly half the time.
Neutral sentiments were mis-categorized as weakly negative roughly half the time as
well. Despite these patterns, the diagonal is tighter than the one in the BASE version of
BERT, meaning that overall the model performs slightly better, a fact that, of course, is also
highlighted by the higher accuracy value.

Information 2023, 14, 76 27 of 36

Figure 10. Confusion matrix for BERTLARGE.

5.5. AlBERT

The first alternative of BERT that was studied in the article is AlBERT. With this
architecture, we have a decrease of almost 2 min in the time required for an epoch to be
completed with respect to BERTBASE, as shown in Table 6c. However, between the experi-
ment run by the authors of the paper and ours, there is a gap of one minute, in accordance
with the trend of all the experiments, where our training time is always a bit greater than
the one required by them, but both results are in the same order of magnitude.

Through our five runs (Figure 11a), we can notice a general pattern. Each run has a
different point (number of epochs) when the loss starts to decrease.

The averaged scores (Figure 11b) show that this model requires between 15 and
20 epochs to reach its peak in the validation set.

As stated in the original article, AlBERT performed far worse than expected on the
SST-5 dataset. Since it was not part of their reproducibility study, the authors immediately
used the early-stopping procedure, considering only the best test accuracy obtained. In any
case, we were never able to reproduce that score and, given a correct validation procedure,
the best score obtained was 0.453.

However, it is the worst BERT model in terms of performance accuracy and this
reduction likely outweighs the benefits of the decrease in training time, and therefore the
utility of AlBERT on novel fine-grained NLP tasks is in question.

Information 2023, 14, 76 28 of 36

(a)

(b)

Figure 11. Performance in the training, validation, and test set for AlBERT. (a) Loss and Accuracy
per run and per epoch. (b) Mean loss and mean Accuracy per epoch.

Figure 12 displays the confusion matrix related to the AlBERT model and, despite the
lowest accuracy value, we can clearly see the distinction between positive and negative
labels, shwoing that the model is able to understand such a difference. Nevertheless,
it struggles to identify the right label when confronting extreme sentiment, for instance
between 0 and 1, where the number of errors increased. Finally, one last thing could be
observed: in the center there is a darker square that shows how the neutral sentences can be
difficult to be correctly classified and that they can often be recognized as weak sentiments.

Information 2023, 14, 76 29 of 36

Figure 12. Confusion matrix for AlBERT.

5.6. DistilBERT_BASE

DistilBERTBASE is the second alternative of BERT considered in the analysis. Lighter
and faster than BERTBASE, its aim is to provide a choice that requires less training time at
the expense of a small loss in terms of performance accuracy by the exploitation of the
distillation technique. The goal, indeed, is reached quite well, with only 2.54 min per epoch
in the pivotal experiment and 2.57 in our experiment (Table 6d), and a gap of just 1% in test
accuracy between the two approaches. Furthermore, the model also requires less training
time than AlBERT but it performs far better than the previous alternative, and is the fastest
to train of all the models tested.

Regarding reproducibility, as in the AlBERT case, the authors of the article did not
declare the performance achieved after the entire training (30 epochs), and hence we
cannot compare our result of 0.509. Instead, their best score reaches the 0.532 value during
the second epoch, complying with the overfitting behavior, visible in Figure 13a in the
purple line. In this case, it is it not easy to see a pattern across the five runs. However,
Figure 13b helped us find a more specific pattern. The best expected value in the validation
phase occurs after a few epochs in the validation step. Consequently, the best value for
DistilBERTBASE is equal to 0.518, discovered in the third epoch.

The pattern shown by the confusion matrix for DistilBERTBASE (Figure 14) is very
similar to the ones for BERTBASE and AlBERT. The extreme labels and the central labels
form 3 intersecting clusters in which the labels can be identified as other classes existing in
the current cluster. Despite this situation, there is still a darker diagonal that implies an
overall correct prediction through all the classes, with peaks in labels 1, 3, and 4.

Information 2023, 14, 76 30 of 36

(a)

(b)

Figure 13. Performance in the training, validation, and test set for in DistilBERTBASE. (a) Loss and
Accuracy per run and per epoch. (b) Mean loss and mean Accuracy per epoch.

Information 2023, 14, 76 31 of 36

Figure 14. Confusion matrix for DistilBERTBASE.

5.7. RoBERTaLARGE

The last model and alternative analyzed is the one that, according to the authors of the
paper, reached the state of the art on fine-grained sentiment classification, RoBERTaLARGE
(see Table 6e). It is the largest model in terms of the number of parameters among the
5 models considered in the experiment. The training times between our reproduced
experiment and the original one cannot be compared because, firstly, in the article there
is no statement regarding training time, and secondly because we used the GPUs of
Google Colab.

In the original paper, we have only the accuracy value related to the early-stopping
procedure. In addition, we wanted to highlight an inconsistency that we found in Figure 5:
if we observe the line that represents the results of RoBERTaLARGE (the green line), there
is no epoch in which the line reaches 0.602. Instead, the maximum score we can read is
around 0.58. We do not know if the plot is an old version with a previous value, but we
have to consider this fact an error or an inconsistency with regards to what is stated in the
paper and what we can read from the figure.

In this sense, the result achieved in our experiments (see Figure 15a,b), showing an
accuracy on the test set of 0.575, is comparable to the number that we can see in the original
figure. As an additional comment, we want to highlight the fact that even with a 30-epoch
training, our RoBERTaLARGE outperforms all the other models exploited in the experiment,
with an accuracy score of 0.565. Moreover, also with this model, we witnessed abnormal
stationary behavior identical to what was found for BERTLARGE.

Information 2023, 14, 76 32 of 36

(a)

(b)

Figure 15. Performance in the training, validation, and test set for RoBERTaLARGE. (a) Loss and
Accuracy per run and per epoch. (b) Mean loss and mean Accuracy per epoch after non-converging
runs are removed.

In Figure 16, the last confusion matrix is shown. The main difference between this
figure and the rest of the matrices shown is that while there are still the two macro areas for
the extreme sentiments, when dealing with the more neutral part, there is not a big square
anymore. Instead, we can distinguish two smaller squares that intersect on the neutral
label, meaning that the model can recognize weakly positive and weakly negative in a
more efficient way. However, RoBERTaLARGE also confuses extreme sentiment with weak
sentiment in a significant way, exactly like BERTLARGE.

Information 2023, 14, 76 33 of 36

Figure 16. Confusion matrix for RoBERTaLARGE.

6. Discussion

In this section, we summarize the main insights that were derived after the whole
experimental analysis, and we will try to answer the following questions.

6.1. How Does This Study Reflect on Current Knowledge about Issues in the Reproducibility of
Computational Experiments?

In Section 1, we have seen how the research community has (slowly) increased its
interest in issues concerning reproducibility. In particular, after the article published in
Nature in 2016, the effort that researchers have put into understanding the relevant limits
has extended and spread through the entire research field. There is still a very active
community in NLP and IR that carries on with the idea of standard experimental analysis
by means of international forums and shared tasks.

In our opinion, there are some fundamental steps that need to be made by researchers
in order to improve experimental analysis and, ultimately, make progress in science. In this
sense, we share the ideas discussed by [36], and we believe that there are some necessary
best practices regarding choice of data, source code, models, experimental setting, and anal-
ysis that should be documented in any research paper that presents experimental results.

6.2. Was the Original Study by Cheang Et Alii Able to Provide All the Necessary Information to
Ensure Its Reproduction in All Respects?

The original paper has the merit of following some of the aforementioned best practices:
the choice of a standard benchmark used in NLP, the publication of the source code,
and the use of notebook files, i.e, a partial explanation of the experimental environment.
Beyond some syntax errors that had to be fixed due to a difference in the version of the
packages (something that was missing in the original paper), the source code ran without
any difficulty.

6.3. What Are the Problems and Challenges Encountered?

Despite the fact that we were able to run the code with minor bug fixes related to
software version, we found some major limitations: First, the inconsistency between the
documented stopping criterion in the paper that was not implemented in the code; second,

Information 2023, 14, 76 34 of 36

the absence of an initial random seed in order to reproduce “randomness” exactly in
the source code [35]; third, a better description of the hardware used (CPUs and RAM,
in particular), all of which could have helped us to understand the differences in running
time execution.

Besides these issues, we encountered a major flaw in the evaluation approach that
was, on the other hand, very interesting by way of shedding light on some common pitfalls
in the development cycle of machine learning optimization [37].

6.4. What Could Be Done in the Original Study to Overcome the Problems Found?

We believe that only a better documentation, both in the research paper and in the
source code, could overcome most (if not all) the issues we encountered in this reproducibil-
ity study. The best practices suggested by [36] are one of the best starting points for a
checklist of all the things a researcher should take into account “before” any experimental
analysis. In order to mitigate issues like the ones related to the stopping criterion (an
approach that is described in the paper but that is missing in the code), we believe that
only a more accurate check on all the steps is the solution. In this sense, a better use of the
notebooks could help in reducing the probability of these kinds of errors [38].

7. Conclusions

In this paper, we described a thorough reproducibility study of a sentiment classifi-
cation task experiment. By means of an analysis of the paper “Language Representation
Models for Fine-Grained Sentiment Classification”, written by Cheang et al. (2020), the main
set of rules that has to be considered when performing an experiment was discussed. Repro-
ducing a study conducted by other researchers can be a very difficult task. There are several
aspects to a project, and each of them must be considered, analyzed, and reproduced in a
correct manner. Furthermore, whoever performs the original experiment should also take
into account these aspects in order to allow everyone to reproduce their work. Moreover,
the act of reproducing an experiment can be seen as the verification of its validity and,
in this sense, studies have to be conducted in the most reliable way possible.

During our work, we encountered a few issues, starting with the creation of a similar
environment to the one used by the authors of the article, but also understanding the source
code and fixing some syntactic errors, and finally being able to reproduce the work with
comparable results.

First of all, we had to set up the experimental environment. The original article did
not contain any information regarding the environment, apart from the series number of
the GPU hardware, and lacked a list of packages, libraries, and software used. Fortunately,
we had a GPU at our disposal and, furthermore, it was very similar to theirs, allowing
us to have quite comparable results in terms of processing time. On the other hand, we
had to decide on other details about the settings that inevitably could lead to some minor
differences in the outcomes.

Regarding the source code, after fixing some minor syntax errors, we went through
the analysis of some inconsistencies between the paper and the source code. The most
‘interesting’ inconsistency was the missing implementation of the early-stopping procedure.
The authors designed the experimental analysis in a way to have access to test accuracy
scores after each epoch, and hence, they were able to keep the best value obtained even
if there was no validation step to support such a score. In our experiments, we tried to
perform a set of repeated experiments and could see what epoch, on average, could be
the optimal one in the validation phase. Finally, after collecting and analyzing all the
necessary evaluation measurements, our final scores differ from the original values by
almost 2 percentage points.

Author Contributions: Conceptualization, G.M.D.N. and R.M.; methodology, G.M.D.N. and R.M.;
software, G.M.D.N. and R.M.; investigation, G.M.D.N. and R.M.; writing—original draft preparation,
G.M.D.N. and R.M.; writing—review and editing, G.M.D.N. and R.M. All authors have read and
agreed to the published version of the manuscript.

Information 2023, 14, 76 35 of 36

Funding: This research received no external funding.

Data Availability Statement: All the source code that has been used to produce the results for the analy-
sis is freely available at the following link https://github.com/riccardominzoni/reproducibilitycasestudy
(accessed on 19 January 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pugliese, R.; Regondi, S.; Marini, R. Machine learning-based approach: Global trends, research directions, and regulatory

standpoints. Data Sci. Manag. 2021, 4, 19–29. [CrossRef]
2. Baker, M. Reproducibility crisis. Nature 2016, 533, 353–366.
3. Lastra-Díaz, J.J.; García-Serrano, A.; Batet, M.; Fernández, M.; Chirigati, F. HESML: A scalable ontology-based semantic similarity

measures library with a set of reproducible experiments and a replication dataset. Inf. Syst. 2017, 66, 97–118. [CrossRef]
4. Crane, M. Questionable Answers in Question Answering Research: Reproducibility and Variability of Published Results. Trans.

Assoc. Comput. Linguist. 2018, 6, 241–252. [CrossRef]
5. Yu, B.; Hu, X. Toward Training and Assessing Reproducible Data Analysis in Data Science Education. Data Intell. 2019, 1, 381–392.

[CrossRef]
6. Cockburn, A.; Dragicevic, P.; Besançon, L.; Gutwin, C. Threats of a replication crisis in empirical computer science. Commun.

ACM 2020, 63, 70–79. [CrossRef]
7. Daoudi, N.; Allix, K.; Bissyandé, T.F.; Klein, J. Lessons Learnt on Reproducibility in Machine Learning Based Android Malware

Detection. Empir. Softw. Eng. 2021, 26, 74. [CrossRef]
8. Gundersen, O.E.; Shamsaliei, S.; Isdahl, R.J. Do machine learning platforms provide out-of-the-box reproducibility? Future Gener.

Comput. Syst. 2022, 126, 34–47. [CrossRef]
9. Reveilhac, M.; Schneider, G. Replicable semi-supervised approaches to state-of-the-art stance detection of tweets. Inf. Process.

Manag. 2023, 60, 103199. [CrossRef]
10. Pineau, J.; Vincent-Lamarre, P.; Sinha, K.; Larivière, V.; Beygelzimer, A.; d’Alché Buc, F.; Fox, E.; Larochelle, H. Improving

reproducibility in machine learning research: A report from the NeurIPS 2019 reproducibility program. J. Mach. Learn. Res. 2021,
22, 1–20.

11. Cheang, B.; Wei, B.; Kogan, D.; Qiu, H.; Ahmed, M. Language representation models for fine-grained sentiment classification.
arXiv 2020, arXiv:2005.13619.

12. Wankhade, M.; Rao, A.C.S.; Kulkarni, C. A survey on sentiment analysis methods, applications, and challenges. Artif. Intell. Rev.
2022, 55, 5731–5780. [CrossRef]

13. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

14. Rougier, N.P.; Hinsen, K.; Alexandre, F.; Arildsen, T.; Barba, L.A.; Benureau, F.C.; Brown, C.T.; De Buyl, P.; Caglayan, O.; Davison,
A.P.; et al. Sustainable computational science: The ReScience initiative. PeerJ Comput. Sci. 2017, 3, e142. [CrossRef]

15. Wieling, M.; Rawee, J.; van Noord, G. Reproducibility in computational linguistics: Are we willing to share? Comput. Linguist.
2018, 44, 641–649. [CrossRef]

16. Whitaker, K. The MT Reproducibility Checklist. Presented at the Open Science in Practice Summer School. 2017. Available
online: https://openworking.wordpress.com/2017/10/14/open-science-in-practice-summer-school-report/ (accessed on 19
January 2023).

17. Belz, A.; Agarwal, S.; Shimorina, A.; Reiter, E. A systematic review of reproducibility research in natural language processing.
arXiv 2021, arXiv:2103.07929.

18. Joint Committee for Guides in Metrology. International vocabulary of metrology—Basic and general concepts and associated
terms (VIM). VIM3 Int. Vocab. Metrol. 2008, 3, 104.

19. Munikar, M.; Shakya, S.; Shrestha, A. Fine-grained sentiment classification using BERT. In Proceedings of the 2019 Artificial
Intelligence for Transforming Business and Society (AITB), Kathmandu, Nepal, 5 November 2019; Volume 1, pp. 1–5.

20. Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. Albert: A lite bert for self-supervised learning of language
representations. arXiv 2019, arXiv:1909.11942.

21. Sanh, V.; Debut, L.; Chaumond, J.; Wolf, T. DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter. arXiv 2019,
arXiv:1910.01108.

22. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly
optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692.

23. Aßenmacher, M.; Heumann, C. On the comparability of Pre-trained Language Models. arXiv 2020, arXiv:2001.00781.
24. Socher, R.; Perelygin, A.; Wu, J.; Chuang, J.; Manning, C.D.; Ng, A.Y.; Potts, C. Recursive deep models for semantic composition-

ality over a sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing,
Seattle, WA, USA, 18–21 October 2013; pp. 1631–1642.

25. Pang, B.; Lee, L. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. arXiv 2005,
arXiv:cs/0506075.

https://github.com/riccardominzoni/reproducibilitycasestudy
http://doi.org/10.1016/j.dsm.2021.12.002
http://dx.doi.org/10.1016/j.is.2017.02.002
http://dx.doi.org/10.1162/tacl_a_00018
http://dx.doi.org/10.1162/dint_a_00053
http://dx.doi.org/10.1145/3360311
http://dx.doi.org/10.1007/s10664-021-09955-7
http://dx.doi.org/10.1016/j.future.2021.06.014
http://dx.doi.org/10.1016/j.ipm.2022.103199
http://dx.doi.org/10.1007/s10462-022-10144-1
http://dx.doi.org/10.7717/peerj-cs.142
http://dx.doi.org/10.1162/coli_a_00330
https://openworking.wordpress.com/2017/10/14/open-science-in-practice-summer-school-report/

Information 2023, 14, 76 36 of 36

26. Klein, D.; Manning, C.D. Accurate unlexicalized parsing. In Proceedings of the 41st Annual Meeting of the Association for
Computational Linguistics, Sapporo, Japan, 7–12 July 2003; pp. 423–430.

27. Lin, T.; Wang, Y.; Liu, X.; Qiu, X. A survey of transformers. AI Open 2022, 3, 111–132. [CrossRef]
28. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.

In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30.
29. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.

arXiv 2017, arXiv:1706.03762.
30. Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.; et al. Google’s

Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv 2016, arXiv:1609.08144.
31. Wan, Z.; Xu, C.; Suominen, H. Enhancing Clinical Information Extraction with Transferred Contextual Embeddings. arXiv 2021,

arXiv:2109.07243.
32. Balagopalan, A.; Eyre, B.; Robin, J.; Rudzicz, F.; Novikova, J. Comparing Pre-trained and Feature-Based Models for Prediction of

Alzheimer’s Disease Based on Speech. Front. Aging Neurosci. 2021, 13, 635945. [CrossRef] [PubMed]
33. Zhu, Y.; Kiros, R.; Zemel, R.; Salakhutdinov, R.; Urtasun, R.; Torralba, A.; Fidler, S. Aligning Books and Movies: Towards

Story-like Visual Explanations by Watching Movies and Reading Books. arXiv 2015, arXiv:1506.06724.
34. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
35. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding with Unsupervised Learning; Technical

Report; OpenAI: San Francisco, CA, USA, 2018.
36. Ulmer, D.; Bassignana, E.; Müller-Eberstein, M.; Varab, D.; Zhang, M.; van der Goot, R.; Hardmeier, C.; Plank, B. Experimental

Standards for Deep Learning in Natural Language Processing Research. arXiv 2022, arXiv:2204.06251.
37. Biderman, S.; Scheirer, W.J. Pitfalls in Machine Learning Research: Reexamining the Development Cycle. arXiv 2021,

arXiv:2011.02832.
38. Skripchuk, J.; Shi, Y.; Price, T. Identifying Common Errors in Open-Ended Machine Learning Projects. In Proceedings of the

the 53rd ACM Technical Symposium on Computer Science Education, SIGCSE 2022, Providence, RI, USA, 3–5 March 2022;
Association for Computing Machinery: New York, NY, USA, 2022; Volume 1, pp. 216–222. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.aiopen.2022.10.001
http://dx.doi.org/10.3389/fnagi.2021.635945
http://www.ncbi.nlm.nih.gov/pubmed/33986655
http://dx.doi.org/10.1145/3478431.3499397

	Introduction
	Terminology for Reproducing Experiments
	Case Study
	Task: Fine-Grained Sentiment Classification
	Dataset: Stanford Sentiment Tree (SST)
	Transformers
	BERT
	Word Embeddings
	Pre-Training and Fine-Tuning
	BERT Alternatives

	Experimental Settings for Reproducibility
	Environment
	Hardware
	Source Code
	Syntax Errors
	Inconsistencies

	Experimental Results
	A Note of Caution: Test Accuracy
	Evaluation Metrics
	BERT_BASE
	BERT_LARGE
	AlBERT
	DistilBERT_BASE
	RoBERTaLARGE

	Discussion
	How Does This Study Reflect on Current Knowledge about Issues in the Reproducibility of Computational Experiments?
	Was the Original Study by Cheang Et Alii Able to Provide All the Necessary Information to Ensure Its Reproduction in All Respects?
	What Are the Problems and Challenges Encountered?
	What Could Be Done in the Original Study to Overcome the Problems Found?

	Conclusions
	References

