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a b s t r a c t

We provide a full series expansion of a generalization of the so-called u-capacity
related to the Dirichlet–Laplacian in dimension three and higher, extending the
results of Abatangelo et al. (2021); Abatangelo, Léna and Musolino (2022) dealing
with the planar case. We apply the result in order to study the asymptotic behavior
of perturbed eigenvalues when Dirichlet conditions are imposed on a small regular
subset of the domain of the eigenvalue problem.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

This paper is devoted to the analysis of the asymptotic behavior of a generalization of the condenser
capacity of a bounded domain of Rd (d ≥ 3) with a small hole of size ε > 0, as the parameter ε approaches
the degenerate value 0. Such a generalization, as we shall see, has proved to be extremely useful for the
analysis of the behavior of simple and multiple eigenvalues for the Dirichlet–Laplacian in a bounded domain
with a small hole. A careful investigation of the behavior of such a generalized capacity has been carried out
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in [1,3] in the planar case, with the corresponding applications to the study of the eigenvalues in perforated
domains. Here, instead, we wish to consider the case of dimension d greater than or equal to 3. As we shall
see, the cases of dimension d = 2 and of d ≥ 3 need to be treated separately because of the different aspect
of the fundamental solution of the Laplace operator.

Before introducing the generalization of the capacity we are going to study, we begin by recalling the
notion of condenser capacity and a first generalization of it, known as u-capacity.

We recall that for a bounded, connected open set Ω of Rd and a compact subset K of Ω , the (condenser)
capacity of K in Ω is

CapΩ (K) ≡ inf
{∫

Ω

|∇f |2 dx : f ∈ H1
0 (Ω) and f − ηK ∈ H1

0 (Ω \K)
}
, (1)

where ηK is a fixed smooth function such that supp ηK ⊆ Ω and ηK ≡ 1 in a neighborhood of K. As is well
known, the infimum in (1) is achieved by a function VK ∈ H1

0 (Ω) such that VK − ηK ∈ H1
0 (Ω \K) so that

CapΩ (K) =
∫
Ω

|∇VK |2 dx ,

where VK (capacitary potential) is the unique solution of the Dirichlet problem⎧⎨⎩ ∆VK = 0 in Ω \K ,
VK = 0 on ∂Ω ,
VK = 1 on K .

(2)

By saying that VK solves (2) we mean that VK ∈ H1
0 (Ω), VK − ηK ∈ H1

0 (Ω \K), and∫
Ω\K

∇VK · ∇ϕdx = 0 ∀ϕ ∈ H1
0 (Ω \K).

Moreover, if Ω and K are sufficiently regular, one can reformulate the boundary conditions of problem (2)
in the trace sense. Let us also point out that CapΩ (K) and VK do not depend on the choice of ηK , but only
on the set K.

The following set of properties for the domains will play a key role in our analysis, so we summarize it in
a definition.

Definition 1.1. We say that Ω ⊂ Rd is an admissible domain if

1. Ω is open, bounded and connected;
2. Ω is in the Schauder class C1,α for some α ∈ ]0, 1[;
3. 0 ∈ Ω and Rd \ Ω is connected.

In the case where d ≥ 3, we can use the notion of Newtonian capacity. We restrict ourselves to the case
here K = ω, with ω an admissible domain. Then, there exists a unique function

WK : Rd \ ω → R

that is continuous, real-analytic in the open set Rd \K, and satisfies⎧⎨⎩ ∆WK = 0 in Rd \K ,
WK = 1 on ∂K ,
WK(x) → 0 for x → ∞ .

(3)

The last condition in (3) is equivalent to the requirement that WK be harmonic at infinity. We then define
the Newtonian capacity as

CapRd(K) ≡
∫
Rd\K

|∇WK |2 dx , (4)
the integral being finite.
2
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In order to study the asymptotic behavior as ε → 0 of eigenvalues of the Dirichlet–Laplacian in perforated
omains of the type

Ωε = Ω \ εω ,

here Ω , ω ⊂ Rd are admissible domains in the sense of Definition 1.1, a generalization of the notion of
apacity –the so-called u-capacity–, has been introduced (see Abatangelo, Felli, Hillairet, and Léna [2]).

efinition 1.2. Given a function u ∈ H1
0 (Ω), the u-capacity of a compact set K ⊆ Ω is

CapΩ (K,u) ≡ inf
{∫

Ω

|∇f |2 dx : f ∈ H1
0 (Ω) and f − u ∈ H1

0 (Ω \K)
}
. (5)

The infimum in (5) is achieved by a unique function VK,u ∈ H1
0 (Ω), so that

CapΩ (K,u) =
∫
Ω

|∇VK,u|2 dx .

We call VK,u the potential associated with u and K.
Furthermore, VK,u is the unique weak solution of the Dirichlet problem⎧⎨⎩ ∆VK,u = 0 in Ω \K ,

VK,u = 0 on ∂Ω ,
VK,u = u on K ,

where, by weak solution, we mean that VK,u ∈ H1
0 (Ω), u− VK,u ∈ H1

0 (Ω \K) and
∫
Ω

∇VK,u · ∇φdx = 0 for
all φ ∈ H1

0 (Ω \K).

We extend Definition 1.2 to H1(Ω) functions, by setting, for any u ∈ H1(Ω),

CapΩ (K,u) ≡ CapΩ (K, ηKu) ,

where ηK is a fixed smooth function such that supp ηK ⊆ Ω and ηK ≡ 1 in a neighborhood of K. Here
again, CapΩ (K,u) and the associated potential VK,u do not depend on the choice of ηK , but only on K and
u.

With this tool in hand, one can obtain an asymptotic formula for the behavior of Nth eigenvalue λN (Ωε)
of the Dirichlet–Laplacian in Ωε as ε → 0, under the assumption that the Nth eigenvalue λN (Ω) of the
Dirichlet–Laplacian in the unperturbed set Ω is simple.

In order to be more precise, we recall that if Ω̃ is a bounded open set in Rd the eigenvalue problem{
−∆u = λu in Ω̃ ,

u = 0 on ∂Ω̃

admits a sequence of real eigenvalues tending to infinity

0 < λ1(Ω̃) ≤ λ2(Ω̃) ≤ · · · ≤ λN (Ω̃) ≤ · · · → +∞

where every eigenvalue is repeated as many times as its multiplicity and, in particular, the first one is simple
if Ω̃ is connected. The dependence of the spectrum of the Laplace operator upon domain perturbations has
long been investigated, with particular attention to the case of sets with small perforations. Here we mention,
for example, Abatangelo, Felli, Hillairet, and Léna [2], Ammari, Kang, and Lee [4], Besson [5], Chavel and
Feldman [7], Colbois and Courtois [8], Courtois [10], Felli, Noris, and Ognibene [17], Lamberti and Perin [23],
Lanza de Cristoforis [28], Maz’ya, Movchan, and Nieves [30], Maz’ya, Nazarov, and Plamenevskĭı [32],

Ozawa [33], Rauch and Taylor [36], Samarskĭı [37]. In particular, we recall that, by Courtois [10, Proof

3
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of Theorem 1.2] and by Abatangelo, Felli, Hillairet, and Léna [2, Theorem 1.4], an asymptotic formula for
the eigenvalues can be obtained in terms of CapΩ (εω, uN ), where uN is a L2(Ω)-normalized eigenfunction
orresponding to λN (Ω): if Ω and ω are admissible domains and λN (Ω) is simple, this reads as

λN (Ω \ (εω)) = λN (Ω) + CapΩ (εω, uN ) + o(CapΩ (εω, uN )) as ε → 0+ .

Unfortunately, the above mentioned result a priori only holds for simple eigenvalues. In order to
tudy multiple eigenvalues, one needs a further generalization of the capacity. The eigenspace being of
imension greater than one, one needs to take into account the interaction between different eigenfunctions
orresponding to the same eigenvalue.

efinition 1.3. Given ua, ub ∈ H1
0 (Ω), the (ua, ub)-capacity of a compact set K ⊆ Ω is

CapΩ (K,ua, ub) ≡
∫
Ω

∇VK,ua · ∇VK,ub dx.

Here above the symbol · denotes the scalar product in Rd.
Again, as we have done for the u-capacity, we extend Definition 1.3 to H1(Ω) functions, by setting, for

any pair of functions ua, ub ∈ H1(Ω),

CapΩ (K,ua, ub) ≡ CapΩ (K, ηKu
a, ηKu

b) ,

where ηK is a fixed smooth function such that supp ηK ⊆ Ω and ηK ≡ 1 in a neighborhood of K.
With the new object CapΩ (K,ua, ub) we can clearly recover the classical condenser capacity as well as

the u-capacity.

Remark 1.4. If u ∈ H1(Ω) and K is a compact subset of Ω , then

CapΩ (K,u, u) = CapΩ (K,u) .

Also,
CapΩ (K, 1, 1) = CapΩ (K) .

In [3] it has been shown that by exploiting the definition of (ua, ub)-capacity, we can obtain the asymptotic
behavior of multiple eigenvalues. More precisely, if one has an asymptotic expansion of CapΩ (εω, ua, ub)
where ua and ub are eigenfunctions corresponding to the same multiple eigenvalue in the unperturbed set Ω ,
hen one can deduce the asymptotic behavior of the corresponding eigenvalues in the perforated set Ω \(εω).
herefore, in [3], we have obtained a detailed and fully constructive representation of CapΩ (εω, ua, ub)

as a convergent series in case of dimension d = 2. Since our method is based on potential theory, the
higher dimensional case differs from the two-dimensional one (mainly due to the different aspect of the
fundamental solution for the Laplace equation). The goal of the present paper is to obtain a representation
of CapΩ (εω, ua, ub) for ε close to 0 in terms of a convergent series and to apply it to study the asymptotic
behavior of Dirichlet eigenvalues in perforated domains, in the case d ≥ 3. Such results extend the work
one in [3] for the case of dimension d = 2. Moreover, taking ua = ub = 1, one can immediately deduce the
xpansion for the condenser capacity CapΩ (εω) as ε → 0. We observe that several authors have considered
he asymptotic behavior of condenser capacities in several geometrical situations (see Dubinin [16], Lanza
e Cristoforis [25–27], Maz’ya, Nazarov, and Plamenevskij [31, §8.1], Sŏıbel’man [40]). As an example, we
ention that the asymptotic expansion of the capacity as the hole shrinks to a point can be deduced from
4
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the analysis of energy integrals in perforated domains by Maz’ya, Nazarov, and Plamenevskij [31, §8.1]. For
xample, in dimension two, they prove that there exists δ > 0 such that

CapΩ (εω) = − 2π
log ε+ 2π

(
H(0,0) +N

) + o(εδ) , (6)

for ε small and positive, where e2πN is the logarithmic capacity (or outer conformal radius) of ω and H(0,0) is
the value at x = 0 of the unique harmonic function h in Ω such that h(x) = − log |x|/(2π) for all x ∈ ∂Ω . For
the definition of logarithmic capacity we refer, e.g., to Landkof [24, p. 168], Pólya and Szegö [34, p. 2], and
Pommerenke [35, p. 332]. In other words, N in Eq. (6) is defined as 1/(2π) multiplied by the logarithm of
the logarithmic capacity of ω. Moreover, expansions for the capacity for the case of several small inclusions
can be deduced from the corresponding expansion of the capacitary potential obtained in Maz’ya, Movchan,
and Nieves [29, §3.2.2].

A different method to analyze the asymptotic behavior of functionals in perforated domains is the so-
called Functional Analytic Approach proposed by Lanza de Cristoforis in [25,26]. The goal of this method
is to represent functionals in singularly perturbed domains by means of real analytic maps and possibly
singular but explicitly known functions of the singular perturbation parameter (see Dalla Riva, Lanza de
Cristoforis, and Musolino [11] for an introduction). As far as the condenser capacity in dimension two is
concerned, by Lanza de Cristoforis [25,26], we know that there exist ε1 > 0 and a real analytic function R
from ] − ε1, ε1[ to ]0,+∞[ such that

CapΩ (εω) = − 2π
log ε+ log R[ε] ∀ε ∈]0, ε1[ .

Such a result implies that there exists a real analytic map R̃ from a neighborhood of (0, 0) in R2 with
alues in R such that

CapΩ (εω) = R̃
[
ε,

1
log ε

]
,

or ε positive and close to 0. As a consequence, we have that

CapΩ (εω) =
∑

(k,l)∈N2

γ(k,l)ε
k
( 1

log ε

)l

,

for ε positive and small enough, where the double power series
∑

(k,l)∈N2 γ(k,l)x
k
1x

l
2 converges for (x1, x2) in

neighborhood of (0, 0). Moreover, in Lanza de Cristoforis [27], the Functional Analytic Approach has been
pplied to the capacity CapΩ (εω) in Rd with d ≥ 2 and has shown the existence of two real analytic maps
1, V2 from a neighborhood of 0 to R such that

CapΩ (εω) = −1
V1[ε] + V2[ε]Υd[ε] (7)

or ε positive and small enough, with Υd[ε] defined as

Υd[ε] ≡
{ 1

2π log ε if d = 2 ,
1

(2−d)sd
ε2−d if d ≥ 3 ,

here sd denotes the (d− 1)-dimensional measure of the unit sphere in Rd. In dimension d ≥ 3 formula (7)
mplies the possibility of representing CapΩ (εω) as a convergent power series in ε, even though the explicit
omputation of the coefficients of the series is not available.

In [1,3], we have improved the above mentioned two-dimensional results in two directions: first we have
onsidered a generalization of the classical capacity (the u-capacity), then we have explicitly computed
ome of the coefficients of the series representing the u-capacity. This result has then been applied to the
5
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asymptotic behavior of simple and multiple eigenvalues of the Laplacian in perforated domains in dimension
d = 2. The purpose of the present paper is to consider the behavior of (generalized) capacities in dimension
three and higher together with its application to the asymptotic behavior of Dirichlet–Laplacian eigenvalues.

We wish to stress that to obtain an asymptotic expansion of CapΩ (εω, ua, ub), we follow the lines of the
computations of [1,3]. Although the strategy is similar, some changes need to be taken into account due to
the different dimension (here d ≥ 3, whereas d = 2 in [1,3]). Since they deserve some attention and care, we
decided to provide these computations in the present paper.

We do believe that explicit results in dimension d ≥ 3 will be useful both to people interested in the
behavior of capacities and to those interested in the asymptotic analysis of eigenvalues of the Laplacian in
perforated domains. To the best of our knowledge, the explicit and constructive series expansion we obtain
is new even for the classical capacity.

We assume that Ω and ω are admissible domains in the sense of Definition 1.1. These regularity
assumptions on Ω and ω are convenient for the Functional Analytic Approach we adopt, although they
can be relaxed to Lipschitz regularity as it has been done in Costabel, Dalla Riva, Dauge, and Musolino [9]

Definition 1.5. Let Ω be an admissible domain. We call u an admissible function if

1. u ∈ H1(Ω);
2. u is real-analytic in a neighborhood of 0.

Our first main result, Theorem 5.2, deals with the value of CapΩ (εω, ua, ub) for ε close to 0. We
reformulate Theorem 5.2 in Theorem 1.6 below. For the proof, we refer to Section 5.

Theorem 1.6. Let Ω , ω be admissible domains and let ua, ub be admissible functions. Then there exist ε#
c

positive and small enough and a sequence {c#
n }n∈N of real numbers such that

CapΩ (εω, ua, ub) = εd−2
∞∑

n=0
c#

n ε
n

or all ε ∈]0, ε#
c [.

In addition, we are able to give a simple description of the first few terms in the above series expansion.
or an admissible function u which is not identically zero in a neighborhood of 0, we denote by κ(u)∈ N the
rder of vanishing of u at 0, so that Dγu(0) = 0 for all |γ| < κ(u) and Dβu(0) ̸= 0 for some β ∈ Nd with
β| = κ(u) (we use the standard multi-index notation throughout the paper). We define the principal part
f u by

u#(x) ≡
∑

β∈Nd,|β|=κ(u)

1
β!D

βu(0)xβ ,

o that u# is a homogeneous polynomial of degree κ(u). Note that this includes the case when κ(u) = 0,
.e., u(0) ̸= 0. Then u# = u(0). We finally denote by U the unique function, continuous in Rd \ ω, which

solves the exterior boundary value problem⎧⎨⎩ ∆U = 0 in Rd \ ω ,
U = u# on ∂ω ,
U(x) → 0 for |x| → ∞ .

(8)

We now assume that the admissible functions ua, ub have finite orders of vanishing κ(ua) = ka and κ(ub) = kb

t 0. We write
C
(
ω, (ua)#, (ub)#

)
≡
∫

∇Ua · ∇U b dx+
∫

∇ua
# · ∇ub

# dx ,

Rd\ω ω

6
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where, for l = a, b, the function ul
# is the principal part of ul and the function U l is the solution of problem

(8) with u# replaced by ul
#. Then, c#

n = 0 for all n < ka + kb and

c#
ka+kb

= C
(
ω, (ua)#, (ub)#

)
.

When u is a single admissible function, with finite order of vanishing κ(u) = k at 0, we simplify notation
urther by writing

C(ω, u#) ≡ C(ω, u#, u#),

nd we note that
C(ω, u#) =

∫
Rd\ω

|∇U |2 dx+
∫

ω

|∇u#|2 dx (9)

is strictly positive. In particular, CapΩ (εω, u) is asymptotic to C(ω, u#)ε2k+d−2.
We then apply the above results to the asymptotic behavior of eigenvalues in perforated domains. Our

ain results on this problem are the following Theorems 1.7 and 1.8 (see Theorems 7.2, 7.3, and 7.8 for
ore detailed statements). We begin with Theorem 1.7 which is a reformulation of Theorems 7.2 and 7.3

nd which deals with the case when the Nth eigenvalue in the unperturbed set Ω is simple. For the proof,
we refer to Section 7.1.

Theorem 1.7. Let λN (Ω) be a simple eigenvalue of the Dirichlet–Laplacian in an admissible domain Ω .
Let uN be a L2(Ω)-normalized eigenfunction associated to λN (Ω). Then

λN (Ω \ (εω)) = λN (Ω) + (uN (0))2CapRd(ω)εd−2 + o
(
εd−2

)
as ε → 0+ .

Moreover, let k be the order of vanishing of uN at 0. Then

λN (Ω \ (εω)) = λN (Ω) + C (ω, (uN )#) ε2k+d−2 + o
(
ε2k+d−2

)
as ε → 0+ .

Theorem 1.8 here below is instead concerned with the case when λN (Ω) is an eigenvalue of multiplicity
> 1. The case of multiple eigenvalues is considered in Theorem 7.8 and its proof can be found in

ection 7.2.

heorem 1.8. Let λN (Ω) be an eigenvalue of multiplicity m > 1 and let E(λN (Ω)) be the associated
igenspace. There exists an orthonormal basis of E(λN (Ω)),

v1, . . . , vi, . . . , vm,

uch that, for 1 ≤ i ≤ m,

λN−1+i(Ω \ (εω)) = λN (Ω) + CapΩ (εω, vi) + o (CapΩ (εω, vi)) as ε → 0+ .

oreover, we have

λN−1+i(Ω \ (εω)) = λN (Ω) + µiε
2ki+d−2 + o

(
ε2ki+d−2

)
as ε → 0+ ,

here ki is the order of vanishing of vi at 0 and

µj = C (ω, (vi)#) > 0.

emark 1.9. In the previous theorem, the non-increasing finite sequence of integers
(
ki

)
and the non-

ecreasing finite sequence of positive numbers (µi) are obviously independent of the choice of a basis (vi)
atisfying the properties, by uniqueness of the asymptotic expansion.
7
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The paper is organized as follows. In Section 2 we rewrite the boundary value problem associated to
the generalization of the capacity in terms of integral equations, exploiting classical potential theory. In
Sections 3 and 4 we obtain series expansions for the solutions of the integral equations and for an auxiliary
function. In Section 5, we deduce our main result on the series expansion of the generalized capacity
CapΩ (εω, ua, ub) for ε close to 0. In Section 6, we compute the principal term of the asymptotic expansion of

apΩ (εω, ua, ub) under vanishing assumption for ua and ub. In Section 7 we outline the proofs of Theorem 1.7
and Theorem 1.8. Moreover, we supplement the present paper with a blow-up analysis for the u-capacity
in Appendix. It shows more clearly that the first term of the series expansion provided in Section 5 can be
seen as a suitable capacity in the whole space Rd.

2. Integral equation formulation of capacitary potentials

2.1. Preliminaries and classical notions of potential theory

In this paper we consider the dimension

d ∈ N \ {0, 1, 2}

and we study the asymptotic behavior of CapΩ (εω, ua, ub) as ε → 0. To do so, we assume some smoothness
on the sets and on the functions ua and ub. We work in the frame of Schauder classes and thus we assume
that both Ω and ω are admissible domains in the sense of Definition 1.1. We can obviously find a common
Schauder class C1,α to which they belong, up to taking a smaller α. Since Ω is open and contains 0, and
since ω bounded, it is clear that there exists ε# such that

ε# > 0 and εω ⊆ Ω for all ε ∈] − ε#, ε#[ . (10)

o define our perforated domain, we set

Ωε ≡ Ω \ (εω) ∀ε ∈] − ε#, ε#[.

learly, Ωε is an open bounded connected subset of Rd of class C1,α for all ε ∈]−ε#, ε#[\{0}. The boundary
Ωε of Ωε is the union of ∂Ω and ∂(εω) = ε∂ω, for all ε ∈] − ε#, ε#[\{0}. For ε = 0, we have Ω0 = Ω \ {0}.
e also need some regularity on the functions ua, ub: we assume that ua, ub are admissible in the sense of
efinition 1.5.
Our goal is to provide accurate and explicit expansions for CapΩ (εω, ua, ub) in terms of ε, with particular

emphasis on the influence of the geometry and the data of the problem on such formulas.
Our strategy will be the same of [1,3], where we adopted the Functional Analytic Approach of Lanza de

Cristoforis [25,26] for the analysis of singularly perturbed boundary value problems (see Dalla Riva, Lanza de
Cristoforis, and Musolino [11] for a detailed presentation). This approach permits to deduce a representation
of the solution or related functionals as real-analytic maps, and thus as convergent power series.

To analyze CapΩ (εω, ua, ub), we modify the techniques of [1,3], where we considered CapΩ (εω, u) and
apΩ (εω, ua, ub) but only in the planar case. Indeed, we emphasize that for considering d ≥ 3 some
odifications need to be done, as it is customary when using Potential Theory.
By the analyticity of ua and ub (see Definition 1.5) and analyticity results for the composition operator

see Böhme and Tomi [6, p. 10], Henry [21, p. 29], Valent [41, Thm. 5.2, p. 44]), we deduce that, possibly
hrinking ε#, there exists two real analytic maps Ua

#, U b
# from ] − ε#, ε#[ to C1,α(∂ω) such that

ua(εt) = Ua [ε](t) , ub(εt) = U b [ε](t) , ∀t ∈ ∂ω , ∀ε ∈] − ε , ε [
# # # #

8
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(see Deimling [15, §15] for the definition and properties of analytic maps). Then for all ε ∈] − ε#, ε#[\{0},
e denote by ua

ε and ub
ε the unique solutions in C1,α(Ωε) of the problems⎧⎨⎩

∆ua
ε = 0 in Ωε ,

ua
ε(x) = 0 for all x ∈ ∂Ω ,
ua

ε(x) = Ua
#[ε](x/ε) for all x ∈ ε∂ω

(11)

and ⎧⎨⎩
∆ub

ε = 0 in Ωε ,
ub

ε(x) = 0 for all x ∈ ∂Ω ,
ub

ε(x) = U b
#[ε](x/ε) for all x ∈ ε∂ω ,

respectively. By the Divergence Theorem, we see that

CapΩ (εω, ua, ub) =
∫
Ωε

∇ua
ε · ∇ub

ε dx+
∫

εω

∇ua · ∇ub dx

= −εd−2
∫

∂ω

νω(t) · ∇
(
ua

ε(εt)
)
ub(εt) dσt + εd

∫
ω

(∇ua)(εt) · (∇ub)(εt) dt ,

or all ε ∈] − ε#, ε#[\{0}, where νω denotes the outward unit normal to ∂ω.
In order to analyze the solution to problem (11) as ε → 0, we adapt to the present problem the method

developed in Dalla Riva, Musolino, and Rogosin [14] for the solution of the Dirichlet problem in a planar
perforated domain, which is based on potential theory. By exploiting some specific integral operators (the
single and the double layer potentials) we convert a boundary value problem into a set of boundary integral
equations.

To introduce the layer potentials, we denote by Sd the fundamental solution of ∆ ≡
∑d

j=1 ∂
2
j in Rd: i.e.,

Sd(x) ≡ 1
(2 − d)sd|x|d−2 ∀x ∈ Rd \ {0}.

ere sd denotes the (d− 1)-dimensional measure of the unit sphere in Rd. Now let O be an open bounded
ubset of Rd of class C1,α. If ϕ ∈ C0,α(∂O), then we denote by v[∂O, ϕ] the single layer potential with
ensity ϕ:

v[∂O, ϕ](x) ≡
∫

∂O
ϕ(y)Sd(x− y) dσy ∀x ∈ Rd .

t is well known that v[∂O, ϕ] is a continuous function from Rd to R. The restriction v+[∂O, ϕ] ≡ v[∂O, ϕ]|O
elongs to C1,α(O). Moreover, if we denote by C1,α

loc (Rd\O) the space of functions on Rd\O whose restrictions
to U belong to C1,α(U) for all open bounded subsets U of Rd \ O, then v−[∂O, ϕ] ≡ v[∂O, ϕ]|Rd\O belongs
to C1,α

loc (Rd \ O).
If ψ ∈ C1,α(∂O), we introduce the double layer potential w[∂O, ψ] by setting

w[∂O, ψ](x) ≡ −
∫

∂O
ψ(y) νO(y) · ∇Sd(x− y) dσy ∀x ∈ Rd,

where νO denotes the outer unit normal to ∂O. The restriction w[∂O, ψ]|O extends to a function w+[∂O, ψ]
of C1,α(O) and the restriction w[∂O, ψ]|Rd\O extends to a function w−[∂O, ψ] of C1,α

loc (Rd \ O).
To describe the boundary behavior of the trace of the double layer potential on ∂O and of the normal

erivative of the single layer potential, we define the boundary integral operators WO and W ∗
O:

WO[ψ](x) ≡ −
∫

∂O
ψ(y) νO(y) · ∇Sd(x− y) dσy ∀x ∈ ∂O,

or all ψ ∈ C1,α(∂O), and

W ∗
O[ϕ](x) ≡

∫
ϕ(y) νO(x) · ∇Sd(x− y) dσy ∀x ∈ ∂O,
∂O
9
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for all ϕ ∈ C0,α(∂O). The operators WO and W ∗
O are compact operators from C1,α(∂O) to itself and from

C0,α(∂O) to itself, respectively (see Schauder [38,39]). Moreover, WO and W ∗
O are adjoint one to the other

with respect to the duality on C1,α(∂O) × C0,α(∂O) induced by the inner product of the Lebesgue space
L2(∂O) (cf., e.g., Kress [22, Chap. 4]). We refer the reader to Kress [22] and Wendland [42,43], for the theory
of dual systems and the corresponding Fredholm Alternative Principle. Moreover,

w±[∂O, ψ]|∂O = ±1
2ψ +WO[ψ] ∀ψ ∈ C1,α(∂O) ,

νO · ∇v±[∂O, ϕ]|∂O = ∓1
2ϕ+W ∗

O[ϕ] ∀ϕ ∈ C0,α(∂O)

see, e.g., Folland [19, Chap. 3]).
Finally, we shall need to consider the subspaces of C0,α(∂O) and of C1,α(∂O), consisting of functions

ith zero integral on ∂O:

Ck,α(∂O)0 ≡

{
f ∈ Ck,α(∂O) :

∫
∂O

f dσ = 0
}

for k = 0, 1 . (12)

.2. An integral formulation of the boundary value problem

To convert problem (11) into integral equations, we follow the idea of Lanza de Cristoforis [27] and of
alla Riva, Musolino, and Rogosin [14]. Therefore, we proceed as in [1,3,14] and we introduce the map

≡ (Mo,M i,M c) from ] − ε#, ε#[×C0,α(∂Ω) × C0,α(∂ω) to C0,α(∂Ω) × C0,α(∂ω)0 × R by setting

Mo[ε, ρo, ρi](x) ≡ 1
2ρ

o(x) +W ∗
Ω [ρo](x) +

∫
∂ω

ρi(s) νΩ (x) · ∇Sd(x− εs) dσs ∀x ∈ ∂Ω ,

M i[ε, ρo, ρi](t) ≡ 1
2ρ

i(t) −W ∗
ω [ρi](t) − εd−1

∫
∂Ω

ρo(y) νω(t) · ∇Sd(εt− y) dσy ∀t ∈ ∂ω ,

M c[ε, ρo, ρi] ≡
∫

∂ω

ρi dσ − 1 ,

or all (ε, ρo, ρi) ∈] − ε#, ε#[×C0,α(∂Ω) × C0,α(∂ω). The space C0,α(∂ω)0 is defined as in Eq. (12), i.e.,

C0,α(∂ω)0 ≡

{
f ∈ C0,α(∂ω) :

∫
∂ω

f dσ = 0
}
.

Then we can prove the following result of Lanza de Cristoforis [27, §3] (see also Dalla Riva, Musolino,
nd Rogosin [14, Prop. 4.1]).

roposition 2.1. The following statements hold.

(i) The map M is real analytic.
(ii) If ε ∈ [0, ε#[, then there exists a unique pair (ρo

≥[ε], ρi
≥[ε]) ∈ C0,α(∂Ω) × C0,α(∂ω) such that

M [ε, ρo
≥[ε], ρi

≥[ε]] = 0.
iii) There exist ε̃ρ ∈]0, ε#[ and a real analytic map (ρo[·], ρi[·]) from ] − ε̃ρ, ε̃ρ[ to C0,α(∂Ω) ×C0,α(∂ω) such

that
M [ε, ρo[ε], ρi[ε]] = 0 ∀ε ∈] − ε̃ρ, ε̃ρ[ .

In particular,
o i o i
(ρ [ε], ρ [ε]) = (ρ≥[ε], ρ≥[ε]) ∀ε ∈ [0, ε̃ρ[ .

10
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As explained in [27], to represent the solution uε to problem (11), we need to consider a further operator
nd thus we define the map Λ ≡ (Λo,Λi) from ] − ε#, ε#[×C1,α(∂Ω) × C1,α(∂ω)0 to C1,α(∂Ω) × C1,α(∂ω)
y

Λo[ε, θo, θi](x) ≡ 1
2θ

o(x) +WΩ [θo](x)

+ εd−1
∫

∂ω

θi(s) νω(s) · ∇Sd(x− εs) dσs ∀x ∈ ∂Ω ,

Λi[ε, θo, θi](t) ≡ 1
2θ

i(t) −Wω[θi](t) + w[∂Ω , θo](εt)

− Ua
#[ε](t) +

∫
∂ω

Ua
#[ε]ρi[ε] dσ ∀t ∈ ∂ω ,

or all (ε, θo, θi) ∈] − ε#, ε#[×C1,α(∂Ω) × C1,α(∂ω)0. Then we have the following result of Lanza de
ristoforis [27, §4] on Λ (cf. Dalla Riva, Musolino, and Rogosin [14, Prop. 4.3]).

roposition 2.2. The following statements hold.

(i) The map Λ is real analytic.
ii) If ε ∈ [0, ε#[, then there exists a unique pair (θo

≥[ε], θi
≥[ε]) ∈ C1,α(∂Ω) × C1,α(∂ω)0 such that

Λ[ε, θo
≥[ε], θi

≥[ε]] = 0.
ii) There exist ε̃θ ∈]0, ε#[ and a real analytic map (θo[·], θi[·]) from ] − ε̃θ, ε̃θ[ to C1,α(∂Ω) ×C1,α(∂ω)0 such

that
Λ[ε, θo[ε], θi[ε]] = 0 ∀ε ∈] − ε̃θ, ε̃θ[ .

In particular,
(θo[ε], θi[ε]) = (θo

≥[ε], θi
≥[ε]) ∀ε ∈ [0, ε̃θ[ .

We now set
ε0 ≡ min{ε̃ρ, ε̃θ} .

By summing suitable double and single layer potentials, by a modification of the argument of Dalla Riva,
usolino, and Rogosin [14, Prop. 4.5], we can represent the rescaled function uε(εt) by means of the functions

o[ε], ρi[ε], θo[ε], and θi[ε] introduced in Propositions 2.1 and 2.2 (see also Lanza de Cristoforis [27, §5] and
alla Riva, Musolino, and Rogosin [13, §2.4]).

roposition 2.3. Let ε ∈]0, ε0[. Then

ua
ε(εt) ≡ w+[∂Ω , θo[ε]](εt) − w−[∂ω, θi[ε]](t)

+
∫

∂ω

Ua
#[ε]ρi[ε] dσ

(
v+[∂Ω , ρo[ε]](εt) + ε−(d−2)v−[∂ω, ρi[ε]](t)

)
×
(

1∫
∂ω
dσ

∫
∂ω

v[∂Ω , ρo[ε]](εs) + ε−(d−2)v[∂ω, ρi[ε]](s) dσs

)−1

= w+[∂Ω , θo[ε]](εt) − w−[∂ω, θi[ε]](t)

+
∫

∂ω

Ua
#[ε]ρi[ε] dσ

(
εd−2v+[∂Ω , ρo[ε]](εt) + v−[∂ω, ρi[ε]](t)

)
×
(

1∫
∂ω
dσ

∫
∂ω

εd−2v[∂Ω , ρo[ε]](εs) + v[∂ω, ρi[ε]](s) dσs

)−1

or all t ∈ (ε−1Ω) \ ω.

11



L. Abatangelo, C. Léna and P. Musolino Nonlinear Analysis 238 (2024) 113391

a

t

a

t
e

f

3. Power series expansions of the auxiliary functions (ρo[ε], ρi[ε]) and (θo[ε], θi[ε]) around ε = 0

As in [3], now the plan is to construct an expansion for νω(t) ·∇
(
ua

ε(εt)
)
ub(εt) and then to integrate it on

∂ω. To do so, we first obtain a representation of the auxiliary density functions (ρo[ε], ρi[ε]) and (θo[ε], θi[ε])
nd then we use it to represent νω(t) · ∇

(
ua

ε(εt)
)
ub(εt).

To compute the coefficients of the series involved in the representation, we need explicit expressions for
he derivatives with respect to ε of functions of the type F (εx). More precisely, we will exploit the equality

∂j
ε(F (εx)) =

∑
β∈Nd

|β|=j

j!
β!x

β(DβF )(εx) (13)

which holds for all j ∈ N, ε ∈ R, x ∈ Rd, and for all functions F analytic in a neighborhood of εx. Here,
if α ∈ Nd, then (DαF )(y) denotes the partial derivative of multi-index α with respect to x of the function
F (x) evaluated at y ∈ Rd. We also exploit formulas for the derivatives of layer potentials in the singularly
perturbed set Ω \ εω with respect to the parameter ε as it is done in Dalla Riva, Luzzini and Musolino [12].

Then we have the following variant of Dalla Riva, Musolino, and Rogosin [14, Prop. 5.1], where we
represent (ρo[ε], ρi[ε]) as a power series for ε close to 0.

Proposition 3.1. Let (ρo[ε], ρi[ε]) be as in Proposition 2.1 for all ε ∈] − ε0, ε0[. Then there exist ερ ∈]0, ε0[
nd a sequence {(ρo

k, ρ
i
k)}k∈N in C0,α(∂Ω) × C0,α(∂ω) such that

ρo[ε] =
+∞∑
k=0

ρo
k

k! ε
k and ρi[ε] =

+∞∑
k=0

ρi
k

k! ε
k ∀ε ∈] − ερ, ερ[ , (14)

where the two series converge normally in C0,α(∂Ω) and in C0,α(∂ω), respectively, for ε ∈]−ερ, ερ[. Moreover,
he pair of functions (ρo

0, ρ
i
0) is the unique solution in C0,α(∂Ω)×C0,α(∂ω) of the following system of integral

quations

1
2ρ

o
0(x) +W ∗

Ω [ρo
0](x) = −νΩ (x) · ∇Sd(x) ∀x ∈ ∂Ω ,

1
2ρ

i
0(t) −W ∗

ω [ρi
0](t) = 0 ∀t ∈ ∂ω ,∫

∂ω

ρi
0 dσ = 1 ,

or each k ∈ {1, . . . , d − 2} the pair of functions (ρo
k, ρ

i
k) is the unique solution in C0,α(∂Ω) × C0,α(∂ω) of

the following system of integral equations

1
2ρ

o
k(x) +W ∗

Ω [ρo
k](x)

= (−1)k+1
∑

β∈Nd

|β|=k

k!
β!νΩ (x) · (∇DβS)(x)

∫
∂ω

ρi
0(s)sβ dσs ∀x ∈ ∂Ω ,

ρi
k(t) = 0 ∀t ∈ ∂ω ,
12
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and for each k ∈ N \ {0, . . . , d − 2} the pair (ρo
k, ρ

i
k) is the unique solution in C0,α(∂Ω) × C0,α(∂ω) of the

ollowing system of integral equations which involves {(ρo
j , ρ

i
j)}k−1

j=0 ,
1
2ρ

o
k(x) +W ∗

Ω [ρo
k](x)

=
k∑

j=0

(
k

j

)
(−1)j+1

∑
β∈Nd

|β|=j

j!
β!νΩ (x) · (∇DβS)(x)

∫
∂ω

ρi
k−j(s)sβ dσs ∀x ∈ ∂Ω ,

1
2ρ

i
k(t) −W ∗

ω [ρi
k](t)

= k!
(k − (d− 1))!

k−(d−1)∑
j=0

(
k − (d− 1)

j

) ∑
β∈Nd

|β|=j

j!
β! (−1)j+1tβνω(t) ·

∫
∂ω

ρo
k−(d−1)−j ∇DβSd dσ

∀t ∈ ∂ω ,∫
∂ω

ρi
k dσ = 0 .

roof.
By the real analyticity result of Proposition 2.1 (iii) for the map

ε ↦→ (ρo[ε], ρi[ε]) ,

e deduce that there exist ερ and {(ρo
k, ρ

i
k)}k∈N such that (14) holds. By the real analyticity of ε ↦→

ρo[ε], ρi[ε]), we have (ρo
k, ρ

i
k) = (∂k

ε ρ
o[0], ∂k

ε ρ
i[0]) for all k ∈ N. Therefore our goal is to identify the

erivatives (∂k
ε ρ

o[0], ∂k
ε ρ

i[0]) for all k ∈ N. Equality M [ε, ρo[ε], ρi[ε]] = 0 for all ε ∈] − ε0, ε0[ (cf.
roposition 2.1 (ii)) implies that the map

ε ↦→ M [ε, ρo[ε], ρi[ε]]

as zero derivatives, i.e.,

∂k
ε (M [ε, ρo[ε], ρi[ε]]) = 0 ∀ε ∈] − ε0, ε0[ , k ∈ N . (15)

herefore we compute ∂k
ε (M [ε, ρo[ε], ρi[ε]]) and we have

∂k
ε (Mo[ε, ρo[ε], ρi[ε]])(x) = 1

2∂
k
ε ρ

o[ε](x) +W ∗
Ω [∂k

ε ρ
o[ε]](x) (16)

+
k∑

j=0

(
k

j

)
(−1)j

∑
β∈Nd

|β|=j

j!
β!νΩ (x) ·

∫
∂ω

∂k−j
ε ρi[ε](s) sβ(∇DβSd)(x− εs) dσs

∀x ∈ ∂Ω ,

∂k
ε (M i[ε, ρo[ε], ρi[ε]])(t) = 1

2∂
k
ε ρ

i[ε](t) −W ∗
ω [∂k

ε ρ
i[ε]](t) (17)

− ∂k
ε

(
εd−1

∫
∂Ω

ρo[ε](y) νω(t) · ∇Sd(εt− y) dσy

)
∀t ∈ ∂ω ,

∂k
ε (M c[ε, ρo[ε], ρi[ε]]) =

∫
∂ω

∂k
ε ρ

i[ε] dσ − δ0k , (18)

or all ε ∈] − ε0, ε0[ and all k ∈ N (see also (13)). Here above δij denotes the Kronecker delta function. Next
we note that if k < d− 1 then

∂k
ε

(
εd−1

∫
ρo[ε](y) νω(t) · ∇Sd(εt− y) dσy

)
= 0 ∀t ∈ ∂ω .
∂Ω |ε=0

13



L. Abatangelo, C. Léna and P. Musolino Nonlinear Analysis 238 (2024) 113391

w
M

f

Instead, if k ≥ d− 1 then

∂k
ε

(
εd−1

∫
∂Ω

ρo[ε](y) νω(t) · ∇Sd(εt− y) dσy

)
|ε=0

=
(

k

(d− 1)

)
(d− 1)!∂k−(d−1)

ε

(∫
∂Ω

ρo[ε](y) νω(t) · ∇Sd(εt− y) dσy

)
|ε=0

= k!
(k − (d− 1))!

k−(d−1)∑
j=0

(
k − (d− 1)

j

)
×
∑

β∈Nd

|β|=j

j!
β!

∫
∂ω

∂k−(d−1)−j
ε

(
ρo[ε](y)

)
|ε=0 t

βνω(t) · ∇DβSd(−y) dσy

= k!
(k − (d− 1))!

k−(d−1)∑
j=0

(
k − (d− 1)

j

)
×
∑

β∈Nd

|β|=j

j!
β! (−1)|β|+1

∫
∂ω

∂k−(d−1)−j
ε

(
ρo[ε](y)

)
|ε=0 t

βνω(t) · ∇DβSd(y) dσy ∀t ∈ ∂ω .

Then, by taking ε = 0 in (16)–(18) and by equality (15), we deduce that for each k ∈ N the pair of functions
(ρo

k, ρ
i
k) is a solution of the corresponding integral equations of the statement. By the characterization of the

kernels of the operators of Dalla Riva, Lanza de Cristoforis, and Musolino [11, §6.5 and §6.6], we deduce the
uniqueness of the solutions of the integral equations of the statement. □

By a similar computation, in the following proposition we construct the power series expansion of
(θo[ε], θi[ε]).

Proposition 3.2. Let (θo[ε], θi[ε]) be as in Proposition 2.2 for all ε ∈] − ε0, ε0[. Then there exist εθ ∈]0, ε0[
and a sequence {(θo

k, θ
i
k)}k∈N in C1,α(∂Ω) × C1,α(∂ω)0 such that

θo[ε] =
∞∑

k=0

θo
k

k! ε
k and θi[ε] =

∞∑
k=0

θi
k

k! ε
k ∀ε ∈] − εθ, εθ[ , (19)

here the two series converge normally in C1,α(∂Ω) and in C1,α(∂ω)0, respectively, for ε ∈] − εθ, εθ[.
oreover,

(θo
0, θ

i
0) = (0, 0) , θo

k = 0 ∀k ∈ {0, . . . , d− 1} ,

or each k ∈ {0, . . . , d− 1} the function θi
k is the unique solution in C1,α(∂ω)0 of

1
2θ

i
k(t) −Wω[θi

k](t) =
∑

|β|=k

k!
β! t

β(Dβua)(0) −
k∑

l=0

∑
β∈Nd

|β|=l

(
k

l

)
l!
β!

∫
∂ω

sβ(Dβua)(0)ρi
k−l(s) dσs ∀t ∈ ∂ω , (20)

and for each k ∈ N \ {0, . . . , d − 1} the pair (θo
k, θ

i
k) is the unique solution in C1,α(∂Ω) × C1,α(∂ω)0 of the

following system of integral equations which involves {(θo
j , θ

i
j)}k−1

j=0 ,

1
2θ

o
k(x) +WΩ [θo

k](x) (21)

= k!
(k − (d− 1))!

k−(d−1)−1∑
j=0

(
k − (d− 1)

j

)
(−1)j+1

∑
|β|=j

j!
β! (∇D

βSd)(x) ·
∫

∂ω

θi
k−(d−1)−j(s) νω(s)sβdσs

∀x ∈ ∂Ω ,
14
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1
2θ

i
k(t) −Wω[θi

k](t) =
k−(d−1)∑

j=0

(
k

j

)
(−1)j+1

∑
|β|=j

j!
β! t

β

∫
∂Ω

θo
k−jνΩ · ∇DβSd dσ (22)

+
∑

|β|=k

k!
β! t

β(Dβua)(0) −
k∑

l=0

∑
β∈Nd

|β|=l

(
k

l

)
l!
β!

∫
∂ω

sβ(Dβua)(0)ρi
k−l(s) dσs ∀t ∈ ∂ω .

roof. We proceed as in Dalla Riva, Musolino, and Rogosin [14, Prop. 5.2] and in [1, Prop 3.2].
roposition 2.2 (iii) implies that the map

ε ↦→ (θo[ε], θi[ε])

s real analytic. As a consequence, there exist εθ and {(θo
k, θ

i
k)}k∈N such that (19) holds. Our goal is to

dentify the terms (θo
k, θ

i
k) for each k ∈ N and we do that by computing the derivatives of (θo[ε], θi[ε]) with

espect to ε. By Proposition 2.2 (ii), we have

Λ[ε, θo[ε], θi[ε]] = 0 ∀ε ∈] − ε0, ε0[ .

e can compute the derivative with respect to ε in the equality above and we deduce that

∂k
ε (Λ[ε, θo[ε], θi[ε]]) = 0 ∀ε ∈] − ε0, ε0[ ,∀k ∈ N . (23)

ence we compute ∂k
ε (Λ[ε, θo[ε], θi[ε]]) and we have

∂k
ε (Λo[ε, θo[ε], θi[ε]])(x) = 1

2∂
k
ε θ

o[ε](x) +WΩ [∂k
ε θ

o[ε]](x) (24)

+ ∂k
ε (εd−1

∫
∂ω

θi[ε](s) νω(s) · ∇Sd(x− εs) dσs) ∀x ∈ ∂Ω ,

∂k
ε (Λi[ε, θo[ε], θi[ε]])(t) = 1

2∂
k
ε θ

i[ε](t) −Wω[∂k
ε θ

i[ε]](t) (25)

−
k∑

j=0

(
k

j

) ∑
|β|=j

j!
β! t

β

∫
∂Ω

∂k−j
ε θo[ε](y) νΩ (y) · (∇DβSd)(εt− y) dσy

−
∑

|β|=k

k!
β! t

β(Dβua)(εt)

+
k∑

l=0

∑
β∈Nd

|β|=l

(
k

l

)
l!
β!

∫
∂ω

sβ(Dβua)(εs)∂k−l
ε ρi[ε](s) dσs ∀t ∈ ∂ω ,

or all ε ∈] − ε0, ε0[ and all k ∈ N. Then we note that if k < d− 1 then

∂k
ε

(
εd−1

∫
∂ω

θi[ε](s) νω(s) · ∇Sd(x− εs) dσs

)
|ε=0

= 0 ∀x ∈ ∂Ω .

nstead, if k ≥ d− 1 then

∂k
ε

(
εd−1

∫
∂ω

θi[ε](s) νω(s) · ∇Sd(x− εs) dσs

)
|ε=0

=
(

k

(d− 1)

)
(d− 1)!∂k−(d−1)

ε

(∫
∂ω

θi[ε](s) νω(s) · ∇Sd(x− εs) dσs

)
|ε=0

= k!
(k − (d− 1))!

k−(d−1)∑
j=0

(
k − (d− 1)

j

)
(−1)j

×
∑ j!

β!

∫
∂ω

∂k−(d−1)−j
ε

(
θi[ε](s)

)
|ε=0 s

βνω(s) · ∇DβSd(x) dσs ∀x ∈ ∂Ω .

|β|=j

15
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The real analyticity of ε ↦→ (θo[ε], θi[ε]) implies that (θo
k, θ

i
k) = (∂k

ε θ
o[0], ∂k

ε θ
i[0]) for all k ∈ N. Therefore,

y taking ε = 0 in (24) and (25) and by equality (23), we deduce that (θo
0, θ

i
0) = (0, 0), that θo

k = 0 for
ll k ∈ {0, . . . , d − 1}, that for each k ∈ {0, . . . , d − 1} the function θi

k solves Eq. (20), and that (θo
k, θ

i
k) is

solution of (21) and (22) for all k ∈ N \ {0, . . . , d − 1}. To conclude, we note that, by classical potential
heory (cf., e.g., Dalla Riva, Lanza de Cristoforis, and Musolino [11, §6.5 and §6.6]), Eq. (20) has a unique
olution in C1,α(∂ω)0 and Eqs. (21)–(22) have a unique solution in C1,α(∂Ω) × C1,α(∂ω)0. □

. Series expansion of νω(·) · ∇(ua
ε (ε·))ub(ε·) around ε = 0

The next step is to obtain a series expansion of νω(·) · ∇
(
ua

ε(ε·)
)
ub(ε·) for ε close to 0. The coefficients of

uch series will be defined by means of the sequences {(ρo
k, ρ

i
k)}k∈N and {(θo

k, θ
i
k)}k∈N introduced in Section 3.

e begin with the intermediate result of Proposition 4.1 below, whose proof can be obtained by arguing as
n the proof of [3, Prop. 2.9].

roposition 4.1. Let {(ρo
k, ρ

i
k)}k∈N and {(θo

k, θ
i
k)}k∈N be as in Propositions 3.1 and 3.2, respectively. Let

ua
m,0(t) ≡ 0 ∀t ∈ Rd \ ω ,
ua

m,k(t) ≡ −w−[∂ω, θi
k](t) ∀t ∈ Rd \ ω , k ∈ {0, . . . , d− 1} ,

ua
m,k(t) ≡ 1

k!

k−d∑
j=0

(
k

j

)
(−1)j

∑
β∈Nd

|β|=j

j!
β! t

β

∫
∂Ω

θo
k−j νΩ · (∇DβSd) dσ

− 1
k!w

−[∂ω, θi
k](t) ∀t ∈ Rd \ ω , ∀k ≥ d

nd

vm,k(t) ≡
1

(k − (d − 2))!

k−(d−2)∑
j=0

(k − (d − 2)
j

)
(−1)j

∑
β∈Nd

|β|=j

j!
β!

tβ

∫
∂Ω

ρo
k−(d−2)−jDβSd dσ +

1
k!

v−[∂ω, ρi
k](t)

∀t ∈ Rd \ ω ,

ga
k ≡

1
k!

k∑
l=0

∑
β∈Nd

|β|=l

(k
l

) l!
β!

∫
∂ω

sβ(Dβua)(0)ρi
k−l(s) dσs ,

rk ≡
1

(k − (d − 2))!
∫

∂ω
dσ

k−(d−2)∑
j=0

(k − (d − 2)
j

)
(−1)j

∑
β∈Nd

|β|=j

j!
β!

∫
∂ω

sβ dσs

∫
∂Ω

ρo
k−(d−2)−jDβSd dσ

+
1

k!
∫

∂ω
dσ

∫
∂ω

v[∂ω, ρi
k] dσ ,

for all k ∈ N. Here above the sum
∑k−(d−2)

j=0 is omitted if k − (d− 2) < 0. Let

ul
#,k(t) ≡

∑
β∈Nd

|β|=k

Dβul(0)
β! tβ ∀t ∈ Rd , l = a, b ,

ũk(t) ≡
k∑

l=0
νω(t) · ∇ua

m,l|∂ω(t)ub
#,k−l(t) ∀t ∈ ∂ω ,

ṽk(t) ≡ νω(t) · ∇vm,k|∂ω(t) ∀t ∈ ∂ω ,

g̃k(t) ≡
k∑
ga

l u
b
#,k−l(t) ∀t ∈ ∂ω ,
l=0
16
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for all k ∈ N. Then there exists ε̃ ∈]0, ε0] such that

νω(·) · ∇
(
ua

ε(ε·)
)

|∂ω
ub(ε·)|∂ω =

∞∑
k=1

ũk(·)εk +
( ∞∑

k=0
g̃k(·)εk

)∑∞
k=0 ṽk(·)εk∑∞

k=0 rkεk
(26)

or all ε ∈] − ε̃, ε̃[\{0}. Moreover, the series
∑∞

k=0 g̃kε
k,
∑∞

k=1 ũkε
k, and

∑∞
k=0 ṽkε

k converge normally in
0,α(∂ω) for ε ∈] − ε̃, ε̃[ and

∑∞
k=0 rkε

k converge absolutely in ] − ε̃, ε̃[.

We would like to have a representation formula for νω(·)·∇
(
ua

ε(ε·)
)

|∂ω
ub(ε·)|∂ω in the form of a convergent

ower series of the type
∑∞

n=0 φε(·)εn. By exploiting an argument similar to that of Dalla Riva, Musolino,
nd Rogosin [14, Thm. 6.3], we can prove Theorem 4.2 below where we obtain from formula (26) a
eries expansion for the map which takes ε to νω(·) · ∇

(
ua

ε(ε·)
)

|∂ω
ub(ε·)|∂ω (see also [1, Thm. 2.10] and

3, Thm. 4.3]).

heorem 4.2. With the notation introduced in Proposition 4.1, let {ãn}n∈N be the sequence of functions
rom ∂ω to R defined by

ãn ≡
n∑

k=0
g̃n−kṽk ∀n ∈ N.

et {λ̃n}n∈N be the sequence of functions from ∂ω to R defined by

λ̃0 ≡ ã0/r0 , λ̃n ≡ ũn + ãn/r0 +
n∑

k=1
ãn−k

k∑
j=1

(−1)j

rj+1
0

∑
β∈(N\{0})j

|β|=k

j∏
h=1

rβh
∀n ≥ 1 .

hen there exists ε̃′ ∈]0, ε0] such that

νω(·) · ∇
(
ua

ε(ε·)
)

|∂ω
ub(ε·)|∂ω =

∞∑
n=0

λ̃n(·)εn (27)

or all ε ∈] − ε̃′, ε̃′[\{0}. Moreover, the series
∞∑

n=0
λ̃n(·)εn

onverges normally in C0,α(∂ω) for ε ∈] − ε̃′, ε̃′[ and

λ̃0 =ua(0)ub(0)
r0

∂

∂νω
v−[∂ω, ρi

0] .

5. Series expansion of CapΩ(εω, ua, ub)

We recall that the (ua, ub)-capacity CapΩ (εω, ua, ub) can be represented as the sum of
∫
Ωε

∇ua
ε · ∇ub

ε dx

and of
∫

εω
∇ua · ∇ub dx. Therefore, in order to compute a series expansion of CapΩ (εω, ua, ub), we begin by

providing an expansion for
∫

εω
∇ua · ∇ub dx around ε = 0.

Lemma 5.1. Let {ξn}n∈N be the sequence of real numbers defined by

ξ0 ≡ ξ1 ≡ · · · ≡ ξd−1 ≡ 0 , ξn ≡
d∑ n−d∑∫

ω

∂ju
a
#,l+1(t)∂ju

b
#,n−l−(d−1)(t) dt ∀n ≥ d .
j=1 l=0

17
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Then there exists εξ ∈]0, ε0] such that ∫
εω

∇ua · ∇ub dx =
∞∑

n=d

ξnε
n

or all ε ∈]0, εξ[. Moreover,
ξd = ∇ua(0) · ∇ub(0)md(ω) ,

nd the series ∞∑
n=d

ξnε
n

onverges absolutely for ε ∈] − εξ, εξ[. (The symbol md(. . . ) denotes the d-dimensional Lebesgue measure of
set).

roof. We argue as in the proof of [3, Lem. 2.12]. We first note that the Theorem of change of variable in
ntegrals implies that ∫

εω

∇ua · ∇ub dx = εd

∫
ω

∇ua(εt) · ∇ub(εt) dt ∀ε ∈]0, ε0[ .

hen analyticity of ua and ub (see Definition 1.5) and analyticity results for the composition operator
(cf. Böhme and Tomi [6, p. 10], Henry [21, p. 29], Valent [41, Thm. 5.2, p. 44]), imply that there exists
εξ ∈]0, ε0] such that the map from ] − εξ, εξ[ to C0,α(ω) which takes ε to (∂ju

l)(ε·)|ω is real analytic for
= a, b and that

(∂ju
l)(εt) =

∞∑
h=0

∂ju
l
#,h+1(t)εh ∀t ∈ ω , l = a, b ,

here for l = a, b the series
∑∞

h=0 ∂ju
l
#,h+1|ωε

h converges normally in C0,α(ω) for ε ∈]−εξ, εξ[. Accordingly,

(∂ju
a)(εt)(∂ju

b)(εt) =
∞∑

n=0

(
n∑

l=0
∂ju

a
#,l+1(t)∂ju

b
#,n−l+1(t)

)
εn ∀t ∈ ω ,∀ε ∈] − εξ, εξ[\{0} .

ossibly taking a smaller εξ, we also have∫
ω

∇ua(εt) · ∇ub(εt) dt =
∞∑

n=0

( d∑
j=1

n∑
l=0

∫
ω

∂ju
a
#,l+1(t)∂ju

b
#,n−l+1(t) dt

)
εn , (28)

or all ε ∈]0, εξ[. Moreover,
d∑

j=1

∫
ω

∂ju
a
#,1(t)∂ju

b
#,1(t) dt = ∇ua(0) · ∇ua(0)md(ω) .

inally, to deduce the validity of the lemma, it is enough to multiply Eq. (28) by εd. □

To deduce our main result on the asymptotic behavior of CapΩ (εω, ua, ub), it suffices to integrate formula
(27) over ∂ω adding the coefficients of Lemma 5.1 and to apply Theorem 4.2.

Theorem 5.2. With the notation introduced in Proposition 4.1, Theorem 4.2 and Lemma 5.1, let {cn}n∈N
be the sequence of real numbers defined by

cn ≡ 0 ∀n ∈ {0, . . . , d− 3} , cn ≡ −
∫

λ̃n−(d−2) dσ + ξn ∀n ≥ d− 2 .

∂ω

18
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T
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A

Then there exists εc ∈]0, ε0] such that

CapΩ (εω, ua, ub) =
∞∑

n=0
cnε

n

for all ε ∈]0, εc[. Moreover, the series
∞∑

n=0
cnε

n

converges absolutely for ε ∈] − εc, εc[ and

cd−2 = −
∫

∂ω

ua(0)ub(0)
r0

∂

∂νω
v−[∂ω, ρi

0] dσ = −ua(0)ub(0)
r0

∫
∂ω

ρi
0 dσ = −ua(0)ub(0)

r0
. (29)

Our next aim is to better understand the value r0 which appears in formula (29) and, possibly, to link it
to some boundary value problem related to the geometric setting. We begin with the lemma below where
v+[∂ω, ρi

0] is related to the solution of some exterior Dirichlet problem in Rd \ ω.

Lemma 5.3. Let Hi ∈ C1,α
loc (Rd \ ω) be the solution of⎧⎨⎩ ∆Hi = 0 in Rd \ ω ,

Hi(t) = 1 for all t ∈ ∂ω ,
limt→∞ Hi(t) = 0 .

(30)

hen the restriction v+[∂ω, ρi
0] is constant and equal to

(
(2 − d)sd limt→∞ |t|d−2

Hi(t)
)−1.

roof. Let u ∈ C1,α
loc (Rd \ ω), ∆u = 0 in Rd \ ω, and limt→∞ u(t) = 0. Then by classical potential theory

here exists µ ∈ C1,α(∂ω) such that

u = w−
ω [µ] +

∫
∂ω
uρi

0 dσ
1∫

∂ω
dσ

∫
∂ω
v[∂ω, ρi

0] dσ
v−[∂ω, ρi

0]

cf., e.g., Folland [19, Chap. 3]). Then

lim
t→∞

|t|d−2
u(t) = lim

t→∞
|t|d−2

w−
ω [µ](t) + lim

t→∞
|t|d−2

∫
∂ω
uρi

0 dσ
1∫

∂ω
dσ

∫
∂ω
v[∂ω, ρi

0] dσ
v−[∂ω, ρi

0](t)

= lim
t→∞

∫
∂ω
uρi

0 dσ
1∫

∂ω
dσ

∫
∂ω
v[∂ω, ρi

0] dσ
|t|d−2

v−[∂ω, ρi
0](t)

=
∫

∂ω
uρi

0 dσ
1∫

∂ω
dσ

∫
∂ω
v[∂ω, ρi

0] dσ
1

(2 − d)sd

∫
∂ω

ρi
0 dσ

= 1
(2 − d)sd

∫
∂ω
uρi

0 dσ
1∫

∂ω
dσ

∫
∂ω
v[∂ω, ρi

0] dσ
.

s a consequence,

lim
t→∞

|t|d−2
Hi(t) = 1

(2 − d)sd

∫
∂ω

1ρi
0 dσ

1∫
∂ω

dσ

∫
∂ω
v[∂ω, ρi

0] dσ

= 1
(2 − d)sd

1
1∫ ∫

∂ω
v[∂ω, ρi

0] dσ
,

∂ω
dσ

19
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and thus 1
1∫

∂ω
dσ

∫
∂ω
v[∂ω, ρi

0] dσ
= (2 − d)sd lim

t→∞
|t|d−2

Hi(t) .

oreover, by the jump properties of the single layer potential we have νω · ∇v+[∂ω, ρi
0]|∂ω = 0. Thus

v+[∂ω, ρi
0] is constant in ω and the validity of the statement follows. □

orollary 5.4. Let g ∈ C1,α(∂ω). Let u ∈ C1,α
loc (Rd \ ω) be the solution of⎧⎨⎩ ∆u = 0 in Rd \ ω ,

u(t) = g(t) for all t ∈ ∂ω ,
limt→∞ u(t) = 0 .

Then
lim

t→∞
|t|d−2

u(t) = 1
(2 − d)sd

∫
∂ω
uρi

0 dσ
1∫

∂ω
dσ

∫
∂ω
v[∂ω, ρi

0] dσ
=
∫

∂ω

gρi
0 dσ lim

t→∞
|t|d−2

Hi(t) .

Remark 5.5. Let Hi be the unique solution in C1,α
loc (Rd \ω) of problem (30). Then by Lemma 5.3 we have

− 1
r0

= (d− 2)sd lim
t→∞

|t|d−2
Hi(t) .

ccordingly,

CapΩ (εω, ua, ub) =ua(0)ub(0)(d− 2)sd lim
t→∞

|t|d−2
Hi(t)εd−2 + εd−1

( ∞∑
n=d−1

cnε
n−(d−1)

)
(31)

or all ε ∈]0, εc[.
We now wish to provide an alternative characterization of the quantity

(d− 2)sd lim
t→∞

|t|d−2
Hi(t) .

y the Divergence theorem in exterior domains for functions which are harmonic at infinity (see Dalla Riva,
anza de Cristoforis, and Musolino [11, §4.2]), we have∫

Rd\ω

|∇Hi(t)|2 dt = −
∫

∂ω

Hi(t) ∂

∂νω
Hi(t) dσt

= −
∫

∂ω

∂

∂νω
Hi(t) dσt .

n the other hand, by Lemma 5.3 one verifies that

Hi =
(
(2 − d)sd lim

t→∞
|t|d−2

Hi(t)
)
v−[∂ω, ρi

0] in Rd \ ω ,

nd that

∂

∂νω
Hi =

(
(2 − d)sd lim

t→∞
|t|d−2

Hi(t)
)(1

2ρ
i
0 +W ∗

ω [ρi
0]
)

=
(
(2 − d)sd lim

t→∞
|t|d−2

Hi(t)
)
ρi

0 on ∂ω .

(32)

s a consequence,

−
∫

∂ω

∂

∂νω
Hi(t) dσt =

(
(d− 2)sd lim

t→∞
|t|d−2

Hi(t)
) ∫

∂ω

ρi
0 dσ

=
(
(d− 2)sd lim |t|d−2

Hi(t)
)
.

t→∞
20
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Accordingly, ∫
Rd\ω

|∇Hi(t)|2 dt = (d− 2)sd lim
t→∞

|t|d−2
Hi(t) .

n other words, the quantity
(d− 2)sd lim

t→∞
|t|d−2

Hi(t)

quals the energy integral of Hi, i.e., of the unique function in C1,α
loc (Rd \ω) which is harmonic in Rd \ω and

t infinity and that is equal to 1 on ∂ω. Such quantity is thus equal to the Newtonian capacity CapRd(ω)
see (4)).

emark 5.6. In case ω is equal to the open unit ball B1 in Rd of center 0 and radius 1, one verifies that

Hi(t) = |t|2−d ∀t ∈ Rd \B1 .

s a consequence,
(d− 2)sd lim

t→∞
|t|d−2

Hi(t) = (d− 2)sd ,

nd thus
CapRd(B1) = (d− 2)sd .

In particular, if d = 3, then
CapR3(B1) = 4π .

. Asymptotic behavior of CapΩ(εω, ua, ub) under vanishing assumption for ua and ub

In this section, we investigate the behavior of CapΩ (εω, ua, ub) assuming that the functions ua and ub

and their derivatives up to a certain order could vanish at 0 and we modify the computation of [1, §5.1]
and [3, §2.7]. So we consider the following assumption

ua and ub are admissible functions as in Definition 1.5,
not identically zero in a neighborhood of 0.

(33)

Assumption (33) implies that ua, ub have finite order of vanishing ka
, k

b ∈ N at 0, that is

Dγul(0) = 0 ∀|γ| < k
l
, Dβl

ul(0) ̸= 0 for some βl ∈ Nd with |βl| = k
l
, l = a, b .

By Remark 5.5, we already know the principal term of the asymptotic expansion of CapΩ (εω, ua, ub) as
ε → 0 in case ka = k

b = 0 (i.e., ua(0)ub(0) ̸= 0). We now wish to investigate the case when at least one
between ua and ub vanishes at 0. The computation below notably simplifies if ka or kb is equal to 0, although
t is not necessary to assume that this is the case. By condition (33) and Proposition 3.2 we note that

(θo
k, θ

i
k) = (0, 0) ∀k < ka , θo

k
a = 0 , (34)

nd that θi
k

a is the unique solution in C1,α(∂ω)0 of

1
2θ

i
k

a(t) −Wω[θi
k

a ](t) =
∑

|β|=k
a

k
a!
β! t

β(Dβua)(0) −
∑

β∈Nd

|β|=k
a

k
a!
β!

∫
∂ω

sβ(Dβua)(0)ρi
0(s) dσs ∀t ∈ ∂ω ,

.e.,

1
2θ

i
k

a(t) −Wω[θi
k

a ](t) = k
a!
(
u#,k

a(t) −
∫

u#,k
aρi

0 dσ

)
∀t ∈ ∂ω . (35)
∂ω

21
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Then Eqs. (34), (35), and Proposition 4.1 imply that

ua
m,k = 0 ∀k < k

a
, ua

m,k
a = − 1

k
a!
w−[∂ω, θi

k
a ] . (36)

ence, by the properties of the double layer potential, one verifies that ua
m,k

a is the unique solution in
1,α
loc (Rd \ ω) of ⎧⎪⎨⎪⎩

∆ua
m,k

a = 0 in Rd \ ω ,
ua

m,k
a(t) = ua

#,k
a(t) −

∫
∂ω
ua

#,k
aρi

0 dσ for all t ∈ ∂ω ,

limt→∞ ua
m,k

a(t) = 0 .

n addition, by assumption (33) and Proposition 4.1 we deduce that

ga
k = 0 ∀k < k

a
, ga

k
a =

∫
∂ω

ua
#,k

aρi
0 dσ . (37)

hen by (33) and by Proposition 4.1 we show that

ul
#,k = 0 ∀k < k

l
, l = a, b . (38)

s a consequence, Proposition 4.1 and Eqs. (36), (38) imply

ũk = 0 ∀k < k
a + k

b
, ũ

k
a+k

b =
(
∂ua

m,k
a

∂νω

)
ub

#,k
b|∂ω

. (39)

y (37) and (38) we have

g̃k = 0 ∀k < k
a + k

b
, g̃

k
a+k

b = ga
k

aub

#,k
b|∂ω

=
(∫

∂ω

ua
#,k

aρi
0 dσ

)
ub

#,k
b|∂ω

. (40)

We now consider the quantities ãn, λ̃n introduced in Theorem 4.2 for representing the behavior of
νω(·) · ∇

(
ua

ε(ε·)
)
ub(ε·). By a direct computation based on (39), (40) we have

ãn = 0 ∀n < k
a + k

b
, ã

k
a+k

b = g̃
k

a+k
b ṽ0 = ṽ0

(∫
∂ω

ua
#,k

aρi
0 dσ

)
ub

#,k
b|∂ω

,

nd thus

λ̃n = 0 ∀n < k
a + k

b
,

λ̃
k

a+k
b = ũ

k
a+k

b +
ã

k
a+k

b

r0
=
(
∂ua

m,k
a

∂νω

)
ub

#,k
b|∂ω

+ 1
r0
ṽ0

(∫
∂ω

ua
#,k

aρi
0 dσ

)
ub

#,k
b|∂ω

.
(41)

oreover, a simple computation shows that

ξn = 0 ∀n < k
a + k

b + d− 2 , ξ
k

a+k
b+d−2

=
∫

ω

∇ua
#,k

a · ∇ub

#,k
b dt .

inally, by Theorem 5.2 and by integrating equalities (41), we obtain

cn = 0 ∀n < k
a + k

b + d− 2 ,

c
k

a+k
b+d−2

= −
∫

∂ω

(
ũ

k
a+k

b +
ã

k
a+k

b

r0

)
dσ +

∫
ω

∇ua
#,k

a · ∇ub

#,k
b dt

= −
∫

∂ω

(
∂ua

m,k
a

∂νω

)
ub

#,k
b|∂ω

dσ − 1
r0

∫
∂ω

ṽ0u
b

#,k
b dσ

∫
∂ω

ua
#,k

aρi
0 dσ +

∫
ω

∇ua
#,k

a · ∇ub

#,k
b dt

= −
∫ (

∂ua
m,k

a

∂ν

)
ub

#,k
b|∂ω

dσ − 1
r

∫
ua

#,k
aρi

0 dσ

∫
ub

#,k
bρ

i
0 dσ +

∫
∇ua

#,k
a · ∇ub

#,k
b dt .
∂ω ω 0 ∂ω ∂ω ω
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Now let H
ua,k

a ∈ C1,α
loc (Rd \ ω) be the solution of⎧⎪⎨⎪⎩

∆H
ua,k

a = 0 in Rd \ ω ,
H

ua,k
a(t) =

∫
∂ω
ua

#,k
aρi

0 dσ for all t ∈ ∂ω ,

limt→∞ H
ua,k

a = 0 .

hen by Remark 5.5 we have

H
ua,k

a =
(∫

∂ω

ua
#,k

aρi
0 dσ

)
Hi in Rd \ ω ,

nd accordingly by (32)
∂

∂νω
H

ua,k
a = 1

r0

(∫
∂ω

ua
#,k

aρi
0 dσ

)
ρi

0 on ∂ω .

s a consequence,

1
r0

∫
∂ω

ua
#,k

aρi
0 dσ

∫
∂ω

ub

#,k
bρ

i
0 dσ =

∫
∂ω

(
∂H

ua,k
a

∂νω

)
ub

#,k
b|∂ω

dσ .

hen for l = a, b we denote by ul

k
l the unique solution in C1,α

loc (Rd \ ω) of⎧⎪⎨⎪⎩
∆ul

k
l = 0 in Rd \ ω ,

ul

k
l(t) = ul

#,k
l(t) for all t ∈ ∂ω ,

limt→∞ ul

k
l(t) = 0 .

(42)

hus
ua

k
a = ua

m,k
a +H

ua,k
a in Rd \ ω ,

nd therefore

−
∫

∂ω

(
∂ua

m,k
a

∂νω

)
ub

#,k
b|∂ω

dσ − 1
r0

∫
∂ω

ua
#,k

aρi
0 dσ

∫
∂ω

ub

#,k
bρ

i
0 dσ = −

∫
∂ω

(
∂ua

k
a

∂νω

)
ub

k
b dσ .

n the other hand, the harmonicity at infinity of ua
k

a and of ub

k
b and the Divergence Theorem imply that

∫
Rd\ω

∇ua
k

a · ∇ub

k
b dt = −

∫
∂ω

(
∂ua

k
a

∂νω

)
ub

k
b dσ

cf. Folland [19, p. 118], Dalla Riva, Lanza de Cristoforis, and Musolino [11, Cor. 4.7]). Accordingly,

c
k

a+k
b+d−2

=
∫
Rd\ω

∇ua
k

a · ∇ub

k
b dt+

∫
ω

∇ua
#,k

a · ∇ub

#,k
b dt .

Incidentally, we note that if for example ub(0) ̸= 0 (i.e., if kb = 0), then ub

#,k
b = ub(0) (and so ∇ub

#,k
b = 0)

nd ub

k
b = ub(0)Hi. Therefore, if kb = 0 the term c

k
a+k

b+d−2
reduces to ub(0)

∫
Rd\ω

∇ua
k

a ·∇Hi dt. Similarly,
f ka = 0 the term c

k
a+k

b+d−2
reduces to ua(0)

∫
Rd\ω

∇ub

k
b · ∇Hi dt. We also note that if both k

a = 0 and

k
b = 0, then for l = a, b we have ul

#,k
l = ul(0) (and so ∇ul

#,k
l = 0) and ul

k
l = ul(0)Hi, and accordingly∫

Rd\ω

∇ua
k

a · ∇ub

k
b dt+

∫
ω

∇ua
#,k

a · ∇ub

#,k
b dt = ua(0)ub(0)

∫
Rd\ω

|∇Hi|2 dt

= ua(0)ub(0)(d− 2)sd lim |t|d−2
Hi(t) .
t→∞
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In other words, the quantity ua(0)ub(0)(d − 2)sd limt→∞ |t|d−2
Hi(t) can be seen as the specific value of

Rd\ω
∇ua

k
a · ∇ub

k
b dt+

∫
ω

∇ua
#,k

a · ∇ub

#,k
b dt when both k

a and k
b are equal to 0.

As a consequence, under assumption (33), by Theorem 5.2 and formula (31), we can deduce the validity
of the following.

Theorem 6.1. Let assumption (33) hold. For l = a, b, let ul

k
l be the unique solution in C1,α

loc (Rd \ω) of (42).
hen

CapΩ (εω, ua, ub)

=εk
a+k

b+d−2

(∫
Rd\ω

∇ua
k

a · ∇ub

k
b dt+

∫
ω

∇ua
#,k

a · ∇ub

#,k
b dt

)
+

∞∑
n=k

a+k
b+d−1

εncn ,
(43)

or all ε ∈]0, εc[.

emark 6.2. Under assumption (33), by (43) we have

CapΩ (εω, ua, ub)

=εk
a+k

b+d−2

(∫
Rd\ω

∇ua
k

a · ∇ub

k
b dt+

∫
ω

∇ua
#,k

a · ∇ub

#,k
b dt

)
+ o(εk

a+k
b+d−2) as ε → 0 .

oreover, we note that the coefficient of εk
a+k

b+d−2 depends both on the geometrical properties of the set
and on the behavior at 0 of the functions ua and ub, but does not depend on Ω .

. Asymptotic behavior of the eigenvalues of the Dirichlet-Laplacian in perforated domains

It is well known that if Ω is a bounded open set in Rd, K a compact subset of Ω , and if we denote by

0 < λ1(Ω) < λ2(Ω) ≤ · · · ≤ λN (Ω) ≤ . . .

nd
0 < λ1(Ω \K) < λ2(Ω \K) ≤ · · · ≤ λN (Ω \K) ≤ . . .

he sequences of the eigenvalues of the Dirichlet–Laplacian in Ω and in Ω \K, respectively, then λN (Ω \K)
s close to λN (Ω) if and only if the capacity CapΩ (K) of K in Ω is small (see Rauch and Taylor [36]). A
ypical example is when we fix Ω and ω admissible domains, and we set

K = εω ∀ε ∈] − ε#, ε#[ ,

ith ε# as in (10). We define
Ωε ≡ Ω \ (εω) ∀ε ∈] − ε#, ε#[,

s before, and we wish to study the convergence of the Nth Dirichlet eigenvalues λN (Ωε) = λN (Ω \ (εω))
o λN (Ω) as ε → 0.

In this section we show how the results on the asymptotic behavior of the generalizations of the capacity
can be employed to obtain accurate asymptotic estimates for λN (Ωε) when ε → 0, both in the case when
λN (Ω) is a simple eigenvalue of the Dirichlet–Laplacian in Ω and in the case when it is a multiple eigenvalue,
as we have done in [1,3] for the planar case. We treat these two situations in two different subsections.
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7.1. Simple eigenvalues

We begin our analysis by considering the case when λN (Ω) is a simple eigenvalue of the Dirichlet–
aplacian in the open set Ω

The following result by Courtois [10, Proof of Theorem 1.2] and Abatangelo, Felli, Hillairet, and Léna
2, Theorem 1.4] shows that the u-capacity can be successfully used to study the asymptotic behavior of the
igenvalues λN (Ω \ (εω)) as ε → 0.

heorem 7.1. Let λN (Ω) be a simple eigenvalue of the Dirichlet–Laplacian in a bounded, connected, and
pen set Ω . Let uN be a L2(Ω)-normalized eigenfunction associated to λN (Ω) and let (Kε)ε>0 be a family of
ompact sets contained in Ω concentrating to a compact set K with CapΩ (K) = 0. Then

λN (Ω \Kε) = λN (Ω) + CapΩ (Kε, uN ) + o(CapΩ (Kε, uN )) , as ε → 0 . (44)

In view of Theorem 7.1, we can produce an asymptotic expansion of λN (Ω \ (εω)) by combining the
xpansion of CapΩ (εω, u) and the asymptotic formula (44) for the eigenvalues.

Therefore, we fix Ω and ω admissible domains and we assume that

the Nth eigenvalue λN (Ω) for the Dirichlet–Laplacian is simple
and uN is a L2(Ω)-normalized eigenfunction related to λN (Ω).

(45)

As a first step, we formulate our result on the asymptotic behavior of CapΩ (εω, uN ). Standard elliptic
egularity theory (see for instance Friedman [20, Thm. 1.2, p. 205]) implies that uN is analytic in a
eighborhood of 0. Accordingly, by (31) we have

CapΩ (εω, uN ) =CapΩ (εω, uN , uN )

=(uN (0))2CapRd(ω)εd−2 + εd−1
( ∞∑

n=d−1
cnε

n−(d−1)
)

for ε positive and small, where the sequence of coefficients {cn}n∈N is as in Theorem 5.2 and CapRd(ω) is as
n Eq. (4).

Then by formula (44) we immediately deduce the validity of the following result.

heorem 7.2. Let assumption (45) hold. Then

λN (Ω \ (εω))

= λN (Ω) + (uN (0))2CapRd(ω)εd−2 + o
(
εd−2

)
as ε → 0+ .

(46)

The above result agrees with the one of Maz’ya, Nazarov, and Plamenevskĭı [32] for N = 1 and d = 3,
ith that of Ozawa [33] for d = 2, 3, and with that of Flucher [18] if d ≥ 2.
If we assume that

uN (0) = 0 , (47)

hen formula (46) of Theorem 7.2 reduces to

λN (Ω \ (εω)) = λN (Ω) + o
(
εd−2

)
as ε → 0+ .

herefore, if (47) holds,

there exists k ∈ N \ {0} such that DγuN (0) = 0 ∀|γ| < k
β d

(48)

and that D uN (0) ̸= 0 for some β ∈ N with |β| = k .
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Then we set
uN,#,k(t) ≡

∑
β∈Nd

|β|=k

DβuN (0)
β! tβ ∀t ∈ Rd , (49)

and we denote by uN,k the unique solution in C1,α
loc (Rd \ ω) of⎧⎨⎩

∆uN,k = 0 in Rd \ ω ,
uN,k(t) = uN,#,k(t) for all t ∈ ∂ω ,

limt→∞ uN,k(t) = 0 .
(50)

ence, Remark 6.2 implies that

CapΩ (εω, uN ) = CapΩ (εω, uN , uN )

=ε2k+d−2

(∫
Rd\ω

|∇uN,k|2 dt+
∫

ω

|∇uN,#,k|2 dt

)
+ o(ε2k+d−2)

=ε2k+d−2C(ω, uN,#,k) + o(ε2k+d−2) as ε → 0

see (9)). Thus, by formula (44) of Theorem 7.1 we deduce the following result.

heorem 7.3. Let assumption (45) hold. Let k be as in (48) and uN,#,k be as in (49). Let uN,k be the
nique solution in C1,α

loc (Rd \ ω) of (50). Then

λN (Ω \ (εω))

= λN (Ω) + ε2k+d−2

(∫
Rd\ω

|∇uN,k|2 dt+
∫

ω

|∇uN,#,k|2 dt

)
+ o(ε2k+d−2) as ε → 0 .

(51)

Clearly, Theorems 7.2 and 7.3 can be restated as Theorem 1.7 of the Introduction.

Remark 7.4. By the computation of Section 6, we note that∫
Rd\ω

|∇uN,0|2 dt+
∫

ω

|∇uN,#,0|2 dt = (uN (0))2(d− 2)sd lim
t→∞

|t|d−2
Hi(t)

= (uN (0))2CapRd(ω) ,

and thus Eq. (51) holds also when the order of vanishing k of uN is equal to 0.

7.2. Multiple eigenvalues

In the previous subsection, we have shown the asymptotic formula (51) for simple eigenvalues. In this
subsection, instead, we follow the lines of the arguments of [3] and we consider the case where the Nth
eigenvalue λN (Ω) for the Dirichlet–Laplacian is multiple.

So let λN (Ω) be an eigenvalue of multiplicity m > 1 of the Dirichlet–Laplacian in Ω and let E(λN (Ω))
be the associated eigenspace. In particular, we have

λN−1(Ω) < λN (Ω) = λN+j(Ω) < λN+m(Ω) ∀j = 0, . . . ,m− 1 .

By [3, Appendix A], we have the following result on the decomposition of E(λN (Ω)).

Proposition 7.5. There exists a decomposition of E(λN (Ω)) into a sum of orthogonal subspaces

E(λ (Ω)) = E ⊕ · · · ⊕ E
N 1 p
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and an associated finite decreasing sequence of integers

k1 > · · · > kp ≥ 0

uch that, for all 1 ≤ j ≤ p, a function in Ej \ {0} has the order of vanishing kj at 0. In addition, such a
ecomposition is unique. We call it the order decomposition of E(λN (Ω)).

We proceed as in [3] and we introduce some notation. So let u, v ∈ E(λN (Ω)) \ {0}. Then u and v are
dmissible functions in the sense of Definition 1.5 and are not identically zero in a neighborhood of 0. Then
has a finite order of vanishing κ(u) at 0, with a corresponding principal part u#, meaning that

Dγu(0) = 0 ∀|γ| < κ(u)
and that Dβu(0) ̸= 0 for some β ∈ Nd with |β| = κ(u) ,

nd

u#(t) ≡
∑

β∈Nd

|β|=κ(u)

Dβu(0)
β! tβ ∀t ∈ Rd . (52)

onsistent with Eq. (50), we denote by u the unique solution in C1,α
loc (Rd \ ω) of⎧⎨⎩ ∆u = 0 in Rd \ ω ,

u(t) = u#(t) for all t ∈ ∂ω ,
limt→∞ u(t) = 0 .

e write the order κ(v) and the functions v#, v also for the function v. As in [3], we define

Q(u, v) ≡
∫
Rd\ω

∇u · ∇v dt+
∫

ω

∇u# · ∇u# dt .

If instead u or v is identically zero, we set Q(u, v) = 0. We observe that Q is not a bilinear form, but the
restriction of Q to suitable subspaces of E(λN (Ω)) defines bilinear forms (cf. Definition 7.7 below).

By Remark 5.5 and Theorem 6.1, we can deduce the following result where we link the asymptotic
behavior of CapΩ (εω, u, v) with Q(u, v).

Corollary 7.6. Let us fix u, v ∈ E(λN (Ω)) \ {0}. Then,

CapΩ (εω, u, v) = εκ(u)+κ(v)+d−2Q(u, v) + o
(
εκ(u)+κ(v)+d−2

)
as ε → 0+.

We now consider again an eigenvalue λN (Ω) of multiplicity m > 1 and the associated eigenspace
(λN (Ω)) and we give the following definition (cf. Proposition 7.5).

Definition 7.7. For all 1 ≤ j ≤ p, we define Qj on Ej by Qj(u, v) ≡ Q(u, v). It is a strictly positive (in
articular non-degenerate) symmetric bilinear form on Ej .

We can now describe the behavior of the eigenvalues (λi(Ω \ (εω)))N≤i≤N+m−1, and more specifically
ive the principal part of the spectral shift λi(Ω \ (εω)) − λN (Ω) for each eigenvalue branch departing from

(Ω).
N
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Theorem 7.8. For 1 ≤ j ≤ p, we write
mj ≡ dim(Ej),

so that
m = m1 + · · · +mj + · · · +mp,

and we denote by
0 < µj,1 ≤ · · · ≤ µj,ℓ ≤ · · · ≤ µj,mj

the eigenvalues of the quadratic form Qj. Then, for all 1 ≤ j ≤ p and 1 ≤ ℓ ≤ mj,

λN−1+m1+···+mj−1+ℓ(Ω \ (εω)) = λN (Ω) + µj,ℓ ε
2kj+(d−2) + o(ε2kj+(d−2)) as ε → 0+.

The proof of Theorem 7.8 is identical with that of [3, Th. 1.17]. To see how the above results imply
heorem 1.8, we fix, for each 1 ≤ j ≤ p, an orthonormal basis of Ej ,

vj,1, . . . , vj,ℓ, . . . , vj,mj

uch that, for all 1 ≤ ℓ, ℓ′ ≤ mj ,
Qj(vj,ℓ, vj,ℓ′) = δℓℓ′µj,ℓ.

rom Theorem 7.8 and Corollary 7.6, it then follows that, for all 1 ≤ j ≤ p and 1 ≤ ℓ ≤ mj ,

λN−1+m1+···+mj−1+ℓ(Ω \ (εω)) = λN (Ω) + CapΩ (εω, vj,ℓ) + o(CapΩ (εω, vj,ℓ)) as ε → 0+.

By relabeling the vj,ℓ with 1 ≤ i ≤ m, in increasing order, first of j, then of ℓ, we obtain an orthonormal
basis of E(λN (Ω)),

v1, . . . , vi . . . , vm,

hich has the properties of Theorem 1.8.
Then, to illustrate our result, as in [3, Cor. 1.18], we deduce the following corollary in a specific situation

orollary 7.9. Let us assume that λN (Ω) has multiplicity 2 (i.e., m = 2). Then one of the following
lternatives holds.

(1) There exist two normalized eigenfunctions u1, u2 ∈ E(λN (Ω)) \ {0}, with respective order of vanishing
k1, k2 such that k1 > k2. In that case,

λN (Ω \ (εω)) =λN (Ω) + Q(u1, u1)ε2k1+(d−2) + o(ε2k1+(d−2));
λN+1(Ω \ (εω)) =λN (Ω) + Q(u2, u2)ε2k2+(d−2) + o(ε2k2+(d−2)).

(2) All eigenfunctions in E(λN (Ω)) have the same order of vanishing, which we denote by k. Let us note
that necessarily k ≥ 1. In that case, let us choose eigenfunctions u1, u2 forming an orthonormal basis
of E(λN (Ω)) and let us denote by 0 < µ1 ≤ µ2 the eigenvalues of the symmetric and positive definite
matrix (

Q(u1, u1) Q(u1, u2)
Q(u1, u2) Q(u2, u2)

)
.

Then

λN (Ω \ (εω)) =λN (Ω) + µ1ε
2k+(d−2) + o

(
ε2k+(d−2)

)
;

λN+1(Ω \ (εω)) =λN (Ω) + µ2ε
2k+(d−2) + o

(
ε2k+(d−2)

)
.
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Appendix. Blow-up analysis for the u-capacity

Following the outline proposed in [17], we perform a blow up analysis for CapΩ (εω, u), with Ω , ω
dmissible domains and u an admissible function. Without loss of generality, we assume that u is not
dentically zero in a neighborhood of 0. In the final remark of this appendix we connect this with the results
stablished in Section 6.

Firstly we introduce the following notation. Let K ⊆ Rd be a compact set. For d ≥ 3, the Beppo–Levi
paces D1,2(Rd) and D1,2(Rd \K) are defined as the completion, with respect to the L2-norm of the gradient,
f C∞

c (Rd) and C∞
c (Rd \K), respectively. We recall as well that thanks to the well-known Hardy Inequality,(

d− 2
2

)2 ∫
Rd

v2

|x|2
≤
∫
Rd

|∇v|2 (Hardy Inequality), (53)

for all v ∈ C∞
c (Rd), the space D1,2(Rd) can be characterized in the following way

D1,2(Rd) =
{
v ∈ L1

loc(Rd) : ∇v ∈ L2(Rd) and v

|x|
∈ L2(Rd)

}
. (54)

For any f ∈ H1
loc(Rd) we introduce the quantity

CapRd(K, f) := inf
{∫

Rd
|∇v|2 : v ∈ D1,2(Rd), v − ηKf ∈ D1,2(Rd \K)

}
,

where ηK ∈ C∞
c (Rd) such that ηK = 1 in a neighborhood of K. In particular, when f = 1 we have

CapRd(K, 1) = CapRd(K)

(for the definition of CapRd(K) see (4)). Let now u be a fixed admissible function, in the sense of
Definition 1.5, not identically zero in a neighborhood of 0. We denote by k its order of vanishing κ(u) at 0
nd we define

ũε(t) ≡

⎧⎨⎩
u(εt)
εk

∀t ∈ 1
εΩ ,

0 ∀t ∈ Rd \ 1
εΩ .

ince u is analytic in a neighborhood of 0, ũε converges to u#, the principal part of u defined by Eq. (52),
niformly in every compact subset of Rd, and similarly for the derivatives of ũε to any order. This implies
n turn that for any R > 0, as ε → 0,

1
εd+2k

∫
Ω∩BRε

u2 →
∫

BR

u#
2, (55)

1
εd−2+2k

∫
Ω∩BRε

|∇u|2 →
∫

BR

|∇u#|2. (56)
29
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Here, if R̃ is a positive real number, the symbol BR̃ denotes the open ball in Rd of radius R̃ and center 0.
oreover, if K is a compact set with CapRd(K) > 0, we have that, for any R > 0 such that K ⊂ BR, there

xists CP > 0 such that, for any v in the closure of C∞
c (BR \K) in H1(BR),∫

BR

v2 ≤ CP

∫
BR

|∇v|2 (Poincar é Inequality). (57)

For a proof of the basic inequalities (53) and (57) in a similar context we refer the reader to [17, Lemma
6.5] and [17, Lemma 6.7], respectively.

In the following lemma, we deduce the vanishing rate of CapΩ (εω, u) as ε → 0.

emma A.1. For ε → 0,
CapΩ (εω, u) = O(εd−2+2k).

roof. If ε is sufficiently small there exists R > 0 such that εω ⊂ BRε ⊂ B2Rε ⊂ Ω . Let ηε ∈ C∞
c (Ω)

such that 0 ≤ ηε ≤ 1, ηε ≡ 1 in BRε, ηε ≡ 0 in Ω \ B2Rε and |∇ηε| ≤ 4
εR in Ω . Then ηεu ∈ H1

0 (Ω) and
ηεu− u ∈ H1

0 (Ω \ εω). Therefore

CapΩ (εω, u) ≤
∫
Ω

|∇(ηεu)|2 =
∫
Ω

|ηε∇u+ u∇ηε|2 ≤ 2
∫
Ω

ηε
2|∇u|2 + 2

∫
Ω

u2|∇ηε|2 = O(εd−2+2k),

hanks to (55) and (56) together with the properties of ηε. □

We now define a suitable rescaling of the u-capacitary potential, that is

Ṽε(t) ≡

⎧⎨⎩
Vεω,u(εt)

εk
∀t ∈ 1

εΩ ,

0 ∀t ∈ Rd \ 1
εΩ ,

or any positive ε. Let us note that Ṽε ∈ H1
loc(Rd).

Lemma A.2. Let R > 0. There exists C > 0 such that

∥Ṽε∥H1(BR) ≤ C

if ε is small enough.

Proof. Let R0 > 0 such that BR0 ⊂ Ω . We have∫
Ω

|∇Vεω,u|2 ≥
∫

BR0

|∇Vεω,u|2 = εd−2+2k

∫
B R0

ε

⏐⏐∇(Vεω,u(εt)
)⏐⏐2

ε2k
= εd−2+2k

∫
B R0

ε

|∇Ṽε|2.

rom Lemma A.1 and the previous inequality, we deduce that∫
B R0

ε

|∇Ṽε|2 = O(1)

s ε → 0 and that there exists C1 > 0 such that for any R > 0∫
|∇Ṽε|2 ≤ C1 for any ε ∈

]
0, R0

[
. (58)
BR
R
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On the other hand,∫
BR

|Ṽε|2 =
∫

BR

|Ṽε − ũε + ũε|2 ≤ 2
∫

BR

|Ṽε − ũε|2 + 2
∫

BR

|ũε|2

≤ 2CP

∫
BR

|∇(Ṽε − ũε)|2 + 2
∫

BR

|ũε|2 ≤ 4CP

(∫
BR

|∇Ṽε|2 +
∫

BR

|∇ũε|2
)

+ 2
∫

BR

|ũε|2

hanks to (57) applied on Ṽε − ũε. Every term in the last sum can be proved to be bounded following the
receding argument and taking into account (55) and (56), so that there exists ε̄ ∈ ]0, 1[ and C2 > 0 such
hat ∫

BR

|Ṽε|2 ≤ C2 for any ε ∈
]
0,min

{
ε̄, R0

R

}[
. (59)

qs. (58) and (59) conclude the proof. □

From this last lemma and a diagonal process over a sequence of Rn → +∞ we deduce that there exist
W ∈ H1

loc(Rd) and a subsequence (still denoted with ε) such that

Ṽε → W as ε → 0

weakly in H1(BR), strongly in L2(BR) for any R > 0 and almost everywhere in Rd.
By a change of variables we have∫

Rd
|∇Ṽε|2 = 1

εd−2+2k

∫
Ω

|∇Vεω,u|2 = 1
εd−2+2k

CapΩ (εω, u) = O(1) (60)

s ε → 0 thanks to Lemma A.1. Via Hardy Inequality (53) we obtain also∫
Rd

|Ṽε|2

|x|2
≤
(

2
d− 2

)2 ∫
Rd

|∇Ṽε|2 ≤ C

niformly with respect to ε. Via Fatou’s lemma, we have∫
Rd

|W |2

|x|2
=
∫
Rd

lim inf
ε→0

|Ṽε|2

|x|2
≤ lim inf

ε→0

∫
Rd

|Ṽε|2

|x|2
≤ C̃ (61)

uniformly with respect to ε small enough. Moreover, for any R > 0 we have∫
BR

|∇W |2 ≤ lim inf
ε→0

∫
BR

|∇Ṽε|2 ≤ C̄

here the last inequality follows from (60) (the constant C̄ does not depend on R). We then deduce that∫
Rd

|∇W |2 ≤ C̄ . (62)

rom (61) and (62) we deduce that W ∈ D1,2(Rd) using the characterization (54).
On the other hand, Vεω,u weakly solves the problem⎧⎪⎨⎪⎩

−∆Vεω,u = 0 in Ω \ εω,
Vεω,u = u on εω,

Vεω,u = 0 on ∂Ω ,

(63)

nd in particular ∫
1

∇Ṽε · ∇φ= 0 for all φ ∈ H1
0 ( 1

εΩ \ ω).

εΩ\ω
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Taking the limit for ε → 0 in the previous equation we obtain that for any R > 0∫
BR\ω

∇W · ∇φ = 0 for all φ ∈ H1
0 (BR \ ω)

and therefore ∫
Rd\ω

∇W · ∇φ = 0 for all φ ∈ C∞
c (Rd \ ω).

As a consequence, thanks also to the uniform convergence ũε → u# on compact sets, W is a weak solution
of the problem ⎧⎪⎨⎪⎩

−∆W = 0 in Rd\ω
W = u# on ω

W ∈ D1,2(Rd)
y standard variational methods, the problem above for W has a unique weak solution which we denote by
Rd,u#

, i.e., W = VRd,u#
.

Let η be a cut-off function with compact support such that η ≡ 1 on ω. Testing the previous equation
ith W − ηu# ∈ D1,2(Rd \ ω) we obtain∫

Rd\ω

|∇W |2 =
∫
Rd\ω

∇W · ∇(ηu#). (64)

Letting ηε(x)≡η( x
ε ), we can test Eq. (63) with φ = Vεω,u − ηεu, obtaining∫

Ω\εω

|∇Vεω,u|2 =
∫
Ω\εω

∇Vεω,u · ∇(ηεu).

y a change of variables we obtain
1

εd−2+2k

∫
Ω\εω

|∇Vεω,u|2 =
∫

1
εΩ\ω

∇Ṽε · ∇(ηũε) →
∫
Rd\ω

∇W · ∇(ηu#) (65)

s ε → 0 thanks to the weak convergence Ṽε ⇀ W in H1(BR) for any R > 0 and the uniform convergence
˜ε → u# on compact sets. Moreover, the very same convergence implies

1
εd−2+2k

∫
εω

|∇u|2 =
∫

ω

|∇ũε|2 →
∫

ω

|∇u#|2 as ε → 0. (66)

In view of (66), (64) and (65) we deduce that

ε−(d−2+2k)CapΩ (εω, u) → CapRd(ω, u#) as ε → 0, (67)

ndependently from the subsequence.
Let us note that, when u is the eigenfunction uN , VRd,u

N,#,k
|ω = uN,#,k|ω and VRd,u

N,#,k
|Rd\ω = uN,k.

q. (67) can therefore be written

CapΩ (εω, uN ) = CapRd(ω, uN,#,k)ε2k+d−2 + o
(
ε2k+d−2

)
as ε → 0.

emark A.3. We recall that in our context ω is an open regular bounded set in Rd and u# is a harmonic
omogeneous polynomial of degree k. As a consequence, the quantity CapRd(ω, u#) is strictly positive and
67) is in fact a sharp asymptotics.

Moreover, from Remark 6.2 we deduce that(∫
Rd\ω

|∇uN,k|2 dt+
∫

ω

|∇uN,#,k|2 dt

)
= CapRd(ω, uN,#,k) > 0.
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Remark A.4. The blow-up analysis presented above can be also performed for the (u, v)-capacity provided
uitable modifications.
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