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1. Introduction

This paper is devoted to the analysis of the asymptotic behavior of a generalization of the condenser
capacity of a bounded domain of R? (d > 3) with a small hole of size € > 0, as the parameter £ approaches
the degenerate value 0. Such a generalization, as we shall see, has proved to be extremely useful for the
analysis of the behavior of simple and multiple eigenvalues for the Dirichlet-Laplacian in a bounded domain
with a small hole. A careful investigation of the behavior of such a generalized capacity has been carried out
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in [1,3] in the planar case, with the corresponding applications to the study of the eigenvalues in perforated
domains. Here, instead, we wish to consider the case of dimension d greater than or equal to 3. As we shall
see, the cases of dimension d = 2 and of d > 3 need to be treated separately because of the different aspect
of the fundamental solution of the Laplace operator.

Before introducing the generalization of the capacity we are going to study, we begin by recalling the
notion of condenser capacity and a first generalization of it, known as u-capacity.

We recall that for a bounded, connected open set {2 of R? and a compact subset K of {2, the (condenser)
capacity of K in 2 is

Capg(K) = mf{/ﬁ \Vf[?dz: f e H (2) and f —nk € H&(Q\K)}, (1)

where 7 is a fixed smooth function such that suppng C 2 and nx = 1 in a neighborhood of K. As is well
known, the infimum in (1) is achieved by a function Vi € H}(£2) such that Vi — nx € H} (2 \ K) so that

Capg(K) :/ VVic? da,
(]

where Vi (capacitary potential) is the unique solution of the Dirichlet problem

AVKZO inQ\K,
Vi =0 ondf, (2)
Vk =1 on K.

By saying that Vi solves (2) we mean that Vi € H}(2), Vi —nix € Hi (2 \ K), and
VVik -Védr =0 V¢ Hy(2\K).
O\K

Moreover, if {2 and K are sufficiently regular, one can reformulate the boundary conditions of problem (2)
in the trace sense. Let us also point out that Cap,,(K) and Vx do not depend on the choice of ng, but only
on the set K.

The following set of properties for the domains will play a key role in our analysis, so we summarize it in
a definition.

Definition 1.1. We say that £2 C R? is an admissible domain if

1. {2 is open, bounded and connected;
2. 2 is in the Schauder class C1'* for some « € |0, 1];
3.0 2 and R?\ 2 is connected.

In the case where d > 3, we can use the notion of Newtonian capacity. We restrict ourselves to the case
where K = w, with w an admissible domain. Then, there exists a unique function

Wk : RN\ w—R
that is continuous, real-analytic in the open set R? \ K, and satisfies

AWg =0 in R\ K ,
Wik =1 on 0K , (3)
Wk(x) -0 forx — 0.

The last condition in (3) is equivalent to the requirement that Wy be harmonic at infinity. We then define
the Newtonian capacity as

Capga (K) = / YWl de, (4)
RI\ K

the integral being finite.
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In order to study the asymptotic behavior as € — 0 of eigenvalues of the Dirichlet—Laplacian in perforated
domains of the type
N.=0\ew,

where 2, w C R? are admissible domains in the sense of Definition 1.1, a generalization of the notion of
capacity —the so-called u-capacity—, has been introduced (see Abatangelo, Felli, Hillairet, and Léna [2]).

Definition 1.2. Given a function u € H{({2), the u-capacity of a compact set K C (2 is
Capg(K,u) = inf{/ \Vf?de: f e H () and f —u € H&(Q\K)} . (5)
Q
The infimum in (5) is achieved by a unique function Vi ,, € Hg(£2), so that

Capo (K, u) = / VVicu|? da
0

We call Vi, the potential associated with u and K.
Furthermore, Vi ,, is the unique weak solution of the Dirichlet problem

AVK7UZO inQ\K,
Vikuw=0 on 02,
Viku=1u on K,

where, by weak solution, we mean that Vi ., € Hy(f2), u—Vk,y € Hy(2\ K) and [, VVk , - Vodz =0 for
all o € HH (0 )\ K).

We extend Definition 1.2 to H*({2) functions, by setting, for any u € H' (),
Cap() (K7 ’LL) = CapQ(K7 UKU) )

where ng is a fixed smooth function such that suppnix C 2 and ng = 1 in a neighborhood of K. Here
again, Cap,, (K, u) and the associated potential Vi ,, do not depend on the choice of g, but only on K and
U.

With this tool in hand, one can obtain an asymptotic formula for the behavior of Nth eigenvalue Ay (§2;)
of the Dirichlet-Laplacian in 2. as ¢ — 0, under the assumption that the Nth eigenvalue Ay ({2) of the
Dirichlet—Laplacian in the unperturbed set (2 is simple.

In order to be more precise, we recall that if 2 is a bounded open set in R¢ the eigenvalue problem

—Au=\u in 2,
u=20 on 92

admits a sequence of real eigenvalues tending to infinity
0<M(2) SA(R) < SAN(R2) <+ = +o0

where every eigenvalue is repeated as many times as its multiplicity and, in particular, the first one is simple
if 2 is connected. The dependence of the spectrum of the Laplace operator upon domain perturbations has
long been investigated, with particular attention to the case of sets with small perforations. Here we mention,
for example, Abatangelo, Felli, Hillairet, and Léna [2], Ammari, Kang, and Lee [4], Besson [5], Chavel and
Feldman [7], Colbois and Courtois [8], Courtois [10], Felli, Noris, and Ognibene [17], Lamberti and Perin [23],
Lanza de Cristoforis [28], Maz’ya, Movchan, and Nieves [30], Maz’ya, Nazarov, and Plamenevskii [32],
Ozawa [33], Rauch and Taylor [36], Samarskii [37]. In particular, we recall that, by Courtois [10, Proof
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of Theorem 1.2] and by Abatangelo, Felli, Hillairet, and Léna [2, Theorem 1.4], an asymptotic formula for
the eigenvalues can be obtained in terms of Capg,(cw,uy), where uy is a L?({2)-normalized eigenfunction
corresponding to Ay ({2): if 2 and w are admissible domains and Ay ({2) is simple, this reads as

An(2\ (ew)) = An(£2) + Capy, (e, un) + o(Capy, (e, un)) ase— 0T,

Unfortunately, the above mentioned result a priori only holds for simple eigenvalues. In order to
study multiple eigenvalues, one needs a further generalization of the capacity. The eigenspace being of
dimension greater than one, one needs to take into account the interaction between different eigenfunctions
corresponding to the same eigenvalue.

Definition 1.3. Given u®, u® € H}(2), the (u®, ub)-capacity of a compact set K C 2 is

Cap, (K, u®, ub) = / VViua - VVi b d.
o

Here above the symbol - denotes the scalar product in R%.
Again, as we have done for the u-capacity, we extend Definition 1.3 to H(2) functions, by setting, for
any pair of functions u?, u® € H'(£2),

Capy, (K, u“7ub) = Capg, (K, nKu“,nKub) ,

where 7 is a fixed smooth function such that suppng C {2 and ng =1 in a neighborhood of K.
With the new object Cap,(K,u®, u?) we can clearly recover the classical condenser capacity as well as
the u-capacity.

Remark 1.4. If u € H!(2) and K is a compact subset of 2, then
CapQ(Kv Uu, u) = Ca'pQ(Ka u) .

Also,
CapQ(K7 17 1) = CapQ(K) .

In [3] it has been shown that by exploiting the definition of (u?, u®)-capacity, we can obtain the asymptotic
behavior of multiple eigenvalues. More precisely, if one has an asymptotic expansion of Cap,(ew, u®, ub)
where u® and u’ are eigenfunctions corresponding to the same multiple eigenvalue in the unperturbed set 2,
then one can deduce the asymptotic behavior of the corresponding eigenvalues in the perforated set 2\ (ew).
Therefore, in [3], we have obtained a detailed and fully constructive representation of Capg,(sw,u®, u®)
as a convergent series in case of dimension d = 2. Since our method is based on potential theory, the
higher dimensional case differs from the two-dimensional one (mainly due to the different aspect of the
fundamental solution for the Laplace equation). The goal of the present paper is to obtain a representation
of Capg,(ew, u®, ub) for e close to 0 in terms of a convergent series and to apply it to study the asymptotic
behavior of Dirichlet eigenvalues in perforated domains, in the case d > 3. Such results extend the work
done in [3] for the case of dimension d = 2. Moreover, taking u® = u® = 1, one can immediately deduce the
expansion for the condenser capacity Cap,(¢w) as € — 0. We observe that several authors have considered
the asymptotic behavior of condenser capacities in several geometrical situations (see Dubinin [16], Lanza
de Cristoforis [25-27], Maz’ya, Nazarov, and Plamenevskij [31, §8.1], Soibel’'man [40]). As an example, we
mention that the asymptotic expansion of the capacity as the hole shrinks to a point can be deduced from
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the analysis of energy integrals in perforated domains by Maz’ya, Nazarov, and Plamenevskij [31, §8.1]. For
example, in dimension two, they prove that there exists d > 0 such that

27
IOgE + QW(H(0,0) + N)

Capg,(ew) = — + o(e%), (6)
for £ small and positive, where 2™ is the logarithmic capacity (or outer conformal radius) of w and Hg,o) is
the value at = 0 of the unique harmonic function & in 2 such that h(z) = —log |z|/(27) for all z € 92. For
the definition of logarithmic capacity we refer, e.g., to Landkof [24, p. 168], Pélya and Szegd [34, p. 2], and
Pommerenke [35, p. 332]. In other words, N in Eq. (6) is defined as 1/(27) multiplied by the logarithm of
the logarithmic capacity of w. Moreover, expansions for the capacity for the case of several small inclusions
can be deduced from the corresponding expansion of the capacitary potential obtained in Maz’ya, Movchan,
and Nieves [29, §3.2.2].

A different method to analyze the asymptotic behavior of functionals in perforated domains is the so-
called Functional Analytic Approach proposed by Lanza de Cristoforis in [25,26]. The goal of this method
is to represent functionals in singularly perturbed domains by means of real analytic maps and possibly
singular but explicitly known functions of the singular perturbation parameter (see Dalla Riva, Lanza de
Cristoforis, and Musolino [11] for an introduction). As far as the condenser capacity in dimension two is
concerned, by Lanza de Cristoforis [25,26], we know that there exist 1 > 0 and a real analytic function R
from | — e1,¢e1[ to |0, +00[ such that

2

—_— Ve €]0 .
loge + log R[e] e €l0,el

Capg(ew) = —

Such a result implies that there exists a real analytic map R from a neighborhood of (0,0) in R? with
values in R such that

Capg,(ew) = 7@{5, 102);5} ,

for € positive and close to 0. As a consequence, we have that

l
Capo(e@) = D ke (10g5> ;

(k,1)eN?

for & positive and small enough, where the double power series Z( 1) EN? *y(k,l)x’fxé converges for (z1,z2) in
a neighborhood of (0, 0). Moreover, in Lanza de Cristoforis [27], the Functional Analytic Approach has been
applied to the capacity Capg,(¢w) in R? with d > 2 and has shown the existence of two real analytic maps
V1, V5 from a neighborhood of 0 to R such that

-1

Capg,(ew) = 7
for € positive and small enough, with 74[¢] defined as
L loge ifd=2
— 27 ?
Tale] = { ke ifd > 3,

where s, denotes the (d — 1)-dimensional measure of the unit sphere in R%. In dimension d > 3 formula (7)
implies the possibility of representing Cap,(cw) as a convergent power series in €, even though the explicit
computation of the coefficients of the series is not available.

In [1,3], we have improved the above mentioned two-dimensional results in two directions: first we have
considered a generalization of the classical capacity (the u-capacity), then we have explicitly computed
some of the coefficients of the series representing the u-capacity. This result has then been applied to the
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asymptotic behavior of simple and multiple eigenvalues of the Laplacian in perforated domains in dimension
d = 2. The purpose of the present paper is to consider the behavior of (generalized) capacities in dimension
three and higher together with its application to the asymptotic behavior of Dirichlet—Laplacian eigenvalues.

We wish to stress that to obtain an asymptotic expansion of Cap,(¢w,u®, u®), we follow the lines of the
computations of [1,3]. Although the strategy is similar, some changes need to be taken into account due to
the different dimension (here d > 3, whereas d = 2 in [1,3]). Since they deserve some attention and care, we
decided to provide these computations in the present paper.

We do believe that explicit results in dimension d > 3 will be useful both to people interested in the
behavior of capacities and to those interested in the asymptotic analysis of eigenvalues of the Laplacian in
perforated domains. To the best of our knowledge, the explicit and constructive series expansion we obtain
is new even for the classical capacity.

We assume that {2 and w are admissible domains in the sense of Definition 1.1. These regularity
assumptions on {2 and w are convenient for the Functional Analytic Approach we adopt, although they
can be relaxed to Lipschitz regularity as it has been done in Costabel, Dalla Riva, Dauge, and Musolino [9]

Definition 1.5. Let {2 be an admissible domain. We call u an admissible function if

1. u e HY(N);
2. u is real-analytic in a neighborhood of 0.

b

Our first main result, Theorem 5.2, deals with the value of Capg,(ew,u®, u’) for € close to 0. We

reformulate Theorem 5.2 in Theorem 1.6 below. For the proof, we refer to Section 5.

Theorem 1.6. Let 2, w be admissible domains and let u®, u® be admissible functions. Then there exist €
positive and small enough and a sequence {cif }nen of real numbers such that

oo

Cap, (c@, u, u’) = 472 Z cten
n=0
for all € €]0,#].

In addition, we are able to give a simple description of the first few terms in the above series expansion.
For an admissible function « which is not identically zero in a neighborhood of 0, we denote by k(u)€ N the
order of vanishing of u at 0, so that DYu(0) = 0 for all |y| < x(u) and DPu(0) # 0 for some 8 € N with
|8 = k(u) (we use the standard multi-index notation throughout the paper). We define the principal part

of u by )
Z EDﬁu(O)xﬁ,
BENT |Bl=r(u)

so that uy is a homogeneous polynomial of degree x(u). Note that this includes the case when x(u) = 0,

Uy ()

i.e., u(0) # 0. Then ug = u(0). We finally denote by U the unique function, continuous in R? \ w, which
solves the exterior boundary value problem

AU=0  inR\w,
U=ug on dw, (8)
U(x)—0 for|z| — 0.

We now assume that the admissible functions u®, u® have finite orders of vanishing x(u®) = k, and k(u®) = k;,
at 0. We write
¢ (w, (u) g, (uP)g) = / vU® . vut der/ Vug, ~Vu;é dz,
RIANG

w

6
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where, for [ = a, b, the function uié& is the principal part of u! and the function U’ is the solution of problem
(8) with uy replaced by u;& Then, ¢ =0 for all n < k, + k; and

%&fr%b =C (wa (ua)#a (ub)#) :

When u is a single admissible function, with finite order of vanishing x(u) = k at 0, we simplify notation
further by writing
Cw, ug) = C(w, ug, ug),

and we note that

C(w,uy) = /}Rd\|VU|2 dx+/ |Vug|® de (9)

is strictly positive. In particular, Cap, (e, u) is asymptotic to €(w, u#)EZEﬂLd”.

We then apply the above results to the asymptotic behavior of eigenvalues in perforated domains. Our
main results on this problem are the following Theorems 1.7 and 1.8 (see Theorems 7.2, 7.3, and 7.8 for
more detailed statements). We begin with Theorem 1.7 which is a reformulation of Theorems 7.2 and 7.3
and which deals with the case when the Nth eigenvalue in the unperturbed set {2 is simple. For the proof,
we refer to Section 7.1.

Theorem 1.7. Let Ay (£2) be a simple eigenvalue of the Dirichlet-Laplacian in an admissible domain 2.
Let uy be a L%(2)-normalized eigenfunction associated to Ay (£2). Then

AN (2 (@) = An(£2) + (un(0))*Capya(@)e~2 + o(EH) ase— 0%
Moreover, let k be the order of vanishing of un at 0. Then

AN (2 (€B)) = An(£2) + € (w, (uy)z) e2FHd=2 4 0(62E+d_2) ase— 0% .

Theorem 1.8 here below is instead concerned with the case when Ay (§2) is an eigenvalue of multiplicity
m > 1. The case of multiple eigenvalues is considered in Theorem 7.8 and its proof can be found in
Section 7.2.

Theorem 1.8. Let An(2) be an eigenvalue of multiplicity m > 1 and let E(An(§2)) be the associated
eigenspace. There exists an orthonormal basis of E(An(£2)),

Viyeooy Uiyenny U,
such that, for 1 <i<m,
Av_14i(2\ (eW)) = AN (2) + Capg (ew, v;) + o (Capg, (ew, v;)) ase — 0T .
Moreover, we have
Av_14(2)\ (£3)) = An (2) +Mi€2ﬁi+d—2 +o <€2E¢+d—2> ase — 0F
where k; is the order of vanishing of v; at 0 and

pj = € (w, (vi)#) > 0.

Remark 1.9. In the previous theorem, the non-increasing finite sequence of integers (E) and the non-
decreasing finite sequence of positive numbers (u;) are obviously independent of the choice of a basis (v;)
satisfying the properties, by uniqueness of the asymptotic expansion.

7



L. Abatangelo, C. Léna and P. Musolino Nonlinear Analysis 238 (2024) 113391

The paper is organized as follows. In Section 2 we rewrite the boundary value problem associated to
the generalization of the capacity in terms of integral equations, exploiting classical potential theory. In
Sections 3 and 4 we obtain series expansions for the solutions of the integral equations and for an auxiliary
function. In Section 5, we deduce our main result on the series expansion of the generalized capacity
Cap,(ew, u®, u) for € close to 0. In Section 6, we compute the principal term of the asymptotic expansion of
Cap, (ew, u®, u®) under vanishing assumption for u® and u®. In Section 7 we outline the proofs of Theorem 1.7
and Theorem 1.8. Moreover, we supplement the present paper with a blow-up analysis for the u-capacity
in Appendix. It shows more clearly that the first term of the series expansion provided in Section 5 can be
seen as a suitable capacity in the whole space R<.

2. Integral equation formulation of capacitary potentials
2.1. Preliminaries and classical notions of potential theory

In this paper we consider the dimension
d e N\ {0,1,2}

and we study the asymptotic behavior of Cap,,(ew, u®, u’) as e — 0. To do so, we assume some smoothness
on the sets and on the functions u® and u®. We work in the frame of Schauder classes and thus we assume
that both (2 and w are admissible domains in the sense of Definition 1.1. We can obviously find a common
Schauder class C1® to which they belong, up to taking a smaller «. Since {2 is open and contains 0, and
since w bounded, it is clear that there exists e such that

ex>0and ew C N2 forall e €] —ey,exn. (10)
To define our perforated domain, we set
2. =02\ (ew) Ve €] —ey,eql.

Clearly, £2. is an open bounded connected subset of R? of class O for all € €] —e4, e4[\{0}. The boundary

082 of (2. is the union of 92 and J(ew) = €dw, for all € €] —ex,e4[\{0}. For € = 0, we have 2, = 2\ {0}.

b b are admissible in the sense of

We also need some regularity on the functions u®,u
Definition 1.5.

Our goal is to provide accurate and explicit expansions for Cap, (@, u®, u®) in terms of €, with particular

: we assume that u®, u

emphasis on the influence of the geometry and the data of the problem on such formulas.

Our strategy will be the same of [1,3], where we adopted the Functional Analytic Approach of Lanza de
Cristoforis [25,26] for the analysis of singularly perturbed boundary value problems (see Dalla Riva, Lanza de
Cristoforis, and Musolino [11] for a detailed presentation). This approach permits to deduce a representation
of the solution or related functionals as real-analytic maps, and thus as convergent power series.

To analyze Cap,(ew, u?, u’), we modify the techniques of [1,3], where we considered Cap,,(cw,u) and
Capg,(ew,u®, u’) but only in the planar case. Indeed, we emphasize that for considering d > 3 some
modifications need to be done, as it is customary when using Potential Theory.

By the analyticity of u® and u® (see Definition 1.5) and analyticity results for the composition operator
(see Bohme and Tomi [6, p. 10], Henry [21, p. 29], Valent [41, Thm. 5.2, p. 44]), we deduce that, possibly
shrinking e, there exists two real analytic maps U, U;Z7£ from | — ey, ex[ to C1*(Qw) such that

u(et) = Uglel(t), ul(et) = U;‘;[E](t), Vit € Qw,Ve €] —eyp,ex]
8
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(see Deimling [15, §15] for the definition and properties of analytic maps). Then for all € €] — e4,ex[\{0},
we denote by u¢ and u® the unique solutions in C1%(£2.) of the problems

Aug =0 in \Q{-: )
ul(x) =0 for all x € 042, (11)
ul(x) = US[el(x/e) for all z € edw
and
Aug = in '(267
ub(z) =0 for all z € 012,

ul(z) = Uyle](x/e)  forall x € edw,

respectively. By the Divergence Theorem, we see that

Cap, (e@, u®, u’) = Vul - Vub dz + / Vu® - Vub dx
e Ew

= —gd72 /‘% v, (t) ~V(ug(5t))ub(at) do; + ¢? / (Vu®)(et) - (Vu®)(et) dt

w

for all € €] — e4,e4[\{0}, where v, denotes the outward unit normal to dw.

In order to analyze the solution to problem (11) as e — 0, we adapt to the present problem the method
developed in Dalla Riva, Musolino, and Rogosin [14] for the solution of the Dirichlet problem in a planar
perforated domain, which is based on potential theory. By exploiting some specific integral operators (the
single and the double layer potentials) we convert a boundary value problem into a set of boundary integral

equations.
To introduce the layer potentials, we denote by Sy the fundamental solution of A = Z;l=1 8? in R%: d.e.,
1
Silz) = ————— vz € R%\ {0}.
= dpsala? o

Here s4 denotes the (d — 1)-dimensional measure of the unit sphere in R?. Now let O be an open bounded
subset of R? of class C1*. If ¢ € C%*(J0O), then we denote by v[00O, ¢] the single layer potential with
density ¢:
v[00, ¢](x) = é(y)Sa(x —y) doy Vr € RY.
00

It is well known that v[0O, ¢] is a continuous function from R? to R. The restriction v [00, ¢] = v[00, e}
belongs to C*<(0). Moreover, if we denote by C’lt’ca(]Rd\O) the space of functions on R%\ O whose restrictions
to U belong to C1*(U) for all open bounded subsets U of R?\ O, then v~ [00, ¢] = v[00, ¢]jraro belongs
to Cioe' (R*\ 0).

If ¢ € CH*(00), we introduce the double layer potential w[0O, ] by setting

w[d0,Y)(x) =~ [ ¥(y) voly) - VSa(z —y)do, Vo eR%,
00
where v denotes the outer unit normal to dO. The restriction w[0O, 1]|o extends to a function w*[00, ]
of C1%(0) and the restriction w[0O, w]URd\@ extends to a function w™[00, ¢] of C’ll.f(]Rd \ 0).

To describe the boundary behavior of the trace of the double layer potential on 9O and of the normal
derivative of the single layer potential, we define the boundary integral operators W and W:

Wol¢](z) = - o U(y) voly) - VSa(z —y)doy,  Va € 90,
for all ¢ € C*(90), and
Wo9)(z) = o(y) vo(x) - VSy(x —y)do,  Vr € 00,

00
9
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for all ¢ € C%*(9O). The operators W and W, are compact operators from C1*(90) to itself and from
CY*(90) to itself, respectively (see Schauder [38,39]). Moreover, W and W are adjoint one to the other
with respect to the duality on C1®(90) x C%%(d0) induced by the inner product of the Lebesgue space
L2(00) (cf., e.g., Kress [22, Chap. 4]). We refer the reader to Kress [22] and Wendland [42,43], for the theory
of dual systems and the corresponding Fredholm Alternative Principle. Moreover,

w00, ¢] 190 = i%w + Woly] Vi € CH(00),
vo - Vu*100, ¢l 190 = :F%Qﬁ +Woldl Yo € C%(00)

(see, e.g., Folland [19, Chap. 3]).
Finally, we shall need to consider the subspaces of C%%(90) and of C**(90), consisting of functions
with zero integral on 00:

Ch(00), = {f e CH(90): - fdo = 0} for k=0,1. (12)

2.2. An integral formulation of the boundary value problem

To convert problem (11) into integral equations, we follow the idea of Lanza de Cristoforis [27] and of
Dalla Riva, Musolino, and Rogosin [14]. Therefore, we proceed as in [1,3,14] and we introduce the map
M = (M°, M, M¢) from | — e4,ex[xC%*(002) x C%*(dw) to C**(d2) x C**(dw)o x R by setting

M°[e, p°, p'l(x) = %po(x) + WHlp°l(x) +/8 p'(s) vo(x) - VSa(z — es) do Vo e 002,
Mile, o°, () = %pi(t) C W) — et /6 ) vult) - VSu(et =) do, Vit € O,

for all (,p°,p") €] — e4,e4[xCO*(02) x C**(dw). The space C%*(dw)y is defined as in Eq. (12), i.e.,

C%*(Ow)g = {f € C%(Ow): fdo= 0} .
Ow

Then we can prove the following result of Lanza de Cristoforis [27, §3] (see also Dalla Riva, Musolino,
and Rogosin [14, Prop. 4.1]).

Proposition 2.1. The following statements hold.

(i) The map M is real analytic.
(ii) If € € [0,e4], then there exists a unique pair (p[e],pile]) € CY(902) x C®*(Ow) such that
Me. p2[e], i [el] = 0.
(iii) There exist €, €]0,e4[ and a real analytic map (p°[-], p'[-]) from ] —&,,&,[ to CO*(002) x C**(dw) such
that
M, ) Al =0 Ve €] — 2,51,

In particular,

(0°lels p'le]) = (P2 lel, P [e]) Ve €[0,6,[.
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As explained in [27], to represent the solution u. to problem (11), we need to consider a further operator
and thus we define the map A = (4%, A4%) from | — e4,e4[xCH*(902) x CH*(Ow)o to CH*(002) x CH*(dw)
by

2006, 0°,07)(2) = 50°(2) + Wal0°](2)

+ g1 N 0%(s) vy(s) - VSy(x — es) do Vo € 012,
A'le, 0°,0')(t) = %ei(t) — WL [07)(t) + w[02,6°)(et)

— Ugle)(t) + /a Uil el do Yt € O,

for all (£,0°,0") €] — ex,ex[xCH*(002) x CH*(dw)y. Then we have the following result of Lanza de
Cristoforis [27, §4] on A (cf. Dalla Riva, Musolino, and Rogosin [14, Prop. 4.3]).

Proposition 2.2. The following statements hold.
(i) The map A is real analytic.
(it) If € € [0,e4[, then there exists a unique pair (02[e],05[e]) € CH*(902) x CH*(dw)o such that

Ale, 02 [¢], 6L [€]] = 0. -
(iii) There exist &g €]0,e4[ and a real analytic map (0°[],0%[-]) from | — &g, Ep[ to CH*(802) x C1*(dw)g such

that
Ale, 0°[¢],0'[€]] = 0 Ve €] — &g, &g

In particular,
(0°[e], 0'[e]) = (6% [¢], 0% [¢]) Ve € [0,&p].
We now set
€0 = min{é,, &g} .

By summing suitable double and single layer potentials, by a modification of the argument of Dalla Riva,
Musolino, and Rogosin [14, Prop. 4.5], we can represent the rescaled function u. (et) by means of the functions
0°[e], p'le], 0°[¢], and 0[¢] introduced in Propositions 2.1 and 2.2 (see also Lanza de Cristoforis [27, §5] and

Dalla Riva, Musolino, and Rogosin [13, §2.4]).
Proposition 2.3. Let € €]0,e[. Then
ul(et) = wr[002,0°[€]|(et) — w™ [Ow, 67 [¢]](t)
+ [ s (o 00l en) + o low pTE) )
Ow

-1

X (I(%ldg /awv[c’)(),pt)[e]](es) + e~ @200, 5[] (s) das)
= wH[00,0°[E])(et) — w [Ow, 0° [ (1)
+ /aw Ug& [g]PZ [6‘] do <€d21}+[89, PO[E]](st) + 1}7[6@% pl [8]}(15))

forallt € (e7102)\ w.
11
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3. Power series expansions of the auxiliary functions (p°[¢], p*[€]) and (8°[¢], 6%[]) around & = 0

As in [3], now the plan is to construct an expansion for v, (¢) -V (uZ (Et))ub (et) and then to integrate it on
Ow. To do so, we first obtain a representation of the auxiliary density functions (p°[e], pi[e]) and (6°[¢], 0%[¢])
and then we use it to represent v, (t) - V(u?(st))ub(st).

To compute the coefficients of the series involved in the representation, we need explicit expressions for

the derivatives with respect to e of functions of the type F(ex). More precisely, we will exploit the equality

01 (F(ex) = Y %x’@ (DPF)(ex) (13)

BeNd
|Bl=3

which holds for all j € N, ¢ € R, € R%, and for all functions F analytic in a neighborhood of ex. Here,
if « € N9, then (D®F)(y) denotes the partial derivative of multi-index o with respect to x of the function
F(z) evaluated at y € R%. We also exploit formulas for the derivatives of layer potentials in the singularly
perturbed set {2\ ew with respect to the parameter € as it is done in Dalla Riva, Luzzini and Musolino [12].

Then we have the following variant of Dalla Riva, Musolino, and Rogosin [14, Prop. 5.1], where we

represent (p°[e], p'le]) as a power series for ¢ close to 0.

Proposition 3.1. Let (p°[e], p'[e]) be as in Proposition 2.1 for all e €] — eg, (. Then there exist £, €]0,0[
and a sequence {(pg, pi)tren in CO%(002) x C%*(dw) such that

+o +oo

o P 9 P
pPll=Y et and Pl =) PRt Vel el (14)

k=0 k=0

where the two series converge normally in C%*(912) and in C%*(dw), respectively, fore €]—¢,,e,[. Moreover,

the pair of functions (p3, pb) is the unique solution in C%*(912) x C%*(dw) of the following system of integral

equations
1
iﬂg(x) + Walpgl(x) = —va(z) - VSy(x) Yo € 012,
1 *[ 1
5Pb(t) = WElpb(t) =0 Ve dw,

/ phdo =1,
ow

for each k € {1,...,d — 2} the pair of functions (p3, pi.) is the unique solution in C%*(92) x C**(dw) of

the following system of integral equations

SA () + W) (@)

= (—1)k*! Z gug(a@) : (VDBS)(LU)/a pi(s)s” do Vr € 902,
gend “
|Bl=k

pL(t) =0 Vit € dw,

12
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and for each k € N\ {0,...,d — 2} the pair (p%, pi.) is the unique solution in C**(9£2) x C**(Ow) of the

following system of integral equations which involves {(p3, p;) k-l

=0
1 %[ 0
@) + Wil (@)
Ly _
:Z<> 1)7H1 Z ﬂ' (VDPS)(x )/ pfc_j(s)sﬁdos Ve € 012,
SN e *
Bl=j

/ pido=0.
ow
Proof.

By the real analyticity result of Proposition 2.1 (iii) for the map

e (0°le], p'le]) s
we deduce that there exist £, and {(p%, pi)}ren such that (14) holds. By the real analyticity of £
(p°lel, pile]), we have (p2,pl) = (9%p°[0],05p%[0]) for all k& € N. Therefore our goal is to identify the
derivatives (9Fp°[0],0%p'[0]) for all k& € N. Equality M[e, p°[e], p'le]] = 0 for all ¢ €] — gg,e0[ (cf.
Proposition 2.1 (ii)) implies that the map
e Mle, p°[e], p'e]]

has zero derivatives, i.e.,

ok (M(e, p°le], pile]]) = 0 Ve €] — ep,e0[,k € N. (15)
Therefore we compute 9% (Mg, p°[¢], p[¢]]) and we have
O M[e. o) e (@) = L0 pPIE) o) + W [0k p7lel ) (16)
L -
+ JXZ:O (j) ;N:d @V” /a ) O piE](s) s (VDPSy) (x — es) doy
|B1=3
Vx € 082,
OF(M'[e, p°[e], [l (t) = %3fpi[€](t) — WI0E P [El](2) (17)
—oF <€d_1 /{m P°le]l(y) v (t) - VSa(et —y) day>
Vt € Jw,
OF(M°[e, p°[e], p'[e]) :/8 0L p'le) do — dor, (18)

for all € €] — g, e0[ and all £ € N (see also (13)). Here above d;; denotes the Kronecker delta function. Next
we note that if £ < d —1 then

oF (Ed_l /89 p°lel(y) vu(t) - VSa(et — y) day) =0 Vi € ow.

le=0
13
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Instead, if £k > d — 1 then

(2 [ ) val0) TSulet — ) o,

|le=0

- ((d ﬁ 1)) (d—1)19r~= (/89 P°[el(y) vo(t) - ViSalet —y) d0y> -

k—(d—1)

B k! k—(d—1)
“ - @-) Z( j >

pgend
1Bl=j
B ! k‘i‘” <k —(d— 1))
(SRS I
3 B [ S (), ra(t)- VD Suy) oy V€ B
BeNd : Ow
|Bl=3

Then, by taking e = 0 in (16)—(18) and by equality (15), we deduce that for each k € N the pair of functions
(pg, pt.) is a solution of the corresponding integral equations of the statement. By the characterization of the
kernels of the operators of Dalla Riva, Lanza de Cristoforis, and Musolino [11, §6.5 and §6.6], we deduce the
uniqueness of the solutions of the integral equations of the statement. [

By a similar computation, in the following proposition we construct the power series expansion of

(6°[e], 0°[e]).

Proposition 3.2. Let (0°[¢], 0%[¢]) be as in Proposition 2.2 for all € €] — eq,e0[. Then there exist g €]0, €]
and a sequence {(09,0%)}ken in CH*(002) x C1*(dw)o such that

o0 00 ) oo
0°[e] = Z k—’?ak and 6'le] = k;]? ek Ve €] — €p,€0], (19)
k=0 k=0

where the two series converge normally in C*(d2) and in CH*(Ow)g, respectively, for e €] — eg, 0.
Moreover,
(65,05) = (0,0), 0, =0 Vke{0,...,d—1},

for each k € {0,...,d — 1} the function 0}, is the unique solution in C**(dw)o of

L) - W) = Y Bt -y Y (})5 [ 00kt do, 0w, (20)

|Bl=Fk 1=0 gend
|B]=1

and for each k € N\ {0,...,d — 1} the pair (03,0%) is the um’que solution in C1*(002) x C1*(dw)o of the
following system of integral equations which involves {(62,0%)}" i 0,

%e;;(x) + Wol02)(x) 1)

_ k! h=d=D)-1 (d—1) L+ T 5 >

S (k= (@-1)! ; < j >(_ ) wza ﬂl( a)(@ )'/aw b (d-1)-5(5) v (5)s" do
Vr € 042,

14
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1 . k—(d—1) k '

Lo - wLioil) - Z (H)e b 2 [ 5o VD Sudo

+ Z —tﬁ DPu®) Z Z ( ) / s7(DPu)(0)pl._,(s) dos Vit € Ow.
1Bl= ’C = Of‘iﬁelej

(22)

Proof. We proceed as in Dalla Riva, Musolino, and Rogosin [14, Prop. 5.2] and in [1, Prop 3.2].

Proposition 2.2 (iii) implies that the map

= (0°[e], 0" [e])

is real analytic. As a consequence, there exist g9 and {(69,0%)}ren such that (19) holds. Our goal is to
identify the terms (62, 6:) for each k € N and we do that by computing the derivatives of (0°[¢], §%[¢]) with

respect to €. By Proposition 2.2 (ii), we have
Ale, 6°[¢], 0°[€]] = 0 Ve €] — €0, €0l -
We can compute the derivative with respect to € in the equality above and we deduce that
OF(Ale,0°[€],0'[€]]) =0 Ve €] — eo,0[,Vk €N.
Hence we compute 9% (A[e, 0°[¢], #%[¢]]) and we have

O (A, 071e] 0EI)) () = 500° (@) + Wolohe7le] (a)

+ OF (271 0'[€](s) v (5) - VSa(x — e5) do) Vo € 042,
ow

OF (A'[e, 0°[e], O'[NN)(¢) = %aﬁei [e)(t) — W [020° [€]](t)

k
- Z < ) Z B[tﬁ 3k—j90[€] (y) V(Z(y) : (VDBSd)(St - y) de

|B1=3

- Z —tﬁ DPu)(et)

Iﬁ\ k
+ Z Z ( ) / s7(DPu)(e5)0F L pi[e] (s) do Yt € dw,

=0 geNd

[Bl=t
for all € €] — €9, ¢€0[ and all k € N. Then we note that if k¥ < d — 1 then
ok <5d1 / 0'[€](s) v(s) - VSa(z — es) das> =0 Vreoan.
Ow le=0

Instead, if £ > d — 1 then

oF (sdl . 0'[¢](s) v (s) - VSa(z — £5) das>

. ((dfl))(d—maf-(d-l)( [ el uw(j VSa(x — ) dos>

k—(d—1)

B k! k—@d-1)\, .,
“ @) Z ( j >( b

7=0

le=0

« X L[ o @) L, o) VD Sua) do, Ve € 00,

18] J
15
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The real analyticity of e — (6°[¢],0%[¢]) implies that (02,0%) = (056°[0], 8%6%[0]) for all k € N. Therefore,
by taking e = 0 in (24) and (25) and by equality (23), we deduce that (63,6§) = (0,0), that 2 = 0 for
all k € {0,...,d — 1}, that for each k € {0,...,d — 1} the function 6% solves Eq. (20), and that (62, 6%) is
a solution of (21) and (22) for all k € N\ {0,...,d — 1}. To conclude, we note that, by classical potential
theory (cf., e.g., Dalla Riva, Lanza de Cristoforis, and Musolino [11, §6.5 and §6.6]), Eq. (20) has a unique
solution in C1(dw)g and Egs. (21)—(22) have a unique solution in C**(982) x CH*(dw)g. O

4. Series expansion of v,,(+) - V(u2(e+))ub(e-) around € = 0

The next step is to obtain a series expansion of v, () - V (ug(e-))u(e-) for € close to 0. The coefficients of
such series will be defined by means of the sequences {(p2, %) }ren and {(62, 03 )}ren introduced in Section 3.
We begin with the intermediate result of Proposition 4.1 below, whose proof can be obtained by arguing as

in the proof of [3, Prop. 2.9].

Proposition 4.1.  Let {(p3, pi.) ken and {(02,0%)}ren be as in Propositions 3.1 and 3.2, respectively. Let

U o(t) =0 vt e R4\ w,
u (1) = —w™ [0w, 6;](t) Vte R\ w,ke{0,...,d—1},
1Sk !
a = _1)J S4B 0 . B
Jj=0 pgeNd
18l=3
1 )
- Eur[aw,eyﬁ](t) Vte R\ w, Vk>d
and
1 LYk @-2) 1 1
_ —a—= J J: ° - i
U,k () = m Z ( i )(—1) Z Etﬁ/a pkf(d—Q)—jDBSd do + id [Ow, p,](t)
j=0 pend “
|Bl=3
vt e R4\ w,

k
=g D ('f);*/a (D) O)p} () dor

w

k—(d—2)

1 k—(d=2)\, X ! 5 5
ry = Z ( ) )(—1)7 Z = sP dos PZ—(d—z)—jD Sa do
(k= (d=2) [, do = J = B o 00
|Bl=3

1 )
+7/ v[0w, py,] do
k[ do f,,

for all k € N. Here above the sum E?;gd_m is omitted if k — (d — 2) < 0. Let

u;&,k(t)z Z —t vt e RY, l=a,b,

K
g (t) = Z Vi () - Vg, a0, (Oul () V1€ Ow,

k
gr(t) = ZQ?U;&,k—l(t) Vt € Ow,

16
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for all k € N. Then there exists € €]0,&¢] such that

) - V(U2(€) (o = 3 (e + ( m(-)ﬁ) 2o ()0 (26)

Py k
k=1 k=0 k=0 TkE

or all € €] — &, E[\{0}. Moreover, the series > o, are®, S v, pe®, and S oo, Ure® converge normally in
k=0 k=1 k=0
CO%(Qw) fore €] — &,&[ and > e Tie" converge absolutely in ] — &, &[.

We would like to have a representation formula for v, (-)-V (ug(e-)) ®(e+))aw in the form of a convergent

\Bwu
power series of the type Z;O:O e (+)e™. By exploiting an argument similar to that of Dalla Riva, Musolino,
and Rogosin [14, Thm. 6.3], we can prove Theorem 4.2 below where we obtain from formula (26) a
series expansion for the map which takes € to v,() - V(ug(e-))lawub(e-)mw (see also [1, Thm. 2.10] and

3, Thm. 4.3)).

Theorem 4.2. With the notation introduced in Proposition 4.1, let {a,}nen be the sequence of functions
from Ow to R defined by

n
an = Zgn—k@k vn € N.
k=0

Let {S\n}neN be the sequence of functions from Ow to R defined by

k ; J
- R - R R } 1)
Ao = ap/ro, )\nzu”—l—an/ro—FZan_kZ(jJr)l Z Hrgh Vn>1.

Vw(') . V(u?(s-))lawub(s-)mw = Z S\n()g" (27)

n=0
for all e €] — & ,&'[\{0}. Moreover, the series
> Aa)e"
n=0
converges normally in C%%*(dw) for e €] —&,&'[ and
Lo_u0)u’0) 0 o
)\0 —T%U [(%J,po] .

5. Series expansion of Cap,,(cw, u?, ub)

We recall that the (u®, ub)-capacity Cap,(ew,u®, ub) can be represented as the sum of fﬂa Vul - Vul dx
and of fw Vu® - Vu® dz. Therefore, in order to compute a series expansion of Capg,(cw, u®, u’), we begin by
providing an expansion for fsw Vu® - Vub dr around e = 0.

Lemma 5.1.  Let {£, }nen be the sequence of real numbers defined by

n—d
fo=6 = =6, =0, =) Z/ Oju%y 141 (D05l 1 (qpy(t)dt  ¥n>d.
j=11=0 "%
17
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Then there exists e¢ €]0, €] such that

/ Vul - Vb dx = Z &ne”
fw ned
for all e €]0,e¢]. Moreover,
£q = Vu(0) - Vul(0)mg(w),

and the series

D ne”

n=d
converges absolutely for € €] — e¢,e¢[. (The symbol mq(...) denotes the d-dimensional Lebesgue measure of
a set).

Proof. We argue as in the proof of [3, Lem. 2.12]. We first note that the Theorem of change of variable in
integrals implies that

/ Vu® - Vub do = Ed/ Vu®(et) - Vul(et)dt Ve €]0,0].

Then analyticity of u® and u® (see Definition 1.5) and analyticity results for the composition operator
(cf. Bohme and Tomi [6, p. 10], Henry [21, p. 29], Valent [41, Thm. 5.2, p. 44]), imply that there exists
g¢ €]0,&0] such that the map from | — e¢,e¢[ to C%*(w) which takes ¢ to (9jul)(e-)z is real analytic for
[l = a,b and that

t) = Zaju;&’hﬂ(t)sh Vtew, l=a,b,

where for [ = a,b the series >_,~ , 9; # h+1|w5h converges normally in C%%(w) for € €] —e¢, e¢[. Accordingly,

(8ju) () (9yu’)(et) = Y <Z 3jua#,z+1(t)ajul#,n_m(t)) e Vtew,Ve €] —egec[\{0}

n=0 \1=0
Possibly taking a smaller ¢, we also have

00 d n
/ Vu(et) - Vul(et) dt = Z(Z 8ju“#’l+1(t)8ju§¢7nHl(t)dt)s", (28)

n=0 \j=11=0 %

for all € €]0,e¢[. Moreover,
d
2/ Ojuly 1(t)0; u# 1 (&) dt = Vu*(0) - Vu®(0)mg(w) .
Jj=1

Finally, to deduce the validity of the lemma, it is enough to multiply Eq. (28) by e¢. O

To deduce our main result on the asymptotic behavior of Cap, (@, u®, u®), it suffices to integrate formula
(27) over Ow adding the coeflicients of Lemma 5.1 and to apply Theorem 4.2.

Theorem 5.2.  With the notation introduced in Proposition 4.1, Theorem 4.2 and Lemma 5.1, let {c, }nen
be the sequence of real numbers defined by

¢, =0 Vn € {0,...,d — 3}, an—/ /N\n,(d,g)da—kfn Yn>d-—2.
Ow

18
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Then there exists €. €]0,¢e0] such that

oo

Cap g (ew, u®, u’) = Z cne”
n=0

for all e €]0,e.[. Moreover, the series

5 et

n=0
converges absolutely for e €] — e¢, e.| and

a b a b a b
CH:f/ Mif[aw’pé]dngw/ g dor = — (0w O0) (29)
o ro  Ov, To Ow To

Our next aim is to better understand the value ro which appears in formula (29) and, possibly, to link it
to some boundary value problem related to the geometric setting. We begin with the lemma below where
v+ [0w, p§] is related to the solution of some exterior Dirichlet problem in R \ w.

Lemma 5.3. Let H' € CL*(R?\ w) be the solution of

loc
AH' =0 in R\ @,
Hit)=1 for allt € dw, (30)

Then the restriction v [Ow, ph] is constant and equal to ((2 — d)sqlim;—o lt|“ 2 H (t))_1

Proof. Let u € CL%(R?\ w), Au =0 in R?\ @, and lim;_,, u(t) = 0. Then by classical potential theory

loc

there exists u € C1*(dw) such that

) o s
ﬁ Jo., V0w, pi] do

v [0w, pj]

(cf., e.g., Folland [19, Chap. 3]). Then

. - L., uph do _ :
lim JH*2u(t) = lim (2 () + lim 2300 YT,
t—00 t—00 t—>o0 W Jo., V0w, p] do 0
» upl do _
- i — At g
- f d f(’)w w, po]
_ Jo., uph do 1 / S do
T 170 Jow v[0w, ph]do (2 = d)sa Jo. 0
Ow
1 Jo, uph do

(2 d)sdf faw [Ow, pi] do

As a consequence,

o 1 1p4 d
lim [t 2H (t) = Jo, 100 do
=00 (2 —d)sg f(’)w v[Ow, p§] do
f@w
! 1
(2 —d)sq ++ v[Ow, p§] do
faw do 0

19
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and thus 1

ﬁ Jo., V0w, p] do

(o . d—2 77i
= (2= d)sa lim |t 2H'(1).

Moreover, by the jump properties of the single layer potential we have v, - Vv“‘[@w,pé]‘aw = 0. Thus
vF[Ow, p] is constant in @ and the validity of the statement follows. [

Corollary 5.4. Let g € CH(dw). Let u € CL(R\ w) be the solution of

Au=0 inRI\ @,

u(t) = g(t) forallt € Ow,

limy oo u(t) = 0.

Then . I g
upg 6o ; . d—2 rri
lim |t t) = 0w :/ ¢ do lim |t H' ().
t_>oo| | “u(t) (2 —d)sq f faw v[0w, ph] do e 9Po t_>oo| | (t)
Ow

Remark 5.5. Let H' be the unique solution in C’llo’ca(]Rd\w) of problem (30). Then by Lemma 5.3 we have

1 . d—2 17i
s (d—2)sq tlggo [t|" " H"(t).
Accordingly,
— . d—2 ) — — n—(d—
Cap, (e@, u®, u®) :u“(O)ub(O)(d—2)sdtll>nolo|t| Hi(t)ed2 4 &4 1( ; e (@ 1)> (31)
n=d—1

for all € €]0,ec|.
We now wish to provide an alternative characterization of the quantity

B . d—2 77
(d—2)sq tgrglo [t H*(t).
By the Divergence theorem in exterior domains for functions which are harmonic at infinity (see Dalla Riva,

Lanza de Cristoforis, and Musolino [11, §4.2]), we have

/ VH (1)) dt = Raar O Hi(t) do
RNw v,

—H( i t)d
~/8w v, It

On the other hand, by Lemma 5.3 one verifies that
H' = ((2 d)sq lim P H (1)) v [0w, pi] in R\ w,
and that
2 i (2= d)sq lim [t H'(t)) (106 + W %])
oy, t—00 2
= ((2—d)sq tliglo |t|d_2Hi(t))pé on dw .

As a consequence,

- [ g e = (1d=2)sa i 12 0) [ pido

= ((d — 2)sa lim P H(1)) .
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Accordingly,
/ VH (1) dt = (d — 2)sq lim [t 2H(2).
RN\w t—oo
In other words, the quantity
(d —2)sy lim |11 (1)

equals the energy integral of H, i.e., of the unique function in Clt’g (R?\ w) which is harmonic in R?\ @ and

at infinity and that is equal to 1 on dw. Such quantity is thus equal to the Newtonian capacity Capga (@)

(see (4)).
Remark 5.6. In case w is equal to the open unit ball By in R? of center 0 and radius 1, one verifies that
Hit) =% VteR\ B.

As a consequence,
(d—2)sq lim [¢|" 2H'(t) = (d — 2)sq,
t— o0

and thus
Cade (E) = (d — 2)8d .

In particular, if d = 3, then
Capgs(B;) = 4r.

6. Asymptotic behavior of Cap,(ew, u®, u®) under vanishing assumption for u® and u®

In this section, we investigate the behavior of Cap,,(cw,u®, u?) assuming that the functions u® and u®
and their derivatives up to a certain order could vanish at 0 and we modify the computation of [1, §5.1]
and [3, §2.7]. So we consider the following assumption

u® and u® are admissible functions as in Definition 1.5, (33)
not identically zero in a neighborhood of 0.

Assumption (33) implies that u®, u® have finite order of vanishing Ea,Eb € N at 0, that is
Dl (0)=0 VY| <k, DPul(0)#0 forsome ' e Newith |8 =%, [=ab.

By Remark 5.5, we already know the principal term of the asymptotic expansion of Capg,(cw,u®, u’) as
e 0incase i =%k =0 (i.e., u®(0)u’(0) # 0). We now wish to investigate the case when at least one
between u® and u® vanishes at 0. The computation below notably simplifies if k" or Eb is equal to 0, although
it is not necessary to assume that this is the case. By condition (33) and Proposition 3.2 we note that

(62.61) = (0,0) VE <R, 62 =0, (34)

and that 9%1 is the unique solution in C*%(dw)q of

%G%a(t) — Ww[%a](t) = Z k—'!tﬁ(Dﬁu“)(O) — Z % /Bw 2 (DPu®)(0)pi(s) do Yt € dw,

1B1=£" " gend
181=k*
i.€e.,
1. , —a ,
50%11 (t) — Ww [eia](t) =k !(’U,#yka (t) — /(9 U#’Eapé dO') Vit € Ow . (35)
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Then Egs. (34), (35), and Proposition 4.1 imply that

up =0 VE <k, u?n o= —ﬁw_[&u,@k al. (36)

Hence, by the properties of the double layer potential, one verifies that ufn 7 is the unique solution in
CLY(RY\ w) of

loc
Auf —a =0 in R4\ @,
ufn,%“ (t) = u#,k — [, u® T apo do forallt € dw,

limy_s oo ufn Ea( )= 0
In addition, by assumption (33) and Proposition 4.1 we deduce that
gr=0 Vk<k gra = /aw ua#,Eapé do . (37)
Then by (33) and by Proposition 4.1 we show that
wh,=0  VE<E, l=ab. (38)

As a consequence, Proposition 4.1 and Egs. (36), (38) imply

—a —b ou? A
=0 Vk<k +Fk , Ua — = SELENS PYLA (39)
By (37) and (38) we have

~ za | 7b __a ,b _ a i b
g =0 VkE<k +k, gz L gEau#,Ebmw = (/&u u, 7 Po d0> u#,%ﬂ&u' (40)

We now consider the quantities an,\, introduced in Theorem 4.2 for representing the behavior of
Ve () - V(u2(e-))ub(e-). By a direct computation based on (39), (40) we have

€

- —a b - - - -
a, =0 Yn<k +k, o 70 = Jpa pplo = vo(/a “ kapo da) 470w
and thus

=0 Vn<k'+k,

(—a  —b ou? 1 (41)
3 - 4k mk* \ p 4
Mgyt = o oo ro ( v, )u#,kbww + o 0 (/&u 7P dU) # 50w’

Moreover, a simple computation shows that

- —a —b o ) b
& =0 Vn<k +k +d—2, €E“+Eb+d—2 = / Vu# ra Vu#’Eb dt.
Finally, by Theorem 5.2 and by integrating equalities (41), we obtain

¢, =0 Vn<Ea+Eb+d72

_ AR b
Co b gy = / (oo + ) do + / Vi, oVl dt
=- mk —l Bou® ,bda/ u? —apf)da—&—/Vua —a - Vb ,bdt
6w v, ,k \3w o #k P A #.k

L b
o 6w< 8% ) k\aw 70/(% #kapoda/aw #fbpoda‘i'/vu 7a Vu#ﬁdt-
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Now let H , 3o € CL%(R?\ w) be the solution of

loc
AH’U,“EG:O ian\w,
H,, 7o) = faw u; Eapf) do forallt € dw,
limy 00 Hua ¢ = 0.

Then by Remark 5.5 we have

Hyoge = (/ u;‘#kapéda>Hi in R4\ w,
Ow ’

0 1 , .

5 H a0 = — ¢ —apyd G ow .

du, T E T g (/aw“#,k Po U)’)O on o

1 a i / b ; / OHap
— u® —app do u’ _yphdo = — |u’ _ do
To /aw #RPOCT [ Uy PO 0w\ O, # R 0w

Then for | = a,b we denote by ul, the unique solution in C%(R%\ w) of
k

and accordingly by (32)

As a consequence,

loc
AU%Z:O in R4\ @,
u%l (t) = u;é,ﬁl (t) for all t € dw, (42)
lims_, o0 u%l (t)=0.
Thus
UZe = U?H’Ea +H,o e in RY\ w,

and therefore

aufn Ea b d 1 a 7 d b 7 d au% b d
- — |u _ o— — U, —a o U o= — u_ do .
/&, v, ) E 0w o /g,.w #.5 PO /aw w70 P0 /aw v, )R

On the other hand, the harmonicity at infinity of u%a and of u%b and the Divergence Theorem imply that

6Uga
VU%a . Vugb dt = 7\/ k Ugb do
RIA\G k ow 8”0.) k

(cf. Folland [19, p. 118], Dalla Riva, Lanza de Cristoforis, and Musolino [11, Cor. 4.7]). Accordingly,

IS}

_ a . b a _ . b
ROt g e = i VUEa qub dt—i—/qu#Jc Vu#%b dt.

Incidentally, we note that if for example u®(0) # 0 (i.e., if B = 0), then u; o= ub(0) (and so Vu; b= 0)

and u%b = ub(0)H"’. Therefore, if E = 0 the term CH H s da reduces to u®(0) fRd\w VuZa -V H®dt. Similarly,

if &* = 0 the term Cra_ 70, 4o Teduces to u®(0) fRd\wVU%b . VH'dt. We also note that if both %" = 0 and

B = 0, then for [ = a,b we have u;é o= u'(0) (and so Vu;& 2= 0) and u%l = u'(0)H?, and accordingly
a . b a . b " b i)2
Vula Vuzb dt—&—/qu#,ka Vu#,gb dt = u*(0)u’(0) /Rd\w|VH| dt
= u®(0)u"(0)(d — 2)sq lim [¢|"*H' ().

RA\G

23



L. Abatangelo, C. Léna and P. Musolino Nonlinear Analysis 238 (2024) 113391

In other words, the quantity u®(0)ub(0)(d — 2)sqlimy_ e |£|* 2H(t) can be seen as the specific value of
fRd\w VU%a : Vu%b dt + fw Vu“#,ga : Vu;Eb dt when both £ and k are equal to 0.

As a consequence, under assumption (33), by Theorem 5.2 and formula (31), we can deduce the validity
of the following.

Theorem 6.1. Let assumption (33) hold. Forl = a,b, let U%z be the unique solution in C’llo’g (R\ w) of (42).
Then

Cap,(e@, u®, u®)

:EE"+Eb+d—2 (

a. . b a . b - n (43)
i VUEa VuEb dt—&-/qu#’Ea Vu#ﬁb dt) + ) Zb ey,
n=k"+k +d—1
for all € €]0,&].

Remark 6.2. Under assumption (33), by (43) we have

Capy, (ew, u®, u®)

—a  7b —a  7b
—gh Tk +d=2 Vula - Vul, dt + [ Vu® —a-Vu® _,dt | +o(eh T+ +4-2) ase — 0.
k k w #.k #.k

RA\w

—a b
Moreover, we note that the coefficient of ¢ % T4=2 depends both on the geometrical properties of the set
w and on the behavior at 0 of the functions u® and u?, but does not depend on 2.

7. Asymptotic behavior of the eigenvalues of the Dirichlet-Laplacian in perforated domains

It is well known that if {2 is a bounded open set in R%, K a compact subset of §2, and if we denote by

O<>\1(.Q)<)\2(.Q)S§/\N(.Q)<

and
0< M(2\K) < Ma(2\K) - < An(2\K) < ...

the sequences of the eigenvalues of the Dirichlet-Laplacian in 2 and in 2\ K, respectively, then Ay (£2\ K)
is close to An(£2) if and only if the capacity Cap,,(K) of K in {2 is small (see Rauch and Taylor [36]). A
typical example is when we fix {2 and w admissible domains, and we set

K=cw Ve €] —ey,eul,

with €4 as in (10). We define
2. =02\ (ew) Ve €] — ey, ex,

as before, and we wish to study the convergence of the Nth Dirichlet eigenvalues Ay (§2.) = An (82 \ (¢w))
to An(£2) as e = 0.

In this section we show how the results on the asymptotic behavior of the generalizations of the capacity
can be employed to obtain accurate asymptotic estimates for Ay (§2.) when € — 0, both in the case when
An(£2) is a simple eigenvalue of the Dirichlet-Laplacian in {2 and in the case when it is a multiple eigenvalue,
as we have done in [1,3] for the planar case. We treat these two situations in two different subsections.
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7.1. Simple eigenvalues

We begin our analysis by considering the case when Ax(f2) is a simple eigenvalue of the Dirichlet—
Laplacian in the open set {2

The following result by Courtois [10, Proof of Theorem 1.2] and Abatangelo, Felli, Hillairet, and Léna
[2, Theorem 1.4] shows that the u-capacity can be successfully used to study the asymptotic behavior of the
eigenvalues Ay (2 \ (ew)) as € — 0.

Theorem 7.1. Let An({2) be a simple eigenvalue of the Dirichlet—Laplacian in a bounded, connected, and
open set 2. Let uy be a L?(§2)-normalized eigenfunction associated to Ay (£2) and let (K.)e~o be a family of
compact sets contained in {2 concentrating to a compact set K with Capg,(K) = 0. Then

AN(R2\ K.) = An(2) + Capy (K., un) + o(Capy (Ko, un)) , ase — 0. (44)

In view of Theorem 7.1, we can produce an asymptotic expansion of Ay ({2 \ (¢w)) by combining the
expansion of Capg,(ew, u) and the asymptotic formula (44) for the eigenvalues.
Therefore, we fix {2 and w admissible domains and we assume that

the Nth eigenvalue Ay (§2) for the Dirichlet—Laplacian is simple (45)
and uy is a L?(£2)-normalized eigenfunction related to Ay (£2).

As a first step, we formulate our result on the asymptotic behavior of Cap,(¢w,uy). Standard elliptic
regularity theory (see for instance Friedman [20, Thm. 1.2, p. 205]) implies that uy is analytic in a
neighborhood of 0. Accordingly, by (31) we have

Capg (ew, un) =Capg (@, un, un)

({0 Capga@=t2 + 4 (3
—d—

n

Cné:n(dl))
1

for e positive and small, where the sequence of coefficients {cy, }nen is as in Theorem 5.2 and Capga (@) is as
in Eq. (4).
Then by formula (44) we immediately deduce the validity of the following result.

Theorem 7.2. Let assumption (45) hold. Then

AN (2 (ew))

= An(92) + (un(0))2Capga (@)e?2 + o(aH) ase— 0" . (46)

The above result agrees with the one of Maz’ya, Nazarov, and Plamenevskii [32] for N = 1 and d = 3,
with that of Ozawa [33] for d = 2,3, and with that of Flucher [18] if d > 2.
If we assume that
un(0) =0, (47)

then formula (46) of Theorem 7.2 reduces to
AN (2 (£)) = An(92) + O(EH) ase 0"
Therefore, if (47) holds,

there exists k € N\ {0} such that DYux(0) =0 Vv < k

and that D%un(0) # 0 for some § € N¢ with |3| = %.
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Then we set Ds 0
uy 4 5(t) = Z uxl )tﬁ vt e R?,

|
/J‘eNi 6
|Bl=k

and we denote by u, 7 the unique solution in CL¥(R?\ w) of

in R4\ @,

AuN,E =0
t) forallte dw,
0.

“N,E(t) =uy
lim; o0 “N,E(

(

=|

#,
t)

Hence, Remark 6.2 implies that
Cap,(ew,un) = Capg (e, un, un)

—2ktd—2 (/d |VuNE\2dt+/ |VuN#E|2 dt) + o(e2ktd-2)
RANG ’ w "

—e2htd=2g(y, Uy ) T o(e2Ftd-2) ase— 0

(see (9)). Thus, by formula (44) of Theorem 7.1 we deduce the following result.

Let assumption (45) hold. Let k be as in (48) and Uy 47 be asin (49). Let uy ¢ be the

Theorem 7.3.
unique solution in Ciu" (R \ w) of (50). Then
AN (2 (W)
(51)

*)\N(Q)Jre:ﬁ*d*2 (/ |VuNE|2dt+/ |V’U,N#E|2 dt) +0(52E+d*2) ase — 0.
RA\G ’ w "

Clearly, Theorems 7.2 and 7.3 can be restated as Theorem 1.7 of the Introduction.

Remark 7.4. By the computation of Section 6, we note that

/‘ |Vumd2ﬁ%i/|Vum#ﬁﬁdt:(uN@»%d—2bdhm}ﬂmaH%ﬂ
RA\G w t—o00
= (un(0))*Capga (@),

and thus Eq. (51) holds also when the order of vanishing k of uy is equal to 0.

7.2. Multiple eigenvalues

In the previous subsection, we have shown the asymptotic formula (51) for simple eigenvalues. In this
subsection, instead, we follow the lines of the arguments of [3] and we consider the case where the Nth

eigenvalue Ay (£2) for the Dirichlet-Laplacian is multiple.
So let An(£2) be an eigenvalue of multiplicity m > 1 of the Dirichlet-Laplacian in {2 and let E(An(2))

be the associated eigenspace. In particular, we have

AN_1(9)</\N(.Q):)\N+J'(Q) <>\N+m(~Q) Vj:O,...,mfl.

By [3, Appendix A], we have the following result on the decomposition of E(Ay(£2)).

Proposition 7.5. There exists a decomposition of E(An(£2)) into a sum of orthogonal subspaces

EAN(Q)=E1®---®E,
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and an associated finite decreasing sequence of integers
ki>-->k, >0

such that, for all 1 < j < p, a function in E; \ {0} has the order of vanishing k; at 0. In addition, such a
decomposition is unique. We call it the order decomposition of E(An(£2)).

We proceed as in [3] and we introduce some notation. So let u,v € E(An(§2)) \ {0}. Then u and v are
admissible functions in the sense of Definition 1.5 and are not identically zero in a neighborhood of 0. Then
u has a finite order of vanishing x(u) at 0, with a corresponding principal part u, meaning that

D7u(0) =0 Yyl < k(u)
and that D”u(0) # 0 for some 3 € N% with 8] = x(u),

and
DAu(0)
ug(t) = E bl tP vt € RY. (52)
BeNd
[Bl=r(u)

Consistent with Eq. (50), we denote by u the unique solution in CL:*(R? \ w) of

loc

Au=0 in R4\ @,
u(t) = ux(t) for all ¢t € Jw,
lim; oo u(t) =0.

We write the order x(v) and the functions vy, v also for the function v. As in [3], we define

Q(u,v) = Vu - Vvdt +/ Vugy - Vugy dt.

RING w

If instead w or v is identically zero, we set Q(u,v) = 0. We observe that Q is not a bilinear form, but the
restriction of Q to suitable subspaces of E(An(§2)) defines bilinear forms (cf. Definition 7.7 below).

By Remark 5.5 and Theorem 6.1, we can deduce the following result where we link the asymptotic
behavior of Capg,(¢w, u, v) with Q(u,v).

Corollary 7.6. Let us fizru,v € E(An(£2)) \ {0}. Then,

Capg(ew, u,v) = e"WTr@+I=29(y, 1) 1o (6"(“”“(”)”_2) ase — 07,

We now consider again an eigenvalue Ay (§2) of multiplicity m > 1 and the associated eigenspace
E(An(£2)) and we give the following definition (cf. Proposition 7.5).

Definition 7.7. For all 1 < j < p, we define Q; on E; by Qj(u,v) = Q(u,v). It is a strictly positive (in
particular non-degenerate) symmetric bilinear form on Ej.

We can now describe the behavior of the eigenvalues (A;(£2 \ (eW)))N<i<N+m—1, and more specifically
give the principal part of the spectral shift \;(£2\ (¢w)) — An(§2) for each eigenvalue branch departing from
AN (92).
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Theorem 7.8. For1l < j <p, we write
m; = dim(Ej),

so that
m:ml_i_..._l’_mj_i_..._i_mp’

and we denote by
0<pjn << pje < < g,

the eigenvalues of the quadratic form Q;. Then, for all1 < j<pandl1l <{ <m;,
AN —14my 4oy +0(2\ (W) = AN (82) + prj e P02 4 o(2FiH072)) g5 2 — 0T

The proof of Theorem 7.8 is identical with that of [3, Th. 1.17]. To see how the above results imply
Theorem 1.8, we fix, for each 1 < j < p, an orthonormal basis of Ej,

Vjdyer-yUjlye-ny vj,m]-
such that, for all 1 < ¢,¢' <m,,
Q;(vj,e,vj.00) = Oper fhj e

From Theorem 7.8 and Corollary 7.6, it then follows that, for all 1 <j <pand 1 < £ <m;,
AN =14y +-tmy_1+£(£2\ (W) = AN (£2) + Capy, (e, vj ) + o(Capy, (ew, vj () as € — (I

By relabeling the v;, with 1 < 4 < m, in increasing order, first of j, then of ¢, we obtain an orthonormal
basis of E(An(£2)),

ViyeooyUjeenyUm,

which has the properties of Theorem 1.8.
Then, to illustrate our result, as in [3, Cor. 1.18], we deduce the following corollary in a specific situation

Corollary 7.9. Let us assume that An({2) has multiplicity 2 (i.e., m = 2). Then one of the following
alternatives holds.

(1) There exist two normalized eigenfunctions uy,us € E(An(£2)) \ {0}, with respective order of vanishing
k1, ko such that kv > ko. In that case,

)\N(Q \ (Ew)) :)\N(Q> + Q(ul’u1)€2k1+(d—2) + 0(82k1+(d_2));
AN+1(2\ (60)) =AN(92) + Q(ug, ug)e®2H (472 4 o(2h2(172)),
(2) All eigenfunctions in E(Ay(£2)) have the same order of vanishing, which we denote by k. Let us note

that necessarily k > 1. In that case, let us choose eigenfunctions ui,us forming an orthonormal basis
of E(AN(£2)) and let us denote by 0 < py < us the eigenvalues of the symmetric and positive definite

(S G ).

matric

Then
A (2 (62)) “Ax () + e Hd2) 4 o (24

AN11(2\ (6@)) =D (82) + uae? 072 g (£26HA2))
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Appendix. Blow-up analysis for the u-capacity

Following the outline proposed in [17], we perform a blow up analysis for Capy,(ew,u), with 2, w
admissible domains and u an admissible function. Without loss of generality, we assume that u is not
identically zero in a neighborhood of 0. In the final remark of this appendix we connect this with the results
established in Section 6.

Firstly we introduce the following notation. Let K C R? be a compact set. For d > 3, the Beppo-Levi
spaces D12(R%) and DV2(R4\ K) are defined as the completion, with respect to the L2?-norm of the gradient,
of C°(R%) and C2°(R?\ K), respectively. We recall as well that thanks to the well-known Hardy Inequality,

d—2 2 1)2 2 .
— — < Vol (Hardy Inequality), (53)
2 R4 |ZL’| R4

for all v € C2°(RY), the space DV2(R?) can be characterized in the following way

DI2(RY) = {v e LL (R : Vo € L2(R?) and IZT € L?(Rd)} . (54)

For any f € H{ _(R?) we introduce the quantity
Capga (K, f) == inf {/Rd IVo]?: v e DY2RY), v—nif e DV(R K)} 7
where 0 € C2°(RY) such that ngx = 1 in a neighborhood of K. In particular, when f = 1 we have
Capga (K, 1) = Capga(K)

(for the definition of Capga(K) see (4)). Let now u be a fixed admissible function, in the sense of
Definition 1.5, not identically zero in a neighborhood of 0. We denote by k its order of vanishing x(u) at 0
and we define
— vtelq,

0 vie R4\ 102,
Since u is analytic in a neighborhood of 0, @, converges to u, the principal part of u defined by Eq. (52),

uniformly in every compact subset of R?, and similarly for the derivatives of 4. to any order. This implies
in turn that for any R > 0, as ¢ — 0,

1
- / u? — uy?, (55)
gdt2k JonBp, Br

1 2 2
e /Q v /B V| (56)
MNBRe R
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Here, if R is a positive real number, the symbol B & denotes the open ball in R? of radius R and center 0.
Moreover, if K is a compact set with Capgas(K) > 0, we have that, for any R > 0 such that K C Bp, there
exists Cp > 0 such that, for any v in the closure of C>°*(Bg \ K) in H(Bg),

/ v? < Cp/ Vol? (Poincaré Inequality). (57)
Br Br

For a proof of the basic inequalities (53) and (57) in a similar context we refer the reader to [17, Lemma
6.5] and [17, Lemma 6.7], respectively.
In the following lemma, we deduce the vanishing rate of Cap,(cw,u) as € — 0.

Lemma A.1. Fore — 0, 7
Capg, (e@, u) = O(e?212k),

Proof. If ¢ is sufficiently small there exists R > 0 such that e C Br. C Bage C 2. Let 5. € C°(02)
such that 0 < 7. <1, 7. =1 in Bge, ne = 0 in 2\ Bage and |Vn.| < % in 2. Then n.u € H(2) and
new —u € H (2 \ ew). Therefore

Capg,(ew,u) < / |V(77€u)|2 :/ |n5Vu+an5|2 < 2/ 77,52|Vu|2 + 2/ u2|V175|2 = O(Ed_QHE),
Q Q Q Q
thanks to (55) and (56) together with the properties of n.. O
We now define a suitable rescaling of the u-capacitary potential, that is
V:ea,u (E‘t)

- = Vieln
Ve(t) = gk €t

0 vie R\ 102,
for any positive . Let us note that V. € H_(R%).
Lemma A.2. Let R > 0. There exists C' > 0 such that

”VsHHl(BR) <C

if € is small enough.

Proof. Let Ry > 0 such that Br, C 2. We have
2
7 \Y% ‘/Ewu et _ 7. ~
/Q Vel Z/B VVeul® = SHM/B [V (Ve _ o 2%/ VLl
Ro

o2k
From Lemma A.1 and the previous inequality, we deduce that

Rq Ro
= =

/ VTP = 0()
B

Ro
as € — 0 and that there exists C7 > 0 such that for any R > 0

/ IVV.I° <, for any ¢ € }0, % [ (58)
Br
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On the other hand,
~ 2 ~ - ~ 2 ~ - 2 ~
[owf= [ We-aval<z | V-l o
BR BR BR BR
sch/ |V(V5—as)|2+2/ ji.|? < 4Cp (/ |fo€|2+/ |va5|2>+2/ e |?
BR BR BR BR BR

thanks to (57) applied on V. — .. Every term in the last sum can be proved to be bounded following the
preceding argument and taking into account (55) and (56), so that there exists £ € |0, 1] and Cz > 0 such
that

/BRW/E2 < (Cy for anyse]O,min{é,%}[. (59)

Eqs. (58) and (59) conclude the proof. [

From this last lemma and a diagonal process over a sequence of R, — +0o we deduce that there exist
W € H (R?) and a subsequence (still denoted with €) such that

‘75—>W ase — 0

weakly in H'(Bg), strongly in L?(Bg) for any R > 0 and almost everywhere in R
By a change of variables we have

~ 2 - 1 2 1 . -
L0 = e [ 19Vl = g Capa(em ) = 0() (60)

as € — 0 thanks to Lemma A.1. Via Hardy Inequality (53) we obtain also

~ 92 2
[Vel| 2 / ~ 9
< | — <
_/Rd |x\2 —\d—-2 Rd|VV€| =C

uniformly with respect to €. Via Fatou’s lemma, we have

2 ~ 2 ~ 2
L/m%:/hmﬂngmm/|mﬁgi (61)
g o’ Szt =0 fof? a0 Jaa o
uniformly with respect to € small enough. Moreover, for any R > 0 we have
/ VWP < liminf/ Vi < é
Bp e—0 Br

where the last inequality follows from (60) (the constant C' does not depend on R). We then deduce that

/|VWF§@. (62)
R4

From (61) and (62) we deduce that W € D1?(R%) using the characterization (54).
On the other hand, V.5, weakly solves the problem

—AVeg, =0 in 2\ ew,
Vizu =u on £w, (63)
Vigu =0 on 042,

and in particular
/1 VV. V=0 forall p € Hj(12\w).
Llow
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Taking the limit for € — 0 in the previous equation we obtain that for any R > 0
/ VW -V =0 forall p € H(Br\®)

and therefore
VW -V =0 forall g€ C®R\m).
RA\w

As a consequence, thanks also to the uniform convergence @. — u4 on compact sets, W is a weak solution
of the problem

—AW =0 in R\w

W =uy on w

W € DL2(RY)
By standard variational methods, the problem above for W has a unique weak solution which we denote by
V]Rd,u#7 i.e., W= VRd,u#'

Let 1 be a cut-off function with compact support such that = 1 on w. Testing the previous equation

with W — nuy € DV2(R?\ w) we obtain

/ VW |? = VW - V(nu). (64)
RIA\G RIA\G

Letting n.(z)=n(%), we can test Eq. (63) with ¢ = V.5, — n-u, obtaining

/ VVigal? = / VWesa - V(nu).
\ew \ew

By a change of variables we obtain

1 9 . )
o oioT Vo ul™ = V.- e w - 65
cd—2+2k /Q\EWW 5 /i-rl\wv V(nic) — Rd\av V(nug) (65)

as € — 0 thanks to the weak convergence V. — W in H Y(Bg) for any R > 0 and the uniform convergence
Ul — u4x on compact sets. Moreover, the very same convergence implies

1 2 _ ~ 2 2
In view of (66), (64) and (65) we deduce that
5*(d*2+2E)CapQ(sw, u) — Capga(@,ug) ase—0, (67)

independently from the subsequence.

Let us note that, when u is the eigenfunction uy, VRdmN LFT = UN R and VRd,uN 4B = UNE

Eq. (67) can therefore be written

Cap g (ew, un) = Capga (@, uy E)52E+d*2 +o <€2E+d72) as € — 0.

Remark A.3. We recall that in our context w is an open regular bounded set in R? and uy is a harmonic
homogeneous polynomial of degree k. As a consequence, the quantity Capga (@, uy) is strictly positive and
(67) is in fact a sharp asymptotics.

Moreover, from Remark 6.2 we deduce that

|VUNE‘2dt+ |V’LLN E|2dt :Cade(wqu E)>O'
RA\G ’ w i *
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Remark A.4. The blow-up analysis presented above can be also performed for the (u, v)-capacity provided
suitable modifications.

References

[1] L. Abatangelo, V. Bonnaillie-Noél, C. Léna, P. Musolino, Asymptotic behavior of u-capacities and singular perturbations
for the Dirichlet-Laplacian, ESAIM Control Optim. Calc. Var. 27 (2021) 43, suppl., Paper No. S25.

[2] L. Abatangelo, V. Felli, L. Hillairet, C. Léna, Spectral stability under removal of small capacity sets and applications
to Aharonov-Bohm operators, J. Spectr. Theory 9 (2) (2019) 379-427.

[3] L. Abatangelo, C. Léna, P. Musolino, Ramification of multiple eigenvalues for the Dirichlet-Laplacian in perforated
domains, J. Funct. Anal. 283 (12) (2022) 50, Paper (109718).

[4] H. Ammari, H. Kang, H. Lee, Layer Potential Techniques in Spectral Analysis, in: Mathematical Surveys and
Monographs, vol. 153, American Mathematical Society, Providence, RI, 2009.

[5] G. Besson, Comportement asymptotique des valeurs propres du laplacien dans un domaine avec un trou. (French)
[Asymptotic behavior of the eigenvalues of the Laplacian in a domain with a hole], Bull. Soc. Math. France 113 (2)
(1985) 211-230.

[6] R. Bohme, F. Tomi, Zur struktur der Losungsmenge des plateauproblems, Math. Z. 133 (1973) 1-29.

[7] 1. Chavel, E.A. Feldman, Spectra of manifolds less a small domain, Duke Math. J. 56 (2) (1988) 399-414.

[8] B. Colbois, G. Courtois, Convergence de variétés and convergence du spectre du laplacien. (French) [Convergence of
manifolds and convergence of the spectrum of the Laplacian], Ann. Sci. Ec. Norm. Supér. 24 (4) (1991) 507-518.

[9] M. Costabel, M. Dalla Riva, M. Dauge, P. Musolino, Converging expansions for Lipschitz self-similar perforations of a
plane sector, Integral Equations Operator Theory 88 (3) (2017) 401-449.

[10] G. Courtois, Spectrum of manifolds with holes, J. Funct. Anal. 134 (1995) 194-221.

[11] M. Dalla Riva, M. Lanza de Cristoforis, P. Musolino, Singularly Perturbed Boundary Value Problems. A Functional
Analytic Approach, Springer, Cham, 2021.

[12] M. Dalla Riva, P. Luzzini, P. Musolino, Shape analyticity and singular perturbations for layer potential operators,
ESAIM Math. Model. Numer. Anal. 56 (6) (2022) 1889-1910.

[13] M. Dalla Riva, P. Musolino, Real analytic families of harmonic functions in a planar domain with a small hole, J. Math.
Anal. Appl. 422 (2015) 37-55.

[14] M. Dalla Riva, P. Musolino, S.V. Rogosin, Series expansions for the solution of the Dirichlet problem in a planar domain
with a small hole, Asymptot. Anal. 92 (2015) 339-361.

[15] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.

[16] V.N. Dubinin, Asymptotic behavior of the capacity of a condenser as some of its plates contract to points, Transl. Mat.
Zametki 96 (2) (2014) 194-206, Math. Notes 96 (2014) no. 1-2, 187-198.

[17] V. Felli, B. Noris, R. Ognibene, Eigenvalues of the Laplacian with moving mixed boundary conditions: the case of
disappearing Dirichlet region, Calc. Var. Partial Differential Equations 60 (1) (2021) 12.

[18] M. Flucher, Approximation of Dirichlet eigenvalues on domains with small holes, J. Math. Anal. Appl. 193 (1) (1995)
169-199.

[19] G.B. Folland, Introduction to Partial Differential Equations, Princeton University Press, Princeton NJ, 1995.

[20] A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, Inc., New York- Montreal, Que.-London, 1969.

[21] D. Henry, Topics in Nonlinear Analysis, in: Trabalho de Matematica, vol. 192, Brasilia, 1982.

[22] R. Kress, Linear Integral Equations, Third edition, in: Applied Mathematical Sciences, vol. 82, Springer-Verlag, New
York, 2014.

[23] P.D. Lamberti, M. Perin, On the sharpness of a certain spectral stability estimate for the Dirichlet-Laplacian, Eurasian
Math. J. 1 (1) (2010) 111-122.

[24] N.S. Landkof, Foundations of Modern Potential Theory, in: Die Grundlehren der mathematischen Wissenschaften, Band,
vol. 180, Springer-Verlag, New York-Heidelberg, 1972.

[25] M. Lanza de Cristoforis, Asymptotic behaviour of the conformal representation of a Jordan domain with a small hole
in schauder spaces, Comput. Methods Funct. Theory 2 (2002) 1-27.

[26] M. Lanza de Cristoforis, Asymptotic behaviour of the conformal representation of a Jordan domain with a small hole,
and relative capacity, in: Complex Analysis and Dynamical Systems, in: Contemp. Math., vol. 364, Amer. Math. Soc.,
Providence, RI, 2004, pp. 155-167.

[27] M. Lanza de Cristoforis, Asymptotic behaviour of the solutions of the Dirichlet problem for the Laplace operator in a
domain with a small hole. a functional analytic approach, Analysis (Munich) 28 (2008) 63-93.

[28] M. Lanza de Cristoforis, Simple Neumann eigenvalues for the Laplace operator in a domain with a small hole. A
functional analytic approach, Rev. Mat. Complut. 25 (2) (2012) 369-412.

[29] V.G. Maz’ya, A.B. Movchan, M.J. Nieves, Green’s Kernels and Meso-Scale Approximations in Perforated Domains, in:
Lecture Notes in Mathematics, vol. 2077, Springer, Berlin, 2013.

[30] V.G. Maz’ya, A.B. Movchan, M.J. Nieves, Eigenvalue problem in a solid with many inclusions: asymptotic analysis,
Multiscale Model. Simul. 15 (2) (2017) 1003-1047.

[31] V.G. Maz’ya, S.A. Nazarov, B.A. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly
Perturbed Domains. Vol. I, in: Operator Theory: Advances and Applications, vol. 111, Birkhauser Verlag, Basel, 2000.

[32] V.G. Maz’ya, S.A. Nazarov, B.A. Plamenevskii, Asymptotic expansions of eigenvalues of boundary value problems for

the Laplace operator in domains with small openings, (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 48 (2) (1984) 347-371,
English translation: Math. USSR-Izv. 24(2) (1985) 321-346.

33


http://refhub.elsevier.com/S0362-546X(23)00183-9/sb1
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb1
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb1
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb2
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb2
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb2
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb3
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb3
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb3
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb4
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb4
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb4
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb5
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb5
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb5
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb5
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb5
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb6
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb7
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb8
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb8
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb8
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb9
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb9
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb9
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb10
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb11
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb11
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb11
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb12
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb12
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb12
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb13
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb13
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb13
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb14
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb14
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb14
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb15
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb16
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb16
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb16
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb17
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb17
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb17
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb18
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb18
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb18
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb19
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb20
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb21
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb22
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb22
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb22
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb23
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb23
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb23
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb24
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb24
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb24
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb25
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb25
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb25
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb26
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb26
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb26
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb26
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb26
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb27
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb27
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb27
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb28
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb28
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb28
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb29
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb29
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb29
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb30
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb30
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb30
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb31
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb31
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb31
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb32
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb32
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb32
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb32
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb32

L. Abatangelo, C. Léna and P. Musolino Nonlinear Analysis 238 (2024) 113391

33]
(34]

(35]

[36]
37]

38]
39]
[40]
[41]
42]

(43]

S. Ozawa, Singular variation of domains and eigenvalues of the Laplacian, Duke Math. J. 48 (4) (1981) 767-778.

G. Pédlya, G. Szego, Isoperimetric Inequalities in Mathematical Physics, in: Annals of Mathematics Studies, No. 27,
Princeton University Press, Princeton, N. J., 1951.

C. Pommerenke, Univalent functions, in: With a chapter on quadratic differentials by Gerd Jensen Studia
Mathematica/Mathematische Lehrbiicher, Band XXV. Vandenhoeck & Ruprecht, Gottingen, 1975.

J. Rauch, M. Taylor, Potential and scattering theory on wildly perturbed domains, J. Funct. Anal. 18 (1975) 27-59.
A. Samarskii, On the influence of constraints on the characteristic frequencies of closed volumes (Russian), Doklady
Akad. Nauk SSSR (N.S.) 63 (1948) 631-634.

J. Schauder, Potentialtheoretische untersuchungen, Math. Z. 33 (1931) 602-640.

J. Schauder, Bemerkung zu meiner arbeit potentialtheoretische untersuchungen I (Anhang), Math. Z. 35 (1932) 536-538.
Ya.S. Soibel’'man, An asymptotic formula for condenser capacity (Russian), Dokl. Akad. Nauk SSSR 258 (3) (1981)
590-593.

T. Valent, Boundary Value Problems of Finite Elasticity. Local Theorems on Existence, Uniqueness and Analytic
Dependence on Data, Springer-Verlag, New York, 1988.

W. Wendland, Die fredholmsche alternative fiir operatoren, die beziiglich eines bilinearen funktionals adjungiert sind,
Math. Z 101 (1967) 61-64.

W. Wendland, Bemerkungen iiber die fredholmschen Satze, Methoden Verfahren Math. Phys. 3, B.I.-Hochschulskripten
722/722a (1970) 141-176.

34


http://refhub.elsevier.com/S0362-546X(23)00183-9/sb33
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb34
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb34
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb34
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb35
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb35
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb35
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb36
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb37
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb37
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb37
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb38
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb39
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb40
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb40
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb40
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb41
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb41
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb41
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb42
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb42
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb42
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb43
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb43
http://refhub.elsevier.com/S0362-546X(23)00183-9/sb43

	Asymptotic behavior of generalized capacities with applications to eigenvalue perturbations: The higher dimensional case
	Introduction
	Integral equation formulation of capacitary potentials
	Preliminaries and classical notions of potential theory
	An integral formulation of the boundary value problem

	Power series expansions of the auxiliary functions (ρo[Ε ],ρi[Ε ]) and (θo[Ε ],θi[Ε ]) around Ε =0
	Series expansion of νω(·)·∇(uaΕ (Ε ·)) ub(Ε ·) around Ε =0
	Series expansion of CapΩ(Ε ω,ua,ub)
	Asymptotic behavior of CapΩ(Ε ω,ua,ub) under vanishing assumption for ua and ub
	Asymptotic behavior of the eigenvalues of the Dirichlet-Laplacian in perforated domains
	Simple eigenvalues
	Multiple eigenvalues

	Acknowledgments
	Appendix. Blow-up analysis for the u-capacity
	References


