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Abstract
We show that the ordinary differential equations (ODEs) of any deterministic autonomous dynamical
systemwith continuous and bounded rate-field components can be embedded into a quadratic Lotka-
Volterra-like formby turning to an augmented set of state variables. The key step consists in expressing
the rate equations by employing theUniversal Approximation procedure (borrowed from the
machine learning context)with logistic sigmoid ‘activation function’. Then, by applying already
establishedmethods, the resultingODEs are first converted into amultivariate polynomial form (also
known as generalized Lotka-Volterra), andfinally into the quadratic structure. Although the final
systemofODEs has a dimension virtually infinite, the feasibility of such a universal embedding opens
to speculations and calls for an interpretation at the physical level.

1. Introduction

In 1986, Peschel andMende published amonograph [1] entitled ‘The predator–preymodel’whose subtitle was
the intriguing question:Dowe live in aVolterraWorld?Although the focuswas on system’s growth and
structure-building from the viewpoint of ecology, the findingswere general and that work fitted in a series of
studies, past and subsequent, concerning the embedding of the evolution laws of several types of deterministic
dynamical systems into quadratic Lotka-Volterra-like ordinary differential equations (ODEs). Let us introduce
the basic notation to enter the topic. Let x be thefinite set of physical variables of interest that evolve according to

x y x 1( ) ( )=

where y(x) is a time-independent rate-field vector. In our discussion, it will be assumed that the components of
the ratefield are bounded and continuous functions of the state variables. The embedding into a quadratic
format is generally achieved by turning from x to an enlarged set of new dynamical variables. In doing this, the
dimension of the system’s representation increases, but the big advantage is that the original nonlinearity can be
brought down to second order. The feasibility of such a kind of recasting, and especially its potential applicability
to a variety of dynamical systems, justifies the above question and still triggers new investigations.

The history of theODEs ‘quadratization’has developed in a very branched tree of interconnected studies.
Besides thework of Peschel andMende cited above, some other important contributions have to bementioned.
First, it is worthmentioning Kerner’s work [2] on the embedding ofODEs into ‘elemental Riccati equations’. A
milestone is surely thework of Brenig andGoriely [3]who showed how the Lotka-Volterra (LV) format can be
achieved through intermediate quasi-polynomial forms [4], also termed generalized Lotka-Volterra (GLV)
formats, intowhich the original ODEs can be exactly or approximately converted. The same kind of
transformationwas rediscovered by several authors with little variations. For instance, in the (deterministic)
chemical kinetics context, inwhich themass-action rate equations already have aGLV format, wemention the
works ofGouzé [5], of Fairén andHernández-Bermejo [6], and of the present author and co-workers for both
closed [7] and open [8] chemical reaction networks. Quasi-polynomial (GLV) and LV formats have beenwidely
studied in terms of stability of the stationary points [9–16], boundedness of the solutions [5, 12], stabilizing
feedback control in process systems [17–19], integrability ofODEswith polynomial nonlinearities [20],
connectionwith stochastic urn processes [21], and connectionwith abstract Lie algebra [22]. This brief overview
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is by nomeans complete and should only give the idea of the broad interest in such topic across decades of
research.

Beyond themeremathematical aesthetics, the crucial point is that the real dynamics of a variety of systems
can bemirrored by a unique kind of dynamics in the extended space of the new variables. If some interesting
feature emerges at such an abstract level of representation, itmight be interesting to inspect how that feature
manifests in the physical space. For instance, under this perspective the analysis of the quadratic format enabled
to let emerge a definition of the slowmanifolds observed inmass-action chemical kinetics [23] and to devise
computational routes for their identification [24, 25], to discover the existence ofmutually orthogonal attracting
subspaces inwhatwas termed the ‘hyper-spherical representation’ of the dynamics [24, 26], and even the
existence of an intrinsic timing forMarkov jumpprocesses represented in the probability space [27].

Let us now circumscribe the context. The specific universal quadratic format wewill deal with is of the
following type:

h h M h 2Q Q
Q

QQ Q ( )å= -
¢

¢ ¢

where the hQ are the new dynamical variables enumerated by the indexQ, the overdot stands for time-derivative,
and the elements MQQ¢ are dimensionless constant factors. It is assumed that a suitable transformation from the
original physical variables x to the new sethdoes exist and can be found to convert the originalODEs equation (1)
into the quadratic format of equation (2). The new variables are strictly positive and have physical dimension of
inverse-of-time. The dimension of the extended space is supposed to befinite although possibly indefinitely
large. The crucial point to be stressed is that the hQ(x) are interrelated one each other bymutual constrains in the
way that the independent number of degrees of freedom remains unaltered. Thismeans that the initial
conditions are not arbitrary, i.e., they have to befixed by setting hQ(0)≡ hQ(x(0)). From such initial condition,
the subsequent evolution in the extended space is autonomous and ruled by equation (2). It isfinally supposed
that a backward transformation allows to retrieve the physical state x(t), at any future time, from the ensemble of
the hQ(t). As a side note, by turning to the variablesV M hQQ QQ Q≔¢ ¢ ¢we can directly convert equation (2) into an
evolution equation devoid of any system-depended parameter: V V VQQ QQ Q Q Q= - å¢ ¢  ¢ . All system’s features
bear on themutual interrelations between these new variables. TheVQQ¢ prove to own interesting properties and
constitute the basis onwhich to build the hyper-spherical representationmentioned above.1

Let us note that equation (2) are rate equations of pure second order. Just by analogy, butwithout any real
physical correspondence, these equations can be collectively seen as a Lotka-Volterra-like structure devoid of
linear terms. The structure equation (2)was obtained formass-action chemical kinetics [4, 5, 7], for some classes
of phase-space dynamics under the extension to complex-valued hQ [26] and, recently, even for classicalmaster
equation dynamics inwhich the embedding into equation (2) implies the increase from linear to quadraticODEs
[27]. In all these situations, the change from x tohwas devised ad hoc on the basis of the specific type of original
ODEs. This allowed to confer, in each case, a specific form to the new variables and, evenmore importantly, to
delimit the dimension of the extended space.

Given the relevance of the quadratic structure equation (2) as an intermediate step to derive other formats of
the evolution law (like, for instance, the evolution in the hyper-spherical representationmentioned above), what
we ask here is if it exists a universal quadratization route, i.e., a general procedure applicable regardless of the
specific features of the given dynamical system. This would allow us to establish a direct connection between
(potentially) any autonomous dynamical system and the evolution law equation (2) in the corresponding
extended space.Wewill see that such a universal quadratization procedure does indeed exist regardless of the
smoothness of the rate-field components yi(x), on condition that they are continuous and bounded functions in
the physical domain of the x variables.

To devise such universal quadratization route, wewill resort to the ‘Universal Approximation’ (UA)method
[28, 29] applied to the components of y(x). TheUA is awell-known approach to approximate virtually any
bounded and generallymultivariate function. It is worthmentioning that theUAprovides the theoretical basis
for the single-hidden-layer feedforward strategies in regression and classificationmachine learning tasks [28–31]
and supports the efficacy of themulti-hidden-layer deep learning architectures [32]. In section 2we show that
theUA applied to the rate equations allows us to devise a universal recasting of the originalODEs. Then, as

1
The VQQ¢ and the VQQ¢ proved useful to construct suitable scalar fields to guide the localization of possible slowmanifolds in the physical

space [24, 25]. Furthermore, the empirical inspection of the high-order time derivatives of the V tQQ ( )¢ has led to conjecture the existence of
an intrinsic ‘timing function’ as long as the trajectory x(t) is inside an ‘attractiveness region’ of the physical space [24, 27]. Concerning the
hyper-spherical representation, let ndim be the total number of hQ variables. The VQQ¢ collectively specify a point in the ndim

2 -dimensional
spacewhose orthogonal directions are labelled by the index J Q Q,( )« ¢ . Each direction is orthogonal to an associate n 1dim

2( )- -dimen-
sional hyper-plane, and all such hyper-planes are orthogonal one each other. In the hyper-spherical representation [24], the representative
variables become a ‘radial’ coordinate and a set of ‘angular’ coordinates specifying a point on the n 1dim

2( )- -dimensional unit sphere. It was
shown that the evolution is sectioned into parts duringwhich the point on the spherical surface is attracted by one specific hyper-plane at
a time.
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shown in section 3, by employing the logistic sigmoid as ‘activation function’ in theUAwe can achieve a
generalized Lotka-Volterra format fromwhich equation (2) is eventually obtained. The technical step fromGLV
to LV is detailed in appendix. Section 5 is devoted to conclusions and perspectives.

To the best of the author’s knowledge, the Lotka-Volterra embeddingmethod here proposed is a novelty. A
posteriori, however, the author notes several points of closeness with a remarkable work byMoreau, Brenig and
co-workers [33]. In that work the authors showed that several neural networks architectures, if used as
generators of continuous-time self-evolution, can be embedded into Lotka-Volterra formats. They treated
explicitly the ‘dynamical perceptron’ (in its basic form andwith self-connections) and the ‘dynamicalmulti-
layer perceptron’. Since the neural network architecture is potentially a universal approximator of functions,
and the specific application to the trajectories of autonomous dynamical systemswas in fact developed by
Funahashi andNakamura in a previous work [34], in their concluding remarks the authors claimed that Lotka-
Volterra formats can be used to approximate any finite-dimensional dynamical system for anyfinite time. This is
whatwe elaborate here in explicit way.While in [33] the perceptron units are by themselves the velocities of
change of the dynamical variables, in ourwork they collectively enter into the expansion of the components of y
(x) (the actual velocities according to equation (1)) through theUniversal Approximation strategy (see the key
equation equation (3) given later). Analogies and differences between this work and [33]will be pointed out
where appropriate.

2. Recasting of the evolution law viaUniversal Approximation

Let us consider the systemofODEs in equation (1), where x is afiniteN-dimensional set of dynamical variables
and y(x) is the associateN-dimensional vector field of rate equations.We assume that the components yi(x) are
continuous (systems confined by reflecting boundaries are not considered here) and bounded in the physical
domainwhere the dynamics are inspected.

Let us adopt theUniversal Approximation [28, 29] to express each of the rate-field components as follows:

y c b w xx 3i
k

N

i
k

i
k

j
ij
k

j
1

⎛

⎝
⎜

⎞

⎠
⎟( ) ( )

˜
( ) ( ) ( )å ås= +

=

where Ñ is the number of terms,σ(· ) is a functionR R , and wij
k{ }( ) , ci

k{ }( ) and bi
k{ }( ) are adjustable

parameters. A sufficient condition forσ(z) to be a valid function in theUA, i.e., capable of producing a dense set
in the space of continuous functions, is of being non-constant, bounded2 andwith different limits at
z→+∞ and z→ –∞ ; continuity is not generally required although it is demanded in our specific application.
In themachine learning context, theUAfinds its embodiment in the basic single-hidden-layer feedforward
networkwith Ñ ‘nodes’ (or ‘neurons’),σ(· ) as ‘activation function’, wij

k{ }( ) and ci
k{ }( ) as ‘weights’, and bi

k{ }( ) as
‘additive biases’ [32]. For this reason, inwhat followswewill freely use such terminology although, of course,
there is no evident correspondence between the two contexts.

For the sake of notation, let uswrite

b w xx 4i
k

i
k

j
ij
k

j
⎛

⎝
⎜

⎞

⎠
⎟( ) ( )( ) ( ) ( )ås sº +

Let us now assume that the activation function is such that

d z

dz
f z 5

( ) ( ( )) ( )s
s=

with f (· ) some function.Having inmind the achievement of quadraticODEs as final goal, it is important that
f (· ) be a polynomial offinite order. This was a key point also in [33]where the first target was to devise a Lotka-
Volterra embedding of the continuous-time ‘dynamical perceptron’.3 The problem thatwe are facing here is
different since, in our case, the ‘perceptron’units (i.e., the xi

k ( )( )s components) collectively enter into the
expansion equation (3) of the rate-field components. By employing equation (5)we have that
 f w xi

k
i
k

j ij
k

j( )( ) ( ) ( )s s= å and hence, by using the expansion equation (3) for x y xj j ( )= , we obtain

2
The boundedness condition is not strictly necessary [29, 35] but the admissibility of unbounded activation functions have to be assessed

case by case. For instance, functions like the ‘rectified linear unit’ (ReLU), which is unbounded on one side, are normally employed in the
deep learning architecture and prove to be highly efficient at the computational level.
3
The ‘dynamical perceptron’ treated in [33] corresponds to the systemof differential equations x Ax a0( )s= + , where x is the n-

dimensional column vector of dynamical variables, a0 is a column vector of same dimension,A is a n × nmatrix, andσ(· ) is the column
vector whose entries areσi(a) ≡ σ(ai)withσ(· ) the activation function.We see that the dynamical perceptron of [33] and the evolution law
equation (1) are different dynamical systems.While the units of the dynamical perceptron are by themselves the rates of evolution of the
dynamical variables, in our case such units are collectively employed to approximate the rate-field components of the actual dynamical
system through theUA equation (3).

3
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 f w c 6i
k

i
k

j k
ij
k

j
k

j
k

,

( ) ( )( ) ( ) ( ) ( ) ( )ås s s=
¢

¢ ¢

Overall, once the formofσ(· ) is chosen, weights and biases are in principle fixed. Thus, equation (6) is a new
autonomous set of ODEswhose structure and parameters depend on the choice of the activation function.

Let us note that each rate-field component yi(x) has its own independent expansion. The physical
information needed to determine the associate biases andweights is constituted by the values of yi(x) at a
numberNp of sampling points.We can think of a discretization of the physical space into finite-size cells, taking
the centres of the cells as sampling points. By following the reasoning of [31], we can say that if the activation
function is infinitely differentiable, then the required number of nodes is N Np˜ . Such number can be however
indefinitely large and it increases as the required accuracy on the rate-field components, and of course the
required closeness between real and approximate trajectories (those generated by the approximate rate field) in a
given time-window, aremore andmore stringent. An example of rate-field approximation is provided later in
section 4. The important point is that we are interested only in the existence ofweights and biases which allow to
get an approximation of the ratefieldwith preset accuracy; the practical way to determine such parameters, and
even the criteria to discern between different alternative sets that yield comparable quality of the approximation,
are not relevant here.

Let us introduce the further cumulative index

i k, 7( ) ( )a «

inwhich i labels the physical variables and k the ‘nodes’ of theUA structure.With this notation, equation (6)
takes on

 f A 8( ) ( )ås s s=a a
a

aa a
¢

¢ ¢

with

A w c 9i k j k ij
k

j
k

, , , ( )( ) ( )
( ) ( )=a a« ¢« ¢

¢

3.Quadratization

So far, the formofσ(· )was generic. Let us now choose the logistic sigmoid function

z
e

1

1
10

z
( ) ( )s =

+ -

This function is strictly positive-valued, bounded between 0 (for z→ –∞ ) and 1 (for z→+∞ ), and
monotonically increasing as z increases.With this choice, the derivative in equation (5) is simply the following
second-order polynomial:

f 1 11( ) ( ) ( )s s s= -

The use of this form in equation (8) yields a systemof cubicODEs:

 A A 122 ( )å ås s s s s= - +a a
a

aa a a
a

aa a
¢

¢ ¢
¢

¢ ¢

TheODEs of equation (12) belong to theGLV class and can be converted into a Lotka-Volterra-like quadratic
format by employing the strategy proposed byBrenig andGoriely [3]which, asmentioned in the introduction,
was later re-discovered by others.

Let us introduce the following quantities built by using the variablesσα:

13e( ) ≔ ( )( )s sPgaa
a

a
gaa

¢



¢a

with exponents

e 2 14,1 , , ,2 , ,( ) ( ) ( ) ( )gaa d d d d d d¢ = + + +a g a a a a g a a a a  ¢   ¢ 

where γ is a binary index; we assign value 1 or 2 to such index.Here and below, δ stands for theKronecker’s delta.
With these positions, theODEs in equation (12) can be rewritten in compact form as

 K 15
, ,

, ( ) ( )å ss = Pa
g a a

ga a a ga a
¢ 

¢  ¢ 

where

K A 16, ,1 ,2 ,( ) ( )d d d= -ga a a g g aa a a¢  ¢ 

It can be checked by direct substitution that equation (15) is equivalent to equation (12). Let us now consider the
new variables

4
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h 17
q

q
eq q,( ) ≔ ( )( )s sgaa a

ga a d
¢ 

¢  - a

which are positive-valued since the logistic sigmoid is strictly positive for anyfinite value of the argument. Aswe
see, these variables are labelled by four indexes, namely, the binary label γ and the three indexesα, a¢ andα″
which run over the numbering of the pairs variable-node. By employing the route described in appendix, it is
found that the evolution of such variables is ruled by

h h M h 18
, , ,

, ( )
˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜å= -gaa a gaa a
g a a a

gaa a gaa a gaa a¢  ¢ 
¢ 

¢  ¢  ¢ 

inwhich

M e A 19, , ,1 ,2 ,[ ( )] ( ) ( )˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜d ga a d d d= - ¢  -gaa a gaa a a a a g g aa a a¢  ¢  ¢ 

Finally, the quadratic form equation (2) is obtained by introducing the following cumulative indexQ for the
labelling of the quadruplets:

Q , , , 20( ) ( )g a a a« ¢ 

Totally, the number of hQ variables is equal to

n NN2 21dim
3( ˜ ) ( )=

Thewhole quadratization procedure is summarized in figure 1. The universal route described above allows
us to obtain a quadratic format of evolution law at the price of working in a very extended space of variables. As
anticipated in the Introduction, the hQ(x) variables aremutually interrelated, as emerges by retracing the global
transformation x→ h(x) specified by equations (4), (13) and (17). This implies that the components of the initial
arrayh(0) cannot be set arbitrarily, but have to be assigned according to the given initial state x(0) in the physical
space. The backward transformationh(t)→ x(t) (see appendix and remark (iii) below) then allows us to retrieve
the physical state at a generic future time t.

3.1. Remarks
(i) The truncation issue.While the quadratization procedure from equation (8) to equation (18) is exact at the
algebraic level once equation (10) is employed, an approximation is inevitably introducedwhen equation (3) is
adoptedwith afinite set of addends in the summation.

(ii) Dimension of the extended space in relation to accuracy. The dimension of the extended space is
determined by the number of nodes in theUniversal Approximation equation (3). Such number is determined
by the required accuracy, i.e., the largest accepted deviation between approximate trajectories (the ones
generated by the approximate ratefield) and true trajectories, in a given time-window, starting from the points
in a given domain of the physical space. As the domain is takenwider and/or the ratefield ismore andmore
featured and/or the time-window is taken longer, the dimension of the extended space increases and can
become very rapidly virtually infinite. Let usmake an example. Let us suppose dealingwith a dynamical system
havingN= 10 physical variables x1(t) to x10(t), and that the formof the rate equations yi(x) allows to get a good
UA representationwith, quite optimistically, only N 10˜ = nodes. The number of extended variables h t( )gaa a¢ 
would be 2× 106, which goes against any advantage at the computational level. On the other hand, whatwe are
seeking here is not an efficient computational route. In fact, the originalODEs are reasonably easy to solve
numerically, whereas the quadratizationwould bring an unacceptable (and apparently unreasonable) redundant
augmentation of the space. Rather, what wewanted to show is that, in principle, any dynamical systemwith
continuous and bounded rate-field components is potentially embeddable in the format of equation (18).

(iii) Invertibility. As discussed in appendix, the backward transformation from the set of variables h ( )sgaa a¢ 
to theσα is feasible. Themonotonicity of the sigmoid functionσ(· ) then allows to get the value of the argument
b w x ti

k
j ij

k
j ( )( ) ( )+ å from the value of ti

k ( )( )s (see equation (4)). Finally, the physical state x(t) can be retrieved if at
least one of theN×Nmatricesw(k) (or a linear combination of them) is invertible.

(iv) Choice of the ‘activation function’. The choice of the functionσ(· ) is subjective. On condition that the
derivative function f (σ) be a polynomial inσ, the quadratization procedure is always feasible. However, strictly
positive-valued funtions are a priori preferred to avoid possible divergences of the h ( )sgaa a¢  . In addition, it
proves convenient to opt for the logistic sigmoid because the polynomial is limited to second order (see
equation (11)). Also the hyperbolic tangent function (which, by theway, was the activation function adopted in
[33]) yields a second-order polynomial, but its employment in our specific quadratization route could cause
problems since it can vanish. Other choices would generate an extended space of larger dimension. Thus, the
logistic sigmoid appears to be the best choice.

(v) Alternative embedding schemes. It is important to recall that other embedding schemes have been
proposed for general nonlinearODEs. For instance, Kerner showed [2] that by introducing additional variables
one can convert the originalODEs into a polynomial format, which is a starting point to achieve quadratic

5
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forms. A notable approachwas proposed byHernández-Bermejo and Fairén [4]who showed that the original
ODEs can be converted into aGLV format (fromwhich LV forms can then be obtained) of the kind
 * *u u A ui i i j

M
ij k

N
k
B

1 1
jk[ ]l= + å = = where the dynamical variables ui (i= 1,L ,N*) comprise theN physical ones

(possibly under appropriate shifts to ensure positivity of all the variables) plus additional variables unless the
originalODEs have already aGLV format; the {λi}, {Aij}, and {Bjk} are real-valued parameters. These
procedures are however cumbersome and require an ad hoc algebraic elaboration for each given set ofODEs.
Moreover, while the conversion into polynomial orGLV formats offinite (and even low) dimension is exact in
many cases, a truncation issue bears also on these procedures since an exact closure on the additional variables is
generally lacking. The entering coefficients therefore become adjustable parameters and should be optimized,
e.g. bymeans of some kind offitting procedure inside a given domain of the physical variables. Because of the
power-law dependence on the ui, the quality of the approximation could rapidly degradewhen applied outside
such domain. The embedding procedure presented here is instead a sort of system-independent ‘black box’ since
theUA in equation (3) is a general numerical scheme of approximationwhich does not require to inspect the
specific formof the rate equations; this is themain point of strength. Furthermore, the degradation of the
approximation could bemitigated by the fact that the yi(x) are approximated by the superposition of bounded

Figure 1.The universal quadratization scheme. Panel (a): Universal Approximation (UA) applied to the ith component yi(x) of the
rate field. Panel (b): embedding of the original ODEs into aGLV format, followed by the quadratization step.

6
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functions. Of course, a detailed comparison between the various alternative embedding schemes requires a case-
by-case analysis.

4. Example of rate-field approximation

As a simple example, let us consider the dynamics of a damped particle in one dimension. The dynamical
variables are x≡ (x, v), where x is the position and v the velocity. The rate equations are x y x v v,1( )= = and
v y x v g x v,2( ) ( ) x= = - where g(x)=− dU(x)/dx beingU(x) a potential energy divided by themass of the
particle, and ξ a damping friction coefficient per unit ofmass. Let us consider the case of the symmetric two-well
potential already studied in [26]. The potential energy isU x x c 12 2( ) [( ) ]= D - and two stationary points
x= (± c, 0) are present.

The computations were done forΔ= 5, c= 1 and ξ= 10, the same values employed in [26]. Panel (a) of
figure 2 shows some trajectories in the phase-space, while panels (b) and (c) show the percentage relative error
that bears on the rate-field components approximated by equation (3)with the parameters obtained from the
specific route adopted here.4 The input information consisted in the values of y1(x, v) and y2(x, v) at the centres of
the cells of a regular 5× 5 grid. The considered portion of phase spacewas−2� x�+ 2 and−3� v�+ 3. For
each rate-field component, the number Ñ of nodes was therefore equal to 25.We can see that the largest error,
which bears on the y2(x) component, is confinedwithin about 3%. Assuming the achieved accuracy is good
enough to describe the trajectories in a certain time-window, according to equation (21) the dimension ndim of
the extended space of the variables hQwould be 2.5× 105, which is a huge number considering that the natural
variables are only two.

5. Conclusions: dowe really live in aVolterraworld?

In this workwe have shown that virtually any dynamical systemof autonomousODEswith bounded and
continuous evolution rates can be converted into the quadratic Lotka-Volterra-like format equation (18). To
achieve such recastingwe have applied theUniversal Approximation (UA)method to the originalmultivariate
rate equations. By specifically employing the logistic sigmoid activation function in theUAprocedure, we could
achieve theGLV format equation (12), andfinally get the quadratic format bymeans of the quadratization route
illustrated in appendix. The notable fact is that this procedure is really universal and system-independent. The
new variables, all having physical dimension of inverse-of-time, are the hgaa a¢  defined in equation (17). The
global transformation is invertible, whichmeans that the physical state of the system can be retrieved from the

Figure 2.Example ofUniversal Approximation of rate-field components for the dampedmotion of amassive particle in a two-well
potential (see the text for details). Panel a) shows some trajectories in the phase space. Panels b) and c) show the percentage relative
deviation between approximation and true value for y1(x, v) (b) and for y2(x, v) (c); the points where y1(x, v) and y2(x, v) vanish have
been neglected.

4
Biases andweights have been determined by resorting to a basic implementation of the ‘extrememachine learning’ approach [31]. Let us

adopt the index c N1, 2, ˜= to enumerate the cells intowhich the portion of phase space is subdivided. Note that the numbers of nodes
and cells are equal. Let x(c) be the central points of the cells. For each component i = 1, 2, equation (3) can be rewritten inmatrix form as
H(i)g(i) = z(i)whereH(i) is the N N˜ ˜´ matrix with entries H b w x cck

i
i

k
j ij

k
j1,2( ( ))( ) ( ) ( )sº + å = , g(i) is the N 1˜ ´ column vector with elements

g ck
i

i
k( ) ( )º , and z(i) is the N 1˜ ´ column vector with elements z y cxc

i
i ( ( ))( ) º . Once the biases bi

k{ }( ) and theweights wij
k{ }( ) are subjectively

assigned, thematrixH(i) is set. The coefficients ci
k{ }( ) are then determined bymeans of c y cH xi

k
c

i
kc i

1[ ] ( ( ))( ) ( )= å - under the assumption
that thematrix is invertible. In the present computations, the bi

k{ }( ) and the wij
k{ }( ) were randomly generatedwith uniformdistribution

between−0.5 and+0.5. The same sets were employed for both i = 1 and i = 2.With such sets, the c k
1{ }( ) and c k

2{ }( ) were determined as
described above. It was observed that the largest error bears on the component y2(x). The relative error e y y yx x x x2 2

appr
2 2( ) ( ( ) ( )) ( )= - was

evaluated over the regular grid 100 × 100 and itsmaximumvalue inmodule, e2,max , was determined. The calculationswere repeated 105

times and the set of parameters that yielded the lowest value of e2,max was stored and used to generate the plots offigure 2.Note that
comparable outcomes could have been attainedwith different sets of parameters.
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actual point in the extended space of themutually interrelated new variables. As noted in the Introduction and
commented in specific passages, there are several points of closeness with thework of [33]. That studywas
however devoted to the continuous-time ‘dynamical perceptron’ and to ‘dynamical recurrent neural networks’,
while here the ‘perceptron units’ enter collectively into theUA strategy to approximate the actual rate-field
components of the systemunder consideration.

The quadratization procedure presented here could be easily implemented in computer codes. If we had at
our disposal a very great computational power and a very greatmemory-storage capability, we could exploit the
quadratic format to explore the real dynamics by looking at theirmirrored version in the extended space where
interesting features can emerge (see footnote 1). For instance, at the practical level one could devise techniques
for the automatic localization of the possible low-dimensional ‘slowmanifolds’ towardwhich the trajectories
converge and the system’s evolution slows down; this would be useful to buildmodel-reductionmethods based
on the fast-slow timescale separation. The problematic aspect is that the dimension of the extended space is huge
and rapidly grows as the rate field ismore andmore featured and as the time-window of interest becomeswider
(see remark (ii) in section 3.1). Hence, the procedure here described apparently has little practical utility at the
computational level. On the other hand, the scope herewasmore fundamental: demonstrating the existence of
an universal route to achieve an unique underlying quadratic format of the evolution law regardless of the
features of the specific dynamical system.

Finally, let us note that what has been devised here, in essence, is nothing but away to convert autonomous
ODEs into a quadratic extended format: no physics is invoked and even the time could be replaced by a generic
progression variable. But if the system is truly physical, thenwe are in the position of going back to the
provocative question raised by Peschel andMende:Dowe live in aVolterra world?Given the universality of the
quadratizationmethod, the answer should be affirmative, at least if we accept to deal with an ensemble of
dynamical variables of virtually infinite dimension!Of course, themapping of the real evolution law (aswewrite
it on the basis of a physico-mathematicalmodel) into the extended Lotka-Volterra counterpart is actually only a
matter of ‘mathematical translation’. Going beyond this sensible level of interpretationwould lead us to
inconvenientmetaphysical arguments that should be avoided.

Data availability statement

All data that support thefindings of this study are includedwithin the article (and any supplementary files).

Appendix

A.1. GLV→ LV transformation
Let us consider a set of positive-valued dynamical variables vi that evolve according to the followingODEs having
amultivariate GLV format:

v c vv v, A1i
m

mi m m
j

j
mj( ) ( ) ≔ ( )( )å = P P

h

Let us introduce

G vv A2i
j

j
ij( ) ≔ ( )( )m

r m

whereμ is an auxiliary index and the exponents ρj(iμ) are, at this level, freely chosen. The time derivative of the
functionsGiμ(v) is

 
G G i

G i c v A3

i i
j

j
v

v

i
j m

j mj
j

j
m

,

j

j

j j j,

( )

( ) ( )( )

å

å 

r m

r m

=

=

m m

m
h d

¢
¢

-¢ ¢

Now, let us set that the indexμ runs over the same entries ofm, and choose ρj(iμ)≡ ηj(μ)− δi,j.With this
position the newdynamical variablesGiμ(t)≡Giμ(v(t)) evolve according to

G G M G A4i i
j m

i jm jm
,

, ( )å= -m m m

with

M c A5i jm i j j mj, ,[ ( )] ( )d h m= -m
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Equation (15) has exactly the same structure of equation (A1). This implies that the aboveGLV→ LV
general route can be straightforwardly applied to the specific case of interest. Bymaking the correct
identification of the indexes, equations (A4)–(A5) directly lead to the quadratic format equation (18)with the
matrix given in equation (19).

A.2. Backward transformation
Let us introduce the column array swith elements s Glni i

1≔ åm m
- , where is the total number ofμ terms.

From equation (A2) it follows that s K vlni j ij j= å wherewe have introduced the squarematrixKwith elements

K
1

A6ij j i j,
⎛

⎝
⎜

⎞

⎠
⎟

( ) ( )å h m d= -
m

This sort ofmatrix is invertible [8], unless the originalODEs equation (A1) are linear (but even in such case the
inversion routewould be feasible by exploiting specific constraints). Thuswe canwrite

v e A7i
K s i

1 ( )[ ]= -

which enables us to obtain the variables v(t) from theGʼs at the time t.
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