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Abstract

We show that the ordinary differential equations (ODEs) of any deterministic autonomous dynamical
system with continuous and bounded rate-field components can be embedded into a quadratic Lotka-
Volterra-like form by turning to an augmented set of state variables. The key step consists in expressing
the rate equations by employing the Universal Approximation procedure (borrowed from the
machine learning context) with logistic sigmoid ‘activation function’. Then, by applying already
established methods, the resulting ODEs are first converted into a multivariate polynomial form (also
known as generalized Lotka-Volterra), and finally into the quadratic structure. Although the final
system of ODEs has a dimension virtually infinite, the feasibility of such a universal embedding opens
to speculations and calls for an interpretation at the physical level.

1. Introduction

In 1986, Peschel and Mende published a monograph [1] entitled ‘The predator—prey model” whose subtitle was
the intriguing question: Do we live in a Volterra World? Although the focus was on system’s growth and
structure-building from the viewpoint of ecology, the findings were general and that work fitted in a series of
studies, past and subsequent, concerning the embedding of the evolution laws of several types of deterministic
dynamical systems into quadratic Lotka-Volterra-like ordinary differential equations (ODEs). Let us introduce
the basic notation to enter the topic. Let x be the finite set of physical variables of interest that evolve according to

X = y(x) (1)

where y(x) is a time-independent rate-field vector. In our discussion, it will be assumed that the components of
the rate field are bounded and continuous functions of the state variables. The embedding into a quadratic
format is generally achieved by turning from x to an enlarged set of new dynamical variables. In doing this, the
dimension of the system’s representation increases, but the big advantage is that the original nonlinearity can be
brought down to second order. The feasibility of such a kind of recasting, and especially its potential applicability
to a variety of dynamical systems, justifies the above question and still triggers new investigations.

The history of the ODEs ‘quadratization’ has developed in a very branched tree of interconnected studies.
Besides the work of Peschel and Mende cited above, some other important contributions have to be mentioned.
First, it is worth mentioning Kerner’s work [2] on the embedding of ODEs into ‘elemental Riccati equations’. A
milestone is surely the work of Brenig and Goriely [3] who showed how the Lotka-Volterra (LV) format can be
achieved through intermediate quasi-polynomial forms [4], also termed generalized Lotka-Volterra (GLV)
formats, into which the original ODEs can be exactly or approximately converted. The same kind of
transformation was rediscovered by several authors with little variations. For instance, in the (deterministic)
chemical kinetics context, in which the mass-action rate equations already have a GLV format, we mention the
works of Gouzé [5], of Fairén and Herndndez-Bermejo [6], and of the present author and co-workers for both
closed [7] and open [8] chemical reaction networks. Quasi-polynomial (GLV) and LV formats have been widely
studied in terms of stability of the stationary points [9—16], boundedness of the solutions [5, 12], stabilizing
feedback control in process systems [17—19], integrability of ODEs with polynomial nonlinearities [20],
connection with stochastic urn processes [21], and connection with abstract Lie algebra [22]. This brief overview
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is by no means complete and should only give the idea of the broad interest in such topic across decades of
research.

Beyond the mere mathematical aesthetics, the crucial point is that the real dynamics of a variety of systems
can be mirrored by a uniquekind of dynamics in the extended space of the new variables. If some interesting
feature emerges at such an abstract level of representation, it might be interesting to inspect how that feature
manifests in the physical space. For instance, under this perspective the analysis of the quadratic format enabled
to let emerge a definition of the slow manifolds observed in mass-action chemical kinetics [23] and to devise
computational routes for their identification [24, 25], to discover the existence of mutually orthogonal attracting
subspaces in what was termed the ‘hyper-spherical representation’ of the dynamics [24, 26], and even the
existence of an intrinsic timing for Markov jump processes represented in the probability space [27].

Let us now circumscribe the context. The specific universal quadratic format we will deal with is of the
following type:

hq = —hoY_ Moghy )
Q/

where the h are the new dynamical variables enumerated by the index Q, the overdot stands for time-derivative,
and the elements M are dimensionless constant factors. It is assumed that a suitable transformation from the
original physical variables x to the new set h does exist and can be found to convert the original ODEs equation (1)
into the quadratic format of equation (2). The new variables are strictly positive and have physical dimension of
inverse-of-time. The dimension of the extended space is supposed to be finite although possibly indefinitely
large. The crucial point to be stressed is that the h(x) are interrelated one each other by mutual constrains in the
way that the independent number of degrees of freedom remains unaltered. This means that the initial
conditions are not arbitrary, i.e., they have to be fixed by setting h(0) = ho(x(0)). From such initial condition,
the subsequent evolution in the extended space is autonomous and ruled by equation (2). It is finally supposed
that a backward transformation allows to retrieve the physical state x(), at any future time, from the ensemble of
the h(t). As aside note, by turning to the variables Viyor := Mo h we can directly convert equation (2) into an
evolution equation devoid of any system-depended parameter: Voo = — Voo Y- or Vorqr- All system’s features
bear on the mutual interrelations between these new variables. The Vi, prove to own interesting properties and
constitute the basis on which to build the hyper-spherical representation mentioned above.'

Let us note that equation (2) are rate equations of pure second order. Just by analogy, but without any real
physical correspondence, these equations can be collectively seen as a Lotka-Volterra-like structure devoid of
linear terms. The structure equation (2) was obtained for mass-action chemical kinetics [4, 5, 7], for some classes
of phase-space dynamics under the extension to complex-valued h [26] and, recently, even for classical master
equation dynamics in which the embedding into equation (2) implies the increase from linear to quadratic ODEs
[27]. In all these situations, the change from x to h was devised ad hoc on the basis of the specific type of original
ODEs. This allowed to confer, in each case, a specific form to the new variables and, even more importantly, to
delimit the dimension of the extended space.

Given the relevance of the quadratic structure equation (2) as an intermediate step to derive other formats of
the evolution law (like, for instance, the evolution in the hyper-spherical representation mentioned above), what
we ask here is if it exists a universal quadratization route, i.e., a general procedure applicable regardless of the
specific features of the given dynamical system. This would allow us to establish a direct connection between
(potentially) any autonomous dynamical system and the evolution law equation (2) in the corresponding
extended space. We will see that such a universal quadratization procedure does indeed exist regardless of the
smoothness of the rate-field components y;(x), on condition that they are continuous and bounded functions in
the physical domain of the x variables.

To devise such universal quadratization route, we will resort to the ‘Universal Approximation’ (UA) method
[28,29] applied to the components of y(x). The UA is a well-known approach to approximate virtually any
bounded and generally multivariate function. It is worth mentioning that the UA provides the theoretical basis
for the single-hidden-layer feedforward strategies in regression and classification machine learning tasks [28-31]
and supports the efficacy of the multi-hidden-layer deep learning architectures [32]. In section 2 we show that
the UA applied to the rate equations allows us to devise a universal recasting of the original ODEs. Then, as

" The Vog and the Voo proved useful to construct suitable scalar fields to guide the localization of possible slow manifolds in the physical
space [24, 25]. Furthermore, the empirical inspection of the high-order time derivatives of the Vi (¢) has led to conjecture the existence of
an intrinsic ‘timing function’ as long as the trajectory x(¢) is inside an ‘attractiveness region’ of the physical space [24, 27]. Concerning the
hyper-spherical representation, let n4im be the total number of i, variables. The Vyq collectively specify a point in the ng,,, -dimensional
space whose orthogonal directions are labelled by the index J «+ (Q, Q’). Each direction is orthogonal to an associate (nj,,, — 1)-dimen-
sional hyper-plane, and all such hyper-planes are orthogonal one each other. In the hyper-spherical representation [24], the representative
variables become a ‘radial’ coordinate and a set of ‘angular’ coordinates specifying a point on the (13,, — 1)-dimensional unit sphere. It was
shown that the evolution is sectioned into parts during which the point on the spherical surface is attracted by one specific hyper-plane at
atime.
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shown in section 3, by employing the logistic sigmoid as ‘activation function’ in the UA we can achieve a
generalized Lotka-Volterra format from which equation (2) is eventually obtained. The technical step from GLV
to LV is detailed in appendix. Section 5 is devoted to conclusions and perspectives.

To the best of the author’s knowledge, the Lotka-Volterra embedding method here proposed is a novelty. A
posteriori, however, the author notes several points of closeness with a remarkable work by Moreau, Brenig and
co-workers [33]. In that work the authors showed that several neural networks architectures, if used as
generators of continuous-time self-evolution, can be embedded into Lotka-Volterra formats. They treated
explicitly the ‘dynamical perceptron’ (in its basic form and with self-connections) and the ‘dynamical multi-
layer perceptron’. Since the neural network architecture is potentially a universal approximator of functions,
and the specific application to the trajectories of autonomous dynamical systems was in fact developed by
Funahashi and Nakamura in a previous work [34], in their concluding remarks the authors claimed that Lotka-
Volterra formats can be used to approximate any finite-dimensional dynamical system for any finite time. This is
what we elaborate here in explicit way. While in [33] the perceptron units are by themselves the velocities of
change of the dynamical variables, in our work they collectively enter into the expansion of the components of y
(x) (the actual velocities according to equation (1)) through the Universal Approximation strategy (see the key
equation equation (3) given later). Analogies and differences between this work and [33] will be pointed out
where appropriate.

2. Recasting of the evolution law via Universal Approximation

Let us consider the system of ODEs in equation (1), where x is a finite N-dimensional set of dynamical variables
and y(x) is the associate N-dimensional vector field of rate equations. We assume that the components y;(x) are
continuous (systems confined by reflecting boundaries are not considered here) and bounded in the physical
domain where the dynamics are inspected.

Let us adopt the Universal Approximation [28, 29] to express each of the rate-field components as follows:

N
7@ =3 o] b® + 3 wix; 3)
k=1

j

where N is the number of terms, (- ) is a function 98 — R, and { (k)} {c(k)} and {b(k)} are adjustable
parameters. A sufficient condition for o(z) to be a valid function in the UA, i.e., capable of producing a dense set
in the space of continuous functions, is of being non-constant, bounded” and with different limits at
z— + oo and z — — 00 ; continuity is not generally required although it is demanded in our specific application.
In the machine learning context, the UA finds its embodiment in the basic single-hidden-layer feedforward
network with N ‘nodes’ (or ‘neurons’), (- ) as ‘activation function’, {vt/,§k)} and {ci(k)} as ‘weights’, and {b,-(k)} as
‘additive biases’ [32]. For this reason, in what follows we will freely use such terminology although, of course,
there is no evident correspondence between the two contexts.

For the sake of notation, let us write

o) = of b + Z wix; @)

Let us now assume that the activation function is such that
do do(z)
dz

with f(- ) some function. Having in mind the achievement of quadratic ODEs as final goal, it is important that
f(- ) beapolynomial of finite order. This was a key point also in [33] where the first target was to devise a Lotka-
Volterra embedding of the continuous-time ‘dynamical perceptron’.” The problem that we are facing here is
different since, in our case, the ‘perceptron’ units (i.e., the ng) (x) components) collectively enter into the
expansion equation (3) of the rate-field components. By employing equation (5) we have that

di(k) f (O'(k))z w(k)x] and hence, by using the expansion equation (3) for x; = b7 (x), we obtain

= f(o(2)) (5)

2 e . - T P .

The boundedness condition is not strictly necessary [29, 35] but the admissibility of unbounded activation functions have to be assessed
case by case. For instance, functions like the ‘rectified linear unit’ (ReLU), which is unbounded on one side, are normally employed in the
deep learning architecture and prove to be highly efficient at the computational level.

? The ‘dynamical perceptron’ treated in [33] corresponds to the system of differential equations x = o (Ax + ao), wherexis the n-
dimensional column vector of dynamical variables, a, is a column vector of same dimension, Aisan X nmatrix, and o(- ) is the column
vector whose entries are o(a) = o(a;) with o(- ) the activation function. We see that the dynamical perceptron of [33] and the evolution law
equation (1) are different dynamical systems. While the units of the dynamical perceptron are by themselves the rates of evolution of the
dynamical variables, in our case such units are collectively employed to approximate the rate-field components of the actual dynamical
system through the UA equation (3).
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o0 = o) WO o) ©
jik!

Overall, once the form of o(- ) is chosen, weights and biases are in principle fixed. Thus, equation (6) is a new
autonomous set of ODEs whose structure and parameters depend on the choice of the activation function.

Let us note that each rate-field component y,(x) has its own independent expansion. The physical
information needed to determine the associate biases and weights is constituted by the values of y;(x) ata
number N, of sampling points. We can think of a discretization of the physical space into finite-size cells, taking
the centres of the cells as sampling points. By following the reasoning of [31], we can say that if the activation
function is infinitely differentiable, then the required number of nodesis N < N,,. Such number can be however
indefinitely large and it increases as the required accuracy on the rate-field components, and of course the
required closeness between real and approximate trajectories (those generated by the approximate rate field) ina
given time-window, are more and more stringent. An example of rate-field approximation is provided later in
section 4. The important point is that we are interested only in the existence of weights and biases which allow to
get an approximation of the rate field with preset accuracy; the practical way to determine such parameters, and
even the criteria to discern between different alternative sets that yield comparable quality of the approximation,
are not relevant here.

Let us introduce the further cumulative index

a (i, k) (7

in which ilabels the physical variables and k the ‘nodes’ of the UA structure. With this notation, equation (6)
takes on

0.—0, = f(ga)z Aom,’ To/ (8)

with

k) (K"
Avcsigaro Gy = widel ®)

3. Quadratization

So far, the form of o(- ) was generic. Let us now choose the logistic sigmoid function

1
0(z) = ——— 10
@)= (10)
This function is strictly positive-valued, bounded between 0 (for z — — 0o ) and 1 (for z — + 00 ), and
monotonically increasing as z increases. With this choice, the derivative in equation (5) is simply the following
second-order polynomial:

flo)=0c(1 — 0) (11)
The use of this form in equation (8) yields a system of cubic ODEs:
Oa = _Uéz Apa! Oy + Uaz Ana’ O (12)
o o

The ODEs of equation (12) belong to the GLV class and can be converted into a Lotka-Volterra-like quadratic
format by employing the strategy proposed by Brenig and Goriely [3] which, as mentioned in the introduction,
was later re-discovered by others.
Let us introduce the following quantities built by using the variables o,
M0a(@) =[] ol (13)

o

with exponents
ea”('}/aa/) = 6’)/,1(6(&,0/’ + 60/,0”) + 6’)/,2(6(&,&” + 26(1’,0/’) (14)

where 7yis a binary index; we assign value 1 or 2 to such index. Here and below, ¢ stands for the Kronecker’s delta.
With these positions, the ODEs in equation (12) can be rewritten in compact form as

O = Z K’ya"a'”,n H,W/(YH(O') (15)

! "
v,a,a

where
Kﬂm’a”,a = (6')/,1 - 6’y,2) Aan’ 60,0/’ (16)

It can be checked by direct substitution that equation (15) is equivalent to equation (12). Let us now consider the
new variables
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h’)’a(!/(!”(a) = H O-Zq(’)’(y/(y’!)_%,(. (17)
q

which are positive-valued since the logistic sigmoid is strictly positive for any finite value of the argument. As we
see, these variables are labelled by four indexes, namely, the binary label  and the three indexes «, @' and o”
which run over the numbering of the pairs variable-node. By employing the route described in appendix, it is
found that the evolution of such variables is ruled by

flﬁ/a'a’a” = _hqaa’a” Z Mﬂ,’ao/a”,'T/d(;’({”h'?ﬁ(;’({” (18)

.8,

in which

M'yaa’a”,'?"(i’a'” = [6&,&' - 6&(’70/04”)] (6'7,1 - 6:,/,2) Asgr 6&,({” (19)

Finally, the quadratic form equation (2) is obtained by introducing the following cumulative index Q for the
labelling of the quadruplets:

Qe (v a,d,a") (20)
Totally, the number of h, variables is equal to
ndim = 2 (NN)? (21)

The whole quadratization procedure is summarized in figure 1. The universal route described above allows
us to obtain a quadratic format of evolution law at the price of working in a very extended space of variables. As
anticipated in the Introduction, the ho(x) variables are mutually interrelated, as emerges by retracing the global
transformation x — h(x) specified by equations (4), (13) and (17). This implies that the components of the initial
array h(0) cannot be set arbitrarily, but have to be assigned according to the given initial state x(0) in the physical
space. The backward transformation h(¢) — x(t) (see appendix and remark (iii) below) then allows us to retrieve
the physical state at a generic future time .

3.1.Remarks

(i) The truncation issue. While the quadratization procedure from equation (8) to equation (18) is exact at the
algebraic level once equation (10) is employed, an approximation is inevitably introduced when equation (3) is
adopted with a finite set of addends in the summation.

(i) Dimension of the extended space in relation to accuracy. The dimension of the extended space is
determined by the number of nodes in the Universal Approximation equation (3). Such number is determined
by the required accuracy, i.e., the largest accepted deviation between approximate trajectories (the ones
generated by the approximate rate field) and true trajectories, in a given time-window, starting from the points
in a given domain of the physical space. As the domain is taken wider and/or the rate field is more and more
featured and/or the time-window is taken longer, the dimension of the extended space increases and can
become very rapidly virtually infinite. Let us make an example. Let us suppose dealing with a dynamical system
having N = 10 physical variables x;(¢) to x;0(#), and that the form of the rate equations y;(x) allows to get a good
UA representation with, quite optimistically, only N = 10 nodes. The number of extended variables hyaaran(t)
wouldbe 2 x 10°% which goes against any advantage at the computational level. On the other hand, what we are
seeking here is not an efficient computational route. In fact, the original ODEs are reasonably easy to solve
numerically, whereas the quadratization would bring an unacceptable (and apparently unreasonable) redundant
augmentation of the space. Rather, what we wanted to show is that, in principle, any dynamical system with
continuous and bounded rate-field components is potentially embeddable in the format of equation (18).

(iii) Invertibility. As discussed in appendix, the backward transformation from the set of variables /.44 (o)
to the o, is feasible. The monotonicity of the sigmoid function (- ) then allows to get the value of the argument
bi(k) + 3 i mgk)xj (t) from the value of agk) (t) (see equation (4)). Finally, the physical state x(f) can be retrieved if at
least one of the N x N matrices w (or a linear combination of them) is invertible.

(iv) Choice of the ‘activation function’. The choice of the function o(- ) is subjective. On condition that the
derivative function f(o) be a polynomial in o, the quadratization procedure is always feasible. However, strictly
positive-valued funtions are a priori preferred to avoid possible divergences of the 1,4/~ (o). In addition, it
proves convenient to opt for the logistic sigmoid because the polynomial is limited to second order (see
equation (11)). Also the hyperbolic tangent function (which, by the way, was the activation function adopted in
[33]) yields a second-order polynomial, but its employment in our specific quadratization route could cause
problems since it can vanish. Other choices would generate an extended space oflarger dimension. Thus, the
logistic sigmoid appears to be the best choice.

(v) Alternative embedding schemes. It is important to recall that other embedding schemes have been
proposed for general nonlinear ODEs. For instance, Kerner showed [2] that by introducing additional variables
one can convert the original ODEs into a polynomial format, which is a starting point to achieve quadratic

5
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Figure 1. The universal quadratization scheme. Panel (a): Universal Approximation (UA) applied to the ith component y,(x) of the
rate field. Panel (b): embedding of the original ODEs into a GLV format, followed by the quadratization step.

forms. A notable approach was proposed by Herndndez-Bermejo and Fairén [4] who showed that the original
ODE:s can be converted into a GLV format (from which LV forms can then be obtained) of the kind

;= u[ A\ + Z?flA,j H,le u,f *] where the dynamical variables u; (i = 1, --- , N*) comprise the N physical ones
(possibly under appropriate shifts to ensure positivity of all the variables) plus additional variables unless the
original ODEs have already a GLV format; the { \;}, {A;;}, and { Bj;} are real-valued parameters. These
procedures are however cumbersome and require an ad hoc algebraic elaboration for each given set of ODEs.
Moreover, while the conversion into polynomial or GLV formats of finite (and even low) dimension is exact in
many cases, a truncation issue bears also on these procedures since an exact closure on the additional variables is
generally lacking. The entering coefficients therefore become adjustable parameters and should be optimized,
e.g. by means of some kind of fitting procedure inside a given domain of the physical variables. Because of the
power-law dependence on the u;, the quality of the approximation could rapidly degrade when applied outside
such domain. The embedding procedure presented here is instead a sort of system-independent ‘black box’ since
the UA in equation (3) is a general numerical scheme of approximation which does not require to inspect the
specific form of the rate equations; this is the main point of strength. Furthermore, the degradation of the
approximation could be mitigated by the fact that the y;(x) are approximated by the superposition of bounded

6
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Figure 2. Example of Universal Approximation of rate-field components for the damped motion of a massive particle in a two-well
potential (see the text for details). Panel a) shows some trajectories in the phase space. Panels b) and c) show the percentage relative

deviation between approximation and true value for y;(x, v) (b) and for y,(x, v) (c); the points where y;(x, v) and y,(x, v) vanish have
been neglected.

functions. Of course, a detailed comparison between the various alternative embedding schemes requires a case-
by-case analysis.

4. Example of rate-field approximation

Asasimple example, let us consider the dynamics of a damped particle in one dimension. The dynamical
variables are x = (x, v), where x is the position and v the velocity. The rate equations are x = y,(x, v) = v and

v = y(x, v) = g(x) — & where g(x) = — dU(x)/dx being U(x) a potential energy divided by the mass of the
particle, and £ a damping friction coefficient per unit of mass. Let us consider the case of the symmetric two-well
potential already studied in [26]. The potential energyis U (x) = A[(x/c)?> — 1]* and two stationary points

x = (£ ¢, 0) are present.

The computations were done for A = 5, ¢ = 1 and £ = 10, the same values employed in [26]. Panel (a) of
figure 2 shows some trajectories in the phase-space, while panels (b) and (c) show the percentage relative error
that bears on the rate-field components approximated by equation (3) with the parameters obtained from the
specific route adopted here.” The input information consisted in the values of y;(x, v) and y»(x, v) at the centres of
the cells of aregular 5 x 5 grid. The considered portion of phase space was —2 < x <+ 2and —3 < v < + 3. For
each rate-field component, the number N of nodes was therefore equal to 25. We can see that the largest error,
which bears on the y,(x) component, is confined within about 3%. Assuming the achieved accuracy is good
enough to describe the trajectories in a certain time-window, according to equation (21) the dimension 74, of
the extended space of the variables i, would be 2.5 x 10°, which is a huge number considering that the natural
variables are only two.

5. Conclusions: do we really live in a Volterra world?

In this work we have shown that virtually any dynamical system of autonomous ODEs with bounded and
continuous evolution rates can be converted into the quadratic Lotka-Volterra-like format equation (18). To
achieve such recasting we have applied the Universal Approximation (UA) method to the original multivariate
rate equations. By specifically employing the logistic sigmoid activation function in the UA procedure, we could
achieve the GLV format equation (12), and finally get the quadratic format by means of the quadratization route
illustrated in appendix. The notable fact is that this procedure is really universal and system-independent. The
new variables, all having physical dimension of inverse-of-time, are the /1,4~ defined in equation (17). The
global transformation is invertible, which means that the physical state of the system can be retrieved from the

* Biases and weights have been determined by resorting to a basic implementation of the ‘extreme machine learning’ approach [31]. Let us
adopt theindex ¢ = 1, 2,---N to enumerate the cells into which the portion of phase space is subdivided. Note that the numbers of nodes
and cells are equal. Let x(c) be the central points of the cells. For each component i = 1, 2, equation (3) can be rewritten in matrix form as
H(i)g(i) = z2? where H? is the N x N matrix with entries H C(,? =0 (h,(k) + 3 i1 ,zmgk) x;(c)), g(i) isthe N x 1 column vector with elements
g]fi) = c,-(k), andz?is the N X 1 column vector with elements zc([) = y,(x(c)). Once the biases {bi(k)} and the weights {w,-g-k)} are subjectively
assigned, the matrix H® is set. The coefficients {ci(k)} are then determined by means of ci(k) = 3 [HO 1, y.(x(c)) under the assumption
that the matrix is invertible. In the present computations, the {b¥} and the {Wék)} were randomly generated with uniform distribution
between —0.5 and 4-0.5. The same sets were employed for both i = 1 and i = 2. With such sets, the {cl(k)} and {cék)} were determined as
described above. It was observed that the largest error bears on the component y,(x). The relative error e,(x) = (3,7 (x) — y,(x)) /y2 (x) was
evaluated over the regular grid 100 x 100 and its maximum value in module, e, jqx, was determined. The calculations were repeated 10>
times and the set of parameters that yielded the lowest value of e, ,,,, Was stored and used to generate the plots of figure 2. Note that
comparable outcomes could have been attained with different sets of parameters.
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actual point in the extended space of the mutually interrelated new variables. As noted in the Introduction and
commented in specific passages, there are several points of closeness with the work of [33]. That study was
however devoted to the continuous-time ‘dynamical perceptron’ and to ‘dynamical recurrent neural networks’,
while here the ‘perceptron units’ enter collectively into the UA strategy to approximate the actual rate-field
components of the system under consideration.

The quadratization procedure presented here could be easily implemented in computer codes. If we had at
our disposal a very great computational power and a very great memory-storage capability, we could exploit the
quadratic format to explore the real dynamics by looking at their mirrored version in the extended space where
interesting features can emerge (see footnote 1). For instance, at the practical level one could devise techniques
for the automatic localization of the possible low-dimensional ‘slow manifolds’ toward which the trajectories
converge and the system’s evolution slows down; this would be useful to build model-reduction methods based
on the fast-slow timescale separation. The problematic aspect is that the dimension of the extended space is huge
and rapidly grows as the rate field is more and more featured and as the time-window of interest becomes wider
(see remark (ii) in section 3.1). Hence, the procedure here described apparently has little practical utility at the
computational level. On the other hand, the scope here was more fundamental: demonstrating the existence of
an universal route to achieve an unique underlying quadratic format of the evolution law regardless of the
features of the specific dynamical system.

Finally, let us note that what has been devised here, in essence, is nothing but a way to convert autonomous
ODE:s into a quadratic extended format: no physics is invoked and even the time could be replaced by a generic
progression variable. But if the system is truly physical, then we are in the position of going back to the
provocative question raised by Peschel and Mende: Do we live in a Volterra world? Given the universality of the
quadratization method, the answer should be affirmative, at least if we accept to deal with an ensemble of
dynamical variables of virtually infinite dimension! Of course, the mapping of the real evolution law (as we write
it on the basis of a physico-mathematical model) into the extended Lotka-Volterra counterpart is actually only a
matter of ‘mathematical translation’. Going beyond this sensible level of interpretation would lead us to
inconvenient metaphysical arguments that should be avoided.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Appendix

A.1.GLV — LV transformation
Let us consider a set of positive-valued dynamical variables v; that evolve according to the following ODEs having
amultivariate GLV format:

G =3 i (), () = [T v (A1)
m J

Let us introduce
(@)
Giu() =[] v/™ (A2)
j

where /1 s an auxiliary index and the exponents p;(i1) are, at this level, freely chosen. The time derivative of the
functions Gj,(v) is

Giy = Gipy pj(iﬂ)%
j

. S(m)—6jr ;
= Gl-,,,z p;(ift) Cpj H V;{] 7 (A3)

Jjsm J'
Now, let us set that the index jz runs over the same entries of 7, and choose p;(ip) = 7;(1) — 6; ;. With this
position the new dynamical variables G;,(t) = G;,(v(?)) evolve according to

Giy = _Giuz Mi,u,ijjm (A4)
jm
with
Miyjm = 16ij — ()] €mj (A5)
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Equation (15) has exactly the same structure of equation (A1). This implies that the above GLV — LV
general route can be straightforwardly applied to the specific case of interest. By making the correct
identification of the indexes, equations (A4)—(A5) directly lead to the quadratic format equation (18) with the
matrix given in equation (19).

A.2.Backward transformation
Let us introduce the column array s with elements s, := M’lz:u In G;,,, where M is the total number of 1 terms.
From equation (A2) it follows that s; = > i Kij In v; where we have introduced the square matrix K with elements

1
Kj= - S| — 6y (A6)
j2

This sort of matrix is invertible [8], unless the original ODEs equation (A1) are linear (but even in such case the
inversion route would be feasible by exploiting specific constraints). Thus we can write

v = elK'sh (A7)

which enables us to obtain the variables v(¢) from the G’s at the time .
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