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Abstract

The study of extremes, maxima and minima of random variables, has a

long history in applied hydrology for engineering purposes. The magnitude

and the frequency of extreme events are described by the right-most part

of a probability distribution, usually referred as “tail”. Therefore, the task

for hydrologists is to extract as much information as possible from the data

set to assess the tail behavior correctly and reduce the uncertainty in the

estimates.

Traditionally, the most widely used probabilistic methods are based on the

asymptotic results of the Extreme Value (EV) theory, which is commonly

applied using block maxima or via peak-over-threshold analysis. However,

despite its theoretical basis, a number of scientific contributions highlight

the limits of these traditional approaches. In particular, classical EV meth-

ods are considered to waste much of the available observational information,

which is reflected into increased estimation uncertainty for quantiles that

are large with respect to the observed largest values. This notion is leading

to the development of alternative modeling approaches that make a better

use of the observations. Among these methods, non-asymptotic models, i.e.

statistical models which do not assume the block maximum to arise from a

large number of ordinary values, promise to lead to more robust estimates

of high quantiles. In particular, this dissertation estimates the probabil-

ity of extremely large events using a non-asymptotic approach based on

the Metastatistical Extreme Value Distribution, MEVD, and its simplified

versions, including SMEV, or Simplified Metastatistical Extreme Value dis-

tribution. A comparative assessment of the predictive performance of the

proposed non-asymptotic model and conventional approaches based on the

three-parameter Generalized Extreme Value distribution, GEV, is the fo-

cus here. The present dissertation, therefore, investigates the potential of

MEVD-based approaches to characterize the probabilistic structure of the

tail distribution that governs opposing phenomena such as coastal flooding

and drought occurrence. In fact, the proposed “general” model (i.e., fewer

a-priori assumptions on the properties of the event occurrence process and

efficient use of the data) yields a reduction of estimation uncertainty in

the quantification of extremely rare quantiles. Even though the studied

extreme events are different from a process perspective, the results confirm

the advantages and flexibility of these novel extreme value distributions.
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Chapter 1

Introduction

1.1 Background

Extreme values of a large variety of physical parameters describing the state of the

Earth System (simply referred to as “extremes” here) have long attracted the interest

and attention of scientists, policymakers, and stakeholders due to their impacts on

society and ecosystems. Indeed, modeling, and quantifying, extreme-value probability

of occurrence is an active field of theoretical and applied research in many disciplines,

such as hydrology and climatology (Katz et al., 2002; Cancelliere, 2017; Mekonnen et al.,

2021; Miniussi and Marra, 2021; Dallan et al., 2022a; Palazzolo et al., 2022), ecology

(Katz et al., 2005; Rypkema et al., 2019), ocean wave modeling (Rueda et al., 2016;

Benetazzo et al., 2017; Barbariol et al., 2019), transport engineering (Songchitruksa and

Tarko, 2006), geophysical processes (Pisarenko et al., 2014a,b; Elvidge and Angling,

2018; Hosseini et al., 2020), biomedical data analysis (De Zea Bermudez and Mendes,

2012; Chiu et al., 2018), insurance and financial applications (Embrechts et al., 1997;

Chan et al., 2022), and many others.

In addition to natural variability and fluctuations internal to the climate system, an-

thropogenic forcing (e.g., greenhouse gas emissions and direct impact of human activ-

ities on the water cycle through water abstraction, irrigation, and land use change;

Figure 1.1) is regarded as a driver of possible abrupt changes in the global water cy-

cle (Williams et al., 2007; Allan et al., 2020; Zhang and Gillies, 2022). In fact an

increasingly wide literature (see e.g., chapter 8 of the Sixth Assessment Report of the

IPCC, AR 6; Douville et al., 2022) indicates that the hydrological cycle appears to have

intensified, along with the frequency and duration of extreme events (e.g., heavy pre-

cipitation, flood and drought conditions, Loaiciga et al., 1996; Huntington, 2010). As

indicated in Trenberth (1998), the term intensification of the hydrological cycle is used

to describe an acceleration in the rate of change in atmospheric water vapor content,

through changed precipitation, evaporation, and evapotranspiration. Further, the rela-

tionship between atmospheric warming and the intensification of the hydrological cycle

1
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On Earth, water can be                   ,               , or a mix of both. 
Pools are places where water is stored, like the ocean. 
Fluxes are the ways that water moves between pools, such 
as evaporation         , precipitation          , discharge          , 
recharge           , or human use         . 

See www.usgs.gov/water-cycle for definitions.

fresh saline

Pools and Fluxes

The Water Cycle
The water cycle describes where water is on 
Earth and how it moves. Water is stored in 
the atmosphere, on the land surface, and 
below the ground. It can be a liquid, a solid, 
or a gas. Liquid water can be fresh, saline 
(salty), or a mix (brackish). Water moves 
between the places it is stored. Water moves 
at large scales and at very small scales. Water
moves naturally and because of human 
actions. Human water use a!ects where 
water is stored, how it moves, and how clean 
it is.

Pools store water. 96% of all water is stored 
in oceans and is saline. On land, saline water 
is stored in saline lakes. Fresh water is 
stored in liquid form in freshwater lakes, 
artificial reservoirs, rivers, and wetlands. 
Water is stored in solid, frozen form in ice 

sheets and glaciers, and in snowpack at 
high elevations or near the Earth’s poles. 
Water vapor is a gas and is stored as 
atmospheric moisture over the ocean and 
land. In the soil, frozen water is stored as 
permafrost and liquid water is stored as soil 

moisture. Deeper below ground, liquid 
water is stored as groundwater in aquifers, 
within cracks and pores in the rock.

Fluxes move water between pools. As it 
moves, water can change form between 
liquid, solid, and gas. Circulation mixes 
water in the oceans and transports water 
vapor in the atmosphere. Water moves 
between the atmosphere and the surface 
through evaporation, evapotranspiration, 
and precipitation. Water moves across the 
surface through snowmelt, runo!, and 
streamflow. Water moves into the ground 
through infiltration and groundwater 

recharge. Underground, groundwater flows 
within aquifers. It can return to the surface 
through natural groundwater discharge

into rivers, the ocean, and from springs.

We alter the water cycle. We redirect rivers. 
We build dams to store water. We drain water 
from wetlands for development. We use 
water from rivers, lakes, reservoirs, and 
groundwater aquifers. We use that water to 
supply our homes and communities. We 
use it for agricultural irrigation and grazing 

livestock. We use it in industrial activities 
like thermoelectric power generation, 
mining, and aquaculture. The amount of 
water that is available depends on how much 
water is in each pool (water quantity). It also 
depends on when and how fast water moves 
(water timing), how much water we use 
(water use), and how clean the water is 
(water quality). 

We a!ect water quality. In agricultural and 
urban areas, irrigation and precipitation 
wash fertilizers and pesticides into rivers and 
groundwater. Power plants and factories 
return heated and contaminated water to 
rivers. Runo! carries chemicals, sediment, 
and sewage into rivers and lakes. 
Downstream from these sources, 
contaminated water can cause harmful algal 
blooms, spread diseases, and harm habitats. 
Climate change is a!ecting the water cycle. 
It is a!ecting water quality, quantity, timing, 
and use. It is causing ocean acidification, sea 
level rise, and more extreme weather. By 
understanding these impacts, we can work 
toward using water sustainably.

U.S. Department of the Interior
U.S. Geological Survey

Figure 1.1: Global water cycle with human influence. Image credit: USGSC - United States Geological Survey
(2022).

.

is physically consistent with the thermodynamic constraint imposed by the Clausius–

Clapeyron (CC) relation, which defines the increase in the saturated atmospheric vapor

content with increasing temperature. Changes in atmospheric vapor dynamics from the

local to the global scale can weaken or reinforce the thermodynamic effect, thereby lead-

ing to non-trivial changes in the hydrologic fluxes and in the frequency and intensity

of the extreme events over the globe.

Despite the growing number of studies, observing, modeling, and understanding ex-

tremes in a changing climate remains a challenge. Improving our understanding of

extreme phenomena and our ability to quantify their impacts indeed remains a key so-

cietal need to develop adaptation strategies and support risk management approaches.

The definition of an “extreme” varies widely across different fields, depending on appli-

cations and purposes. McPhillips et al. (2018) reviewed 10 years of academic literature

engaged in research and management of extreme events to elucidate how six disciplines

(i.e., climatology, earth sciences, ecology, engineering, hydrology, and social sciences

are considered in this review) define and communicate such events, in terms of their

causes, attribution, and impacts. Frequently, extremes are drivers of natural disasters

causing loss of life, infrastructure damage, and economic hardship (Rashid and Wahl,
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Figure 1.2: Occurrence of disasters. Image credit: CRED - Centre for Research on the Epidemiology of
Disasters (2022).

2022). As an example, in 2021 the Emergency Event Database (EMDAT; CRED -

Centre for Research on the Epidemiology of Disasters, 2022) recorded 432 disastrous

events related to natural hazards worldwide (Figure 1.2b). Overall, these accounted

for 10,492 deaths, affected 101.8 million people and caused approximately 252.1 billion

US$ of economic losses. Floods and storms – with 223 and 121 occurrences, respec-

tively – are the most frequent and impactful events around the world. In contrast to

floods and storms, worldwide 15 droughts were recorded in 2021; Africa (South Africa,

Somalia, Ethiopia, Kenya) and Asia (Afghanistan, Iraq, Syria, Iran) were most heavily

impacted in terms of the number of people affected. Among continents, Asia was the

most severely impacted (Figure 1.2a), and globally, the EM-DAT marked 2021 with an

increase in the number of disaster events and extensive economic losses.

This general overview highlights the importance of understanding, modeling and quan-

tifying the occurrence of extremely large events. Motivated by this awareness, this

thesis represents a contribution to the statistical description of extremes using novel

approaches that optimize the use of observational information and allow the estimation
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of large extremes on the basis of small samples.

1.2 State of the art

In the context of hydrological applications, the statistical properties of the largest or

smallest event within a sequence have long attracted the attention of researchers deal-

ing with floods and droughts. Hydraulic structures are built to resist to a “design

event”, generally defined by a prescribed probability of occurrence, typically measured

in terms of return period (Cipollini et al., 2021; Volpi et al., 2015; Vogel and Castellarin,

2017). The return period is defined as the inverse of the exceedance probability (i.e.

the complementary of the non-exceedance probability) of the random variable under

consideration (e.g., storm event, wind speed, river discharge, low stream flow). Under

the assumption of stationarity, the return period of a set magnitude value of the vari-

able of interest is equal to the mean time between two successive exceedances of this

value. Although the concept and application of return period are well established in

the literature, reliable estimates of return period and corresponding magnitude still re-

quire the definition of a suitable probabilistic model (Bonaccorso et al., 2003; Emanuel

and Jagger, 2010; Volpi et al., 2015; Marani and Ignaccolo, 2015; Zorzetto et al., 2016;

Volpi et al., 2019; Miniussi and Marra, 2021; Bateni et al., 2022). Usual approaches,

under the assumption of event independence and process stationarity, are based on

the classical Extreme Value (EV) theory (Fréchet, 1927; Dalrymple, 1960; Coles, 2001;

Woodworth and Blackman, 2002; Hamdi et al., 2014, 2015), which identifies the Gen-

eralized Extreme Value (GEV) distribution as a general model for the distribution of

maxima (or minima) extracted from fixed time periods of equal length (i.e., “blocks”,

usually assumed to be 1 year in hydrological applications). The GEV, according to

its original formulation, arises as a limiting distribution for block-maxima (or minima)

of a sequence of independent and identically distributed random variables when the

number of events per block is very large. GEV-based models are commonly used in

practical hydrological applications and are often fitted to time series composed just of

block maxima (or minima) (GEV–BM). The fitted GEV distribution is then used to

estimate the probability of occurrence of events of various magnitudes. Another widely

used approach is the Peaks-Over-Threshold (POT) method, which extends the original

GEV formulation by modeling all events exceeding a high threshold, as opposed to

considering just block maxima. The POT approach again recovers the GEV distribu-

tion as the distribution of the annual maxima if two assumptions are valid: (1) the

number of events per year is Poisson-distributed; (2) exceedances over the threshold

come from a generalized Pareto distribution (GPD). Several papers in hydrological lit-

erature discuss the advantages and disadvantages of methods based on block maxima

or partial duration series (see e.g., Martins and Stedinger, 2001; Villarini et al., 2011;

Nerantzaki and Papalexiou, 2022). Both approaches are only strictly valid asymptoti-
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cally, i.e. when a large number of events (n → ∞) occurs in each year. Furthermore,

GEV-based approaches, by construction, discard most of the observations and do not

attempt to optimize the use of the available information (Volpi et al., 2019).

Oftentimes, available data are insufficient to precisely quantify the hazard associated

to a particular design event, especially when the return period of interest lies in the

“extrapolation range”, i.e. it is greater than the observation duration characterizing

the data set. Here, the challenge lies in choosing an appropriate statistical distribution

to best capture the statistical behavior of the tail that is not explicitly represented in

the observational record (Stedinger et al., 1993). Given that large extreme events are,

by definition, poorly represented in observational records, recent work on the statistical

description of extremes has focused on methods that best exploit the available infor-

mation. One contribution to overcoming these limitations of the traditional EV theory

is the Metastatistical Extreme Value Distribution (MEVD), proposed by Marani and

Ignaccolo (2015). The MEVD models the distribution of yearly maxima starting from

the distribution of “ordinary events”, i.e. all the available data, in contrast to just

considering annual maxima or a few values above a threshold. Moreover, the MEVD

framework (i) is a non-asymptotic extreme-value distribution, which does not require

the number of events per year to be large, and (ii) makes no a-priori assumptions on the

properties of the event occurrence process as in the block maxima and partial duration

series approaches. In existing applications (e.g., rainfall, flood-frequency analysis, and

hurricane intensities), the MEVD has been shown to significantly reduce estimation

uncertainty compared to traditional approaches, especially when considering return

periods greater than the sample size used for parameter estimation (see e.g., Zorzetto

et al., 2016; Marra et al., 2018; Zorzetto and Marani, 2020; Miniussi and Marani, 2020).

Extreme value analysis approaches based on both frameworks, the GEV distribution

and the MEVD, will be developed and used in the present thesis. Hence, overviews of

both theories are discussed in Chapter 2.

1.3 Objectives

The research community has investigated the performance of the MEVD framework in

(1) quantifying rainfall frequency and intensity (Marani and Ignaccolo, 2015; Zorzetto

et al., 2016; Marra et al., 2018), (2) capturing the spatial variability in rainfall (Miniussi

and Marra, 2021; Hu et al., 2020), (3) evaluating the accuracy in the estimates by us-

ing data set with different spatial and temporal resolutions (Marra et al., 2018, 2020;

Amponsah et al., 2022; Dallan et al., 2022b), (4) frequency analysis of flood events

(Miniussi et al., 2020a), (5) quantifying the probability of occurrence of extreme hurri-

canes (Hosseini et al., 2020). On the other hand, phenomena for which no knowledge or

experience exists regarding the applicability and performance of MEVD include coastal

flooding and drought occurrence. Notoriously, these opposing phenomena often recur in
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environmental hazard evaluation, decision-making, and the design of mitigation mea-

sures. In particular, in the context of global warming, these extremes are recurring

features of a changing climate around the world. Recent history has shown the vulner-

ability of many areas to these rare events. For example, Europe experienced several

prolonged periods of dry spells in 2015 (Ionita et al., 2017; Laaha et al., 2017), 2018

(Brunner et al., 2019; Bakke et al., 2020), and during the summer of 2022 (Commission

and Centre, 2022). Regarding examples of coastal flooding, Venice is increasingly more

frequently exposed to floods; the series of floods occurred in November 2019 (Ferrarin

et al., 2021; Zanchettin et al., 2021), as well as the recent events in 2022 are an example

and resound as an alarm.

Therefore, motivated by the above considerations, coastal flooding and drought oc-

currence will be the focus of this thesis. Even though these phenomena are quite

different from a physical process perspective, traditionally, similar methods are used

for inferring information on the tail of their distribution, such as block maxima and

peak-over-threshold approaches. The use of novel extreme value distributions, namely

MEVD-based approaches, are proposed here as beneficial formulations to improve the

estimation of high quantiles.

1.4 Outline

The rest of the present thesis is structured as follows. Chapter 2 recalls the theoret-

ical basis of the traditional EV theory and presents the recent alternative statistical

models based on the MEVD approach. The latter category includes approaches with

differing levels of simplification, from the full-fledged Metastatistical Extreme Value

Distribution (MEVD; Marani and Ignaccolo, 2015; Zorzetto et al., 2016), to the Sim-

plified Metastatistical Extreme Value (SMEV) distribution (SMEV; Marra et al., 2019,

2020). The problem of extreme coastal water level estimation and projection is tackled

in Chapter 3. Chapter 4 focuses on the analysis of extreme drought events by using

natural climatic archives based on tree-ring climate proxies. Finally, in Chapter 5 some

conclusions are drawn.
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Chapter 2

Statistics of extremes: tradition and

novelty

Extreme value analysis is concerned with modeling and quantifying the occurrence

probability of rare events. Events that, by definition, are poorly represented in obser-

vational time series. The theoretical basis of the theory of extreme events date back to

the first half of the last century. The key result obtained by Fisher and Tippett (1928)

on the limit forms of the frequency distribution of the largest or smallest member of

a sample has attracted the attention of many statisticians. Only after the publication

of Gumbel’s book (“Statistics of Extremes”; Gumbel, 1958), the extreme value theory

began to be applied to engineering fields.

Among the numerous contributions dealing with statistical aspects of extremes, the

work of de Haan (1970) and subsequent publications (see e.g., Balkema and de Haan,

1974; Pickands, 1975) have shaped the main theoretical results in the traditional ex-

treme value theory. Although the probabilistic and stochastic properties of extreme

values were developed into an attractive theory, the statistical modeling of extremes

still remains a subject of debate and research. The interested reader can refer to Coles

(2001) for a detailed description of statistical methods for extremes in hydrology or Pa-

palexiou and Koutsoyiannis (2013); Marani and Zorzetto (2019) for a recent overview

of the history of the EV theory.

This Chapter summarizes the theoretical basis of the traditional extreme value theory

and presents alternative approaches (so-called non-asymptotic formulations) to derive

information from the extreme value distributions.

2.1 Extreme value theory

Extreme Value (EV) theory is a set of results in the field of probability that per-

mits the study of the distribution of extreme values and to estimate their probability

of occurrence over time under fairly general assumptions. It deals with the limiting
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distributions for large collections of independent random variables from the same un-

known underlying distribution. The foundation of the EV theory can be found in the

three-types theorem, or Fisher–Tippett–Gnedenko theorem, introduced by Fisher and

Tippett (1928) and later proven by Gnedenko (1943). The basic idea is to study the

statistical behavior of:

Mn = max(X1, . . . , Xn) (2.1)

where Xi (for i = 1 . . . , n) are a sequence of independent and identically distributed

(i.i.d.) random variables having a common distribution function (F ). The distribution

function of Mn is given by the nth power of F :

Pr{Mn ≤ x} = Pr{X1 ≤ x,X2 ≤ x, · · · , Xn ≤ x}

= Pr{X1 ≤ x}Pr{X2 ≤ x} · · ·Pr{Xn ≤ x}

= Fn(x)

(2.2)

By studying the asymptotic behavior of this distribution and introducing two scaling

constants an > 0, bn ∈ R, a non-degenerate distribution function, G(x), is obtained:

P (
Mn − bn

a
n

≤ x) = Fn(anx+ bn)→ G(x), as n→∞

According to the Fisher–Tippett–Gnedenko theorem, the corresponding normalized

variableM∗
n = Mn−bn

an
has a limiting distribution that must be one of only three types of

extreme value distributions (Gumbel, Fréchet, and Weibull), characterized by different

shapes of tail behavior. Von Mises (1936) proposed to combine the above three limiting

distribution laws into a single family of three-parameter distributions known as the

Generalized Extreme Value (GEV) distribution given by:

G(x;µ, ψ, ξ) = exp{−[1 +
ξ

ψ
· (x− µ)]}−1/ξ (2.3)

defined on the region for which {x : 1+
ξ

ψ
· (x−µ) > 0}, where µ ∈ (−∞,+∞), ψ > 0,

and ξ ∈ (−∞,+∞) are the location, scale, and shape parameters, respectively. Among

these, the shape controls the tail decay behavior:

1. ξ → 0 describes the exponential tail typical of the Gumbel family or type I;

2. ξ > 0 identifies the heavy-tailed case of the Fréchet family or type II;

3. ξ < 0 gives the short-tailed case (bounded upper tail) characterized by the reverse-

Weibull case or type III.

The GEV distribution is often regarded as a general probability distribution to describe

extreme values in applications to environmental and hydrology processes. Two main
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approaches exist for practical extreme value analysis, the block-maxima and the peaks-

over-threshold methods.

2.1.1 Block maxima (minima) method

Interpreting the limit in Eq. (2.2) as an approximation for large value of n suggests the

use of the GEV family for modeling the distribution of maxima from long sequences.

This leads to the GEV-block maxima (GEV–BM) formulation for modeling extremes

of a series of i.i.d. observations. It consists in dividing the observation sample into

blocks of equal length and in extracting the maximum value from each block. Block

maxima are then used to estimate the parameters of the GEV distribution (Eq. (2.3)).

The choice of a suitable block size is may affect estimation error bias and variance.

Blocks that are too small may cause a deviation from the hypothesis that the number

of observations is large underlying the three-type theorem. If large blocks are chosen,

the sample will contain only a few maxima, leading to a large parameter estimation

uncertainty. In most environmental processes a one year block length is usually adopted,

leading to the study of annual maxima time series.

The GEV–BM method is widely used for its simplicity. However, this method, by

construction, discards most of the available observations, without even attempting to

optimize its use (Volpi et al., 2019).

Some applications require models for extremely small values. Therefore, after appro-

priate changes, the GEV distribution can be also applied for minima.

2.1.2 Peaks-over-threshold method

To address the limitations of the block-maxima method an alternative approach is

widely used in practical applications, which extends the number of observations used

in fitting the GEV distribution. The Peaks-Over-Threshold (POT) method is based

on the Pickands–Balkema–de Haan theorem (viz., the second theorem of EV theory;

Balkema and de Haan, 1974; Pickands, 1975) (Davison and Smith, 1990). The theorem

states that, for a large enough threshold value, u, the distribution of exceedances over

the threshold, y = X − u (where X is a i.i.d. random variable), is described by a

generalized Pareto distribution (GPD).

Suppose Xi (for i = 1, . . . , n) is a sequence of i.i.d. random variables whose distribution

function is F . If Yi = Xi − u are the excesses over u, conditioned on Xi > u, the

cumulative distribution of exceedances is defined by:

Pr{Yi ≤ y} = Pr{Xi ≤ u+ y|Xi > u} = Fu(y) =
F (u+ y)− F (u)

1− F (u)

Pickands (1975) showed that when the threshold u approaches the finite or infinity

upper endpoint of the parent distribution F , hence exists a set of parameters ξ and σu
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(which depend on u) such that the GPD is a good approximation for the distribution

of the excesses Fu. Therefore, for large enough u, the approximation of the form is:

Fu(y) ≈ G(y;σu, ξ) = 1− (1 +
ξ

σu
· y)(−1/ξ) (2.4)

defined on {y : y > 0 and (1 + ξ
σu
· y > 0)}, where µ, σu = σ + ξ(u− µ) and ξ are the

location, scale, and shape parameters, respectively.

This result implies that, if block maxima have approximate distribution G, then thresh-

old excesses have a corresponding approximate distribution within the generalized

Pareto family. In this case, the parameters of the GPD of threshold exceedances

are determined by those of the associated GEV distribution of block maxima. The

duality between the GEV and GPD means that the shape parameter is dominant in

determining the behavior of the GPD tail (as it is for the GEV distribution):

1. for ξ > 0 the distribution has no upper limit (equivalent to the Pareto distribu-

tion) and the tail distribution function satisfies 1 −H(y) ∼ cy(−1/ξ) with c > 0,

i.e. the polynomial distribution;

2. for ξ < 0 the distribution of excesses has an upper endpoint at ωF = σu
/

|ξ|);

3. for ξ = 0 the distribution is unbounded. This case is interpreted as ξ→ 0, i.e. the

exponential distribution with mean σ.

For a fixed value of u, the number of exceedances is assumed to be a random variable

itself and is often modeled with Poisson distribution, leading to the so-called Poisson–

GPD model. According to this model, if (1) the number of events per year is Poisson-

distributed, and (2) the exceedances over the threshold come from the GPD distribution

(with mean λ), therefore the probability that the annual maximum of the process is

less than a certain value x is:

Pr{max1≤i≤NYi ≤ x} = Pr{N = 0}+
+∞
∑

n=1

Pr{N = n, Y1 ≤ x, ·, Yn ≤ x} =

= e−λ +
+∞
∑

n=1

λn · e−λ

n
· {1− (1 +

ξ

σu
· (x− u))(−1/ξ)}n =

= exp{−λ[1 +
ξ

σ
· (x− u)]}−1/ξ

(2.5)

This property shows that the probability distribution of the annual maxima of a GPD–

Poisson model is a GEV distribution (see Eq. (2.3)). Therefore, the GEV and GPD

models are consistent with each other if ξGEV = ξGPD, σ = ψ + ξ(u − µ) and λ =

[1 + ξ
ψ · (u − µ)]−1/ξ. Under these suitable conditions, in the present dissertation the

acronym POT–GPD is used when referring to the GPD–Poisson model.
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The POT–GPD framework exploits more of the available information with respect

to the GEV–BM formulation (e.g., Coles, 2001; Bernardara et al., 2014). However,

the choice of a suitable threshold to retain a few above-threshold events per year is a

critical step, and the estimation uncertainty significantly depends on threshold selection

(Önöz and Bayazit, 2001; Li et al., 2012; Solari et al., 2017). The selected threshold

value implies a balance between bias and estimation error variance. In fact, too low a

threshold will violate the independence hypothesis of the framework, leading to bias,

while too high a threshold will retain just few values above the threshold, leading to

high estimation error variance.

2.2 Non-asymptotic statistical framework

The need to overcome key limitations in the field of EV theory led to the development

of alternative approaches that allow for a more efficient use of the available data to

infer the distribution of extremes. As highlighted by Serinaldi et al. (2020), there is a

renewed research interest in non-asymptotic distributions of block maxima by using the

entire data set rather than only the extreme events (see e.g., Caruso and Marani, 2022;

Gründemann et al., 2020; Hosseini et al., 2020; Marani and Ignaccolo, 2015; Marani

and Zorzetto, 2019; Marra et al., 2018, 2019; Miniussi et al., 2020a,b; Miniussi and

Marra, 2021; Volpi et al., 2019; Zorzetto et al., 2016).

Among the non-asymptotic formulations reported in the literature to characterize

hydro-climatic phenomena, this section introduces distributions based on a metastatis-

tical approach, also sometimes referred to as superstatistics (Beck and Cohen, 2003),

doubly stochastic processes (Dubey, 1968, 1970) or compound distributions (Cox and

Isham, 1980), depending on disciplinary context. These methods include the Metasta-

tistical Extreme Value Distribution (Marani and Ignaccolo, 2015; Zorzetto et al., 2016)

and its possible simplifications, such as the Simplified Metastatistical Extreme Value

formulation (Marra et al., 2019, 2020). These approaches are based on the statisti-

cal analysis of “ordinary events”: i.e. all the independent realizations of the variable

of interest, as opposed to just block maxima or values above a threshold. For exam-

ple, in daily rainfall estimates, the set of ordinary events is defined as any observed

daily rainfall depth greater than 1 mm (see e.g., Zorzetto and Marani, 2019; Miniussi

and Marani, 2020). For fluvial floods, Miniussi et al. (2020a) identify as the sample

of ordinary events all the uncorrelated peak discharge values occurring in the record,

irrespective of their magnitude.

2.2.1 Metastatistical Extreme Value Distribution

The typical EV theory derivation starts from the premise that the maximum value

among n realizations of a random variable (Mn) is distributed according to the cumu-
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lative distribution function P (Mn ≤ x) = G(x) = F (x;
−→
θ )n (where, as customary, a

capital letter indicates the random variable and a lower-case letter indicates a value of

the random variable). This approach assumes that the n values of the random variable

of interest are generated by the same distribution, the “ordinary value” distribution

F (x;
−→
θ ), and are independent; n is the number of events in a block, such that G(x)

is the cumulative distribution of the block maxima. The classical EV theory assumes

that either the number of events per block is large (asymptotic hypothesis, leading to

the GEV–BM formulation) or that the number of events per block above a high thresh-

old is distributed according to a Poisson distribution (POT–GPD formulation). The

recently-proposed Metastatistical Extreme Value Distribution (MEVD; Marani and Ig-

naccolo (2015); Zorzetto et al. (2016)), a non-asymptotic extreme value approach, has

been shown to offer several advantages compared to the traditional EV theory. In

particular, the MEVD treats as stochastic variables both the parameters (
−→
θ ) of the

ordinary value probability distribution and the number of events per block. As high-

lighted by Marani and Zorzetto (2019) and Serinaldi et al. (2020), this formulation can

be considered as a compound version of the distribution of block maxima in finite-size

blocks resulting from the theory of order statistics for independent random variables.

Hence, the MEVD cumulative distribution of block maxima (estimated using a much

larger sample than just the yearly maxima used in the GEV–BM approach) is then

defined as the compound probability:

G(x) =

+∞
∑

n=1

∫

Ω−→
Θ

F (x;
−→
θ )ng(n,

−→
θ )d

−→
θ (2.6)

where g(n,
−→
θ ) is the joint probability distribution of the number of events in a block

and of the parameters vector (discrete in N and continuous in
−→
Θ, where the capital

letters indicate the random variables), Ω−→
Θ

is the population of all possible parameter

values. For practical applications, the MEVD can be approximated by substituting the

ensemble average in Eq. (2.6) with the sample average computed over all the blocks in

the time series, obtaining:

G(x) ∼=
1

M

M
∑

j=1

F (x;
−→
θj )

nj (2.7)

where M is the number of blocks in the historical record, F (x;
−→
θj ) is the cumulative

distribution of ordinary values in the jth block, and nj is the number of events in the

jth block. The interested reader can refer to Figure 2.1 for a visual representation of

the proposed non-asymptotic statistical model. A common choice for the block length

is 1 year. However, when particular hydro-climatic processes are being studied – as, for

example, drought events, characterized by long durations and long inter-arrival times
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– the size of the block may be greater than 1 year, to sample a sufficient number of

events in each block. Note that the values of the parameters
−→
θj may be estimated on

the Estimation Windows (EW) with length that is different from block length. For

example, if the block length is 1 year, it may be advantageous to estimate parameter

values on longer time slices to ensure, depending on the rate of event occurrence, a

reliable estimation of the parameters. Miniussi and Marani (2020) in applications to

daily rainfall extremes find that, when the number of events per year is less than 20-25,

then the optimal EW length may be greater than one year. It is interesting to note

that the POT approach, briefly described above, can be thought of as a particular case

of MEVD. In fact, Zorzetto et al. (2016) highlight that if one assumes (i) x to be the

excess over a high threshold, (ii) F (x;
−→
θj ) to be a generalized Pareto distribution (with

fixed, deterministic parameters), and (iii) n to be generated by a Poisson distribution,

then the GEV distribution is recovered as a particular case of the MEVD by means of

the peak-over-threshold approach.

Figure 2.1: Visual representation of the MEVD, as introduced in Eq. 2.7, applied to a series of daily rainfall
considering a block of 1 year. In this context, the two parameters Weibull distribution is used
for modeling rainfall ordinary events. Yearly Weibull parameters (scale, C, and shape, w, in red
and blue, respectively), and the number of ordinary events (n, in green), define the cumulative
distribution function of ordinary values in each block. The MEVD (in red in the vertical xy plane
in the foreground) is then computed by averaging over the empirical frequency distribution of the
parameters. Image credit: Zorzetto et al. (2016).

The MEVD has been applied to several Earth-science contexts. In each application, the

initial step is the identification of the form of the underlying ordinary value distribution.

For example, in rainfall extremes estimates, the ordinary value distribution is assumed

to be Weibull when applied to point daily rainfall (Marani and Ignaccolo, 2015; Zorzetto

et al., 2016; Schellander et al., 2019; Miniussi and Marani, 2020; Miniussi et al., 2020b),

point sub-daily rainfall (Marra et al., 2018), and satellite rainfall estimates (Zorzetto

and Marani, 2019, 2020; Hu et al., 2020; Mekonnen et al., 2021). For fluvial floods,

Miniussi et al. (2020a) propose to adopt a Gamma distribution for F (x;
−→
θj ). Hosseini

et al. (2020) describe Atlantic hurricane intensities using a generalized Pareto ordi-

nary value distribution. Marani et al. (2021) suggest to describe the epidemic intensity

by a generalized Pareto ordinary event distribution. In this dissertation, the appro-
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priate form for the underlying ordinary value distribution (discussed in the following

Chapters), is identified by exploring a variety of candidate distribution and by mini-

mizing the estimation uncertainty within a cross-validation approach briefly introduced

in Section 2.3.

2.2.2 Simplified Metastatistical Extreme Value

Marra et al. (2019) used a simplified version of the MEVD, in which the inter-annual

variability, expressed by the dependence on j in Eq. (2.7)), is neglected both in the ordi-

nary event distributions (i.e. assuming a constant distribution of the ordinary events)

and in the number of yearly event occurrences. Under these conditions, the Simpli-

fied Metastatistical Extreme Value (SMEV) formulation describing yearly exceedance

probabilities, reads as follows:

G(x) ≈ F (x;
−→
θ )n (2.8)

where F (x;
−→
θ ) is the cumulative distribution of ordinary values (described by the pa-

rameters
−→
θ ), and n is the average number of ordinary events per year. SMEV was

originally adotped to improve parameter estimation in the presence of a small yearly

number of ordinary events. In several cases this approach was applied by left-censoring

the available data using a case-dependent threshold (Marra et al., 2019), which was

shown to improve parameter estimation. This formulation was used to characterize

daily (Schellander et al., 2019; Miniussi and Marra, 2021; Amponsah et al., 2022) and

sub-daily extreme rainfall durations (Marra et al., 2018, 2020) over diverse climatic

settings, including continental, temperate, Mediterranean, tropical and arid/semi-arid

climates. In this context, in order to investigate the coastal and horographic effects on

extreme precipitation of durations between 10 min and 24 h, Marra et al. (2022) pro-

pose a methodology for extreme precipitation frequency analysis by adjusting relatively

short archives of weather radar precipitation estimates using rain gauges as reference.

Araujo et al. (2022) recently propose to adopt the SMEV framework for the analysis

of the current 100-year drought in Australia. More current research activity is focused

on the application of MEVD and SMEV to evaluate the performance of convection-

permitting climate models in representing extreme rainfall and it possible horographic

controls at the hourly scale (Dallan et al., 2022b).

2.3 The quantification of estimation uncertainty

Statistical modeling aims to use sample information to infer the probability distribu-

tion of the population from which the data are extracted. This inference is uncertain

due to imperfect parameter estimates and to the possible inability of the chosen dis-

tribution to capture the statistical properties of the underlying population. Although
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these sources of uncertainty are inherent in any statistical model, their impact can be

minimized by a careful choice of the model and by an effective use of all sources of

information (Coles, 2001). In many applications uncertainty is estimated by means

of goodness-of-fit measures, which quantify how well the distribution compares to the

sample on which it was fitted. However, this procedure does not provide a measure

of the predictive uncertainty encountered when trying to estimate the probability of

occurrence of the “next”, yet unobserved value. The quality of return periods esti-

mates by using the non-asymptotic distributions and GEV-based approaches are here

quantified by adopting a cross-validation (CV) procedure, in which model predictions

of the quantiles corresponding to prescribed values of the probability of occurrence are

compared to their empirical counterparts obtained from data that were not used in the

estimation of model parameters. This is possible by dividing observations into two sets

of independent data: the estimation set is the sample from which model parameters are

estimated and the test set is the sample with which model predictions are compared.

This thesis focuses in the following on the accurate frequency analyses of two different

climate-induced hydrological extremes (i.e., extreme-coastal-water-level estimates and

drought extremes). Given the different nature of the processes and, therefore, of the

corresponding CV procedures, the latter will be described in each of the corresponding

Chapters, i.e. Chapters 3 and 4.
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Chapter 3

Extreme-coastal-water-level

estimation and projection: a

comparison of statistical methods

Since millions of people live in low-lying coastal zones and many economical activities

take place here, the occurrence of extreme coastal water levels and estimates of its future

changes in frequency are a matter of debate in the research communities. In fact, the

problem is pivotal for assessing risk and for designing coastal defense structures. In this

regard, climate change and anthropogenic pressures are widely expected to exacerbate

coastal hazards such as episodic coastal flooding (Almar et al., 2021).

In this context, this Chapter focuses on the accurate estimates of the probability of

extreme sea levels. For practical applications, this probability is typically estimated by

modeling observed sea-level records using one of a few statistical approaches. In this

study, the generalized extreme value distribution, based on block maxima and peaks-

over-threshold formulations, and the recent metastatistical extreme value distribution

are comparatively applied to four long time series of sea-level observations distributed

along European coastlines. This application studies extreme values of the coastal water

level – the sum of the water level setup induced by meteorological forcing and of the

astronomical tide. A cross-validation approach, dividing available data into separate

calibration and test sub-samples, is used to compare the performances of the three

formulations explored in high-quantiles estimation. To address the limitations posed

by the length of the observational time series, the estimation uncertainty associated

with different calibration sample sizes, from 5 to 30 years, is quantified. Finally, this

Chapter investigates the influence of end-of-century projected mean sea levels, on the

probability of occurrence of extreme total water levels (the sum of the instantaneous

water level and the increasing mean sea level) frequencies.

The results were published in 2022 in the journal Natural Hazards and Earth System

Sciences (see Caruso and Marani, 2022). Therefore, this Chapter reports the sections
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of the article with some minor rearrangements and with the following organization.

Section 3.1 presents the aim of the study. In Section 3.2 the data and methods for (a)

pre-processing the time series of sea levels, (b) selecting the independent events, (c)

applying the cross-validation procedure, (d) estimating the probability of future total

water levels along European coats, and (e) assessing the return period, are presented

here. Section 3.3 describes and discusses the results of the application. Finally, in

Section 3.4 the conclusive remarks are drawn.

An overview of statistical approaches (i.e., GEV-based approaches and MEVD frame-

work) used in this application is given in Chapter 2.

3.1 Introduction

The statistical analysis of extreme values of random variables is of wide conceptual

and applicative importance in science and engineering (Coles, 2001; Beirlant et al.,

2004; Castillo et al., 2005; Finkenstädt and Rootzén, 2004). In particular, the reliable

estimation of the occurrence probability of coastal flooding events of large magnitude

is crucial to environmental hazard evaluation (Coles and Tawn, 2005; Hamdi et al.,

2018) and to decision-making and mitigation measure design. In fact, coastal flooding

hazard has been increasing at the global scale in recent decades, a trend expected

to continue as a result of climate change (Meehl et al., 2007; Church et al., 2013;

Fortunato et al., 2016). Several studies highlight that global sea-level rise will continue

accelerating in the 21st century as a consequence of climate change (Church and White,

2006; Jevrejeva et al., 2008; Church and White, 2011; Haigh et al., 2014b; Hay et al.,

2015). Additionally, changes in storminess may have an important role in modifying

the frequency and magnitude of water level extremes (Lowe et al., 2010; Menéndez and

Woodworth, 2010; Woodworth et al., 2011).

Much of the current work on extreme-coastal-flooding events is based on the classical

Extreme Value (EV) theory (Fréchet, 1927; Dalrymple, 1960; Coles, 2001; Woodworth

and Blackman, 2002; Hamdi et al., 2014, 2015, and references therein), which identifies

the family of distribution functions known as Generalized Extreme Value (GEV) distri-

bution (Von Mises, 1936) as a general model for the distribution of maxima (or minima)

extracted from fixed time periods of equal length (“blocks”, most commonly with length

of 1 year). The GEV, according to its original formulation, arises as a limiting distri-

bution for maxima (or minima, not considered here) of a sequence of independent and

identically distributed (i.i.d.) random variables. The Peaks-Over-Threshold (POT)

formulation (Balkema and de Haan, 1974; Pickands, 1975), extends the original GEV

derivation by modeling all events exceeding a high threshold, as opposed to considering

just yearly maxima as in the GEV–block maxima formulation (GEV–BM). The POT

approach again recovers the GEV distribution as the distribution of the annual maxima

if two assumptions are valid (Davison and Smith, 1990): 1) the number of events per

18



year is Poisson-distributed; 2) exceedances over the threshold come from a generalized

Pareto distribution (GPD). Under these suitable conditions, in the following we will

refer to the POT framework as POT-GPD formulation. For a brief overview of the the-

ory underlying EV theory and the two main methods based on the GEV distribution

(i.e., BM and POT approaches), the reader can refer to Chapter 2.

For extreme-sea-level studies in particular, Coles and Tawn (2005) and Haigh et al.

(2010) recognize two weaknesses in the use of the GEV–BM analysis: 1) sea level is the

combination of tide-driven (deterministic) and storm-driven (stochastic) components.

The presence of a deterministic component is suggested to violate the i.i.d. assumption

required in the GEV–BM derivation; 2) sea-level data are collected frequently (e.g.,

hourly), while the GEV–BM approach only studies annual maxima, with an extremely

inefficient use of the data.

More generally, GEV-based approaches, by construction, discard most of the obser-

vations and do not attempt to optimize the use of the available information (Volpi

et al., 2019). Furthermore, the traditional EV theory derives the GEV distribution

either as the asymptotic distribution when the number of events per block becomes

very large or through the ad-hoc GPD–Poisson assumptions underlying the POT ap-

proach. Whether these hypotheses do apply to the case of sea levels is a matter of

discussion, but it seems beneficial to adopt methods that require the least amount of

a-priori assumptions on the properties of the event arrival process. As a contribution

to overcoming the limitations of the traditional EV theory, here we explore the use of

an alternative approach for modeling extreme sea levels, the Metastatistical Extreme

Value Distribution (MEVD; Marani and Ignaccolo, 2015). As previously introduced in

Chapter 2, the MEVD models the distribution of yearly maxima starting from the dis-

tribution of “ordinary values”, i.e. all the available data, in contrast to just considering

annual maxima or a few values above a threshold. Moreover, the MEVD framework (i)

is a non-asymptotic extreme value distribution, which does not require the number of

events per year to be large as in the traditional theory, and (ii) makes no a-priori as-

sumptions on the properties of the event occurrence process. In previous applications,

the MEVD has been shown to significantly reduce estimation uncertainty compared

to traditional approaches, especially when considering return periods greater than the

sample size used for parameter estimation (Zorzetto et al., 2016; Marra et al., 2018;

Miniussi and Marani, 2020; Miniussi et al., 2020a,b).

Here we comparatively analyze the performance of GEV-based approaches and MEVD

in high-quantile estimations with application to extreme sea levels at different observa-

tion sites. The aim is to: 1) identify the statistical tool affording minimal uncertainty

in the estimate of extreme sea levels with an assigned probability of exceedance, and

2) model and understand how climate change will affect the extreme sea-level occur-

rence. To achieve these objectives, we analyze selected sea-level time series along the

European coastline and evaluate extreme-sea-level predictive uncertainty by adopting a
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cross-validation approach, in which calibration and test samples are kept separate and

independent. Subsequently, we use the optimized estimation method to infer possible

changes in coastal flooding hazard under Intergovernmental Panel on Climate Change

(IPCC) climate change scenarios RCP4.5 and RCP8.5.

3.2 Materials and Methods

3.2.1 Data

The analyses were performed using daily and hourly sea-level records from four tide

gauge stations (see Table 3.1) distributed along European coastlines: Venice (Italy),

Hornbæk (Denmark), Marseille (France), and Newlyn (United Kingdom). The study

sites span a variety of geographical locations, coastal morphologies and storm regimes.

Venice sea-level data (maximum and minimum daily observations) were obtained from

the “Centro Previsioni e Segnalazioni Maree” of the Venice Municipality (https://

www.comune.venezia.it/it/content/centro-previsioni-e-segnalazioni-maree;

Città di Venezia, 2020) for the Punta della Salute gauge station. The remaining wa-

ter level data, all at the hourly scale, were downloaded from the University of Hawaii

Sea Level Center (UHSLC) repository (http://uhslc.soest.hawaii.edu/data/?rq#

uh745a/; Caldwell et al., 2015).

All sea-level data set span long observational periods: 148 years for Venice, 122 years

for Hornbæk, 115 years for Marseille (ca. 19 missing years), and 102 years for Newlyn.

The raw data for all stations were pre-processed to eliminate: (1) years with less than

6 months of water level observations, and (2) days with less than 24 h of data (for the

case of hourly data). This process yields four quality-controlled time series that were

subsequently used in the analyses (see Table 3.1). Figure 3.1 shows daily maximum sea

levels at the gauge stations explored after pre-processing.

3.2.2 Methods

Mean sea level removal

The sea-level sequence is highly correlated and is generated by a non-stationary process

due to long term trends in mean sea level, the deterministic tidal component, surge

seasonality, and interactions between the tide and surge (Dixon and Tawn, 1999). Tide–

surge interactions may change amplitude and phase of the surges, mostly in shallow

estuarine areas (Johns and Ali, 1980; Bernier and Thompson, 2007; Zhang et al., 2010).

Therefore, this effect needs to be taken into account when separating the surge and

tide components. However, here, we do not attempt to separate these contributions;

we only analyze the sum given by the combination of the water level setup, induced

by meteorological forcing, and the astronomical tide. Hence, we simply study such
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Table 3.1: Information of sea-level data used in this application.

Site Country

Location

Period

Missing Deleted Number

(degree, min.) years years of years

Lat. Long. (%)

Venice Italy 45°25.0’N 12°20.0’E 1872–2019 – – 148

Hornbæk Denmark 56°06.0’N 12°28.0’E 1891–2012 – 1985 121

Marseille France 43°16.7’N 5°21.2’E 1885–2018 14.2

1897, 1918,

106
1919, 1928,

1937, 1940,

1998, 2009,

2010

Newlyn
United

50°06.1’N 5°32.5’W 1915–2016 – 1984, 2010 100
Kingdom

Figure 3.1: Daily maximum sea levels at different gauge stations explored after pre-processing: Venice (IT),
Hornbæk (DK), Marseille (FR), and Newlyn (UK).
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sum as the final result of the nonlinear interactions between individual components.

Under this premise, for a given site and at any instant of time t, the observed sea

level z(t) (after averaging out waves), can be split into three components (Pugh and

Vassie, 1979): mean sea level, m.s.l.(t); astronomically induced tidal level, x(t); and

meteorologically induced surge level, y(t):

z(t) = m.s.l.(t) + x(t) + y(t) (3.1)

The term m.s.l.(t) represents the long-term variations of water levels and of the ele-

vation datum (i.e. possible land subsidence or uplift). Local m.s.l.(t) does not change

uniformly over time and its calculation is affected by many factors, such as tidal phases,

long-term wind and atmospheric pressure patterns, vertical land motion (subsidence or

uplift). The tidal contribution to the instantaneous sea level, x(t), caused by the grav-

itational forces exerted by the moon and the sun is deterministic in nature, and can

be predicted with a good degree of accuracy. This tidal variability occurs with char-

acteristic periodicities between 12 h and 18.61 years (Eliot, 2010; Haigh et al., 2011;

Pugh and Woodworth, 2014; Peng et al., 2019; Valle-Levinson et al., 2021). This latter

longest tidal periodicity corresponds to the precession of the lunar nodal cycle. The

storm-surge contribution, y(t), is the meteorologically induced change in the water

level generated by a combination of factors, such as the magnitude and direction of

the wind, spatial gradients in atmospheric pressure, storm size, fetch, bathymetry, and

storm duration (Hall and Sobel, 2013).

Two classes of methods are widely used to estimate the probability of occurrence of

extreme sea levels: direct and indirect methods. Indirect methods model separately

the deterministic and the stochastic components of z(t), followed by a convolution to

obtain the joint probability distribution of their sum. Examples are the joint probabil-

ity method (Pugh and Vassie, 1979, 1980), the revised joint probability method (Tawn

and Vassie, 1989), the exceedance probability method (Middleton and Thompson, 1986;

Hamon and Middleton, 1989), and the empirical simulation technique (Scheffner et al.,

1996; Goring et al., 2011). Direct methods, such as the one adopted here, analyze

observed values compounding the astronomical and stochastic storm-surge component.

Direct methods mostly differ based on the analysis approach adopted, such as the

annual maxima method (Jenkinson, 1955; Gumbel, 1958), the peaks-over-threshold

method (Davison and Smith, 1990), or the r-largest method (Smith, 1986; Tawn, 1988).

Here, we study the distribution of the sum, h(t), of the contributions from the deter-

ministic tide and the stochastic surge:

h(t) = z(t)−m.s.l.(t) (3.2)
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From a statistical point of view, this choice is justified by the fact that the random

arrival of storms adds a stochastic surge contribution at unpredictable times, thereby

causing h(t) to be values from a random variable, even though it contains a determin-

istic component. The presence of a deterministic component of course does imply a

strong auto-correlation in the observed signal, which will be subsequently filtered out

by suitable signal processing described below.

Here, m.s.l.(t), is computed as the yearly average of daily levels. The yearly average is

chosen rather than the customary 19-year average that eliminates all tidal periodicities,

however small in amplitude, to better capture the surge contribution that causes the

water level to deviate during a storm with respect to the “current” yearly value of

m.s.l.(t). Once h(t) is computed by removing m.s.l.(t) from recorded levels, all local

maxima of h(t), or water level peaks, are identified and their values constitute the basis

for subsequent analyses of (i) long-term trends study of maximum yearly departures

from the average mean sea level (two-tail Mann–Kendall test; Mann, 1945), and (ii)

statistical inference of past coastal flooding events and their potential future changes.

In the following discussion, we will use the terms “total water level” and “coastal water

level” when referring to the quantities z(t) and h(t), respectively.

Selection of independent events

The GEV-based approaches are fit on either annual peak maxima (GEV–BM) or on a

few water level peaks over a high threshold (POT–GPD), which can be assumed to be

realizations of independent stochastic variables. The MEVD requires that all ordinary

values (coastal-water-level peaks in this case) within one block may be assumed to be

realizations from independent random variables. This hypothesis, in turn, requires that

observed peaks are filtered to only retain events that may be considered to be inde-

pendent, through a declustering process (Coles, 2001; Ferro and Segers, 2003; Beirlant

et al., 2004; Bommier, 2014; Marra et al., 2018). Several criteria have been developed

for such processing of the data. A common criterion sets the minimal time separation,

or lag (τ), for two events to be considered independent. Intuitively, high-water-level

events separated by a sufficiently long time period are reasonably caused by distinct

storm events. However, when analyzing the water level with respect to current mean

sea level, a quantity that contains the deterministic tidal contribution, dependence may

be expected to be present also for large lags. In theory, some dependence is present

for lags up to the longest periodicity in the tidal signal (18.61 years). In practice, as

the dependence in the tidal signal decreases for increasing lag, one expects that a much

shorter threshold time lag will be sufficient to make sure that only independent events

are considered. The analysis of the correlograms of selected coastal-water-level peaks

shows that some correlation persists also for long time lags and also in the declus-

tered time series. Even though the strength of this correlation is relatively small (the
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autocorrelation function, ACF, is always less than 0.3), it could impact the ability

of the MEVD, which assumes independence, to capture observed extreme behavior.

The declustering process does significantly decrease correlation, as may be seen by

comparing Figure 3.2 (ACF prior to declustering) and Figure 3.3 (after declustering).

Interestingly, it is seen that the tidal contribution (that generates periodicities in the

ACF) is strongly visible in Venice and Newlyn, while it is quite small in Hornbæk and

Marseille. The underlying tidally induced correlation becomes more clearly visible after

declustering also in Hornbæk and Marseille.

It is interestingly to note that the existing literature implementing declustering ap-

proaches to coastal level signals normally focuses on studying the storm-surge com-

ponent only. As result, it uses threshold time lag values that are smaller than those

adopted here because characteristic correlation times of the surge component are sig-

nificantly smaller than those associated with the sum given by the combination of surge

and tidal components. For example, the independence between two consecutive storm

surge events in southern Europe has been found to be achieved with a threshold lag of

3 days (Cid et al., 2015). A threshold separation of 1 day between consecutive events

is imposed by Tebaldi et al. (2012) in their analysis of storm surges along the US

coast. Haigh et al. (2010) adopt a threshold lag of 30 h in the English Channel, while

Bernardara et al. (2011) assume a 72 h independence criterion. After exploring values

between 24 h and several days, we adopt a threshold lag of 30 days, which yielded the

minimum estimation error under the MEVD approach, and is consistent with the main

lunar periodicity. The result of this declustering process is a set of independent events

with magnitudes hk, whose number nj in year - or block - j is a realization of a random

variable as illustrated in Eqs. (2.6) and (2.7).

Cross-validation procedure

In this particular application to extreme coastal water levels, the CV procedure can be

summarized as follows: (a) the observational years on record are randomly reshuffled

while keeping all the water level independent peaks in their original year to (1) preserve

both the ordinary value frequency distribution in each year and the distribution of the

number of events per year, and (2) remove possible non-stationarity and correlation

in the time series; (b) the observational sample is divided into two independent sub-

samples obtained by randomly selecting S years from the original time series of length

M : this sub-sample (in the following “calibration sample”) is used for parameter estima-

tion, while data in the remaining V =M−S years are used for testing (in the following

“validation sample” or “test sample”); (c) as usual in frequency analysis, an empirical

frequency value given by Weibull’s estimator Fi = i/(V +1) – where i is the rank of xi

in the list of yearly maxima in the validation sub-sample sorted in ascending order, and

V = M − S is the sample size in the validation sub-sample – is associated to each ob-
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Figure 3.2: Autocorrelation function (ACF) prior to the declustering process.

served yearly maximum xi. The return period Tr associated with each yearly maximum

is then simply Tr,i = 1/(1−Fi); (d) the GEV and MEVD quantiles are computed using

the parameter values estimated in step (b) from the calibration sub-sample; (e) focusing

on the validation sub-sample, in every realization (for p = 1, . . . , Nr; Nr = 1000 here)

and for a fixed mean recurrence time (Tr), the nondimensional estimation error (NDE)

– i.e., the relative error between the estimated and observed quantiles – is computed

as follows: NDEp(S, Tr) = [h(est,p)(S, Tr) − h(obs,p)(S, Tr)]/h(obs,p)(S, Tr); (f) the CV

scheme introduced above is repeated Nr times. This procedure is performed for differ-

ent calibration sample sizes (S = 5, 10, 20, and 30 years) to evaluate how estimation

uncertainty varies with return period and calibration sample size.

Future total water level projections

Future increases in the frequency of extreme total water levels (i.e. the variable pre-

viously referred as z(t)) due to climate change will have serious impacts on coastal

regions. These impacts will vary temporally and regionally, depending on (i) the lo-

cal relative mean-sea-level rise (including possible subsidence or uplift), (ii) current

storm-surge intensity probability distributions, and (iii) changes in the dominant mete-

orological dynamics. In this particular application to extreme coastal water levels (i.e.
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Figure 3.3: Autocorrelation function (ACF) for the declustered time series.

the sum given by the combination of the water level setup, induced by meteorological

forcing, and the astronomical tide), only the first two factors are considered.

It is very likely that sea-level rise will continue to accelerate over time, thereby increas-

ing the frequency of extreme sea level events, leading to severe flooding in many low-

lying coastal cities and small islands (Oppenheimer et al., 2019). Various techniques

have been used to study possible changes in coastal flooding hazard (e.g., McInnes

et al., 2013; Vousdoukas et al., 2016). Several authors have found that past variations

in the frequency of occurrence of extreme sea levels have been primarily determined by

changes in mean sea level (e.g., Zhang et al., 2000; Woodworth and Blackman, 2004;

Lowe et al., 2010; Menéndez and Woodworth, 2010; Haigh et al., 2014b; Wahl et al.,

2017). This implies that effects of variations in storminess (e.g., magnitude, trajec-

tories, and frequency) have been small in the observational record, compared to the

dominant effects of mean sea-level changes (Haigh et al., 2014a). This notion is also

confirmed by the trend analyses of maximum yearly departures from the average sea

level (see Section 3.2.2), which fail to detect trends in the maximum difference between

total sea level and concurrent mean sea level except at one of the sites (Venice), where

it is smaller (0.7 mm yr-1) than past and projected rates of sea-level rise (∼3.0 mm yr-1

and ∼8.0 mm yr-1, respectively, by the end of the century, according to the RCP8.5

IPCC scenario).
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Based on these elements, the probability of future total water levels along European

coastlines is here estimated by assuming that changes in the tidal and storm-surge

components are negligible with respect to changes in mean sea level, an assumption

common to previous approaches (Araújo and Pugh, 2008; Haigh et al., 2010; Tebaldi

et al., 2012). To assess how the exceedance probabilities of extreme total water lev-

els might change in the future, the projections of sea-level rise through 2100 from

the IPCC’s Fifth Assessment Report (AR5) are used. In particular, an intermediate

(RCP4.5) and an extreme scenario (RCP8.5) are explored, using CMIP5 model outputs

from the “Integrated Climate Data Center” (ICDC) database (University of Hamburg:

https://icdc.cen.uni-hamburg.de/en/ar5-slr.html; Church et al., 2013).

For each tide gauge, the approach can be summarized as follows: (1) the probability

distribution of extreme coastal water levels (annual maxima extracted from observed

independent events whose intensity – i.e., maximum coastal water level attained, hk –

is defined with respect to the concurrent mean sea level computed on a yearly basis) is

inferred; (2) the future probability of extreme total water levels is estimated by translat-

ing extreme-level quantile estimates upward according to location-specific projections

of mean sea level in the year 2100 (thereby implicitly assuming subsidence/uplift to be

negligible).

Return period and sensitivity measure

One of the main objectives of frequency analysis is to calculate the average recurrence

interval or return period. It is a widely used concept in hydrological and geophysical

risk analysis. If a process is stationary, the return period (Tr) of an event magnitude

is defined as the average time elapsing between two consecutive exceedances of this

magnitude. Alternatively, it may be said that a magnitude value is expected to be

exceeded, on average, in each return period. If the yearly maximum magnitude h is

exceeded on average once in Tr years, then its exceedance probability, E(h) = 1−G(h),

in a given year is:

E(h) = P [H ≥ h] =
1

Tr(h)
(3.3)

Therefore, the return period of the level value h is the inverse of the probability of

exceedance and can be expressed as a function of the cumulative distribution, G(h), of

annual maxima, e.g., through the MEVD introduced in Eq. (2.7):

Tr(h) =
1

E(h)
=

1

1−G(h)
(3.4)

Because for a fixed value of mean sea level there is a one-to-one relation between the

value of the sum of the astronomical and the storm surge contribution, h, and the total

water level, z = h +m.s.l., one can write Gh(h) = P [H > h] = P [H > z −m.s.l.] =

P [Z −m.s.l. > z −m.s.l.] = P [Z > z] = Gz(h), such that Eq. (3.4) can be used, once
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the cumulative distribution is known and for each (time-dependent) value of m.s.l.,

to determine the return period of the total water level (at the time when m.s.l. is

evaluated):

Tr(z) =
1

1−Gz(h)
=

1

1−Gh(h)
=

1

1−G(z −m.s.l.)
. (3.5)

Based on the hypothesis introduced in Section 3.2.2 that mean sea-level rise is the

dominant effect in future coastal flooding, the characteristics of the extremes (i.e. the

parameters of the GPDs defining the MEVD) remain valid in future scenarios. Eq. (3.5)

clarifies that the return period of a fixed value z decreases as m.s.l. increases, basically

because for higher values of m.s.l. a smaller value of h is needed to achieve the same

total water level z. This decrease is nonlinear, due to the nonlinear form of the right-

hand side in Eq. (3.5).

Changes in sea-level extremes can also be studied by focusing on changes in the return

period of a fixed value of the total water level. To this end, one can define a sensitivity

measure as:

SM =
1

Tr
·
dTr

dm.s.l.
= −

1

Tr
·

1

[1−G(z −m.s.l.)]2
·f(z−m.s.l.) = −f(z−m.s.l.)·Tr, (3.6)

which is obtained by derivation of Eq. 3.5, and where f(z) = dG
dz is the probability

density function associated with G(z). Eq. (3.6) shows that, at a given site and for a

set value of z, the relative change in return period grows linearly with Tr.

3.3 Results and discussion

3.3.1 Mann–Kendall trend analysis of the deviation of yearly maxima

from yearly mean sea level

This application starts by computing mean sea level on yearly basis and by subtracting

it from observed total water level. The first question that this Chapter wants to address

is the presence of long-term trends, unrelated to sea-level rise and associated with

other factors (e.g., human-induced factors, morphological variations), in the “cleaned

up” signal, i.e. the observed measurements without mean sea level. To answer this

question, this application focuses on the deviation of yearly maxima from yearly mean

sea level and tests for the presence of trend by the two-tail Mann–Kendall test (Mann,

1945). Figure 3.4 summarizes results for each location explored. From a first visual

inspection of Figure 3.4, the Venice (1872–2019) and Hornbæk (1891–2012) time series

appear to show an increasing trend in the deviations of yearly maxima from yearly

mean sea level (blue line) of different magnitudes. In contrast, Marseille sea-level

observations (1985–2018) seem to be characterized by a decreasing trend. Finally, the

Newlyn historical record (1915–2016) displays a fairly constant signal with no noticeable

variations. The application of the Mann–Kendall test reveals a partly different story.
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Figure 3.4: Deviation of yearly maxima from yearly mean sea level (blue line) and 19-yr running mean (black
line) calculated for Venice (IT), Hornbæk (DK), Marseille (FR), and Newlyn (UK).

The test rejects the hypothesis of the absence of trend at the 95 % confidence level,

only for the Venice site (p-valueVenice = 0.014). This result suggests that the increase

of the yearly maximum deviations from yearly mean sea level may be a direct result of

the local morphological variations in lagoon channels where the tidal wave propagates

(whereby dissipation of the wave is reduced), and/or land subsidence. In contrast,

at the remaining locations, the null hypothesis of no trend cannot be rejected (p-

valueHornbæk = 0.352, p-valueMarseille = 0.110, and p-valueNewlyn = 0.997). The results

obtained from these analyses support the validity of the hypothesis that mean sea-

level rise is the dominant factor in determining the future frequency of coastal flooding

(see Section 3.2.2). For the tests performed here to compare different extreme-value

statistical models, the possible presence of trends (e.g., in Venice) is irrelevant, since

such tests are performed by first reshuffling observed values, thereby eliminating any

existing trend, albeit small.
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3.3.2 Extreme value analysis

As mentioned in Section 3.2.2, the GEV-based approaches and the MEVD framework

require the independence between two consecutive coastal water level events. This hy-

pothesis is guaranteed by imposing a minimum time lag. Firstly, the daily maxima sea

levels from the original record are selected; secondly, independent events are defined as

those that are separated by at least 30 days. Subsequently, the samples used for statis-

tical inference are built as follows: (1) GEV–BM – the yearly maxima are selected; (2)

POT–GPD – as proposed by Coles (2001), the optimal threshold (u) is determined by

studying the stability of the GPD shape (ξ) and modified scale (σ∗ = σu− ξu) parame-

ters estimated using a wide range of values of u; using this method, threshold values of

65 cm (Venice), 50 cm (Hornbæk), 35 cm (Marseille), and 260 cm (Newlyn) were iden-

tified; (3) MEVD – all the independent coastal water level events above a low threshold

are used to fit the probability distributions of ordinary values. In the present context,

the ordinary values are defined as any coastal water elevation (i.e. the maximum water

level reached during a storm event) greater than a site-specific threshold value. This

threshold is chosen to be as small as possible (differently from the POT approach), to

retain as much of the observational information as possible, and will be dependent on

the magnitude of the local tidal range (sea level difference between high and low water

level over a tidal cycle) and of storm contributions. Additionally, the threshold is set to

be large enough to filter out coastal water level peaks that are likely fully determined

by tidal fluctuation, in the absence of any storm contribution. Given the above con-

straints, the optimal threshold value is chosen (a) by testing several threshold values

and evaluating the goodness-of-fit of the distribution using diagnostic graphical plots

and (2) so as to minimize the estimation error under the MEVD framework. According

to this selection criteria, the low thresholds adopted in the four study sites are 59 cm

for Venice, 40 cm for Hornbæk, 25 cm for Marseille, and 250 cm for Newlyn. For every

observed site, Table 3.2 and Figure A.1 display the gradual increase in the number of

independent events (i.e., annual maxima, exceedances over the threshold, and ordinary

values) used to infer the distributions when moving from GEV–BM, POT–GPD to

MEVD approaches.

As previously introduced in Section 2.2.1, the MEVD formulation requires the choice of

an optimal distribution of ordinary values that can represent the characteristics of the

natural phenomenon under analysis. Different candidate distributions for the F (x;
−→
θj )

in Eq. (2.7) are evaluated and the most suitable distribution is selected on the basis of

the CV procedure comparing the MEVD-estimated quantiles with the observed ones

in each selected sub-sample. In this particular application to extreme coastal water

levels, three candidate probability distributions for F (x;
−→
θj ) in Eq. 2.7 are tested, i.e.,

the Gamma, Weibull, and generalized Pareto distributions. Based on the comparative

evaluation of the performance of these distributions, e.g., using diagnostic quantile–
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Table 3.2: Total number of independent events and average number of events per year for all the gauge stations
explored.

Site name
Independent events

BM POT MEVD

Venice
Total 148 605 775

no. events/year 1 4.08 5.23

Hornbæk
Total 121 595 736

no. events/year 1 4.91 6.08

Marseille
Total 106 275 489

no. events/year 1 2.57 4.61

Newlyn
Total 100 399 520

no. events/year 1 3.99 5.20

quantile scatter plots, the generalized Pareto distribution emerged as the best model

for the “ordinary” coastal-water-level values. It is important to highlight again that

the GPD used in the MEVD framework is obtained by imposing a small threshold

(differently from the high threshold adopted in the POT–GPD approach) to capture

the distribution of the main body of the probability distribution of the ordinary events

and does not require the event arrival process to be Poisson (Marani and Zorzetto,

2019).

As suggested by several rainfall applications, ordinary distribution parameters are

here estimated using the Probability Weighted Moments (PWMs) method in non-

overlapping estimation windows of 5 years. In the present application, the optimal

estimation window length was set to 5 years to obtain a more robust parameters es-

timation, especially when few values in each year are available. PWMs estimation,

introduced by Greenwood et al. (1979), is widely applied because of its good perfor-

mance, particularly in the presence of small sample sizes, its reduced estimation bias

and sensitivity to the presence of outliers in the data (Hosking et al., 1985; Hosking

and Wallis, 1987; Hosking, 1990).

Considering the above threshold values, the observed and estimated distributions of

coastal water level are compared by plotting their quantiles against each other. By

comparing measures of in-sample and out-of sample test predictive accuracy, the re-

sults are presented by means of quantile–quantile (QQ) plots. The reader can refer

to Figure 3.5 (or Figures A.2, A.3, A.4, A.5, and A.6 in Appendix A) to compare the

results obtained with the MEVD framework (or the GEV-based approaches – GEV–

BM and POT–GPD – vs. the MEVD formulation) for the four sites analyzed. QQ

plots are obtained as a result of the CV procedure with 1000 random realizations and

sample size: (a) S = 30 years (in-sample-test on the left column); (b) V =M −S years
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(out-of-sample test on the right column). The colors represent the density of points

around the 45° line (i.e. the line of equality). This highlights how the estimated quan-

tiles are closely comparable with the observed ones for all the three approaches tested

and for both the sample size explored (S and V ). In particular, if the reader looks at

the supplementary Figures A.2–A.6 in Appendix A and if out-of-sample performance

is considered, it is difficult to quantify which distribution is the best due to a large

variability in the estimates. Overall, if only the MEVD performance is investigated,

the reader can look to the right column (out-of-sample test) in Figure 3.5, where the

results display that the MEVD formulation performs similarly for all sites analyzed. In

particular, it proves to be a good model for lower and intermediate quantiles but shows

variability in the estimates for higher quantiles.

Regarding the evaluation of the performance of the three approaches (GEV–BM, POT–

GPD and MEVD) in high-quantile estimation, this application explores the predictive

performance of the MEVD and GEV distribution as a function of the NDE (Section 2.3)

computed for the maximum return period, Tr,max =M−S+1, associated with the max-

imum value in each test sub-samples that is randomly extracted in the CV approach.

The use of NDE metric allows to easily characterize and compare models estimation

uncertainty associated with fixed return time of interest and the variation of the cal-

ibration sample size (from 5 to 30 years). The results are summarized by means of

box plots (Figure 3.6) and kernel density estimates computed for a calibration sample

size of 30 years (Figure 3.7). Table 3.3 summarizes the main results underlying the

chosen evaluation metric. When we focus on the case of a short sample (5 years),

different sites display variable results: I) the GEV and MEVD approaches perform

similarly for Venice (Figure 3.6a) and Hornbæk (Figure 3.6b) with similar interquartile

ranges and underestimations of the actual quantile; II) for the Newlyn gauge station

(Figure 3.6d) the GEV–BM distribution yields better results, even though the POT

and MEVD median error are also close to zero. In contrast, when considering longer

calibration sample sizes (from 10 to 30 years), the MEVD-based estimates outperform

the traditional approaches for most gauge stations explored: (I) results for the Venice

site confirm the robustness of the MEVD with respect to the GEV distribution espe-

cially for calibration sample size equal to 30 years; in this case, the median error in the

MEVD estimates tends to be closer to zero (–0.004), corresponding to approximately

unbiased estimates; (II) the Hornbæk station displays similar results to those for Venice

and the MEVD-based estimates become more reliable when we consider a calibration

sample size greater than 10–20 years; (III) Newlyn estimation errors show a trade-off

between the BM method and MEVD for calibration sample size equal to 20 and 30

years.

Results for the Marseille site show a peculiar behavior that requires a specific discussion.

In this case, the application of the traditional extreme value theory is advantageous

when compared with the MEVD (Figure 3.6c). In order to better understand the
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Figure 3.5: QQ plots of extreme-coastal-water-level quantiles, computed with the MEVD framework, for the
(a) Venice (IT), (b) Hornbæk (DK), (c, d) Marseille (FR), and (e) Newlyn (UK) sites. The
MEVD parameters estimations are based on non-overlapping sub-samples of fixed size (5 years),
while subplots indicated with the letter (d) display the QQ plots obtained with MEVD parameters
estimations based on data from the whole calibration sample size. The plots are obtained as a
result of the cross-validation method used to test the global performance of the models and are
estimated for 1000 random realizations and for sample size: (1) S = 30 years (in-sample-test in the
left column); (2) V =M − S years (out-of-sample test in the right column). The colors represent
the point density around the 45° line (black dashed line) corresponding to the best fit.
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application to the Marseille site, the MEVD parameter estimation is performed using

two approaches: (1) estimation based on non-overlapping calibration samples of fixed

size (5 years as for the other sites); (2) parameter estimation on data from the whole

calibration sample. The comparison of the results from these two setups confirms

that when longer time slices are used for estimating GPD parameters (black color in

Figure 3.6c), the MEVD performance is improved (for example when we consider S = 30

years, MEVD median[S-yearwindow] = 0.17 vs. MEVD median[5-yearwindow] = 0.35), though

it does not yet match the results obtained from GEV–BM approach (GEV–BM median

error = 0.016). This can be explained by considering sea-level peaks occur in Marseille

about once every year on average. In this case GEV–BM is advantageous because the

small number of events per year does not provide a more numerous calibration sample

with respect to the sample of annual maxima. This result confirms the conclusion by

Miniussi and Marani (2020), according to which the selection of the estimation window

size for fitting the ordinary value distribution strongly depends on the average number

of extreme events per year.

Figure 3.6: Distribution of the nondimensional estimation error (NDE) for maximum sample return period
(Tr) represented by means of box plots at given gauge stations explored: (a) Venice (IT), (b)
Hornbæk (DK), (c) Marseille (FR), (d) Newlyn. In the case of the Marseille (FR) site, MEVD
parameter estimation is based (1) on non-overlapping sub-samples of fixed size (5 years; green
color), and (2) on data from the whole calibration sample (black color).
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Figure 3.7: Kernel density estimates for the nondimensional estimation error (NDE) distributions obtained
with a calibration sample size (S) of 30 years and maximum return period (Tr) at given gauge
stations explored: (a) Venice (IT), (b) Hornbæk (DK), (c) Marseille (FR), (d) Newlyn (UK). In
the case of the Marseille (FR) site, MEVD parameter estimation is based (1) on non-overlapping
sub-samples of fixed size (5 years; green color), and (2) on data from the whole calibration sample
(black color).

In this Chapter, a comparative analysis between the three methods is also provided to

evaluate if the tested extreme-value distributions are representative of the entire range

of return times of interest. To achieve this purpose, the performance of the methods is

also evaluated for intermediate Tr values, greater than the calibration sample size, since

for Tr < S the empirical quantiles can be used. This additional analysis is performed for

the Venice, Hornbæk, and Newlyn sites. Figure 3.8 summarizes the results obtained by

estimating the probability distribution parameters on 30-year calibration sub-samples.

The analyses suggest that when we focus on the median error associated with moderate

values of the return period, GEV–BM displays an overall greater robustness (e.g., in the

case of Venice and Hornbæk sites) with respect to POT–GPD and MEVD, which exhibit

greater fluctuations. In particular, results show that MEVD is a good model for the

highest values of the return period, but exhibit a greater absolute value of the estimation

error for smaller Tr. Overall, the results suggest that no single approach is clearly

superior at all values of Tr, due to a large variability in the estimates. For example, for
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Table 3.3: Results of the evaluation metric obtained for all the gauge stations and for calibration sample sizes
(S) equal to 5 and 30 years. In the case of the Marseille site, text in bold refers to MEVD parameter
estimation based on data from the whole calibration sample size.

Site name Variables
S = 5 years S = 30 years

BM POT MEVD BM POT MEVD

Venice

NDE median – 0.160 – 0.175 – 0.178 – 0.133 – 0.158 – 0.004

NDE mean – 0.069 – 0.101 – 0.116 – 0.087 – 0.133 0.024

NDE SD 0.366 0.274 0.267 0.156 0.113 0.155

Hornbæk

NDE median – 0.119 – 0.104 – 0.113 – 0.113 – 0.115 0.056

NDE mean – 0.069 – 0.101 – 0.116 – 0.068 – 0.087 0.077

NDE SD 0.366 0.274 0.267 0.113 0.100 0.131

Marseille

NDE median – 0.0003 0.059 0.172 0.016 0.047
0.357

0.172

NDE mean 0.045 0.129 0.262 0.013 0.050
0.374

0.183

NDE SD 0.252 0.350 0.421 0.072 0.115
0.178

0.140

Newlyn

NDE-median – 0.010 – 0.030 – 0.033 – 0.003 – 0.032 0.0008

NDE mean 0.003 – 0.022 – 0.026 – 0.002 – 0.031 0.002

NDE SD 0.050 0.042 0.042 0.016 0.014 0.021

the Venice site there is a decrease (in many cases an unbiased estimate) in the MEVD-

NDE values for intermediate Tr (between 85 and 105 years), while for greater Tr values

(but smaller than Tr,max) the error shows an overestimation of the actual quantile

with respect to traditional approaches (which exhibit an underestimation tendency).

To be more specific, if Tr > 105 years are considered, MEVD yields error estimates

between 0 % and < 10 %, while errors associated with GEV–BM and POT–GPD lie

between 0 % and < –20 %. The Hornbæk site shows similar results to the Venice site,

while Newlyn’s results exhibit more fluctuations for large Tr values with much reduced

smaller amplitudes and values of the NDE.

3.3.3 Future projections of extreme total water levels

The final aim that this Chapter wants to pursue is how sea-level rise may influence

the frequency of extreme total water levels across the sites analyzed. As described in

Section 3.2.2, only the influence of an increased mean sea level is evaluated, i.e. possible

changes in storm regimes are not addressed (see, e.g., Tebaldi et al., 2012).

Site-specific sea-level projections from IPCC’s AR5 (Church et al., 2013) are used, which

indicate an accelerating sea-level rise at all four observation sites (for each gauge station
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under analysis, the reader can refer to the panels (a), (c), (e), and (g) in Figure 3.9),

with expected water level increases by the end of the century (RCP8.5) of 48 cm in

Venice, 52 cm in Hornbæk, 59 cm in Newlyn, and 54 cm in Marseille. The panels (b),

(d), (f), and (h) in Figure 3.9 show observed (green line) and future (blue and red lines)

changes in the return period associated with maximum water level events due to sea-

level rise. These curves were obtained by using, in Eq. (3.5), the MEVD with parameters

estimated on 5-year sliding windows. As noted above, changes in return levels are

nonlinear: relative changes are more significant for smaller extremes than for larger

ones. The Tr vs. z curves are concave downward and display varying slopes depending

on the site explored. When a fixed return period is considered (e.g., 500 years), the

mean-sea-level projections quantify the expected increase in extreme-total-water-level

peaks for that particular return period. These changes vary heterogeneously across

the different coastal sites explored. By comparing the percentage changes associated

with the two emission scenarios and the two return periods (Table 3.4), Venice and

Marseille are seen to experience the greatest changes in extreme total water levels (e.g.,

with reference to Tr = 100 years and RCP8.5, the variations at Venice and Marseille

Figure 3.8: Median of the nondimensional estimation error (NDE) for return period greater than the calibration
sample size in test sub-sample for the GEV–BM, POT–GPD, and MEVD approaches (magenta,
blue and green dots, respectively). The results are obtained for the Venice (IT), Hornbæk (DK),
and Newlyn (UK) sites and by estimating the distribution parameters on 30-year calibration sub-
samples.
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Table 3.4:
Results of the percentage changes in total water level (∆z) obtained with the two future scenarios
(RCP4.5 and RCP8.5) and the return periods (100 and 500 years) for the four sites under analysis.

Tr RCP
∆z (%)

Venice Hornbæk Marseille Newlyn

100
4.5 16.75 % 14.22% 22.62 % 11.29 %
8.5 22.82 % 21.76 % 29.73 % 15.26 %

500
4.5 14.60 % 11.70 % 16.24% 11.23 %
8.5 19.92 % 18.18 % 21.91 % 15.09 %

sites are approximately 23 % and 29 %, respectively). All sites display greater percent

changes for the lower 100-year return period in each scenario, i.e., “less-infrequent”

extremes will be most impacted by sea-level changes in the near future.

Focusing on changes in the return period of a fixed value of the total water level, for

example, the reader can see in Figures 3.9b, d, f, h how, for a given value of z, changes

(horizontal spacing between the curves) are greater for Tr = 1000 years than for Tr

= 500 years. Applying the expression for the sensitivity measure, SM (Eq. (3.6)),

also tells us that changes in Tr are more significant, everything else being equal, for

values of z−m.s.l. near the mode of the distribution, where f(z−m.s.l.) is maximum

(e.g., compare changes at the Venice or Hornbæk sites with those at Newlyn for a same

initial value of Tr). Finally, Eq. (3.6) shows that percentage changes in Tr are highly

site-dependent through the shape of f(z −m.s.l.).

3.4 Conclusions

In this Chapter the comparative examination of extreme-value distributions applied

to observed sea levels at several sites along European coasts provides insights into the

predictive performance of traditional and new approaches. The analyses confirm some

practical and conceptual advantages of the MEVD with respect to traditional methods.

A cross-validation scheme (with 1000 realizations for each site) was used to compare

model performance in high-quantile estimation. The use of two independent sub-sample

(calibration and test sample) allows the quantification of actual predictive uncertainty.

The results highlight that the MEVD approach provides reliable estimates of high quan-

tiles – i.e. associated with the maximum value in each test sub-samples – for almost

all the gauge stations explored, particularly when sufficiently long calibration sample

sizes are considered (e.g., from 10 to 30 years). Differences in performance between the

MEVD framework and GEV-based approaches are subtle, and a definitive conclusion

on an optimal solution independent of the return period of interest remains elusive.

However, small differences in the estimation accuracy are relevant for engineering ap-

plications when dealing with rare extreme events. If we focus on high-return-period
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Figure 3.9: Future total water level projections, with respect to the current mean sea level, in Venice (IT;
panels a and b), Hornbæk (DK; panels c and d), Marseille (FR; panels e and f), and Newlyn (UK;
panels g and h). (a, c, e, g) Annual (black line) and future mean sea level until 2100 with RCP4.5
(blue line) and RCP8.5 (red line). Dashed lines represent the 95 % confidence intervals. (b, d, f,
h) Return period curves for extreme total water level. The green curve represents the estimates
obtained with the observed record; the blue and red curves represent the estimates obtained with
the projected sea-level rise in the year 2100 with RCP4.5 (blue) and RCP8.5 (red), respectively;
the gray dots indicate the observed annual maxima. The triangle, square and pentagon highlight
the heights of extreme total water levels for a fixed return period equal to 500 years.
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quantile estimation, the analyses show that the MEVD approach provides reliable esti-

mates for almost all the gauge stations explored. Data from the Marseille gauge station

exhibit a behavior that deviates from those from other sites, showing an inferior per-

formance of the MEVD with respect to GEV-based approaches. The cause is to be

found in the small average number of sea-level peaks every year: the small sample of

yearly ordinary events available prevents the MEVD from adding significant informa-

tion with respect to GEV-BM and POT–GPD. Conversely, when methods performance

is evaluated for intermediate return period values, GEV–BM displays an overall greater

robustness, and MEVD exhibits a greater absolute value of the estimation error.

Unfortunately, the size of the available data set does not allow to explore model per-

formance for greater values of the return period. Future work could investigate if the

estimation error can be reduced, with respect to what was found here, by using different

approaches, e.g., by assuming “time-invariant” parameters in the ordinary distribution,

whose estimation would thus be performed on the entire calibration data set, rather

than on relatively short sliding windows. Synthetic water level time series may be pro-

duced by one of the several existing numerical models to extend analyses to arbitrarily

long return period values.

Finally, projections of the frequency of extreme total water levels driven by changes in

mean sea level are explored. The sensitivity of extreme-water-level frequency to sea-

level rise is location-dependent and the results show that, at a given site and for a set

value of the total water level extreme, the relative change in return time grows linearly

with return time itself.

Data availability. All data set used are publicly available from data sources cited

throughout this Chapter. Venice sea-level data were obtained from the “Centro Previ-

sioni e Segnalazioni Maree” of the Venice Municipality (https://www.comune.venezia.

it/it/content/centro-previsioni-e-segnalazioni-maree; Città di Venezia, 2020).

Hornbæk (Denmark), Marseille (France), and Newlyn (United Kingdom) water level

data were downloaded from the University of Hawaii Sea Level Center (UHSLC) repos-

itory (http://uhslc.soest.hawaii.edu/data/?rq#uh745a/; Caldwell et al., 2015).

The CMIP5 model outputs used for the future total water level projections are available

at the “Integrated Climate Data Center” (ICDC) database of the University of Ham-

burg (https://icdc.cen.uni-hamburg.de/en/ar5-slr.html; Church et al., 2013).
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Chapter 4

Modeling extreme meteorological

droughts from paleo-climatic

reconstructions: a statistical

approach based on the

metastatistical framework

Large areas worldwide are exposed to a multitude of natural hazards, such as earth-

quakes, volcanic eruptions, hurricanes, storms, tornadoes, floods, and droughts. Among

these, drought affects all the components of the water cycle and many sectors can be

affected. Therefore, assessing the rarity and magnitude of extreme drought events is

challenging. In fact, drought studies suffer from the lack of sufficiently long observations

(e.g., hydro-climatic records rarely span more than 100 years) and consolidated methods

of analysis. Accordingly, extreme quantile estimates are subject to large uncertainty.

Since the hydrological time series do not fulfill the basic requirements of the EV theory,

this Chapter proposes to (1) use the reconstructions of Palmer’s drought index based

on paleoclimate data, (2) adopt non-asymptotic formulations to accurately estimate

rare return periods associated with drought events. The structure of this Chapter in-

cludes 4 Sections as follows. Section 4.1 presents a general introduction of the drought

phenomenon; Section 4.2 focuses on the data and methods used in this application,

Section 4.3 describes and discusses the results obtained, and finally Section 4.4 draws

the conclusive remarks.
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4.1 Introduction

A drought is one of the most complex, insidious and multifaceted natural phenomena

whose effects can have harmful environmental and socio-economic impacts on commu-

nities around the world (Ji and Peters, 2003; Van Loon, 2015). As a recurrent feature of

climate, it can occur in any hydroclimatological regimes (Wilhite, 2000), with heteroge-

neous spatial and temporal characteristics across the regions. Recent history has shown

the vulnerability of many areas to drought episodes – e.g., the droughts in Southern

Africa from 1901 to 1999 (Rouault and Richard, 2005), the 2012–2017 event in Cali-

fornia (Ullrich et al., 2018), the so-called Millennium drought (1997–2010) in Australia

(Ummenhofer et al., 2009; Aghakouchak et al., 2014; Cai et al., 2014), the 2015 (Ionita

et al., 2017; Laaha et al., 2017), 2018 (Brunner et al., 2019; Bakke et al., 2020), 2022

(Commission and Centre, 2022) dry spells in Europe – and their adverse effects on both

water supply systems and environment (Rossi et al., 1992). Additionally, the observed

and projected increases in severity, frequency, duration, and spatial extent of droughts

worldwide (Cook et al., 2014; Forzieri et al., 2014; Bouras et al., 2019; Tramblay et al.,

2020) are a cause of significant concern in the scientific community.

A drought is considered as an elusive phenomenon that differs substantially from other

natural hazards (e.g., floods, tropical cyclones, tornadoes, earthquakes, and volcanic

eruptions), making its management a challenging task. Due to its complex nature

and multi-layered impacts, there are many obstacles in its study. Firstly, a univer-

sal definition of the term “drought” still remains elusive (Lloyd-Hughes, 2014), and is

possibly conceptually impossible and ill-posed. Many drought definitions are adopted

in different fields (e.g., meteorology, hydrology, economy), and, indeed, reflect differ-

ent objectives. Reviews of drought definitions can be found in Palmer (1965); Dracup

et al. (1980); Wilhite and Glantz (1985); Tallaksen and van Lanen (2004); Mishra and

Singh (2010). Among them, a general definition of drought is given by Tallaksen and

van Lanen (2004), which define drought as “a sustained and regionally extensive oc-

currence of below average natural water availability and can thus be characterized as

a deviation from normal conditions of variables such as precipitation, soil moisture,

groundwater, and streamflow”. In applying this definition, the question is: “what are

normal conditions?”. As discussed in Van Loon (2015), what should be regarded as

the “normal” situation strongly depends on what the water is used for. Realistically,

definitions of a drought and its impact depend on the focus of the study. Secondly,

drought events are rarely confined to a single point but, conversely, affect large areas.

Thirdly, drought evolution is influenced by a variety of hydrometeorological variables

(e.g., precipitation, evapotranspiration, runoff), which implies an even greater complex-

ity in assessing drought properties and dynamics (Mishra and Singh, 2010). Moreover,

since this phenomenon develops slowly over a prolonged period of time (months, years,

or even decades), and may linger for years after the conclusion of the event, the drought

42



onset and termination is difficult to determine. Finally, droughts affect different com-

ponents of the hydrological cycle, ecosystems, and sectors of society, which makes their

direct, indirect, and intangible impacts often difficult to quantify. As result, the re-

search community sometimes uses the term “creeping disaster” to describe a drought

(Gillette, 1950).

Droughts are generally classified according to four types (Wilhite and Glantz, 1985):

meteorological, hydrological, agricultural, and socio-economic drought. A meteoro-

logical drought occurs due to a prolonged lack of precipitation over a large area and

is the focus here. Hydrological drought is related to a period with inadequate sur-

face and subsurface water uses under a given water management scheme. Agricultural

drought refers to a period with declining soil moisture and consequent crop failure.

Finally, socio-economic drought is linked to the impact of the above-mentioned types

of droughts on society.

Due to the persistence and often long interarrival times between droughts, occurring

on time scales of years to decades or more, very long observational time series are

necessary to study their statistical properties. It is rare that such a large amount

of observational information, at appropriate space-time resolutions and consistency, is

available (Monteleone et al., 2020), which is a major limitation to the development of

appropriate drought models and to the quantification of the probability of occurrence

of future droughts. One possible approach to overcome this problem relies on the use of

proxy climatic data to extend the instrumental record. Additionally, since relatively few

droughts occur even within records of several hundred years, techniques which optimally

use available information, such as the MEVD framework, are highly beneficial in the

analysis of drought probability.

Motivated by the above considerations, this study exploits the long tree ring recon-

struction of the summer self-calibrating Palmer Drought Severity Index to investigate

the probabilistic structure of droughts. The main aim of the study is twofold: (1) to

identify a relationship between tree ring-derived index and local hydrologic balance,

(2) to estimate extreme return periods using a novel statistical approach based on the

distribution of the ordinary events, i.e. all the independent realizations of the variable

of interest, as opposed to just block maxima or values above a threshold.

4.2 Materials and Methods

4.2.1 Palmer Drought Severity Index

Unlike other extremes, the exact quantification of drought characteristics in terms of

intensity, magnitude, duration, and spatial extent is very difficult. For this reason,

several drought indices have been proposed in recent decades to quantify a drought,

each with its own strengths and weaknesses. Examples are the Palmer drought severity
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index (PDSI; Palmer, 1965), the rainfall anomaly index (RAI; van Rooy, 1965), deciles

(Gibbs and Maher, 1967), crop moisture index (CMI; Palmer, 1968), the standardized

precipitation index (SPI; McKee et al., 1993), the standardized precipitation evapo-

transpiration index (SPEI; Vicente-Serrano et al., 2010), the standardized streamflow

index (SSI; Peña-Gallardo et al., 2019), or the standardized snowmelt and rain index

(SMRI; Staudinger et al., 2014).

In this application the self-calibrating Palmer drought severity index (sc-PDSI; Wells

et al., 2004) is the focus. It is a revised version of the original PDSI proposed by Palmer

(1965). Briefly, PDSI is a normalized indicator of drought that represents a measure of

the balance between atmospheric moisture supply (precipitation) and demand (evapo-

transpiration) from month to month. PDSI is, hence, based on the supply-and-demand

concept of the water balance equation by considering antecedent precipitation, moisture

supply, and moisture demand (based on the Thornthwaite formulation) into the hydro-

logic accounting system. Palmer used a two-layer bucket-type model for soil moisture

computations and made some assumptions concerning field capacity and transfer of

moisture to and from the layers. Many limitations have been highlighted in the Palmer

model and among these, the following are mentioned. Firstly, the assumptions used,

for example: (1) the top soil layer has a field capacity of 1 in. (i.e. 2.45 cm), (2) mois-

ture is not transferred to the bottom layer until the top layer is saturated, (3) runoff

occurs only when both layers are saturated, and (4) all of the precipitation occurring

in a month is utilized during that month to meet evapotranspiration and soil moisture

demand or be lost as runoff. Secondly, the use of the Thornthwaite parametrization for

potential evapotranspiration (PET) rather than the more physically realistic Penman–

Monteith formulation. Thirdly, other factors such as changes in surface solar radiation

due to changes in cloudiness or aerosol concentrations are not explicitly considered in

the Palmer model. Fourthly, PDSI cannot reflect soil moisture conditions in presence

of snow, melt, or frozen. Lastly (probably the main critical point), the PDSI values

are not comparable between diverse climatic regions. In fact, in the PDSI formulation,

Palmer computed a set of empirical constants and duration factors by averaging the

values from only a few locations in the United States. These averaged values directly

affect the spatial comparability of the index.

Nevertheless, PDSI is an approximate measure of the cumulative effect of atmospheric

moisture supply and demand (Dai et al., 2004). Thus, this index can be used to monitor

long-term evolution of drought. A detailed description of the PDSI is given in Palmer

(1965), Alley (1984), and Karl (1986).

One of the PDSI deficiencies was resolved by the development of the sc-PDSI (Wells

et al., 2004) which is spatially comparable across diverse climatic regions. In fact,

Wells et al. (2004) replace the empirically climatic characteristics and duration factors

in the index computation with dynamically calculated values, the latter based on the

local historical climatic records. Starting from the formulation proposed by Wells
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et al. (2004), van der Schrier et al. (2013) present a new global sc-PDSI data set that

uses the Penman–Monteith formulation for PET and includes a simple snow melt and

accumulation process in the water balance. These global maps of monthly sc-PDSI

based on gridded meteorological time series available from the Climate Research Unit

(CRU; Harris et al., 2014), are used as target points for the tree-ring-based Old World

Drought Atlas used here.

4.2.2 Data

The Old World Drought Atlas

The Old World Drought Atlas (OWDA; Cook et al., 2015) is a set of year-to-year

maps of tree ring-based reconstructions of summer season (June–July–August, JJA)

self-calibrating Palmer Drought Severity Index values (sc-PDSI; van der Schrier et al.,

2013). The reconstruction is an indicator of the spring-summer soil moisture on 5414

half-degree grid points (small black grid points in Figure 4.1) for the entire Common

Era over the European-Mediterranean domain. OWDA data set is publicly available

at https://www.ncei.noaa.gov/access/paleo-search/study/19419.

The PDSI is estimated using a regression method on tree-ring properties. The method

of regression is analogous to that proposed to reconstruct the drought over North

America (North American Drought Atlas, NADA; Cook et al., 2004, 2010b), monsoon

Asia (Monsoon Asia Drought Atlas, MADA; Cook et al., 2010a) and northwestern

Africa (Touchan et al., 2011). In particular, the reconstruction uses the point-by-point

regression (PPR) method described in Briffa et al. (1986), Cook et al. (1994), and

Cook et al. (1999), with an extension of the procedure producing ensembles of climate

reconstructions (Cook et al., 2010a, 2013).

PPR is a well-tested regression method based on the premise that ≪only those tree-

ring chronologies proximal to a given PDSI grid point are likely to be predictors of

drought, where “true” implies a casual relationship between tree rings and drought

that is stable through time≫ (Cook et al., 1999). As originally proposed, PPR had

two variables to optimize: (1) a fixed search radius around each grid point, and (2)

screening probability. The first defines the local zone control used to find candidate

tree-ring predictors of PDSI. The screening probability (expressed in terms of α -level

probability), instead, eliminates tree-ring chronologies from the candidates that are

poorly correlated with drought. After several tests, Cook et al. (1999) found maximum

reconstruction fidelity using 450 km search radius and α-level probability of 0.10 re-

constructing gridded drought over the United States. However, for the OWDA domain

(as for the MADA domain), the originally proposed PPR needed to be changed due

to the uneven distribution of tree ring data over the domain and its sparse coverage,

especially in the eastern portion of the domain (see Figure 4.1). Therefore, an ensem-

ble of reconstructions at each grid point was introduced to improve accuracy in the
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reconstruction. To do this, some arrangements were necessary. Firstly, the screening

probability was deleted due to the high level of noise in the tree rings. Secondly, a

dynamic search radius has replaced the fixed one and has become part of the ensemble

approach used for the reconstruction.

As a result, an ensemble point-by-point regression was used to produce the OWDA. It

is a generalization of the original PPR method (Cook et al., 1999) whereby each tree-

ring chronology found within a given search radius around each grid point is weighted

by some power of its correlation with the climate variable being reconstructed. See

more details in (Cook et al., 1999) and (Cook et al., 2010a). The correlation-weighted

chronologies are then used in the principal components regression (PCR) model at each

grid point for reconstructing climate from tree rings. This is done in lieu of selecting

a subset of chronologies based on a fixed correlation screening probability. For the

OWDA, Cook et al. (2015) set the initial search radius to 1000 km. It is interesting

to note that in this reconstruction a “dynamic search radius” is used to find at least

20 chronologies within the radius of a given grid point. According to this request,

the search radius at the grid point is enlarged by 50 km increments until at least 20

chronologies are found. Here, PPR sequentially reconstructs each grid point of climate

variables (i.e. 5414 target grid points of sc-PDSI calculated from version TS3.21 of the

high-resolution CRU climate variables (Harris et al., 2014) from the network of annual

tree-ring chronologies (i.e. 106 chronologies partly extracted from the International

Tree-Ring Data Bank, ITRDB, and partly derived from contributions by European

dendrochronologists) using principal components regression (PCR). This resulted in a

8-member ensemble, which was then robustly averaged for further use.

Climate data

Long time series of rainfall and temperature are here used to validate the tree ring

reconstructed JJA sc-PDSI with historical records. In particular, two gauge sta-

tions in Italy were chosen as testing cases: Linguaglossa (CT, Sicily Region, 37.84

N, 15.14 E; 530 m a.s.l.) and Padova (PD, Veneto Region, 45.41 N, 11.88 E; 12 m

a.s.l.). The Padova time series includes 281 years of daily rainfall observations from

1725 to 2019, with only 14 missing years Marani and Zanetti (2015) and 223 years

of daily air temperatures from 1774 to 1994 Camuffo (2002a,b,c); Cocheo and Ca-

muffo (2002). Since temperature measurements for years 1725-1764 were taken indoor,

they are excluded from the present analysis. For the Linguaglossa site, monthly rain-

fall series (1921–2008) and maximum and minimum monthly air temperature (1926–

1996), available through the Water Observatory of Sicily Region whose data are col-

lected on the website of the Servizio Informativo Agrometeorologico Siciliano (SIAS;

http://www.sias.regione.sicilia.it/frameset_dati.htm), are used. In particu-

lar, the precipitation data used for Linguaglossa are the same used in the work by
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Figure 4.1: Map of the JJA sc-PDSI target field (small black grid points) and the 106 chronology tree-ring
network (filled triangles) used for reconstruction. Image credit: Cook et al. (2015).

Bonaccorso et al. (2015), where the authors reconstructed missing years by applying

the Thiessen polygons method. These raw data were pre-processed to (1) extract the

monthly rainfall and precipitation time series, and (2) eliminate years with less than

12 months of rainfall and precipitation observations. Finally, the obtained monthly

rainfall and temperature time series are merged. At the end of the process, 71 years of

observations are available for Linguaglossa (1926–1996 without missing years) and 207

years are available for Padova (1774–1994 with 14 missing years). Figure 4.2 shows the

data used for the subsequent analyses.

4.2.3 Method

Climate signal in the Old World Drought Atlas

Dendrochronologists have long found that ring widths from tree rings on arid or ex-

tremely cold sites reflect past variations in climate. Several studies have demonstrated

the linkages between tree ring-derived indexes and the local hydrologic balance (e.g.,

Fritts et al., 1971; Briffa et al., 2002; Dobbertin, 2005). These linkages are particu-

larly tight for the warm-season temperature, as the dominant growth-limiting factor

of tree ring widths. As a first step, however, the response of tree ring growth to

instrumental-based data of temperature and rainfall is here assessed. This analysis
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Figure 4.2: Rainfall and temperature data for the two selected locations: (a) Linguaglossa, CT, Italy, and (b)
Padova, PD, Italy.

is based on simple correlation, i.e. Pearson correlation coefficient calculated between

the total ring width chronologies (annual indices) and the climate records. Since soil

moisture retains some memory of previous months, the correlation is computed con-

sidering 12 time lags. To be more specific, the climate signal to compare with the

tree-ring chronologies was defined as the average monthly values from 1 to 12 pre-

vious months. This analysis was assessed for the Linguaglossa site since its annual

ring-width indices are available from the International Tree-Ring Data Bank (ITRDB,

https://www.ncei.noaa.gov/products/paleoclimatology/tree-ring). After this

preliminary step, focusing on the two case studies (i.e., Linguaglossa and Padova) and

prior to any drought occurrences analysis, the JJA sc-PDSI data from OWDA and

those estimated from instrumental data – computed using the Thornthwaite formula-

tion (Thornthwaite, 1948) to estimate the evapotranspiration – were compared based on

(1) visual inspection of the time series, (2) the Pearson and Spearman’s rank correlation

coefficients, (3) scatter plots, and (4) contingency matrices.

Definition of drought

The choice of the drought characteristic and the type of drought considered for a

specific study are critical steps to take in defining events characterized by below-normal

conditions.

As previously discussed, the drought metric used for event definition and analysis is the

summer sc-PDSI, which reflects spring-summer soil moisture conditions. It is widely

used as a paleoclimate reconstruction indicator (Cook et al., 1999, 2004, 2010a; Smerdon

et al., 2015). The choice of the PDSI as a valuable drought indicator is e.g., justified in

Cook et al. (2016), where they conclude that it represents a more complete picture of
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the surface moisture balance due to a long-term view of moisture deficits and surpluses

compared to indices derived from monthly precipitation anomalies alone. In fact, the

PDSI integrates changes in the surface moisture balance over a time scale of 12 months

(Guttman, 1998) and compares well with tree-growth models.

In the present analyses, the grid points in the OWDA domain corresponding to the

selected study sites are identified and the corresponding sc-PDSI time series are ex-

tracted. Drought events are then defined as those periods of time in which the values

of the sc-PDSI remains below a threshold, or truncation level, thr. This approach is

known as run theory (Yevjevich, 1967), and allows the definition of different drought

properties: (i) drought duration is the length of time during which the x-value (i.e.

sc-PDSI here) remains below thr, (ii) the sum of the deviations between the trunca-

tion level and the trace of the sc-PDSI time series is the deficit amount, and (iii) the

drought intensity, or drought severity, is obtained by dividing the deficit by duration.

The truncation level may be a constant, a stochastic variable, a deterministic function,

or a combination of these. In general, the literature expresses the truncation level in

terms of some central tendency index of the drought sample, e.g., the mean, median,

or mode.

In this application, the threshold level is varied to explore the sensitivity of results on

its choice and to verify that the event independence condition is met. After exploring

different threshold values, a value of –1 was adopted here. Moreover, the choice of this

suitable threshold was also confirmed by the study of the correlation structure of the

events (Figure 4.8). Figures 4.3 and 4.4 show the wet and dry periods identified in the

time series using the threshold-based approach. In particular, this application focuses

on the statistical characterization of the deficit amounts which constitute the sample

used for the following statistical inference.

Extreme value statistics

Due to the random nature of contributing factors, stochastic and probabilistic theo-

ries are proper approaches to describing the drought characteristics. In general, the

most extreme events have the greatest impact but, by definition, are “rare” and there-

fore difficult to characterize empirically. While this issue is inherent in the definition

of “extreme event”, it is particularly critical for drought conditions due to their long

characteristic time scales. To overcome this problem, here the metastatistical frame-

work – (MEVD; Marani and Ignaccolo, 2015; Zorzetto and Marani, 2019) and (SMEV;

Marra et al., 2019) – is applied. The MEVD formulation is based on the concept of

“ordinary values”, which are independent realizations of events without regard to their

magnitude, for which a more extensive sample can be identified in the observations (see

more details in Section 2.2). In the present case, the ordinary values are defined as the

magnitudes (of duration, deficit, or intensity) of all the events for which the value of
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Figure 4.3: Run theory applied to summer (JJA) sc-PDSI time series for Padova, PD, Italy.

Figure 4.4: Run theory applied to summer (JJA) sc-PDSI time series for Linguaglossa, CT, Italy.
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the PDSI remains below a set threshold. This definition is similar to that adopted in

much work in the existing drought literature (see e.g., Heudorfer and Stahl, 2017; Stahl

et al., 2020).

To our knowledge, only one precedent exists of application of the MEVD framework

to extreme drought occurrence. Araujo et al. (2022) used the SMEV formulation to

model changes in future drought risk assessments in Australia by using different climate

projections. In that application, the drought events were identified as a continuous

negative SPI/SPEI anomaly exceeding 1 standard deviation. Following Marra et al.

(2020), the SMEV distribution was applied to the largest portion of ordinary events

and a stretched-exponential decay describes the tail of the distribution. However, the

work by Araujo et al. (2022) does not include any comparison with approaches based

on the asymptotic results of the EV theory which is instead a pivotal analysis of this

application.

In the present application, several candidate probability distributions – i.e., the Gamma,

Weibull, 2-parameter log-normal, and generalized Pareto distributions – are tested to

describe the ordinary values distribution (i.e., F (x;
−→
θj ) or F (x;

−→
θ ) in Eqs. 2.7 and 2.8,

respectively). The most appropriate distribution is identified using diagnostic quantile–

quantile scatter plots comparing the MEVD (SMEV)-estimated quantiles with the ob-

served ones as part of the cross-validation procedure (the reader can refer to the next

Section for more details). Based on this visual inspection of the outcome from sev-

eral cross-validation randomizations, the Gamma distribution was selected. In order

to identify the possible benefits of different assumptions, the MEVD is here applied

according to three formulations: (1) the full MEVD formulation, in which both the

ordinary-value distribution and the number of events in each block are allowed to vary

from one block to another, (2) a formulation denoted as MEVD*, in which the dis-

tribution of the ordinary events is constant across different blocks (i.e. F (x;
−→
θ ) =

constant), while the number of events per block is allowed to vary, and (3) a MEVD**

formulation, in which the probability distribution of ordinary events is allowed to vary,

while the number of events per block is taken to be constant and equal to the overall

average across all blocks. The MEVD-based estimates from these formulations are then

compared with those obtained with the GEV distribution applied on the basis of the

block maxima model.

As discussed earlier (see Section 2.2.1), the metastatistical formulations as well as

the traditional EV theory require the specification of a “block” size within which the

extreme value distribution is defined. We have experimented with different choices of

block length to find that suitable choices depend on ensuring that a sufficient average

number of events fall within each block, and this is dependent on climatic conditions

at each location. A careful choice of block size is thus an important step in developing

reliable probability estimates are possible. Here, a block length of 40 (Linguaglossa) and

60 (Padova) years is used. In the cross-validation experiments performed we typically
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found that sensible results are obtained when the average number of events per block

is greater or equal to about 8–10. Clearly, it is desirable to define the shortest possible

block length, at least in metastatistical formulations, because this allows to capture

inter-block variability at a finer temporal scale.

Cross-validation procedure

In this particular application to extreme meteorological droughts by using paleo-climatic

archives, the CV procedure can be summarized as follows:

1. the time series of the drought periods is divided into blocks of fixed length, where

the starting event to define the block is randomly chosen Ns,y different times

(Ns,y = 100 here). This step ensures that blocks are not always composed by the

same set of events;

2. in every random starting point selection from step (1) S of theM blocks into which

the record is divided are randomly selected as the calibration sub-sample, on

which parameters are estimated. This randomization removes any possible non-

stationarity and serial correlation. Note also that the internal event composition

of each block remains unchanged to preserve both the ordinary value frequency

distribution in each block and the distribution of the number of events per block.

The V =M −S blocks not used in parameter estimation are used for testing and

constitute the “validation sample” or “test sample”. The validation is performed

by computing for each block maximum in the validation sample the corresponding

Weibull empirical frequency estimator, Fi = i/(V + 1) – where i is the rank of

the i-th block maximum in a list sorted in ascending order, is computed and

equated to the cumulative probability from the fitted distribution. The empirical

return period Tr associated with each block maximum is then simply Tr,i =

1/(1 − Fi). For each realization of calibration-validation partitioning (repeated

Nr = 100 times here) a nondimensional estimation error (NDE) – i.e. the relative

error between the estimated and observed quantiles – is computed as follows:

NDEp(S, Tr) = [h(est,p)(S, Tr)− h(obs,p)(S, Tr)]/h(obs,p)(S, Tr);

3. the CV scheme is repeated Ns,p x Nr times.

This procedure is performed for different calibration sample sizes (S = 3, and 5 blocks).

4.3 Results and discussion

4.3.1 Climate sensitivity of the OWDA tree-ring chronologies

The responses of annual tree-ring radial growth to climate are identified by using a

Pearson correlation analysis between the tree-ring chronology and climate variables.
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Table 4.1: Pearson and Spearman’s rank coefficient for the two case studies

Linguaglossa Padova

Precipitation Temperature Precipitation Temperature

Pearson 0.04 -0.08 0.16 -0.04
Sperman -0.03 -0.13 0.14 -0.06

Since tree growth has a tendency to lag time (Fritts, 1976), as described in Section 4.2.3,

the correlation is computed on backward windows of length from 1 to 12 months. The

results are not shown here. Looking at the Linguaglossa site, positive correlations

between plant growth and spring-summer temperature (i.e. May–August) were found.

Instead, an undefined pattern and a weaker association were found between tree-ring

width and precipitation variability.

To further identify the signature of the climate signal in the reconstructed sc-PDSI

from the OWDA, Figure 4.5 shows dry and wet periods identified in the drought index

time series reconstructed using proxy records (black line) or instrumental temperature

and precipitation data (red line) for the two case studies. On the basis of the visual

inspection of the two time series in overlapping years (i.e., 1926–1996 for Linguaglossa

and 1774–1994 for Padova), with the exception of just a few periods, a similar trend is

found, especially for the Linguaglossa location. Correlation analysis using the Pearson

and Spearman’s rank coefficients is also performed. For each case study, the obtained

values do not show a strong correlation between the reconstructed sc-PDSI and climate

data (i.e., annual mean precipitation and temperature). The two correlation metrics

both yield a negative correlation (even if small) between temperature and proxy. When

precipitation is considered, the Pearson and Spearman coefficients suggest a positive

correlation for Padova and an opposite correlation sign for Linguaglossa. To be more

specific, the values are reported in Table 4.1, while the corresponding scatter plots

are reported in Figure 4.6. The JJA sc-PDSI values, from proxy and estimated from

instrumental observations, are plotted against each other and a Total Least Squares

method – TLS – was applied. TLS is a regression method that minimizes the sum of

the squared distances between the points representing observations and the regression

line (in the direction orthogonal to the line). Therefore, this model assumes that

measurements of both variables are affected by “errors”. In addition, since the error is

present in both directions (i.e., x and y-axis), the scatter plots are discretized into 6

classes defined with respect to both the axes (x and y-axis). The average of the values

within the class is represented with black triangles (red stars). However, the results

of this comparative analysis do not seem to provide a precise pattern, and cloud of

observations is quite dispersed.

The lack of a clear correlation signal in previous analyses may be due to a low signal to

noise ratio and to non-linearities inherent to the computation of the sc-PDSI. A further
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Figure 4.5: Self-calibrating Palmer Drought Severity Index, sc-PDSI, for (a) Linguaglossa (CT, Italy) and (b)
Padova (PD, Italy) sites. The black line is the sc-PDSI extracted by the grid point of the OWDA
domain corresponding to the study sites. Red line is the time series of the sc-PDSI estimated using
observed temperature and precipitation data at each site.

analysis thus involved exploring the possible presence of a relation between correspond-

ing percentiles of the sc-PDSI values from tree-ring information and from observations.

Figure 4.7 shows contingency (or confusion) matrices: the matrices are obtained by

dividing the samples into tertiles of sc-PDSI along both axes, and by computing the

number of values from the sample falling in each cell (the number indicated in each

matrix cell). Overall, results for both sites suggest that the matrices are diagonally

dominant, except for the matrix element in position (3,3) in Figure 4.7(b). Despite

the noise, these analyses show that there indeed is a detectable covariation between

the two variables. In other words, when the tree-ring sc-PDSI value remains below

its average, also the corresponding observation-based sc-PDSI remains below its own

average. These considerations suggest that the use of tree-ring based sc-PDSI analyses

may provide insight into the statistical properties of droughts that are similar to those

that may be obtained from the observation-based PDSI (if they were available for the

entire proxy historical record).

4.3.2 Extreme value analysis

After demonstrating that the summer drought index reconstructed from proxy paleo-

climatic information indeed mirrors, to some extent, the variability of observed indexes,

the analysis proceeds to the application of the extreme value models to gather infor-

mation on the frequency of extreme drought events. As discussed in Chapter 2, the

presence of serial correlation in time series can produce some issues in performing a

frequency analysis because extreme value modeling requires the independence between

two consecutive events. In general, as discussed by Dracup et al. (1980) in their work
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Figure 4.6: Scatter plots between JJA sc-PDSI extracted from the OWDA domain (x-axis) vs. those computed
using rainfall and temperature measurements (y-axis) for (a) Linguaglossa (CT, Italy) and (b)
Padova (PD, Italy) sites.

about the definition of droughts, a shorter period tends to result in greater serial cor-

relation in the time series. Therefore, daily or monthly events usually show more serial

correlation with respect to the yearly ones. According to this idea, the use of annual

data resolution (as in this application) ensures that serial correlation is not an issue.

The existing literature on threshold-based approaches (see e.g., Tallaksen et al., 1997)

avoids splitting major droughts into several minor droughts and pools together events

that are separated by less than 2–3 days. For example, to overcome this problem,

Brunner et al. (2019), following the approach proposed by Tallaksen et al. (1997) and

Van Loon (2015), apply a time series smoothing (over a window of 60 d) prior to event

selection. In addition, they prescribe a minimum event duration of 20 d to ensure

independence in daily discharge time series.

Therefore, prior to further analysis the autocorrelation structure of the drought series

(i.e. the JJA sc-PDSI time series below the chosen threshold) is studied. For each

case study, the autocorrelation function (ACF, Figure 4.8) is computed using time

lags of fixed length (5 years, here). At the Padova site (Figure 4.6(b)), excluding the

longest two lags, where few pairs of values from the series exist (see Figure 4.8(d)), the

ACF decreases for increasing lag. Even though Linguaglossa displays a more slowly

decreasing correlation, (Figure 4.8(a)), overall the correlation is always less than 0.4,

which suggests a weak temporal correlation structure.

As in other applications of MEVD-based formulations (e.g., rainfall or extreme coastal

water level), the parameters of the ordinary value distribution (in this case a Gamma

distribution) are here estimated using the Probability Weighted Moments (PWMs;

Greenwood et al., 1979). The predictive estimation uncertainty associated with the

MEVD, MEVD*, MEVD**, SMEV, and GEV (fitted on block maxima) methods is
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Figure 4.7: Contingency matrices for (a) Linguaglossa (CT, Italy) and (b) Padova (PD, Italy) sites.

evaluated here using the NDE (defined in Section 4.2.3) as a function of return period

within the range of value of the latter accessible through the validation sub-sample, i.e.

for Tr = 1, . . . ,M − S + 1. Additionally, the effect of different choices of calibration

sample sizes between 3 and 5 blocks is explored. NDE values are summarized by

computing their average across the cross-validation randomization procedure, along

with their variability across different realizations represented by means of error bars

(Figures 4.9 and 4.11) and violin plots (Figures 4.10 and 4.12). When we consider a

calibration length of 5 blocks, we find somewhat different outcomes at the two study

sites. When inter-block variability in the distribution of the ordinary events is accounted

for (MEVD in green and MEVD** in purple colors) an underestimation of the empirical

quantile is produced. On the other hand, when no variability in the ordinary-value

distribution is allowed – i.e. a constant F (x,
−→
θ ) is assumed – an overestimation tends

to be produced. For the Padova site, and considering return periods less than 300 years

(dashed line in Figure 4.9), MEVD-based estimation errors are close to zero and the

small error standard deviation indicates a lower error variability (shorter “whiskers”)

with respect to the other approaches. Violin plots in Figure 4.10 suggest that: (1)

the estimates obtained using all the MEVD-based approaches tested show a lower

error variability (smaller uncertainty), and (2) the median error in MEVD estimates

is close to zero, corresponding to approximately an unbiased estimates. For the lower

return times, of most applicative interest in the present case, results suggest that the

performance of the full-fledged MEVD is better than for the remaining approaches

explored.

Results for the Linguaglossa sites (Figure 4.11, 4.12) show that also in this case the

application of MEVD-based methods is advantageous when compared with the GEV

formulation. However, in this case study the use of a formulation that neglects inter-
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Figure 4.8: (a), (b) Autocorrelation function calculated by grouping the values into classes of fixed width (5
years). (c), (d) Histogram of the number of pairs in each class. Results are shown for the two case
studies: (a),(c) Linguaglossa and (b),(d) Padova.

block variability (e.g., MEVD* and SMEV, namely in blue and yellow colors) seems

to be more appropriate when Tr is less than approximately 500 years. This can be ex-

plained by considering that, in this case, the probability distribution of ordinary events

does not display a large inter-block variability. In other words, hydrometeorological

regimes at Linguaglossa seem to display properties that are consistent over time, thus

favoring methods that pool together data from all blocks when estimating parameter

values.

Finally, a comparative analysis of the predictive estimations uncertainty considering

a small number of blocks is performed, to explore the relevant case in which only

a short time series is available. In particular, the situation in which just 3 blocks

can be used for parameter estimation for both the MEVD-based approaches and the

traditional GEV methods (Figures B.1–B.4). As expected, all formulations show a

decreased performance compared to the case of S = 5 blocks. However, it may be seen

that the GEV approach produces the largest estimation errors. For example, when

Padova and the smallest value of Tr are considered, GEV yields estimation errors of

approximately –40 % (it was –0.06 % for S = 5 blocks). Stressing even more methods,

e.g., considering S = 2 blocks, metastatistical formulations can be applied unlike the

three-parameter GEV distribution is not applicable. The results of this limiting case
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are reported in Appendix B (Figures B.5–B.8). Even though the estimates display high

uncertainty, again approaches that neglect the inter-block variability are preferable for

Linguaglossa.

Overall, the results suggest that no single approach is clearly superior for the entire

range of return periods accessible through the validation sub-sample. However, MEVD-

based estimates of extreme drought probability outperform, in terms of bias and un-

certainty, traditional GEV estimates, particularly when the observational length is too

short to apply conventional methods.

Figure 4.9: Error bars of the nondimensional estimation error (NDE) for the Padova site. Results are obtained
for all the available return periods in the validation sub-sample and by using 5 blocks (each 60
years long) to estimate the parameters of the Gamma distribution. The symbols indicate the
mean value (point) and the standard deviation (bar) of the NDE. Explanations of the acronyms
are reported in the main text.

4.4 Conclusions

The results in this Chapter contribute to improving our ability to estimate drought

return periods and provide estimates of the involved uncertainty. Notoriously, the

analysis of the probabilistic structure of droughts is a non-trivial task, due to the limited

number of drought events observed in the historical records of the relevant hydro-

meteorological variables. Frequently, in practical applications, a standard inferential

approach is not viable to suitably model drought characteristics.

To overcome these issues, this Chapter presents an at-site analysis of extreme meteo-

rological droughts in two case studies in Italy by using the sc-PDSI reconstructed from
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Figure 4.10: Violin plots of the nondimensional estimation error (NDE) for the Padova site. Panels report the
results obtained for the first two return periods (indicated as 1st and 2nd block in fig.) in the
validation sub-sample and by using 5 blocks (each 60 years long) to estimate the parameters of
the Gamma distribution. Explanations of the acronyms are reported in the main text.

Figure 4.11: Error bars of the nondimensional estimation error (NDE) for the Linguaglossa site. Results
are obtained for all the available return periods in the validation sub-sample and by using 5
blocks (each 40 years long) to estimate the parameters of the Gamma distribution. The symbols
indicate the mean value (point) and the standard deviation (bar) of the NDE. Explanations of
the acronyms are reported in the main text.
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Figure 4.12: Violin plots of the nondimensional estimation error (NDE) for the Linguaglossa site. Panels
report the results obtained for the first two return periods (indicated as 1st and 2nd block in
fig.) in the validation sub-sample and by using 5 blocks (each 40 years long) to estimate the
parameters of the Gamma distribution. Explanations of the acronyms are reported in the main
text.

tree ring archives. To infer the probability of drought occurrences, non-asymptotic

extreme-value formulations are used that allow for more efficient use of the available

data. In particular, the MEVD, SMEV, and GEV-based performance estimates and

their uncertainty are compared based on a cross-validation scheme. As recognized in

several studies worldwide (e.g. Anchukaitis, 2017; O’Donnell et al., 2018), the analyses

confirm that drought index reconstructions based on tree-ring data provide an oppor-

tunity to evaluate predictive uncertainty in extreme drought estimations. This Chapter

also explores the use of three different versions of the MEVD that account for different

degrees of inter-block variability, in the ordinary distribution parameters and in the

number of events per block. In general, results indicate that MEVD-based formula-

tions are more robust approaches with respect to traditional ones in applications to

droughts. When comparing the two case studies, different results are found. This fact

can be explained by their different hydro-meteorological regimes and the different long

term variability at each site.

The comparative analysis of the predictive estimation uncertainty in extreme drought

occurrences suggests that: (1) large inter-block variability in the probability distribu-

tion of drought properties may occur (e.g., see the Padova site), such that approaches

that account for such variability outperform methods that assume the drought statisti-

cal structure to be constant, (2) conversely, using formulations that neglect inter-block
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variability is more advantageous when such variability is less pronounces, such as in

Linguaglossa. In this case, approaches that use all blocks to estimate distributional

parameters yield a reduced estimation uncertainty.

Overall, this Chapter represents a contribution to the analysis of the probabilistic

structure of droughts using non-asymptotic formulations. This application confirms

the advantages and flexibility of these novel extreme value distributions also in the case

of drought phenomena.

Recently, there has been growing interest in the accurate estimation of joint probabil-

ities of drought for water management issues, monitoring, and early warning systems.

Given that the environmental extreme phenomena are generally multivariate in nature,

future work could focus on performing a multivariate frequency analysis considering

the possible occurrence of different properties or types of drought. In this context,

the metastatistical formulation based on the concept of “ordinary event” may provide

advantages in high quantile estimation.

Data availability. All data set used are publicly available from data sources cited

throughout this Chapter.

The OWDA data set is publicly available from the NOAA paleoclimate data base

(https://www.ncei.noaa.gov/access/paleo-search/study/19419). Padova (Italy)

climate data are from Marani and Zanetti (2015); Camuffo (2002a,b,c); Cocheo and

Camuffo (2002). Linguaglossa (Italy) climate time series are available from the Wa-

ter Observatory of Sicily Region, formerly the Sicilian Regional Hydrographic Ser-

vice, whose data are available at the website of the Servizio Informativo Agrometeoro-

logico Siciliano (SIAS; http://www.sias.regione.sicilia.it/frameset_dati.htm.

The annual total ring-width indices used in this application are available from the In-

ternational Tree-Ring Data Bank (ITRDB, https://www.ncei.noaa.gov/products/

paleoclimatology/tree-ring).
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Chapter 5

Summary and conclusions

This dissertation is a contribution to the statistical description of extremes using

non-asymptotic approaches based on the Metastatistical Extreme Value Distribution,

MEVD, and its simplified versions, SMEV, or Simplified Metastatistical Extreme Value

distribution. The objective is to apply the MEVD framework to practical extreme-value

problems requiring an optimized use of the observational information to estimate large

extremes based on small samples.

For the first time, MEVD models have been applied to characterize the extreme distri-

bution of coastal flooding events and drought occurrence. Even though these phenom-

ena are different from a physical process perspective, in both cases the results show the

advantages and flexibility afforded by these novel extreme value distributions.

The MEVD by construction is capable of capturing the stochastic inter-annual vari-

ability of process dynamics by multiple block-based parametrizations. The analysis has

shown that a key parameter to reliably estimate high quantiles is the block size through

which the extreme value distribution is defined. In particular, this choice defines the

sample length for parameter estimation and, hence, strongly controls estimation uncer-

tainty. For this reason, block length must ensure that a sufficient average number of

events fall within each block. Hence, the choice of block size must be dependent on the

phenomenon under analysis and on local climatic conditions.

In coastal flooding problem the analyses were focused on extreme values of the total

coastal water level, given by the sum between the water level setup induced by me-

teorological forcing and the astronomical tide. The results highlight that the MEVD

approach provides reliable estimates of high quantiles for almost all the gauge stations

explored, particularly when sufficiently long calibration sample sizes are considered.

Differences in performance between the MEVD framework and GEV-based approaches

are subtle, and a definitive conclusion on an optimal solution independent of the re-

turn period of interest remains elusive. If the focus is on high-return-period quantiles

estimation, the analyses show that the MEVD approach provides reliable estimates for

almost all the gauge stations explored. Data from the Marseille gauge station exhibit
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a behavior that deviates from those from other sites, showing an inferior predictive

performance of the MEVD with respect to GEV-based approaches. The cause is to be

found in the small average number of sea-level peaks every year. In this case, the small

sample of yearly ordinary events available prevents the MEVD from adding significant

information with respect to GEV-based approaches. Conversely, when methods per-

formance is evaluated for intermediate return period values, GEV based on the block

maxima method displays an overall greater robustness, and MEVD exhibits a greater

absolute value of the estimation error. Finally, the sensitivity of extreme-water-level

frequency to sea-level rise was explored. The results are location-dependent and show

that, at a given site and for a set value of the total water level extreme, the relative

change in return time grows linearly with return time itself. In fact, changes in return

levels are nonlinear way. The results suggest that relative changes are more significant

for smaller extremes than for larger ones. By comparing the percentage changes asso-

ciated with the two climate change scenarios and the two return periods considered,

Venice and Marseille are seen to experience the greatest changes in extreme total water

levels. All sites display greater percent changes for the lower 100-year return period in

each scenario, i.e. “more frequent” extremes will be most impacted by sea-level changes

in the near future.

Focusing on drought occurrence, it is widely recognized that the study of the proba-

bilistic structure of droughts suffers from the lack of sufficiently long observations and

consolidated methods of analysis. Since direct hydrological observations do not provide

a sufficient amount of data, the analysis was here focused on the use of reconstructions

of Palmer’s drought index based on proxy paleoclimate data. An important point

addressed here regards the identification of a relationship between tree ring-derived

index and local hydrologic balance. Using several correlation measures, we conclude

that the use of tree-ring based sc-PDSI analyses may provide insight into the statisti-

cal properties of droughts that are similar to those that may be obtained from PDSI

values computed using direct observations. Drought events were identified by using

Run Theory and the effect of different choices of calibration sample sizes was explored.

The MEVD was applied according to three formulations: (1) the full MEVD formula-

tion, in which both the ordinary-value distribution and the number of events in each

block are allowed to vary from one block to another, (2) a formulation denoted as

MEVD*, in which the distribution of the ordinary events is constant across different

blocks (i.e. F (x;
−→
θ ) = constant), while the number of events per block is allowed to

vary, and (3) a MEVD** formulation, in which the probability distribution of ordinary

events is allowed to vary, while the number of events per block is taken to be constant

and equal to the overall average across all blocks. The comparative analysis of the

predictive estimation uncertainty in extreme drought occurrences suggests that: (1)

large inter-block variability in the probability distribution of drought properties may

occur, such that approaches that account for this variability outperform methods that
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assume the drought statistical structure to be constant, (2) conversely, using formula-

tions that neglect inter-block variability is more advantageous when such variability is

less pronounces. In other words, when the hydrometeorological regimes display prop-

erties that are consistent over time, thus favoring methods that pool together data

from all blocks when estimating parameter values. In this case, approaches that use

all blocks to estimate distributional parameters yield a reduced estimation uncertainty.

Finally, the predictive uncertainty associated with MEVD-based approaches compares

favorably with that characterizing traditional GEV-based methods. Importantly, for

realistic cases in which only relatively short calibration samples were used, MEVD-

based approaches allowed the estimation of high quantiles, even though with large

(but quantified) uncertainty. Block-maxima GEV methods could not in these cases be

applied because of a lack of sufficient data for parameter estimation.

Clearly, further improvements and developments to the present dissertation may be

envisioned and can be summarized as follows.

(1) For coastal flooding, the size of the available data set does not allow the exploration

of model predictive uncertainty for large values of the return period. Future work could

investigate whether the estimation error can be further reduced by using alternative

assumptions, e.g. by assuming “time-invariant” parameters in the ordinary-event dis-

tribution (SMEV). With such an approach distributional parameters can be estimated

based on the entire calibration data set, rather than on relatively short sliding windows.

(2) For drought analysis, future work may explore a mixed-distribution approach, in

which different populations of ordinary drought events are modeled. The MEVD could

then be built by studying the rate of occurrence of the different components of the

mixture.
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Appendix A

Extreme-coastal-water levels
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Figure A.1: Independent coastal water levels (gray line) for the Venice (IT), Hornbæk (DK), Marseille (FR)
and Newlyn (UK) sites, and events on which the three approaches are fitted: (a) magenta dots
show the annual maxima used for the GEV–BM method, (b) blue dots represent the exceedances
over a threshold in the case of the POT–GPD approach, and (c) green dots display the ordinary
values for the MEVD framework.
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Figure A.2: VENICE (IT) – QQ plots of extreme coastal water level quantiles computed for the GEV–
based approaches (BM and POT) and MEVD for the Venice station. The plots are obtained as
a result of the cross-validation method used to test the global performance of the models and are
estimated for 1000 random realizations and for sample size: a) S = 30 years (in-sample-test in the
left column); b) V = M − S years (out-of-sample test in the right column). The colors represent
the points density around the 45° line (black dashed line) corresponding to the best fit.
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Figure A.3: HORNBÆK (DK) – QQ plots of extreme coastal water level quantiles computed for the GEV–
based approaches (BM and POT) and MEVD for the Venice station. The plots are obtained as
a result of the cross-validation method used to test the global performance of the models and are
estimated for 1000 random realizations and for sample size: a) S = 30 years (in-sample-test in the
left column); b) V = M − S years (out-of-sample test in the right column). The colors represent
the point density around the 45° line (black dashed line) corresponding to the best fit.
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Figure A.4: MARSEILLE (FR) – QQ plots of extreme coastal water level quantiles computed for the GEV–
based approaches (BM and POT) and MEVD (with parameter estimation on non-overlapping
sub-samples of fixed size (5 years)) for the Marseille station. The plots are obtained as a result of
the cross-validation method used to test the global performance of the models and are estimated
for 1000 random realizations and for sample size: a) S = 30 years (in-sample-test in the left
column); b) V = M − S years (out-of-sample test in the right column). The colors represent the
point density around the 45° line (black dashed line) corresponding to the best fit.
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Figure A.5: MARSEILLE (FR) – QQ plots of extreme coastal water level quantiles computed for the GEV–
based approaches (BM and POT) and MEVD (with parameter estimation on data from the whole
calibration sample) for the Marseille station. The plots are obtained as a result of the cross-
validation method used to test the global performance of the models and are estimated for 1000
random realizations and for sample size: a) S = 30 years (in-sample-test in the left column); b)
V =M −S years (out-of-sample test in the right column). The colors represent the point density
around the 45° line (black dashed line) corresponding to the best fit.
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Figure A.6: NEWLYN (UK) – QQ plots of extreme coastal water level quantiles computed for the GEV–
based approaches (BM and POT) and MEVD for the Venice station. The plots are obtained as
a result of the cross validation method used to test the global performance of the models and are
estimated for 1000 random realizations and for sample size: a) S = 30 years (in-sample-test in the
left column); b) V = M − S years (out-of-sample test in the right column). The colors represent
the point density around the 45° line (black dashed line) corresponding to the best fit.
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Appendix B

Extreme meteorological droughts
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Figure B.1: Error bars of the nondimensional estimation error (NDE) for the Padova site. Results are obtained
for all the available return periods in the validation sub-sample and by using 3 blocks (each 60
years long) to estimate the parameters of the Gamma distribution. The symbols indicate the
mean value (point) and the standard deviation (bar) of the NDE. Explanations of the acronyms
are reported in the main text.

Figure B.2: Violin plots of the nondimensional estimation error (NDE) for the Padova site. Panels report the
results obtained for the first two return periods (indicated as 1st and 2nd block in fig.) into the
validation sub-sample and by using 3 blocks (each 60 years long) to estimate the parameters of
the Gamma distribution. Explanations of the acronyms are reported in the main text.

76



Figure B.3: Error bars of the nondimensional estimation error (NDE) for the Linguaglossa site. Results are
obtained for all the available return periods in the validation sub-sample and by using 3 blocks
(each 40 years long) to estimate the parameters of the Gamma distribution. The symbols indicate
the mean value (point) and the standard deviation (bar) of the NDE. Explanations of the acronyms
are reported in the main text.

Figure B.4: Violin plots of the nondimensional estimation error (NDE) for the Linguaglossa site. Panels report
the results obtained for the first two return periods (indicated as 1st and 2nd block in fig.) into
the validation sub-sample and by using 3 blocks (each 40 years long) to estimate the parameters
of the Gamma distribution. Explanations of the acronyms are reported in the main text.
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Figure B.5: Error bars of the nondimensional estimation error (NDE) for the Padova site. Results are obtained
for all the available return periods in the validation sub-sample and by using 2 blocks (each 60
years long) to estimate the parameters of the Gamma distribution. The symbols indicate the
mean value (point) and the standard deviation (bar) of the NDE. Explanations of the acronyms
are reported in the main text.

Figure B.6: Violin plots of the nondimensional estimation error (NDE) for the Padova site. Panels report the
results obtained for the first two return periods (indicated as 1st and 2nd block in fig.) into the
validation sub-sample and by using 2 blocks (each 60 years long) to estimate the parameters of
the Gamma distribution. Explanations of the acronyms are reported in the main text.
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Figure B.7: Error bars of the nondimensional estimation error (NDE) for the Linguaglossa site. Results are
obtained for all the available return periods in the validation sub-sample and by using 2 blocks
(each 40 years long) to estimate the parameters of the Gamma distribution. The symbols indicate
the mean value (point) and the standard deviation (bar) of the NDE. Explanations of the acronyms
are reported in the main text.

Figure B.8: Violin plots of the nondimensional estimation error (NDE) for the Linguaglossa site. Panels report
the results obtained for the first two return periods (indicated as 1st and 2nd block in fig.) into
the validation sub-sample and by using 2 blocks (each 40 years long) to estimate the parameters
of the Gamma distribution. Explanations of the acronyms are reported in the main text.
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P. J., Tegel, W., van der Schrier, G., Andreu-Hayles, L., Baillie, M., Baittinger, C.,

Bleicher, N., Bonde, N., Brown, D., Carrer, M., Cooper, R., Čufar, K., Dittmar,
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