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Abstract: Wireless power transfer (WPT) is a power transfer technique widely used in many industrial
applications, medical applications, and electric vehicles (EVs). This paper deals with the dynamic
modeling of the resonant inverter employed in the WPT systems for EVs. To this end, the Generalized
State-Space Averaging and the Laplace Phasor Transform techniques have been the flagship methods
employed so far. In this paper, the modeling of the resonant inverter is accomplished by using
the novel Modulated Variable Laplace Transform (MVLT) method. Firstly, the MVLT technique is
discussed in detail, and then it is applied to model a study-case resonant inverter. Finally, a study-case
resonant inverter is developed and utilized to validate the theoretical results with MATLAB/Simulink.

Keywords: wireless power transfer; inductive power transfer; dynamic modeling; modeling techniques;
resonant inverters; electric vehicle

1. Introduction

The Wireless Power Transfer (WPT) system transmits electrical energy without any
physical connection [1]. WPTs offer various benefits over wired ones, making them ideal
for industrial applications: reducing danger from exposed wires, rendering the charging
process easy, and reliable power transfer in rough weather conditions [2]. WPT is accom-
plished by inductively coupling the transmitter and receiver coils [3], thanks to Faraday’s
law of electromagnetic induction. The receiver coil is deployed in the vehicle chases while
the transmitter coils are buried under the ground. Further, due to better efficiency, resonant
inductive WPT is used for EV charging [4].

The schematic of a WPT system is shown in Figure 1. It is composed of various power
conversion stages [1]. On the transmitter side, it consists of a power factor correction circuit
(PFC) and a high-frequency inverter, whereas on the receiver side, it has an uncontrolled
bridge rectifier and a chopper cascaded with it. Moreover, on the transmitting side, the elec-
tromagnetic compatibility (EMC) filter ensures that the system meets the electromagnetic
standards. The filtered low-frequency grid voltage is applied at the input of the PFC circuit
for rectification. Typically, PFC stands for power factor correction, and it is carried out by
either a simple uncontrolled diode rectifier [5] or a controlled rectifier [6]. The inverter
converts DC voltage into AC voltage, feeding power to the transmitter coil. The induced
high-frequency voltage on the receiver coil is conditioned by the diode rectifier and the
chopper to regulate the voltage and current profile suitable for battery charging [7]. In
addition, the compensation network on both sides improves the system efficiency and
cancels the reactive power demand from the inverter.
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Figure 1. General schematic of the WPT systems.

Usually, the steady-state analysis of a WPT system is carried out through the Funda-
mental Harmonic Approximation (FHA) technique [8]. For the transient analysis, instead,
it is necessary to have a good dynamic model of the system available. To find the dynamic
model of a WPT system, the traditional State-Space Averaging (SSA) method cannot be
used because one prerequisite for its application is that the state variables of the system
should be slowly time-variant compared to the converter switching period [9]. Further-
more, the transmitting power stage of a WPTS can be envisaged as a resonant converter. In
resonant converters, the quantities in the resonant tanks exhibit predominantly oscillatory
behavior. In WPTSs, the quantities involved in compensating networks are alternated
signals pulsating at the inverter switching frequency. In other words, the switching period
is equal to the natural time constant of the system. For this reason, SSA method applied to
WPTSs and in general to resonant converters is not able to yield a useful dynamic model.

Therefore, other methods should be used to model the resonant inverter employed in
the WPT systems, where its switching frequency is deliberately chosen to be close to the sys-
tem natural frequency. To that end, the two main techniques that have gained success in the
literature are the Generalized State-Space Averaging (GSSA) [10–14] and the Laplace Phasor
Transform (LPT) [15–19]. These methods overcome the problem of the SSA technique by
considering for the modeling of the AC quantities their slow-varying envelopes in place of
their average values is refer [20,21]. A novel method called Modulated Variable Laplace
Transform (MVLT) has been recently introduced by the author [22]. The method exploits
the same averaging principle as the GSSA and the LPT techniques, and as demonstrated
in [23], in the case of the modeling of a linear system, they are perfectly equivalent.

All the methods mentioned possess advantages and drawbacks. The GSSA method is
the most general of the methods, but at the same time, it is relatively sophisticated due to
the state-space representation of the system, which in some cases does not add any benefit
to the analysis. The LPT is a circuit-based modeling technique that is relatively easy to apply,
despite the usage of unconventional components such as complex resistors. In other words,
the GSSA method applies the transformation to the state-space equations of the system,
whereas the LPT method is based on transformations at the circuit level. The application
of the LPT method starts with the conversion of the original circuit, substituting all the
elementary components with their respective Laplace phasor-transformed counterparts.
From the transformed circuit, it is easy to evaluate all the desired transfer functions.

This paper aims to show that in some situations, such as the modeling of the resonant
inverter on the transmission side of the WPT systems, the MVLT technique could be the
method to be preferred due to its simplicity and its straightforward application. The reason
for the introduction of a new modeling method is that with both the GSSA and the LPT
methods, the direct link between the instantaneous model and the envelope model is lost.
This link is maintained by the MVLT method which thus can provide better insight into the
envelope model.
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This paper is organized as follows: Section 2 describes the WPT system to be modeled
and the assumptions made to achieve this goal. Section 3 explains the MVLT method, and
in Section 4, this method is applied to model the study-case resonant inverter. In Section 5,
the model is verified by simulation. Finally, Section 6 concludes the paper.

2. System Description

The equivalent circuital diagram of the WPT system with a series–series compensation
network is illustrated in Figure 2. Here, vs. is the source voltage; vt and vr are the voltages
induced on the transmitter and receiver coils, respectively. The induced voltage in the
coil is caused by a change in current in the coil, which may be explained by Faraday’s
law of electromagnetic induction. Ct, Cr, and Lt, Lr are the transmitter and receiver side
capacitors and inductances, respectively; the transmitter and receiver components are
identical. Further, it and ir are the transmitter and receiver side currents, respectively, and
M is the mutual inductance between the two coils. Rl is the resistance seen from the receiver
coil. It is also referred to as load resistance.

Figure 2. Equivalent circuital diagram of the series-series WPT system.

From the analysis carried out in [23], the entire receiver side can be replaced by a
resistance R reflected to the transmitter side and is given by

R =
(ωM)2

Rl
(1)

Here, ω is the supply angular frequency in rad/sec, and is equal to 2π f , where f
is the supply frequency in Hz. It should be noted that the voltage vs. is controlled by
the phase-shift method, in which the frequency f remains fixed at 85 kHz. The supply
frequency was chosen in accordance with the SAE J2954 standard, which recommended
the operating frequency range of 79–90 kHz for the WPT system for EVs.

As may be observed from (1), that the receiver side reflects resistance to the transmitter
side R depends on the values of M and Rl which vary with respect to the coil alignment
and the battery state of charge, respectively. In this paper, for simplicity, M and Rl are
considered to be fixed, thus giving a fixed value for R. In order to find an easy way to model
the WPT system, the circuit of Figure 2 is redrawn in Figure 3, which can be represented
as a simple series RLC network together with the load resistance R and source voltage vs,
in which the following hypotheses are made: (i) the inverter switching frequency f is the
resonant frequency of the LtCt tank which follows the relation f = 1

2π
√

LtCt
; (ii) due to the

filtering action of the LtCt resonating tank, the current it is nearly sinusoidal; (iii) although
the supply voltage is a quasi-square, only fundamental component contributes in the
power transfer. Since the harmonic content of the resonant converter output is low, we
used fundamental wave analysis in this paper.
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Figure 3. Equivalent circuit of the transmission side of WPT system shown in Figure 2.

3. MVLT Modeling Method

The novel MVLT modeling method was first presented in [22], where the authors used
this technique for the dynamic modeling of wireless power transfer systems. The technique
can be applied to any circuit where the involved quantities are high-frequency sinusoidal
signals with slowly varying amplitudes, like the ones illustrated in Figure 3. By applying a
mathematical transformation, the MVLT method eliminates the high frequency and obtains
a relationship between the envelopes. Supervising the envelopes of the quantities is easier
due to their limited bandwidth, and at the same time, it is enough to maintain the system
under control.

An amplitude modulated signal, e.g., x(t), can be written in the form of its dynamic
phasor x(t) [22] as

x(t) = <
{

x(t)ejωt
}

(2)

Here <{·} is the real part operator and ω is the angular frequency of the carrier of the
modulated signal x(t). As an assumption of the MVLT technique, the frequency content of
x(t) should be negligible at frequencies approaching ω, so that the modulating signal is
much slower than the carrier. With this hypothesis, if x(t) is provided as the input signal to
a system having a transfer function G(s), the output signal y(t) can also be written in the
form of (2). Hence, the relationship between the Laplace transforms of these two complex
signals will be

L
{

y(t)ejωt
}
(s) = G(s)L

{
x(t)ejωt

}
(s) (3)

where the operator L{·} is the Laplace transform of the argument. Using the “frequency
shifting” property of the Laplace transform and with some additional mathematical steps,
Equation (3) becomes

Y(s) = G(s + jω)X(s) (4)

Here, the quantities X(s) and Y(s) are the Laplace transforms of x(t) and y(t), respec-
tively. It is clear from (4) that the transfer function which links phasor quantities is nothing
but the transfer function G(s) of the original signals with s mapped into s+ jω. The transfer
function G(s + jω) is a rational function of s with complex coefficients. Nevertheless, it
is always possible to break (4) into its real and the imaginary parts, as explained in the
Appendix A, and it results in

G(s + jω) = GRe(s) + jGIm(s) (5)

where GRe(s) and GIm(s) are rational functions in s with real coefficients in their numerators
and denominators. Equation (4) gives the transfer function between the complex signals
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x(t) and y(t). However, the target is to find the relationship between the envelopes. In this
regard, the envelope of the output signal y(t), which is |y(t)|, is given by

yenv(t) = |y(t)| =
√

y2
Re(t) + y2

Im(t) (6)

Here yRe(t) and yIm(t) are the real and imaginary parts of y(t). Since (6) is not linear,
it needs to be linearized to get the transfer function between the envelopes of the output
yenv(t) and of the input xenv(t). The linearization of (6) leads toyenv(t) ≈

YRe,i√
Y2

Re,i+Y2
Im,i

ỹRe(t) +
YIm,i√

Y2
Re,i+Y2

Im,i

ỹIm(t)

≈ cos(φi)ỹRe(t) + sin(φi)ỹIm(t)
(7)

The graphical plot of Equation (6) for the linearization process of the output signal
y(t) is shown in Figure 4. Indeed, the envelope of the output signal y(t) in linearized form
is represented in Equation (7). Where subscripts i and f stand for the “initial” and “final”
operating points, YRe and YIm are the real and imaginary parts of Yi = Yiejφi , where Yi
represent initial output of signal y(t) with blue phasor with φi angle, which coincides with
the conventional phasor of the output y(t) before the perturbation that can be represented
with a red phasor. The process of linearization can be better appreciated in Figure 4. The
dynamic phasor y(t) moves from its initial value Yi to the final value Y f . During the
transient, y(t) can be written as Yi + ỹ(t), where ỹ(t) = ỹRe + jỹIm identifies its small
variation around Yi in the complex plane that can be represented with a black phasor.
Assuming insignificant change in φi so that the phase of y(t) remains almost constant for
all the transition, from Figure 4, the second equality of (7) appears more clear. Applying
the Laplace transform to (7) and neglecting the tildes for the sake of lightening the notation,
Equation (8) is obtained.

Yenv(s) = cos(φi)YRe(s) + sin(φi)YIm(s) (8)

Figure 4. Graphical explanation of the linearization process for Equation (6).
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To link the Laplace transform of YRe(s) and YIm(s) to the Laplace transform of the
small-signal input, let us consider the carrier of the signal x̃(t) as the reference of the phases.
As a result, the dynamic phasor x̃(t) given by x̃Re(t) + jx̃Im(t) consists of the real part only.
Therefore, with this frame of reference, the real part of x̃(t) also coincides with its envelope,
and consequently Xenv(s) is equal to XRe(s) in the s-domain. When x̃(t) = x̃Re(t) is applied
to G(s + jω), the dynamic phasor ỹ(t) is obtained. Since the input of G(s + jω) is real, the
real part of ỹ(t) is the output of GRe(s) and the imaginary part is the output of GIm(s). With
this consideration, Equation (8) becomes

Yenv(s) = [cos(φi)GRe(s) + sin(φi)GIm(s)]Xenv(s) (9)

Considering that the function enclosed in the square brackets can be obtained as
<
{

G(s + jω)e−jφi
}

, provided that s is assumed to be real [14], the transfer function linking
the envelopes can be finally written as

Genv(s) =
Yenv(s)
Xenv(s)

= <
{

G(s + jω)e−jφi
}

(10)

It is interesting to note that the angle φi of the phasor Yi is also the phase of G(jω).
From (10), it is easy to see that the MVLT method, applied to a linear system, directly
relates the transfer functions for the modulated quantities and the transfer functions for the
modulating signals (the envelopes). In the Appendix A, this relationship is further analyzed.

4. Method Application

As a first step for the MVLT method application, the transfer function between the
original signals of the equivalent WPT system of Figure 3 is evaluated. For instance, the
transfer function between current i and the input voltage source vs. is

Gi(s) =
I(s)

Vs(s)
=

sCt

1 + sRCt + s2LtCt
(11)

As a second step, mapping s into (s + jω) in (11) gives

Gi(s + jω) =
sCt + jωCt

LtCts2 + (RCt + j2ωLtCt) s + (1−ω2LtCt + jωRCt)
(12)

It can be easily seen in (12) that the numerator and the denominator of Gi(s + jω) are
polynomials in s with complex coefficients. As shown in (5), Equation (12) can be split into
the real and the imaginary parts. The desired transfer function can be obtained by using (9).
As per the hypotheses made for this case of study, the current it is in phase with the voltage
source vs, therefore the angle φi in (9) is zero, and the envelope transfer function remains
only the real part of (12) given by

Gi,env(s) =
Ienv(s)

Vs,env(s)
=

sCt
(
1−ω2LtCt + sRCt + s2LtCt

)
+ ω2Ct(RCt + 2sLtCt)

(1−ω2LtCt + sRCt + s2LtCt)
2 + ω2(RCt + 2sLtCt)

2 (13)

Consider that when ω2 = 1/LtCt, which is another form of (1), Equation (13) can be
further elaborated as

Gi,env(s) =
Ienv(s)

Vs,env(s)
=

1
R

1 + 2Lt
R s + 1

ω2 s2 + Lt
R

1
ω2 s3

1 + 4Lt
R s +

(
1

ω2 + 4 Lt2

R2

)
s2 + 2 Lt

R
1

ω2 s3 + Lt2

R2
1

ω2 s4
(14)

The transfer function in (14) links the current envelope with the supplying voltage
envelope for the quantities in Figure 3. Equation (14) shows that the transfer function for
the envelopes has all the coefficients that are real numbers.
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5. Model Validation

To validate the model (14) obtained from the simplified circuit of Figure 3, an MAT-
LAB/Simulink model of the resonant inverter has been developed. The values of the
parameters considered in the realization of the resonant inverter and utilized to validate
the theoretical results with MATLAB/Simulink are collected in Table 1. To corroborate
the hypotheses made in the previous sections, firstly, the steady-state waveforms have
been captured and shown in Figure 5a–f with two small perturbations at secondary load,
i.e., receiver side-reflected resistances to the transmitter side R are 5 Ω, 10 Ω, and 15 Ω,
respectively. Here, it is observed that although the inverter output voltage contains several
harmonics, the current it is nearly sinusoidal. This means that the resonant tank is very
selective and filters all of the harmonics except the fundamental one. The assumption made
in Figure 3 of considering the inverter as a sinusoidal voltage source corresponding to the
fundamental of the inverter output voltage is then verified. In Figure 5, it is also shown
that at steady-state, the current it is in phase with the fundamental of the inverter output
voltage, which means that the inverter switching frequency is perfectly tuned to the natural
frequency of the LtCt circuit, i.e., the angle φi in (9) is zero. A MATLAB scope acquisition of
the current and voltage wave forms has been evaluated with the three different loads set to
5 Ω, 10 Ω, and 15 Ω, with a small perturbation angle of αP = 45◦ in time interval 0.7–0.72 ms,
as represented in Figure 5a–c, respectively. It is verified, through the voltage waveform,
that the conduction angle of the converter output voltage is greater than α = 120◦ due to the
addition of the perturbation angle. Additionally, the fundamental voltage of the converter
output voltage also increases. For further demonstration, the simulation result of the
current and voltage wave form with perturbation angle αP = 60◦ is shown in Figure 5d–f,
where the voltage wave form for the full half-cycle is depicted.

Table 1. Parameters of the Assembled Resonant Inverter.

Symbol Parameter Value

Vdc DC bus voltage 365 V
ω Angular frequency 2π·85,000 rad/s
Lt Transmitter inductor 22.050 µH
Ct Transmitter capacitor 159 nF
R Load resistance 5 Ω, 10 Ω, 15 Ω
α Phase shift angle 120◦

αP Perturbations angle 45◦, 60◦

To verify the dynamic model, a small perturbation to the system has been introduced.
The inverter phase-shift angle α, which was initially set to 120◦, is increased by 45◦.
Accordingly, the fundamental of the inverter output voltage has been also increased.
Indeed, its amplitude started from a value of Vs =

4
πVDCsin

( αi
2
)
= 402.5 V and has reached

an approximate value of 460.5 V. A MATLAB scope acquisition of the current has been
triggered by the step change in α at 0.5 ms. The acquired current is one that flows through
the H-bridge inverter output of the current it, and thus they share the same positive
envelope. Then, inverter current waveforms with small perturbations of phase shift angle
α, with the three different loads set to 5 Ω, 10 Ω, and 15 Ω are shown in Figure 6a–c. The
transfer function (14) has been implemented in Simulink. Since it places the envelopes in
relation, a voltage step of 58 V (corresponding to a step of 45◦ in α) has been provided as
its input. The resulting output with the three loads set to 5 Ω, 10 Ω, and 15 Ω., which is
the small-signal envelope of inverter output current, has been superposed on the steady-
state value of the amplitude of the current i that is around 80.5 A, 40.25 A, and 26.8 A,
respectively. The total signal has been plotted in the three different graphs of the inverter
output current as shown in Figure 6a–c. It can be noticed that the output of (14) matches
very well with the real envelope of the inverter output current, thus validating the MVLT
model. For further demonstration, the simulation was again carried out for α = 60◦, where
the sinusoidal and the envelope matched properly. The plots are shown in Figure 6d–f.
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Figure 5. Voltage (quasi-square wave) and current (sinusoidal waveform) for the realized resonant
inverter. Current is a multiple of five. (a) αP = π/4, R = 5 Ω; (b) αP = π/4, R = 10 Ω; (c) αP = π/4,
R = 15 Ω; (d) αP = π/3, R = 5 Ω; (e) αP = π/4, R = 10 Ω; (f) αP = π/3, R = 15 Ω.
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Figure 6. Inverter output current (solid red line) obtained from MATLAB simulation and its envelope
(dashed blue line) obtained in Simulink as the output of the model (14). (a) αP = π/4, R = 5 Ω;
(b) αP = π/4, R = 10 Ω; (c) αP = π/4, R = 15 Ω; (d) αP = π/3, R = 5 Ω; (e) αP = π/4, R = 10 Ω;
(f) αP = π/3, R = 15 Ω.

6. Conclusions

In this paper, the novel MVLT method is explicated. The method is used to obtain the
dynamic model of the resonant inverter that feeds the load of a WPT system. The discussion
begins by obtaining the equivalent circuit model of the WPT system and underlining the
hypotheses made for its derivation. It continues with the MVLT method description and its
application to the considered resonant inverter. It has been demonstrated that the sought
dynamic model can be obtained from the system original transfer function followed by
a simple remapping in s-domain and a few additional mathematical steps. Unlike the
existing GSSA and LPT methods, the MVLT technique emphasizes the link between the
real signal transfer functions and the envelope transfer functions. Hence, the dynamic
behavior of the envelopes can be directly assessed from the system transfer function. In
this paper, the validity of the MVLT method has been verified by comparing the outcomes
of the model implemented in Simulink. The result is satisfactory.
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Appendix A

This appendix is used to show how the envelope transfer function G(s + jω) can be
split into its real and imaginary parts, as stated in Equation (5). Let G(s) be a rational
function given by n(s)

d(s) . The transfer function linking the dynamic phasors can be found as

G(s + jω) =
n(s + jω)

d(s + jω)
=

p(s)
q(s)

(A1)

In Equation (A1), p(s), and q(s) are polynomials in s with complex coefficients. These
polynomials can be separated into their respective real and imaginary parts, obtaining

G(s + jω) =
pRe(s) + jpIm(s)
qRe(s) + jqIm(s)

(A2)

Introducing a polynomial q̂(s), which is defined as the complex conjugate of q(s), and
multiplying the numerator and the denominator of Equation (A2) by it, Equation (A3)
is obtained:

G(s + jω) =
p(s) q̂(s)
q(s) q̂(s)

=
pReqRe(s) + pImqIm(s)

q2
re(s) + q2

Im(s)
+ j

pImqRe(s)− pReqIm(s)
q2

re(s) + q2
Im(s)

(A3)

Equation (A3) is the expected result since it shows G(s + jω) in the form of Equation (5).
From Equation (9), it is clear that the transfer function that links the envelope is a linear
combination (with the coefficients cos(φi) and sin(φi)) of GRe(s) and GIm(s)). According to
this and to Equation (A3), it can be stated that the denominator of Genv(s) has a degree that
is twice the degree of d(s). Thus, the transfer function for the envelopes has twice as many
poles as the transfer function of the real system. By exploiting Equation (A3) with the help
of some mathematical steps, it is also possible to find the relation between the poles of the
two transfer functions. This interesting result is explained in detail in [18].
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