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Abstract 
The latest industrial paradigms are driving research and innovation to facilitate the 

transition to a sustainable, human-centered and resilient industry. In the manufacturing context, 

workers' diversity in terms of experience, productivity, and physical capacities represents a 

significant challenge for companies, especially those characterized by high staff turnover and 

manual processes with high workload and poor ergonomics.  

In seeking to address such challenges, this research adopts a human-centric perspective 

for the development of new human-oriented solutions for ergonomic and sustainable work 

environments. To speed up technical data collection, a new high-tech ergonomic platform was 

developed to progress the occupational risk assessment and training session of the workforce 

in real time. Furthermore, this research proposes a multi-objective job rotation scheduling 

model to achieve multiple job assignment objectives simultaneously considering different 

sociotechnical factors: worker experience, physical capacity and limitations, safety risks related 

to the postural position, noise levels, vibration exposure and boredom of workers.  

The implementation of the model in real environments can be supported by a new digital 

ergonomic platform that can collect data on worker efficiency, postural risk and task 

performance, and allow workers to participate in the measurement of perceived fatigue and 

boredom. The proposed model aims to find the most appropriate assignment of jobs and flexible 

individual rest-break plan for each worker. A methodological framework was also defined to 

help collect data from the workplace and the workforce and to improve the development of safe 

and inclusive workplaces. The solution proposes a structured method to support workforce 

diversity management and workforce involvement. 
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 “There should be no boundaries to human endeavor. We are all different.  

However bad life may seem, there is always something you can do,  

and succeed at. While there is life, there is hope.” 

 

 Stephen Hawking  
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Introduction 
One of the biggest management challenges for companies today is the inclusion of 

individual characteristics of workers during production process decisions to obtain more 

realistic planning and scheduling outcomes. Defining the recovery time based on operator’s age 

and gender (Finco et al., 2019), considering the maximum weights that workers can lift in 

manual handling of loads ((ISO 11228-1, 2003), Lifting index - NIOSH (Waters et al., 1993)) 

and the physical limitations, impairments or disabilities, according to individual work 

exemptions, are only few examples of crucial aspects that managers need to consider when 

progressing daily work plans. Furthermore, the phenomenon of workforce ageing is recently 

affecting most of the Organization for Economic Cooperation and Development (OECD) 

member countries, due to the general ageing of their populations and a higher average 

retirement age of the workforce. The European population is projected to grow from 507.2 

million in 2013 to 522.8 million in 2060, with the percentage of seniors (65 years or older) 

forecast to grow by 10% (Eurostat, 2019). Following this international trend, the MAIA project 

(MAIA Project, 2019, Models and Methods for an Active Ageing workforce: an International 

Academy) has begun investigating the interaction of an aging industrial workforce with a range 

of contextual multilevel factors such as culture, workforce demographics, technology type, 

company policies, and organizational design to develop new design principles and create 

human-centric assembly and production workspaces suitable for aging workforce conditions, 

by researching and advancing productivity, quality, and safety paradigms. 
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The increasing percentage of ageing operators in manufacturing areas, due to the 

postponement of retirement age, contributed to enhancing the level of physical and cognitive 

disparity among workers (Calzavara et al., 2020).  

On the industrial side, companies increasingly outsource segments of their production to 

rationalize core production toward a greater reliance on automation and information technology 

(Mathiassen, 2006). These actions result in fewer and more similar work tasks and a general 

move toward less varying exposure levels in those tasks. This suggests that jobs will show fewer 

opportunities for variation and recovery through discretionary or unplanned breaks and a greater 

occurrence of repeated short-cycle operations. In such a context, repetitive tasks and hazardous 

postures can negatively impact the well-being of workers, causing work-related muscle 

disorders (WRMSDs). This trend has been confirmed by a recent report of the European 

Agency for Safety and Health at Work (Jan et al., 2019), which states that more than half of the 

EU workforce reports WRMSD, especially located in the shoulders, neck, and upper 

extremities. Furthermore, WRMSDs cause about 90% absenteeism and injuries. Additionally, 

strong seasonality and the current spread of e-Commerce lead companies to deal with sudden 

high peaks of market demand through constant operator turnover. Consequently, workers are 

not equally skilled and work-related injuries can arise if tasks are not performed correctly from 

an ergonomic point of view. During production peaks, companies often hire temporary workers 

that are assigned to easy and standardized tasks, thus leaving a smaller selection of tasks for 

long-term employees (Neumann et al., 2006). Therefore, both groups of workers might 

experience a limited variation in biomechanical exposures during these periods.  

New goals for workforce management arise dealing with this diversity challenge: Find 

the best match between worker capacities and limitations with the most suitable set of 

assignable jobs. A “one size fits all” approach is unlikely to be successful anymore, given the 

inherent heterogeneity in the demographics and capabilities of workers. In this sense, company 

employers must increase their awareness of workforce diversity management in job scheduling 

decisions. In addition, new industrial paradigms are shifting the focus of companies on societal 

values and worker wellbeing to reinforce the role and contribution of industry to society. In this 

regard, the integration of sociotechnical aspects during the definitions of work arrangements 

can bring great advantages in achieving a higher degree of flexibility in workforce management, 

embracing the new human-centric industrial paradigms for the development of inclusive, 

ergonomic, and more resilient work environments against any disruptive and unpredictable 

event. 
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Research purpose 

To pursue a sustainable development of the society, the European Commission stated that 

economic, environmental and social aspects should be equally considered in short- and long-

term goals of governments, institutions and companies toward the satisfaction of human needs 

and aspirations (Breque et al., 2021; Renda et al., 2022). Following this perspective, this 

research aims to promote the integration of sociotechnical aspects in operational and strategic 

decisions in manufacturing companies, to enhance sustainable development both from 

economic and social perspectives. Although economic and environmental aspects have already 

been widely discussed, the social dimension has been often neglected so far (Trost et al., 2022). 

In particular, according to the Global Reporting Initiative (2018) standard, which defines the 

“triple bottom line” approach that promotes sustainability in three domains (i.e., distinguishes 

between the economic, environmental and the social dimension of sustainability), this research 

focuses on economic and social sustainability, aiming to guarantee the health condition of 

workers, employee satisfaction, but also allowing companies to improve economic 

performance. In fact, social and economic dimensions of sustainability are deeply connected 

since an insufficient consideration of employee-related social aspects can lead to increased 

physical and mental exhaustion, and therefore to a decrease in performance (David, 2005). 

 Monitoring workers’ performance and efficiently managing workers’ job assignment are 

essential activities to rapidly react to unforeseen events and sudden changes of market demand. 

Resilience and flexibility have become fundamental assets to ensure business stability against 

disruptive events. Moreover, the latest industrial paradigms provided a new vision for the future 

of work in smart resilient manufacturing systems (Romero & Stahre, 2021). This research 

contributes to the development of resilient approaches to help companies face unpredictable 

events (e.g., it helps with workforce turnover, with the integration of new temporary employees, 

or manage job re-assignment based on workers’ capacities and limitations, through flexible and 

human-oriented work arrangement). Furthermore, this research also considers the new central 

role of the operator, who gains control of the work process (Romero et al., 2016). A human-

oriented perspective was adopted to manage workforce diversity (i.e., technical factors and 

individual characteristics such as anthropometric characteristics, physical limitations, skills and 

capacities) but also to actively include and integrate workers’ perspective in operational and 

strategic decisions.  
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In this sense, this research moves a step forward in the conciliation between operations 

management, which primarily focuses on firm profitability, often neglecting issues with any 

ethical implications, human resource management, which focuses more on selecting and 

developing people in order to fit them to the system and the integration of human factors in 

manufacturing work field, on adapting the system design in order to fit it to the people 

(Neumann et al., 2006). Therefore, the dissertation should provide practitioners and scholars 

with a better understanding of new methods and approaches to manage workforce diversity in 

the manufacturing industry and the development of flexible work plans by answering the 

following research questions. 

• RQ1: “Do current workforce management methodologies include the characteristics of 

workers and their individual perspective for the development of flexible work plans?” 

• RQ2: “How has the latest technological advancement shaped occupational risk assessment 

methods to create a safe and inclusive workplace?” 

• RQ3: “What are the implications of adopting a human-oriented perspective in defining the 

workforce rotation strategy?” 

Dissertation outline 

 

Figure I.1: Dissertation outline 
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The dissertation is organized into five main parts as follows: 

I. Theoretical background: After a first introduction of the context, motivations, and 

objective of the study, Chapter 1 provides an overview of existing job rotation scheduling 

models which include human factors and sociotechnical aspects. Consequently, a review of 

the literature is provided in the context of occupational risk assessment methods, with a 

particular focus on postural risk assessment approaches. Finally, a survey of the methods 

available to proactively reduce postural risks at work is presented. 

II. Methodological framework: Based on the findings of the state-of-the-art, Chapter 2 

describes a new methodological framework to integrate sociotechnical aspects and human 

factors into scheduling decisions to progress flexible work arrangements based on the 

workforce profile. 

III. New ergo-digital platform: A new technological solution to perform occupational risk 

assessment and workforce training time in real-time is proposed in Chapter 3. The 

technological platform is described and validated with another commercial system. Finally, 

the new solution is tested for real and laboratory test cases. 

IV. New mathematical model: starting from the technical data collected from the in-house 

ergo-platform, Chapter 4 proposes a new multi-objective job rotation scheduling model to 

include productive, ergonomic, and social aspects in the definition of flexible work plans 

and the most suitable job rotation strategy given workforce profile. Therefore, a numerical 

application is proposed to test the applicability of the model. 

V. Conclusions and future directions: The last chapter aims to summarize all the main results 

and provide managerial insight to practitioners. In conclusion, practical applications and the 

implications of the findings for company management are reported. In addition, a critical 

examination of the work and its results is conducted. Finally, limitations and future 

perspectives are provided to suggest relevant future research directions. 

Summary of papers 

This section reports the presented and published contributions for conferences and 

international journals that I produced during my Ph.D. research activity. 

• Berti, N., Finco, S., Battini, D. (2021). A new methodological framework to schedule job 

assignments by considering human factors and workers' individual needs. Proceedings of 

the XXVI Summer School 'Francesco Turco'. AIDI – Industrial Systems Engineering. 
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• Battini, D., Berti, N., Finco, S., Guidolin, M., Reggiani, M., & Tagliapietra, L. (2022). 

WEM-Platform: A real-time platform for full-body ergonomic assessment and feedback in 

manufacturing and logistics systems. Computers & Industrial Engineering, 164, 107881. 

• Berti, N., Finco, S., Guidolin, M., Reggiani, M. & Battini, D. (2022). Real-time postural 

training effects on single and multi-person ergonomic risk scores. IFAC-PapersOnLine, 

55(10), 163-168. 

• Berti, N., Finco, S., Zennaro, I., Battini, D. Towards a flexible work scheduling: a multi-

objective job rotation model and real case application. XXII International Working Seminar 

on Production Economics, Innsbruck, Austria, February 2022 

• Battini, D., Berti, N., Finco, S., Zennaro, I., & Das, A. (2022). Towards industry 5.0: A 

multi-objective job rotation model for an inclusive workforce. International Journal of 

Production Economics, 108619. 

Hereafter, the contributions that are not included in this dissertation are as follows. 

• Berti N., Finco S., Battini D., Battaïa O. Minimizing human fatigue and make-span in a 

dual resource constrained job shop scheduling problem, Proceedings of the 21st 

International Working Seminar on Production Economics, February 2020, Innsbruck, 

Austria  

• Katiraee N., Battini D., Berti N., Calzavara M., Finco S. (2020) The workforce ageing 
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“Francesco Turco” – Industrial Systems Engineering. 
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Resource Constrained job-shop scheduling. International Journal of Production Economics, 
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• Berti, N., Finco, S. (2022). Digital Twin and Human Factors in Manufacturing and Logistics 

Systems: State of the Art and Future Research Directions. IFAC-PapersOnLine, 55(10), 

1893-1898. 
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1  

State-of-the-art 
Introduction 

This chapter investigates the literature background related to the job rotation scheduling 

problem (JRSP), and the mathematical models able to include sociotechnical factors for the 

creation of flexible and inclusive work arrangements, which consider the characteristics and 

limitations of individual operators. Eventually, to promote safe, inclusive, and ergonomic 

workplaces, a collection of some of the most famous methods for evaluating occupational risks 

in the workplace is reported and described, according to the technical standards of the 

International Organization for Standardization. In this analysis, both qualitative and 

quantitative techniques are considered to include the perspective of workers in the assessment 

of workplace risks. Furthermore, to reduce occupational risk related to hazardous postures, the 

focus of the analysis shifts to enabling technologies that can monitor the postural risk of workers 

and provide real-time corrections to awkward behavior.
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1.1 Job rotation scheduling model 

Job rotation scheduling (JRS) strategies have been introduced in manufacturing and 

logistics (M&L) systems since the 1980s with the aim of improving workforce flexibility and 

performance (Padula et al., 2017). JRS has received considerable research attention, especially 

on economic aspects and system productivity. It was only in the last decade that those worker-

related social aspects began to appear in production planning strategies and JRS (Trost et al., 

2022). The initial concern was to prevent work-related Musculoskeletal Disorders (WMSD) or 

other diseases caused by prolonged exposure of operators to high safety risk factors (Leider et 

al., 2015). The aim was to avoid excessive exposure to the same set of jobs characterized by 

heavy loads, vibrations, awkward postures or repetitive movements performed during the work 

activity (A. Otto & Battaïa, 2017; A. Otto & Scholl, 2013; Padula et al., 2017).  

In contrast to workforce rotation strategies, which mainly focus on worker assignment 

throughout several rotation periods, the Job-Shop Scheduling Problem (JSP) represents another 

classic scheduling problem that focuses on job assignment. Dealing with a JSP means 

scheduling a set of jobs on a set of machines, subject to the constraint that each machine can 

progress only one job at a time (Applegate & Cook, 1991). The aim of the JSP is to minimize 

the total completion time of the jobs in queue to the shop floor. In this sense, workforce 

assignment respecting industry needs and personal features becomes a secondary objective, 

unless the number of workers is less than the total number of machines, as described in the 

literature concerning the Resource-constrained JSP and on its applications considering 

workforce skills and limitations (Berti et al., 2021). The literature review process was based on 

the guidelines outlined by Otto & Battaïa (2017). As shown in Table 1.1, this literature survey 

was carried out first by defining appropriate keywords, then filtering the results, analyzing the 

literature and finalizing the results according to other literature reviews existing on similar 

topics (Mehdizadeh et al., 2020; Moussavi et al., 2019; A. Otto & Battaïa, 2017). The scope of 

this review was to investigate contributions that consider the integration of sociotechnical 

aspects, such as occupational risks and workforce diversity, to propose optimization models or 

algorithms on the job rotation scheduling problem. Therefore, the articles were filtered 

according to the following selection criteria.  

• Articles had to be written in English and published in peer-reviewed journals. 

• Articles had to investigate the job rotation scheduling problem (i.e., they had to contain a 

sufficiently precise description of the objective function and constraints).  
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• Articles had to contain an explicit measure of the physical occupational risks. 

Focusing the research of the literature only on the keyword ‘job rotation scheduling’, the 

investigation reached a restricted subset of 54 suitable articles; however, to avoid possible 

missing results, the list of keywords adopted for this survey was intentionally enlarged, as 

reported in Table 1.1. 

Table 1.1: Keyword categories used for the literature search 

Group 1 Group 2 

‘Job rotation’ AND 

(model* OR formul* OR 

optimiz* OR approach* OR 

algorithm* OR program* 

OR problem* OR schedul*) 

Ergonom* OR ‘human factor*’ OR ‘manual handl*’ OR ‘occupation* 

disorder’ OR 'occupation* disease’ OR ‘musculoskeletal disorder*’ 

OR ‘musculoskeletal disease*’ OR ‘upper extremity disorder*’ OR 

‘upper extremity disease*’ OR ‘low back pain’ OR postur* OR 

‘application* force*’ OR ‘exposure* force*’ OR vibration* OR 

fatigue OR ‘energy expenditure’ OR noise OR boredom OR repet* 

The search then provided 200 hits, which were subsequently analyzed. The documents 

identified in the search were evaluated by reading the abstracts and then the full text. Irrelevant 

papers were discarded according to selection criteria and through an information clustering 

technique implemented using VOSviewer (Figure 1.1). As a result, 45 articles were selected 

and analyzed. Finally, 18 articles were defined that are suitable for the purpose of this analysis. 

 

Figure 1.1: Keyword map made with VOSviewer (colors are related to the publication year) 
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Regarding the existing mathematical models on JRS, the contribution of Carnahan et al. 

(2000) can be considered the pioneer in including HF and ergonomics in JRS since they 

proposed the first mathematical contribution to minimize the ergonomic load for the worker 

most exposed through the Job Severity Index (JSI). They developed both Linear Programming 

(LP) and Genetic Algorithm (GA) methods to find over 400 unique solutions to the rotation 

plan, involving eight rotation periods within the same work shift. Asensio-Cuesta et al. (2012a) 

introduced a fitness function based on the Occupational Repetitive Actions Index (OCRA) 

(Occhipinti, 1998) to avoid the repetition of the worker's job and increase the variability of the 

risk level to which workers are exposed. The authors proposed a GA to find the best feasible 

solutions corresponding to the fitness function with the lowest value, considering the penalties 

for the incompatibilities between jobs and the physical, mental and communication abilities of 

workers. Asensio-Cuesta et al. (2012b) used 39 different criteria to develop a multi-criteria GA 

to generate job rotation schedules considering ergonomic movements of workers, physical 

skills and individual competence. Suitable rotation plans are obtained in acceptable 

computational time to reduce MSD risk factors, diversifying movements, and including the 

disability of the worker, limitations, and other medical considerations.  

Otto & Scholl (2013) developed a smoothing heuristic capable of providing initial 

solutions as input for the tabu search procedure. Furthermore, they demonstrated the NP-hard 

nature of the dynamic model and state that the reduction of computational times is a potential 

improvement when the estimation of individual safety risks is considered in the proposed tabu 

search algorithm. Mossa et al. (2016) proposed a model to maximize the production rate in 

work environments characterized by high repetition frequency. The authors adopted the OCRA 

method in car seat assembly line workstations to determine task acceptability and balance 

workloads and safety risk among workers. Song et al. (2016) developed a hybrid GA for the 

minimization of WMSD considering muscle fatigue, working height, and the NIOSH (National 

Institute of Occupational Safety and Health) lifting index, but neglecting physical and 

psychological factors such as motivation, personal preferences, and fatigue, which the authors 

consider as limitations of their research. Yoon et al. (2016) estimated the perceived workload 

in three automotive assembly lines through the Rapid Entire Body Assessment Index (REBA) 

(Hignett & McAtamney, 2000) to avoid successively workload in the same body regions. The 

authors proposed a classification of the workstations into high- and low-loading groups to 

ensure WMDS risk prevention and defined job rotation schedules according to the daily 

cumulative REBA score for each worker. Furthermore, Digiesi et al. (2018) developed a model 
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to reduce the safety risk of workload within acceptable limits while ensuring productivity goals. 

The capacity of the model has been tested on four manual assembly workstations for five 

different scenarios, with the objective of minimizing the coefficient of variation of the RULA 

risk index weighted for the entire workforce.  

Despite their usefulness, postural ergonomic indexes cannot precisely discriminate the 

repetitive use of body parts, for this reason, their adoption is often matched with specific 

assessment tools like NIOSH Lifting Equation, JSI and OCRA (Yoon et al., 2016). Sana et al. 

(2019) considered both RULA, NIOSH and OCRA risk indexes as ergonomic constraints of 

their multi-objective optimization model. Due to the level of complexity, the authors adopt a 

GA to efficiently find the set of Pareto solutions within a reasonable computing time. 

Hochdörffer et al. (2018) created a short-term staff planning system for multiple rotation rounds 

based on the Balanced Ergonomic Qualification preserving job rotation (BEQR) method. They 

proposed a heuristic approach to generate workday rotation plans to guarantee balanced 

workload distribution, qualification preservation, and fair schedule plans along with workforce 

characteristics. Asensio-Cuesta et al. (2019) created an algorithm based on game theory to 

design job rotation schedules according to job competencies and worker preferences. Four 

different scenarios are presented to evaluate the capacity of the method. The results are then 

compared based on the fitness score achieved, and the final conclusions are drawn based on 

preferences, competencies, and ergonomic perspectives. Moussavi et al. (2019) adopted an in-

house ergonomic method to include five main parameters in the proposed model for job 

rotation, to simultaneously balance daily physical workload and prevent consecutive high 

workloads in task assignments. Work posture, repetition, force, material handling, and energy 

consumption are detailed in 20 parameters adopted to avoid rotation schedules with consecutive 

high workload assignments and repetitiveness for the same criterion along with daily activity.  

Due to the high complexity of the problem and its NP-hard nature, most of the resolution 

algorithms proposed in literature to solve the JRS problem are genetic algorithms. Diego-Mas 

(2020) presented an evolutionary GA to develop cyclic rotation among a small number of 

workstations. The proposed algorithm defines how to group jobs and the rotation sequence that 

workers must perform to prevent musculoskeletal pain, balance the cumulative effect of fatigue, 

and minimize repetitive movement. Mehdizadeh et al. (2020) defined an updated and complete 

review of previous JRSP models and proposed a fatigue-failure mathematical model to quantify 

the risk profile of workers. The authors develop three different scenarios to analyze the results 

obtained based on the defined objective function (i.e., minimize the worst assignment, minimize 
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the average worker risk, or evenly distribute the workload among the workforce). Ayough et 

al. (2020) addressed the integration of behavioral factors (i.e., learning, forgetting, motivation, 

and boredom) and human aspects for a U-shaped cell design in the classical line balancing and 

sequencing problem, and compared the results obtained with a static case where no human 

factors were included. Botti et al. (2021) developed a bi-objective model chasing the trade-off 

between optimal person-job fit and maximum movement turnover. In their formulation, they 

adopt the OCRA index to define the level of exposure of workers to occupational risk. The 

model is tested for six workstations with eight operators aged between 19 and 57 years, finding 

10 non-dominated solutions belonging to the Pareto front.  

Finally, among the most recent contributions in JRS problem, Assunção et al. (2022) 

developed a genetic algorithm to quickly provide to the team leaders suitable job rotation plans 

for the assembly line of an automotive industry, considering simultaneously the occupational 

risk score, the diversity of exposure risk in terms of force, posture and manual material handling 

and the homogeneity of the workforce team. Most of the articles cited in this survey considered 

only a few established safety risk measurement methods. The literature highlights that the 

diversity and heterogeneity aspects of workers are currently a source of interest in studies on 

mathematical models and approaches that deal with the exposure of safety risks in the JRS 

problem; however, individual characteristics are rarely considered in job rotation mathematical 

models. Relatedly, substantive research has been conducted in Job Rotation Scheduling 

approaches incorporating human factors (as reported in Table 1.2). However, joint effects are 

scarcely studied in this literature. 

Table 1.2 Notation: N/I: Not Included; JSI: Job Severity Index; TWA: Time-Weighted 

Average (OSHA); EAWS: European Assembly Worksheets (Schaub et al., 2013); LI: Lift 

Index; HAV: Hand-Arm Vibration; IP: Integer programming model; MILP: Mixed integer 

linear programming model. 
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Table 1.2: Published works on Job Rotation Scheduling with human factors consideration. 
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1.2 Occupational Risk Assessment 

Following the definition proposed by the International Ergonomics Association (IEA): 

“Ergonomics (or human factors), is ... concerned with the understanding of interactions among 

humans and other elements of a system, … in order to optimize human well-being and overall 

system performance.” (IEA Council, 2000). Integration of human factors in manufacturing and 

logistics is widely suggested in the literature, both from the initial workplace design (Battini et 

al., 2011) and during operational and strategic decisions (Sgarbossa et al., 2020). According to 

the National Institute of Occupational Safety and Health (2018) and the European Union 

Statistical Office (Eurostat, 2021), work-related Musculoskeletal Disorders (WRMSD) are one 

of the main causes of pain and disability suffered by blue collar workers. Such injuries can 

result from repetitive motions and excessive loads carried during job execution. To detect and 

reduce the appearance of such musculoskeletal disorders, engineers and ergonomists have 

developed assessment methods for quantifying the risk of WRMSD to reduce the exposure of 

workers to hazardous environments and tasks. These tools can be divided into three main 

categories: self-reports, observational methods, and direct/instrument-based methods (David G. 

C., 2005). 

1.2.1 Qualitative methods 

Qualitative methods are based on subjective evaluations based on verbal estimation 

provided by the workforce on the performance of the work activity. The advantages of these 

techniques lie in the lower initial costs compared to other techniques (i.e., cost of the tools and 

instruments used to conduct the analysis) and the shorter amount of time needed to understand 

the use of qualitative methods in the industrial context. Whenever there is limited knowledge 

about complex operations processes in which human factors are included, qualitative methods 

can be used to gather relevant information by interviewing workplace parties who are most 

familiar with the processes of interest: workers and managers (Trautrims et al., 2012). 

Nevertheless, qualitative methods might be influenced by a high level of subjectivity, which 

can bring to distort analyses that can vary according to the qualitative opinion of each worker. 

1.2.1.1 Self-reports 

Self-reports are methods adopted to collect data on risk exposure in the workplace to 

physical and psychosocial factors by adopting tools such as interviews, questionnaires, and 

work diary. They are low-cost approaches and, lately, data collection can also be performed 
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with semi-automatic tools such as self-evaluation methods, video records of the work activity 

and web-based questionnaire (David G. C., 2005). They are commonly adopted to involve 

workers during ergonomic improvements in their workplace and are easy to use. However, there 

are some limitations to their adoption. Workers involved in these evaluations can have a 

personal perspective on the proposed questions, which can be interpreted differently from 

everyone else. Then the information and data collected can be imprecise and unreliable. For 

these reasons, large sample sizes are normally required to ensure the representativeness of the 

acquired data. This is one of the main concerns of self-report methods and the reason why they 

are often used as a support for other risk assessment methods. As a recent example of the 

adoption of the qualitative method, Winkelhaus and Grosse (2020) suggest using qualitative 

interviewing to examine human factors in critical logistics processes, such as the warehouse 

system. Despite the subjective perspective of the method, qualitative interviews with workers 

can be beneficial in understanding the relationship between design, work environment, and the 

physical and psychosocial factors of the operators that influence their work, to improve worker 

health and optimize organizational performance. 

1.2.2 Semi-quantitative methods 

Self-assessment tools collect data on risk exposure using questionnaires, checklists, or 

interviews that workers themselves complete. These reports are based on workers’ perceptions 

and feelings, which can lead to imprecise and subjective analyses. To overcome this limit, 

observational methods allow analysts to make postural evaluations based on direct observations 

or video recording of the tasks under examination. These methods are often semi-quantitative 

since they need both simple judgment information and quantitative information to obtain the 

risk assessment. The main difference between semi-quantitative and quantitative methods relies 

on the level of independence of the method to assess the risk of a posture, or an activity, without 

human involvement, such as the methods described later in Section 3.1. The most used and 

widely known observational methods follow international standard ergonomic indexes, such as 

the Occupational Repetitive Actions (OCRA) (Occhipinti, 1998), NIOSH lifting equation 

(National Institute of Occupational Safety and Health Lifting Index) (Waters et al., 1993) and 

Job strain index (JSI) (Moore & Garg, 1995). Job Strain Index (JSI) (Moore & Garg, 1995), for 

noisy workplaces: Daily Noise Dosage (DND) (NIOSH, 1998; OSHA, 1993),  and general risk 

assessment tools: the Ergonomic Assessment Worksheet (EAWS) (Schaub et al., 2013) and the 

energy expenditure method (Garg et al., 1978).  
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1.2.2.1 OCRA 

The Occupational Risk Assessment Method (OCRA) (Occhipinti, 1998) was designed to 

be a concise exposure index to assess occupational risk factors associated with work-related 

musculoskeletal disorders and repetitive movements of the upper extremities. It is based on the 

relationship between the daily number of actions performed during repetitive tasks and the 

number of recommended actions calculated based on a constant that refers to the optimal work 

condition. Compared to the other indexes, the OCRA method proposes an integrated assessment 

of the contribution of the main occupational risk factors (e.g., repetitiveness, force, posture and 

lack of recovery). The index is the result of the ratio of the number of technical actions carried 

out effectively performed during the shift (𝐴𝑒) to the number of recommended technical actions 

(𝐴𝑟). The number of recommended technical actions per each repetitive task in the work shift 

is computed as in Equation (1.1): 

 𝐴𝑟 = ∑[𝐶𝐹 ∗ (𝐹𝑓𝑥 ∗ 𝐹𝑝𝑥 ∗ 𝐹𝑎𝑥) ∗ 𝐷𝑥] ∗ 𝐹𝑟

𝑛

𝑖

 (1.1) 

where CF represents a frequency constant of the technical action per minute [CF=30 

actions/minute], 𝐹𝑓𝑥, 𝐹𝑝𝑥, 𝐹𝑎𝑥 are the multiplier factors for the force, posture and additional 

elements [0;1], D is the duration of each repetitive task [min] and 𝐹𝑟 is the multiplier factor 

which describes the risk factor related to the lack of recovery period [0;1]. Once the OCRA 

index has been computed as the ratio: 

 𝑂𝐶𝑅𝐴 =
𝐴𝑒

𝐴𝑟
⁄  (1.2) 

If the value of the index is less than 0.75 the current situation is acceptable, the value of 

OCRA index in the range between 0.75 and 4 represents a borderline situation, while if the 

value exceeds 4, actions need to be taken to improve the working conditions.  

According to ISO standard 11228-3:2007(E) (ISO, 2007), simplified ergonomic methods 

can be adopted in the initial ergonomic analysis due to their simplicity and short computational 

time. Simplified methods that can rapidly provide safety risk evaluations, especially for static 

tasks, are the Rapid Upper Limb Assessment (RULA) (McAtamney & Nigel Corlett, 1993), the 

Rapid Entire Body Assessment (REBA) (Hignett & McAtamney, 2000), the Ovako Working 

posture Assessment System (OWAS) (Karhu et al., 1977) and most recently the Postural 

Ergonomic Risk Assessment (PERA) (Chander & Cavatorta, 2017). 
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1.2.2.2 OWAS 

The Ovako Working Posture Analysing System (OWAS) (Karhu et al., 1977) represents 

an ergonomic method for the identification of operator discomfort caused by poor working 

postures. It can be used both as a daily work routine method and for the evaluation of workplace 

redesign, based on a set of criteria defined by experienced workers and ergonomic experts. The 

method relies on sampling work postures, which can be gathered by direct observations or 

photographic material. The procedures are then evaluated according to the OWAS classified 

system. This method was developed in a steel company in collaboration with experienced steel 

workers and work-study engineers. After each of the postures have been rated, they are re-

classified into four categories according to the results. Each category, starting from the first and 

up to the fourth, represents the increasing necessity of considering an imminent change, if the 

posture belongs to the fourth category, or considering further analysis soon or during the next 

regular check (Figure 1.2).  

 

Figure 1.2: List of items classified by OWAS (Karhu et al., 1977) 

Finally, the OWAS method provides one single-digit score for each part of the body, 

starting from the back, arms, legs, and the loads carried during the activity. These four digits 

are used as input for the table that includes all possible combinations of digits and their 

corresponding risk (Figure 1.3). 
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Figure 1.3: Risk indices per body posture calculation (Louhevaara and Suurnäkki, 1992) 

1.2.2.3 RULA 

 Rapid Upper Limb Assessment (RULA) (McAtamney & Nigel Corlett, 1993) represents 

a posture, force, and muscle use assessment tool widely adopted in the literature to perform 

ergonomic investigations of workplaces, where the upper limbs of the worker are mainly 

involved in the progression of the job. The RULA method adopts diagrams of body postures 

and joint angles based on previous studies in the literature with three scoring tables to provide 

an assessment of exposure to risk factors. It aims to be a method to rapidly screen the working 

population for exposure to upper limb disorders related to work. RULA was developed without 

the need for special equipment, with the aim of being a method that was easy to use to report 

discomfort to the operator’s body parts. Its development starts with the activity of recording the 

working posture, by observing the operator during several work cycles to detect the posture that 

needs to be assessed. The scoring system is then adopted, and finally, the scale of action levels 

provides a guide to the level of risk and a roadmap to conduct a more detailed assessment. The 

scoring system for the method varies from 1 to 7 (Figure 1.4) where number 1 reports the range 

of movements or working postures with minimal risk factor (i.e., acceptable work conditions), 

while the higher the score, the more extreme postures and risk factors that characterize the body 

segment. A score of 3 or 4 determines the need to conduct a further investigation with possible 

required changes. A grand score of 5 or 6 points out that the working postures are not within a 

suitable range of motion, so investigations are required soon, and changes need to be made in 

short term. A total score of 7 denotes immediate changes in activity performed to reduce 

excessive loading of the musculoskeletal system and the risk of injury to the operator. 
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RULA is one of the most popular observational methods in the industrial field and is cited 

by the ISO standard (ISO 11228-3, 2007) (E) as one of the simplified methods for fast EPR 

analysis of mainly static tasks; however, it also presents some limitations to its adoption. The 

system represents each segment of the body in the sagittal plane; then, when abduction occurs, 

the scoring system to be adopted is not reported on the diagram. In fact, only one side of the 

body (i.e., the right side or the left side) can be evaluated at a time; the evaluation does not 

include an overall score for the whole body. Furthermore, the postural assessment of the fingers 

and thumbs is not included in the RULA score, although the force exerted by the fingers is part 

of the evaluation procedure. 

 

Figure 1.4: RULA worksheet (illustration from Ergo-plus.com) 

1.2.2.4 REBA 

 Rapid Entire Body Assessment (REBA) (Hignett & McAtamney, 2000) was developed 

as a field tool for practitioners to detect the risk of musculoskeletal injury associated with 

recorded postures. Its development was inspired from several techniques including NIOSH 

(Waters et al., 1993), Rated Perceived Exertion (Borg et al., 1985), OWAS, Body Part 
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Discomfort Survey (Corlett & Bishop, 1976) and RULA. Compared to RULA, the REBA 

method includes static and dynamic postural loading factors, human-load interface (i.e., 

coupling score) and the concept of gravity-assisted upper limb position (Figure 1.5). Moreover, 

it aims to compensate for the high generality in performing a postural analysis method deriving 

from OWAS, which can provide low detailed results due to its wide range of use, and the need 

of highly detailed information regarding specific parameters of the posture that are required to 

progress NIOSH. In summary, the REBA method is an analysis system that gives an action 

level with an indication of urgency without the need of sophisticated equipment. Its risk scores 

can range from 1 to 15, divided into 5 levels of action of ergonomic intervention, where the risk 

score of 1 represents a negligible risk level with no necessary action or further evaluation, while 

a score between 11 and 15 implies a very high-risk level and immediate interventions in the 

posture analyzed. 

 

Figure 1.5: REBA worksheet (illustration from Ergo-plus.com) 

RULA and REBA are two similar methods for detecting and identify harmful postures. 

RULA is more suitable for intensive hand-arm activities, such as sitting assembly work. At the 

same time, REBA evaluates the entire body and is more appropriate when both upper and lower 
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extremities are involved, such as during picking or construction activities. Generally, several 

snapshot observations are taken to assess the most critical work position and posture. 

Nowadays, the possibility that RULA and REBA scores are influenced by the subjectivity of 

the evaluator is minimized thanks to automation of posture risk assessment, which allows one 

to have precise results in short time. 

1.2.2.5 PERA 

 Postural Ergonomic Risk Assessment (PERA) (Chander & Cavatorta, 2017) contributes 

to fill the gap in risk assessment methods that do not consider cyclical work in their metrics. 

This method was recently developed and is suitable for evaluating short cyclic assembly work, 

with a detailed analysis of every task in the work cycle. PERA is also in compliance with (ISO 

11226:2000, 2018) and EN 1005-4 and with the European Assembly Worksheet (EAWS) 

(Schaub et al., 2013) to ensure industrial relevance. The method progresses to seven main steps 

starting from work cycle segmentation, task posture, and force analysis categorization in terms 

of risk and finally score calculation. Three main parameters are considered in the PERA 

methods, which are: posture, force, and duration (Figure 1.6).  

 

Figure 1.6: Overall PERA score of the work cycle (Chander & Cavatorta, 2017) 

The score for each activity is progressed with a cube method which multiplies the single 

score for each of these parameters, such as: 
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 𝑇𝑖 = 𝑝𝑜𝑠𝑡𝑢𝑟𝑒𝑖 ∗ 𝑓𝑜𝑟𝑐𝑒𝑖 ∗ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖 (1.3) 

while the overall work cycle score is calculated as the average value of the scores obtained 

from the analysis of a single task: 

 𝐴 =  
∑ 𝑇𝑖

𝑛⁄  (1.4) 

PERA has a risk classification of three levels starting with the lower level, achieved with 

an overall score of less than 4, a medium risk level if the risk score is between 4 and 7 and 

finally a high-risk level whenever the risk score overcomes the value of 7. 

1.2.3 Energy expenditure 

Energy expenditure represents another valuable method to assess safety risk assessment 

of activities that involve the entire operator's body for their progression (Garg et al., 1978). It 

allows detecting the set of activities that lead workers to perform strenuous physical effort and 

identifying the root causes of the overcoming of workers' abilities (Ilmarinen & Tuomi, 1992). 

The maximum threshold an individual can achieve during job execution, without perceiving 

fatigue effects, is represented by the Maximum Acceptable Energy Expenditure (MAEE) 

(Saltin & Astrand, 1967). This limit was initially established at 33% of the maximum aerobic 

capacity of an individual, which represents the maximum amount of energy an individual can 

spend during job execution; however, technological devices today can help to better estimate 

this threshold by monitoring body activity in real time. Recently, the introduction of smart 

technologies in the manufacturing work field has allowed the adoption of new tools and 

instruments, such as heart rate devices, to measure worker effort in real time (Battini et al., 

2022). When MAEE is exceeded, accumulated fatigue arises and physical stress occurs (Konz, 

2000).  

To avoid deterioration of the physical capacity of workers, rest breaks can help workers 

recover from fatigue accumulation. In this sense, the rest allowance (RA), which is the time 

needed for adequate rest after executing static or dynamic exertion (Rohmert, 1973), began to 

be introduced within mathematical models. The literature reports several ways to evaluate RA 

(El ahrache & Imbeau, 2009). However, some of these methods require data on the maximum 

voluntary contraction or endurance time, which require specific tools and competencies to 

correctly perform data collection (e.g., electromyography (EMG) sensors). Moreover, they 

cannot be easily collected in the industrial work field, so laboratory data are considered. The 

formulation of RA defined by Price (1990) represents a good compromise between the accuracy 
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of the output and the difficulty in obtaining input data to evaluate the amount of time each 

worker should rest to fully recover from fatigue.  

In Price (1990), MAEE is assumed to be 4.3 kcal/min, and it represents 33% of the 

maximum aerobic capacity of a healthy man (40 years old, 1.75 m and 70 kg). According to 

Price (1990), RA is defined as Equation (1.5): 

 𝑅𝐴 = 𝑚𝑎𝑥 {0;
𝐸𝐸 − 𝐸𝑇max  

𝐸𝑇max  − 𝐸𝑇𝑅
} (1.5) 

where: 

• EE: Mean energy expenditure. It is the mean rate of work that can be considered during a 

defined period. It is defined as the ratio of the total amount of energy expended in executing 

a job on the execution time. 

• 𝐸𝑇max  : MAEE; 4.3 𝐾𝑐𝑎𝑙 𝑚𝑖𝑛⁄  represents the value assumed for a 40-year-old worker who 

works 8 hours continuously. 

• 𝐸𝑇𝑅: Energy expenditure during rest. It represents the relaxation rate of 1.86 kcal/min if the 

worker is in a standing position or 1.64 kcal/min if the worker is sitting.  

1.2.3.1 Energy expenditure of the ageing workforce 

Following Price (1990) formulation, MAEE is set on the average value of a 40-year-old 

healthy man. Considering the high level of heterogeneity that characterizes the manufacturing 

industry, this assumption could underestimate the need for ageing workers to have more rest to 

fully recover from fatigue. Furthermore, MAEE has been shown to be affected by sex, age, 

body weight, and body height (Wu & Wang, 2002). Consequently, MAEE must be adapted to 

workers according to their personal characteristics. In fact, according to Price’s formulation, 

RA occurs if energy expenditure exceeds the threshold value of 4.3 kcal/min for every worker. 

To better fit the RA to the physical features of each individual, Finco et al. (2019) modified the 

Price (1990) formulation as Equation (1.6): 

 𝑅𝐴 = 𝑚𝑎𝑥 {0;
𝐸𝐸 − 𝑀𝐴𝐸𝐸

𝑀𝐴𝐸𝐸 − 𝐸𝑇𝑅
} (1.6) 

where MAEE varies according to the age and body weight (BW) of the worker as defined 

in the formula provided by De Souza Silva et al. (2016): 
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 𝑀𝐴𝐸𝐸 = 0.0016[(60 − 0.55 ∗ 𝐴𝐺𝐸) ∗ 𝐵𝑊] (1.7) 

In Figure 1.7 the variation of MAEE according to the age of the worker. The older the 

age, the lower the MAEE, expressed in Watt. For this reason, for older workers, a longer period 

of time is needed because they often exceed their maximum threshold during work. 

 

Figure 1.7: Male’s worker maximum acceptable energy expenditure (Finco et al., 2019) 

1.3 How to reduce postural risk 

Occupational risk assessment analyzes are often progressed late in the process and are 

often initiated reactively from employee reports of symptoms, disorders, or disabilities 

(Eliasson et al., 2019). Proactive risk management can anticipate risk assessment by moving 

risk assessment of potential hazards in earlier stages, even before symptoms such as work-

related pain have already emerged. Traditional work techniques adopt ergonomist or safety 

experts to progress workers’ training, resulting in time-consuming and resource intensive 

analyses. Biofeedback training represents an effective and efficient training method, as it 

promotes worker self-training (Lind & Rose, 2016). Therefore, there is the potential to apply 

extrinsic direct feedback training in combination with cost-effective movement tracking of 

workers to assess risks associated with physical loads (Lind et al., 2020). Furthermore, the latest 

technological advancements fostered by Industry 4.0 allow research and industrial sectors to 

develop new approaches and methods for conducting postural risk assessment and training for 

the workforce.  
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Providing real-time feedback to workers during work activities requires a system that is 

capable of rapidly assessing their posture and quickly giving feedback to correct their behavior 

in real-time, ultimately avoiding the risk of WRMSD. Recently, Kadir et al. (2019) analyzed 

the interaction between Industry 4.0 systems and human factors and highlighted that wearable 

and handheld devices lead to improvements in ergonomic feedback. Depending on the 

application sector, different technologies have emerged in the literature that seek to correct 

worker behavior. The construction field has been extensively researched due to the dangerous 

positions that workers assume during the progression of the task. In this sector, the feedback 

intervention has yielded the best results in terms of training and posture correction for trunk 

position (Yan et al., 2017, 2018), especially in lifting activities, but also for the lower back, legs 

and joint angles (Valero et al., 2016). The presence of many obstacles in the workplace means 

that it is not always easy to monitor the performance of workers.  

Virtual reality (VR) and immersive reality (IR) represent solutions to achieve posture 

monitoring wherever other technologies cannot work (Akanmu et al., 2020; Daria et al., 2018; 

Simonetto et al., 2022; Sivanathan et al., 2014). Another sector monitors the effect of feedback 

on caregivers and nurses during work activities and during the training phase. Researchers have 

tested wearable devices and garments with real-time auditory biofeedback or vibrotactile 

intervention (Doss et al., 2018; Kamachi et al., 2020; Owlia et al., 2019), prototypes of systems 

that educate student trainees’ lifting behaviors (Bootsman et al., 2019) by providing improved 

movement strategies for spine postures or posture rehabilitation, and real-time feedback 

provision for correct training (Alahakone & Senanayake, 2010).  

Moving into the manufacturing sector, the literature contains several examples of 

wearable devices and prototypes of systems that advance training techniques through real-time 

feedback intervention. Some of these systems can progress the full body assessment and provide 

feedback to workers during dedicated actions or movements such as lifting activities (Delpresto 

et al., 2013) as well as (and mainly) during daily work through visual (Z. Li et al., 2020; T. B. 

Otto et al., 2017) and vibrotactile stimuli (Lins et al., 2018; Mgbemena et al., 2018). However, 

most of the activities carried out by the workforce in industrial contexts involve the upper 

bodies; therefore, most of the relevant literature focuses only on upper extremity movements. 

Here, optical motion capture (MOCAP) systems are adopted to track body movements in static 

activities (e.g., workers do not need to leave their workstations to progress the overall task). In 

this case, the feedback provision is mainly actuated through visual graphical interfaces on the 

monitors (Kim et al., 2018) or directly projected on the job (Mengoni et al., 2018).  
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Wearable devices become necessary to track body movements in the workplace whenever 

the progression of tasks requires the displacement of workers. Recent smart garment prototypes 

have been developed to advance vibrotactile feedback intervention in general manufacturing 

activities (Cerqueira et al., 2020), picking simulations (Lind et al., 2020), and automotive 

assembly tasks (Raso et al., 2018). Real-time postural feedback intervention and postural risk 

assessment are rarely progressed together by the same software or platform (Lim & D’Souza, 

2020).  

In a pioneering contribution, Vignais et al. (2013) developed a promising system to 

perform both a real-time postural risk assessment and feedback provision. Arroyave-Tobón & 

Osorio-Gómez (2017) give a similar example: they provide visual real-time feedback along 

with a postural risk assessment through head-mounted displays (HMDs) of users. The 

continuous advancement in automation has created the opportunity to involve collaborative 

robots to support worker activities. Busch et al. (2017) provided evidence that robot behavior 

can lead workers toward posture correction through real-time posture analysis and visual 

feedback correction. Manghisi et al. (2020) proposed an automatic software tool for ergonomic 

postural risk monitoring with a visual graphical user interface focusing mainly on upper body 

assessment. The authors adopt visual and acoustic feedback as their feedback intervention 

method.  

Table 1.3 provides a summary of the works, highlighting the type of intervention provided 

to the worker and the system adopted to interact with the user. It should be noted that most of 

the contributions collected in Table 1.3 based the feedback intervention of their systems and 

prototypes on the joint angle thresholds adopted in the observational methods reported in 

Section 1.2.2. 

Table 1.3 Notations: Application sector: M: Manufacturing; C: Construction; H: 

Healthcare; R: Rehabilitation; MMH: Manual material handling; real-time feedback: I: 

Interface visual; A: Auditory; H: Haptic; V: Vibration; VR: Virtual Reality; AR: Augmented 

Reality. 
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Table 1.3: Published works on feedback intervention and real-time ergonomic assessment 
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Conclusion 

Based on the literature review in the research field of job rotation scheduling models, I 

can conclude that only few previous works have progressed postural risk assessment and 

feedback intervention at the same time. A recent review proposed by Stefana et al. (2021) 

reported that a limited number of studies evaluated and improved safety risk factors using 

feedback strategies. Most of the existing research provides feedback on the calculation of an 

ergonomic index (Vignais et al., 2013), and only a few evaluate multiple ergonomic indexes in 

real time (Akanmu et al., 2020; Cerqueira, Moreira, et al., 2020; T. B. Otto et al., 2017). 

Evaluating multiple risk indexes at the same time means collecting personal data from 

the workforce, comprising historical medical data, to avoid job assignment that can threaten the 

safety of operators. Privacy issue can arise from personal data collection, and benefits cannot 

be those expected from the company. The assignment performed on individual profile and 

recovery time according to the characteristics of the workforce could give the impression to the 

workers that they are not treated fairly and differently by their employer. The consequences and 

the main impact of job rotation strategies have been already investigated in literature (Foroutan 

et al., 2021), however, job rotation strategies are extremely useful in contexts where strenuous 

workload or high repetition of the same set of activities can become hazardous for the 

employees. 

For this reason, and to contribute to the current state-of-the-art, my research aims to first 

provide a tool to help managing the complexity generated from the introduction of multiple 

sociotechnical aspects within operational decisions. Then, a new digital platform and a new 

model are provided to help data collection and to integrate all the new data collected in real-

time to make quick decisions, respectively. 

 



 

29 

 

 

 

 

 

 

 

 

2  

Flexible Workforce Management  
Introduction 

Based on literature findings on job rotation scheduling problem, rare contributions can 

jointly include both social and technical aspects regarding workforce participation in 

operational decisions and worker safety and well-being in an industrial context. For this reason, 

in this chapter, I propose a new methodological framework to integrate sociotechnical aspects 

and human factors into the scheduling decision process. The methodological approach defines 

a step-by-step procedure to progress inclusive and flexible work arrangements based on 

individual characteristics, preferences, and perspectives of the workforce. For this reason, to 

help company managers develop human-oriented scheduling work plans, this framework aims 

to be a useful tool to promote task allocation decisions with greater awareness of worker 

diversity.
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2.1 Framework structure  

The methodological framework proposed in this chapter integrates anthropometric and 

ergonomic measures during the job scheduling decision process, and defines steps needed to 

define a worker-oriented and flexible scheduling of jobs. Each task is classified in the 

framework according to three drivers: physical stress, occupational risk, and execution time. 

Based on the characteristics of each activity and worker, this framework proposes a step-by-

step procedure that can help practitioners select the most suitable worker for each task 

assignment, with the aim of reaching flexible scheduling by an inclusive workforce. In addition, 

another key aspect of the following method is represented by the procedure for the introduction 

of new employees into the workplace. It is extremely important to immediately profile new 

workers to understand the characteristics of the workforce and define the training needed for 

new workers from both a quality and ergonomic perspective. 

The novelty of this approach, compared to the existing literature, is related to the 

progression of a step-by-step framework that can demonstrate a singular deficiency in risk 

propension. In some previous work, job risk indexes were defined starting from the average 

score progressed by a group of workers. This approach is surely faster, but it can also penalize 

less-skilled operators, from an ergonomic viewpoint, due to the scarce or absent training phase 

or by neglecting individual risk propensity for certain activities. However, with this approach, 

the main obstacle is related to the need for an accurate occupational risk assessment for each 

operator, which can be time and cost consuming. Furthermore, another main problem with the 

integration of workforce diversity in mathematical models and methods is the difficulty in 

evaluating the differences between workers involved in the manufacturing system. 

For this reason, this research aims to propose a new framework to involve the perspectives of 

the workforce and the maintenance of healthcare care through occupational risk prevention. 

The procedure proposed by this framework consists of the integration of different inputs derived 

from three main analyses: 

• Job analysis defines the characteristics of each job and the common risks related to its 

execution, also related to workstation design. 

• The analysis involves the perception of workers and their health status. It also considers the 

operator-job fitness according to individual preference and aptitude. 

• Ergo-time analysis is progressed with the inertial MOCAP system to assess ergonomic 

postural risk and physical effort from the heart rate monitoring device. This analysis also 
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provides the execution time of the job and helps to determine the level of experience of each 

operator. 

The main objective of this framework concerns the individualization of the different 

quantifiable aspects related to the personal profile of the workforce to perform the job 

scheduling and workload balancing decision in several workplaces. This new methodology 

aims to describe the data integration process, starting from the initial data acquisition phase 

followed by the quantification of the safety risks and concluding with managerial insight from 

the JRSP solution approach. The procedure consists of eight steps to be executed, some in 

parallel and some in sequence, to finally obtain an effective worker-oriented job rotation and 

job assignment solution (Figure 2.1). 

 

Figure 2.1: Methodological Framework 
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2.1.1 Profiling phase 

The profiling phase deals with the initial collection of workforce data. In this phase, 

workers are involved to collect, for each job, some insight about the job description and physical 

attitude. Moreover, this phase aims to create updated profiles for each job and operator. Step 1 

reports an exhaustive description of the job depending on its characteristics, such as the 

repetitiveness of actions, or the part of the body that is more exposed to musculoskeletal risk, 

the noise level, and vibration exposure during the progression of the job. Step 2 involves the 

operator's opinion and perception about the personal health condition and the preference for job 

assignment preference (e.g., which work plan fits the capabilities of most operators in terms of 

competence, skills, and attitude). Another important aspect is related to the skills developed in 

the workforce. For this reason, skills are collected in the matrix where a binary parameter 

specifies whether a worker can perform a particular job or not. In phase 2, the subjective 

workload assessment is measured according to the NASA Task Load Index (Hart & Staveland, 

1988). In this way, the mental demand is also measured, as well as the frustration of performing 

such kinds of task. In addition, from the point of view of the workforce, it is also possible to 

highlight shared opinions and evaluations on the part of the body, involved in the completion 

of the job, the most exposed to risk. Workers can provide subjective feedback according to the 

Borg C10 scale and in such a way they can also provide a quick measure of physical and 

muscular fatigue (Morishita et al., 2013). However, in this case, scores assigned to each task 

are influenced both by workstation design and by the sequence of activities to be performed in 

job execution and, for this reason, different scenarios are created. 

The most innovative aspect of the profiling phase concerns the collection of past, 

temporary, or permanent physical limitations of workers and operators’ perceptions to perform 

improved values of job-operator fitness (Botti et al., 2021). In fact, it has been shown that each 

worker’s life history has certainly an impact on future work ability, especially for older workers 

(Fischer & Martinez, 2013). In this way, the rotation of jobs can better fit the physical and 

cognitive level of the worker. For this reason, the integration of sociotechnical data from the 

workforce involvement phase and the quantitative and qualitative information collected in this 

framework represent novelty and is useful in completing the data set with all the necessary data 

as input for the model to solve JRSP and to find optimal solutions, depending on the objectives 

of the company and the desired performance. 
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In addition to the job-operator fitness score, physical restrictions and possible chronic 

diseases must be collected for each part of the body of each worker. These data are collected 

from occupational medicine practitioners, but also directly from the opinions of the workforce 

through questionnaire and self-evaluation approaches, developed to capture in advance possible 

incoming musculoskeletal disorders or to avoid an aggravation of global health status. These 

methods can help companies assess the actual health condition of the workforce and the 

proneness to permanent or temporal injuries. This information becomes useful in avoiding job 

assignment, which can foster consequences such as absenteeism of the workforce and the 

relative costs that arise. 

2.1.2 Ergo-time phase 

Thanks to the rapid technological advancement fostered by the fourth industrial 

revolution, which bases its principles on data collection, new devices are continuously 

introduced into the market at accessible and more affordable prices (Menolotto et al., 2020). To 

perform a precise evaluation of working posture and define relative postural risks during work 

progression, smart technologies such as MOCAP systems are also currently being adopted in 

the manufacturing field. The integration of these technologies allows us to save time and costs 

during posture assessment during the worker training phase. The amount of data needed to 

perform a postural risk assessment for each operator is collected during the initial postural 

assessment. The execution of each job is performed using a MOCAP system, which consists of 

several IMUs placed throughout the body. Data are collected and processed by a software 

platform capable of calculating postural risk in real time through the most suitable international 

indicator for the job analyzed. In addition, direct feedback is given to the worker since they can 

see the monitor in front of their workplace and easily understand which part of the body is the 

most stressed from an ergonomic point of view.  

Ergo-time analysis starts with an ergonomic evaluation (Step 3) to assess the initial level 

of ergonomic experience of each worker. In fact, due to the strong turnover effect, new 

employees can perform the same job in several ways, depending on their attitude and level of 

experience. This step assesses whether the worker needs to perform postural training with a 

real-time feedback intervention and suggestions from some practitioners, with the aim of 

educating the operator to behave with proper movements to reduce postural risk. It is assumed 

that after the postural training session (Step 4) the job risk score is reduced to the lowest level 

due to the training activity performed. Furthermore, in this phase, the amount of accumulated 
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physical fatigue and stress for each worker can be monitored for further analysis (e.g., in the 

form of energy expenditure consumption, heart rate, oxygen consumption). Heart rate 

monitoring systems are today easily affordable and reliable devices to monitor the heart rate of 

the worker. For example, they can be adopted to calculate energy expenditure for individuals 

(Li et al., 1993). In this way, postural risk can be smothered together with physical effort in the 

job scheduling activity. This information reflects the fact that different operators can process 

the same job progressing with different amounts of fatigue, depending on the age and physical 

condition of the worker. In this phase, ergonomic data are collected for each task, each worker, 

and each part of the body involved. Since the threshold limit on the postures changes according 

to the type of activity they are performing, in this phase ergonomic experts are involved. Step 

4 does not collect performance data. For this reason, Step 5 performs a job duration assessment 

to provide information about the level of experience of each worker compared to the standard 

time of job completion. This information can be displayed both as the real job duration per each 

operator or by the incidence of experience and the worker's ability compared to the standard 

completion time of job completion. Once the level of experience of the workforce, the duration 

of the job, the postural risk score and the physical effort values have been collected, the data 

set of the workforce is updated (Step 6) with all the information from the profile phase (Step 1 

and Step 2) and from the ergo-time analysis (from Step 3 to Step 5). 

2.1.3 Decisional phase  

Once the data acquisition process is completed and ergonomic indicators, attesting the 

risk proneness related to work for each worker, are finally progressed, the integration phase 

(Step 7) in the JRSP can be initialized. According to the type of activity, the appropriate 

ergonomic index is selected; for example, in picking activities, the NIOSH index may be the 

most suitable one. Additionally, supplemental constraints are included in the model to consider 

the physical and cognitive limits of each worker. In particular, constraints related to fatigue, as 

well as those related to mental demand, are always included. 

Since the data required in the model can be collected easily and faster, the model can be 

applied each time new workers are involved, and new tasks are introduced in the manufacturing 

field. This approach can ensure a balanced workload to the workforce depending on individual 

physical characteristics and flexible work plans to smooth and balance the risk exposure. 

Physical limitations, collected and constantly updated with the continuous improvement phase 

(Step 8), will ensure feasible job rotation schedules by the restrictions imposed on operators 
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who cannot perform some activities, avoiding the appearance of physical impairments and 

musculoskeletal disorders. 

2.2 Practical application 

The methodological framework proposed in this chapter includes many sociotechnical 

factors in the analysis, which can be difficult to collect for all real applications. For this reason, 

in this section, a simplified application of the proposed structure is presented and described, 

which only includes a fraction of the aspects in the methodological framework. 

For this application, the initial profiling phase starts to collect information on the 

workforce regarding individual physical limitations, to avoid strenuous job assignment, which 

can increase the chance of developing musculoskeletal disorders or injuries. Information on age 

and gender of workers are gathered to adopt the formulas developed by Finco et al. (2019) that 

calculate energy consumptions and recovery times for workers of different age and gender. The 

duration of the task is calculated according to the individual expertise of the workers and 

adjusted with the ergo-time analysis performed with the adoption of a digital system. In 

addition, participation in the workforce is required to determine the similarity between different 

jobs according to the previous experience of the workers in each task progression. Digital 

sensors can be adopted to collect information related to workplace risks, such as noise and 

vibration levels, for each area where jobs are performed. On the contrary, the formulas designed 

by Finco et al. (2020) can be adopted to estimate the exposure to vibrations in manufacturing 

systems. 

In ergo-time analysis, the digital real-time platform for full-body ergonomic assessment 

and feedback developed by Battini et al. (2022), and presented in the next chapter, can be used 

to calculate ergonomic parameters from wearable worker sensors. The platform was validated 

with laboratory tests. It uses sensors that provide workers’ input data to the final model for 

targeting and assigning jobs appropriate to the worker. The work of Finco et al. (2019, 2020) 

and Battini et al. (2022) is consistent with the methodological approach described in this chapter 

(Berti et al., 2021).  

Lastly, the goal of the decisional phase of the proposed framework is based on data 

collected in previous steps to calculate flexible and human-centric work plans based on the 

characteristics of the workers. Figure 2.2, derives from and extends the overall structure of the 
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framework and shows how the new optimization model can be seen as the culminating step of 

a whole human-centric methodology.  

Theoretical logic also finds support from the new international standards published by 

ISO in 2022 (ISO 25550, 2022), which provide specific requirements and guidelines to achieve 

an age-inclusive workforce. ISO directs attention to making available options for flexibility in 

job assignments and working arrangements to accommodate age-related factors. Such options 

include flex-time, job sharing, job redesign, swapping shifts, allowing time to adapt to new 

tasks and flexibility in rest breaks during working shifts. Such facilitations in work conditions 

are envisaged to benefit older workers potentially and especially and may also help workers 

with health problems work consistently and stay longer in the workforce. Recent academic 

literature is beginning to develop worker-inclusive decision-making tools and flexible, human-

centric job scheduling models. Some stress the need to involve the worker in the individual data 

collection phase and in the decision-making phase to develop more work-inclusive solutions 

(Finco et al., 2020; Sgarbossa et al., 2020; Vijayakumar et al., 2022). 

Recent works in job rotation scheduling already include HF (i.e., occupational risks 

related to postures and fatigue, experience/skill levels) in both long- and short-term decisions 

(i.e., Mehdizadeh et al., 2020; Mossa et al., 2016). However, they often neglect to consider 

worker attributes and ignore various complexities of worker involvement in input data 

estimation.  

Conclusion 

Based on the theoretical fundamentals discussed earlier and inspired by the concepts 

shared by Industry 5.0 vision, this framework proposes a new human-centric guide to collect 

information useful for solving a multi-objective Job Rotation Scheduling problem. The final 

model, which will be detailed in the final chapter of this dissertation, breaks new ground by 

jointly considering a variety of realistic shop floor sociotechnical factors in JRS: ergonomic 

postural scores, vibration and noise risk constraints (respecting international standards 

threshold values), worker experience in performing jobs, and individual physical limitations. 

Furthermore, workers' opinion is considered to define a similarity score between jobs, which 

can be useful in finding solutions to minimize worker boredom. As an extension of the current 

framework, learning and forgetting curves can be included to better detail the effect that 

frequent rotation periods can have on workers’ performance and skills.  
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Moreover, the environmental parameters such as temperature, humidity and light 

conditions can provide additional insights to the current version of the methodological 

framework.  

The level of automation of the company can also be interesting data to collect to detail 

with more precision supplementary the level of information related to the technology with 

which the workforce must deal, to predict the impact on the performance and level of usability. 

 

 

Figure 2.2: Theoretical-based methodological framework supporting the implementation of the 

new JRS model (derived from Berti et al., 2021) 
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3  

Real-time digital ergonomic platform 
Introduction 

This chapter first provides a brief overview of direct measurement systems to integrate 

Section 1.2 on occupational risk assessment methods and approaches. Then, starting from the 

literature survey reported in Section 1.3 on the available systems and prototypes able to provide 

real-time feedback to users based on the assumed posture, it presents a new digital platform to 

simultaneously progress real-time postural risk assessment and training session. A benchmark 

analysis is also provided to highlight the innovation of the digital platform compared to some 

of the most well-known and adopted software and ergonomic risk analysis tools. The results of 

the platform were tested and validated with commercial software, and finally it was adopted to 

progress risk assessment in a real industrial case and for some single- and multi-person risk 

assessment and training session in the laboratory of the department.
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3.1 Postural Risk Assessment in Industry 4.0 

The so-called ‘Smart Factory’ resulting from digitalization and Industry 4.0 can be 

beneficial for all actors involved in improving and performing the manufacturing process, with 

several tools already developed and continually improved. In the last decade, thanks to 

technological advancement, new postural assessment methods based on the latest technologies 

have surpassed traditional approaches by providing more accurate and objective measurements 

in real-time. Furthermore, collected data can be shared between product and safety managers, 

as well as ergonomists, to positively impact worker well-being (Romero et al., 2016). 

Additional tools such as activity trackers, heart rate devices, or smartwatches that were initially 

developed for other purposes (e.g., leisure or sports) are receiving more attention and are 

increasingly being used to assess the state of workers' well-being in production or logistics 

processes. The monitoring systems adopted for this purpose exploit inertial sensors, depth 

cameras, reflective markers, and wearable medical devices. Recently, Menolotto et al. (2020) 

conducted a systematic review on motion capture systems in different industrial applications. 

They divided MOCAP technologies into two main categories: Inertial measurement units 

(IMU) and camera-based systems. 

3.1.1 Inertial MOCAP 

Inertial measurement units (IMUs) are portable devices that are commonly used in 

manufacturing contexts because of their small size. In fact, they have gained increasing 

attention in the manufacturing panorama because of their ability to collect data from machines 

and workers as well. IMUs are sensors that can be adapted to capture postures and movements 

during a typical working day. IMUs are small and portable devices that combine information 

obtained from multiple electromechanical sensors (i.e., accelerometers, gyroscopes, and 

magnetometers) to estimate the spatial orientation of an object using recursive sensor fusion 

algorithms. In recent years, their high accuracy has earned them a great deal of attention in the 

field of ergonomics. In particular, they have been used to provide real-time posture data or 

feedback based on one or more existing ergonomic assessment tools (Alberto et al., 2018). 

Some studies have evaluated postural risk on site (e.g., Yan et al., 2017) while others have 

tested the inertial system they developed under laboratory conditions; in some cases, they have 

reported substantial differences between these and real work environments (Vignais et al., 

2013). Filippeschi et al. (2017) conducted an exhaustive survey of IMU-based motion-tracking 

methods; they placed a particular focus on human motion-tracking in the upper extremities in 
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different applications. Battini et al. (2014) created a full-body system based on inertial sensors 

featuring integrated compensation for magnetic interference and long wireless connection. 

They used it to evaluate the ergonomics of manual material handling in warehouse 

environments where all parts of the body are used while performing work activities. In a recent 

example of IMU adoption to progress a real-time ergonomic assessment, Giannini et al. (2020) 

estimated four different ergonomic indexes, namely NIOSH (Snook & Ciriello, 1991), REBA, 

and JSI, by performing a body-tracking activity on a worker in real-time.  

For this research, two IMU-based MOCAP suits (MTw Awinda [Xsens] and G4 

MOCAPSUIT [Synertial]) were adopted for the tests reported in this research (they are reported 

in Figure 3.1). The MTw Awinda has 17 IMUs. The system includes a shirt with trunk and 

shoulder where IMUs are placed on special straps, one headband, two hand bands, and 11 strips 

for the rest of the body. It provides data up to 60 Hz; furthermore, the external antenna of the 

Awinda station enables an indoor wireless range of 20 m and an outdoor range of 50 m. The 

G4 MOCAPSUIT has 29 IMUs, 14 of which are used to capture the angles and positions of the 

wearer’s fingers. This inertial suit links all IMUs, which are cabled, to a master device that 

sends data to the software wirelessly over Wi-Fi. A main limitation of this suit is the connection 

cables, which can limit the movements of the wearer. 

 

 

Figure 3.1: Inertial suits of the Department Ergo lab 
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3.1.2 Marker-based MOCAP 

Marker-based optical MOCAP exploits active or passive markers, properly displaced in 

specific parts of the human body, that can actively contribute to monitor human movements by 

emitting light at a high frequency, or by being passive (i.e., using a retro-reflecting surface that 

reflects the infrared emission the cameras produce). A bunch of cameras detects the position of 

each marker in its own two-dimensional (2D) field of view, whereas the relative position and 

orientation of cameras enable one to triangulate the location of markers in the 3D space of 

action (Tian & Duffy, 2011). Active markers are light-emitting diodes (LEDs) that typically 

emit their own light, one at a time, at a high frequency. In contrast, passive markers are small 

plastic spheres coated with a retroreflective material to reflect the light that is generated near 

the camera lens by an infrared emitter (Ceseracciu et al., 2014). As an example of passive 

marker-based adoption for a study of intralogistics processes, Feldmann et al. (2019) designed 

one of the largest reference systems in Europe with 39 passive markers and 38 Vicon cameras. 

The markers reflect the camera's LED signals, so that the position of each marker in a 3D space 

can be calculated using Vicon Nexus® software (Oxford Metrics, Oxford, UK). 

3.1.3 Markerless MOCAP 

Markerless MOCAP, or camera-based devices, were successfully used for human activity 

tracking and gesture, or posture classification, through the adoption of various technologies 

(e.g., RGB, infrared, depth, or optical cameras, mostly coming from the gaming industry 

(Microsoft Kinect and Xbox 360) (Menolotto et al., 2020). Markerless body-tracking 

technologies may suffer from some technical issues that could possibly decrease the accuracy 

of the captured data, such as the influence of lighting conditions in the environment and self-

occlusions (in postures such as crossing arms, trunk bending, trunk lateral flexion and trunk 

rotation), especially when applied in the real work environment (Plantard et al., 2017). Nguyen 

et al. (2013) adopted the first markerless solution to monitor the postures and movements of an 

operator during manual manufacturing processes. Haggag et al. (2013) investigated the 

application of Kinect for real-time RULA to aid in ergonomic analysis for assembly operations 

in industrial environments. More recently, Bortolini et al. (2020) developed a camera-based 

technology called Motion Analysis System (MAS), which assesses four international 

ergonomic indexes: OWAS, REBA, NIOSH, and EAWS using a network of four depth 

cameras. Manghisi et al. (2020) adopt a single camera to perform real-time data capturing and 

processing to provide the worker with feedback to improve posture during training session. 
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3.2 WEM-Platform 

The WEM-Platform represents a digital in-house developed system able to provide direct 

visual real-time feedback to three different users: Worker, Ergonomist, and operation Manager. 

It differs from the other available system for its capacity to progress in real-time a wide number 

of postural risk assessment methods based on international standards, for its capacity to progress 

postural risk analysis to multiple people in the workplace, for its flexibility to collect raw data 

from different types of hardware, and finally for the possibility of incorporating additional 

sensors and tools into the system. 

 

Figure 3.2: WEM-Platform Guided User Interface 

The graphical user interface (GUI) of WEM-Platform is divided into three colored areas: 

pink, white, and blue (Figure 3.2). The pink area is primarily oriented toward ergonomists and 

safety managers, the white area toward the worker, and the blue area toward the operation 

manager. Real-time visual feedback is provided through both a real-time chart progression of 

heart rate values and ergonomic scores and colored dots. Traffic light colors for the feedback 

provision are adopted:  

• Green dots define postures that do not need to be further analyzed, since they do not 

point out any possible damage to the safety of the user. 

• Yellow dots warn experts and workers that there might be a possible risk arising from 

the current position.  

• Red dots alert users that current posture represents a severe risk to worker well-being 

and needs improvement.  
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To avoid sudden color changes when repetitive movements are performed, two additional 

color scales were introduced in the transition between green and yellow and between yellow 

and red. In these cases, orange and light green appear to signal changing situations. In such a 

way, the transition from a right to a wrong posture is also evaluated according to a continuous 

transition instead of a discrete way. Figure 3.2 shows the division of the graphical user interface 

into three colors.  

Pink area: The left side of the screen is dedicated to the ergonomist, or to the safety 

expert of the company, who wants to know the ergonomic scores and highlight the points when 

they reach critical values during the process. All the indexes that allow experts to rapidly 

evaluate the current situation through the real-time computation of ergonomic indexes are 

grouped together in this section. The high postural risk score highlighted by the red light is 

mainly due to the awkward position of the worker’s trunk, which is bent and twisted during 

activity. In particular, the right side of the worker’s body is suffering more due to the raised 

shoulder and the abducted position of the right upper arm. While the RULA and REBA indexes 

depict severe postural risk for static posture of the worker, the OWAS and PERA indexes, 

which are time-weighted scores, outline low risk values for the entire assembly activity 

performed until the last captured frame. The reason for these scores is attributable to the 

previous frames analyzed by the platform, which are characterized by postures with lower 

postural risk values. Whenever ergonomists need more details, they can open a separate page 

by tapping the button marked ‘Show graphs’ to access the real-time evolution of all ergonomic 

indexes during the cycle time. Figure 3.3 and Figure 3.4 report an example of RULA and REBA 

charts for the whole assembly process. 

 

Figure 3.3: RULA scores for the assembly process 
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Figure 3.4: REBA scores for the assembly process 

This visual feedback can provide quick evidence to experts about the high percentage of 

time the worker spends in wrong postures during the assembly process. This information is 

designated for the ergonomist, but can also benefit the worker, who can visually interpret the 

overall risk. 

White area: The central part of the screen represents an overall evaluation of the current 

worker’s posture; It is dedicated to the worker because by looking at the virtual representation 

of his body, he can receive immediate feedback on his personal parameters and incorrect 

postures assumed during the execution of the task. Here, the information provided includes the 

instant value of heart rate and its time progression (Figure 3.5), breathing rate, and skin 

temperature. In this way, workers can check their health status by comparing heart rate during 

task execution with their maximum achievable value based on their physical characteristics. 

Skin temperature is used to monitor general working conditions since high values for a long 

period represent a warning to ergonomists and operations managers and a decrease in safety for 

the entire working team (particularly during the current post-Covid-19 emergency period). 

Finally, critical situations or specific cases of fatigue overexertion can be detected from the 

value of the breathing rate. Figure 3.5 shows a heart rate trend: There is just a pick over 130 

bpm for a relatively short period, and consequently, the assembly process under study is not 

critical from a physical effort point of view. Furthermore, a representation of the operator’s 

body with 17 colored dots provides real-time visual feedback to the worker, who can visually 

understand which parts of the body do not assume a correct position in current working posture.  
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Figure 3.5: Heart rate value graph related to the assembly process 

Blue area: The right side of the screen is dedicated to the worker’s feedback intervention 

and helps the operation manager understand which movements must be carefully analyzed and 

improved. The area reports the NIOSH angle values and allows the operation manager to 

immediately understand when a task needs to be modified or enhanced to limit overexertion in 

lifting, overexertion in pushing or pulling objects, or overexertion in holding, carrying, or 

turning objects. Angle values are related to ISO 11226:2000. Three angles are dedicated to the 

assessment of posture of the right and left arms and two angles to the posture of the trunk. The 

platform adopts the same visual feedback intervention previously described for ergonomic 

indexes. The hand height chart (Figure 3.6) is dynamically progressed together with the 

percentage of time spent in dangerous positions, or in the ergo-zone, to help operation managers 

evaluate the amount of time that the worker’s hands are active during the assembly process in 

real time.  

 

Figure 3.6: Hand height throughout the assembly process 
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During the training activity, by tapping the button ‘Report KPI’, or automatically at the 

end of the session, the WEM-Platform can print a report with the three performance KPIs 

related to the tracked activity. The KPI is strongly affected by the dexterity and capabilities of 

the worker. The segmentation of each activity is performed manually by the worker at the end 

of the progression of each task by pressing a button on the monitor. In the final report, the 

number of assembled products is reported. Additionally, a spaghetti chart and an overall hand 

height graph give a complete overview of the movements of the worker in the workspace along 

the horizontal and vertical planes. 

To conclude, the button ‘Report raw data’ allows the user to obtain a report with all the 

positions and orientations of each joint of the body along the three axes; this can be used to 

perform additional evaluations. The spaghetti chart of the laboratory test case is represented in 

Figure 3.7. The graph obtained refers to the pelvic position. When considering the graphical 

output, one can conclude that the working area for this case is limited near the workbench.  

 

Figure 3.7: Spaghetti chart movement 

The assembler concentrates all body movements within the workspace, avoiding any 

movements far from the assembly workbench. This is not a surprising output for this application 

since parts and components of the final object were intentionally placed near the worker. Only 

a few components, which are easily detectable in Figure 3.7, represent some exceptions by 

performing slightly far-reaching routes to grab the heaviest components from the rear rack. 
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3.2.1 System benchmark  

To better understand and highlight the differences between the existing in-house 

developed systems and commercial software, and the WEM-Platform, in this section, I propose 

a benchmark analysis which first describes the main competitors of the platform and then points 

out the main differences that justify the creation of this new tool. 

• Jack Siemens is a human modeling and simulation tool that enables improving the 

ergonomics of product design by performing ergonomic analysis of virtual products and 

virtual work environments. It includes ergonomic analysis tools which can perform 

static and real-time fatigue analysis, low back analysis, material handling limits, energy 

expenditure, NIOSH, OWAS, RULA and static strength prediction. 

• ViveLab Ergo is a commercial software that helps design risk-free working conditions 

and processes for people working in the fields of occupational safety and engineering. 

It replaces paper-based methods performing automated ergonomic analyzes by 

identifying health-damaging effects of movements and postures by seven built-in 

analyses: RULA, OWAS, NASA-OBI, ISO 11226:2000, EN 1005-4, reachability zone, 

spaghetti diagram. 

• Captiv-VR is a commercial software proposed by TEA-ergo to assess the risk of 

musculoskeletal disorders through postural analysis. This software aims to reduce the 

time dedicated to performing postural risk assessment; however, it does not provide any 

tools for training in real-time of the operator but focuses mainly on the post-processing 

motion analysis captured with the software hardware. Furthermore, the software enables 

the integration of additional sensors to enrich occupational risk assessment for the 

operator, similarly to what ViveLab Ergo does with ergonomic design of workstation. 

• Vignais et al. (2013) are among the pioneers in real-time postural index assessment 

adopting an inertial motion capture system. In their research, they used a head-mounted 

display to provide visual feedback to the user, according to the RULA risk score. The 

computation of the index was made in real-time, as well as the feedback intervention.  

• Battini et al. (2014) introduced an innovative full-body system for real-time ergonomics 

evaluations of manual material handling in warehouse environments. The system 

consists of 17 IMUs, placed in a full-body suit that operates at an inertial update rate of 

500 Hz. The system can collect data and process them in real-time to compute the 

RULA, OCRA, OWAS, and NIOSH Lift Index. 
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• Bortolini et al. (2020) developed the Motion Analysis System (MAS), which is an 

architecture based on a Wi-Fi network with up to four depth cameras connected each 

one via USB port to dedicated PCs. They adopted Microsoft Kinect v.2™ depth cameras 

for the movement tracking. The cameras have two parallel sensors for a best depth 

evaluation: a color RGB sensor and an IR depth sensor. They evaluated four ergonomic 

indexes: OWAS, REBA, NIOSH, and EAWS. Markerless technology is adopted to 

acquire at 30 fps and store the information which is processed by the system to assess 

operator productivity and ergonomic performance. 

• Manghisi et al. (2020) created the ErgoSentinel tool. Based on previous work by 

Manghisi et al. (2017) on the K2RULA tool, the authors exploited multithread 

programming to allow their new tool to monitor in real-time operators and serve both 

as a postural warning and as a training system. Visual feedback and acoustic warning 

are adopted to perform a postural training of the operator in real-time based on the 

RULA index score achieved by the worker. Data capture is carried out with a single 

Microsoft Kinect ® V2 camera.  

Despite the literature and software market offering systems that are willing to perform an 

automated postural risk assessment, not all solutions are able to process data in real time. Most 

of the available solutions compute the acquired data in a post-processing analysis to obtain the 

final scores. This is an alternative that may suit the risk assessment of a workstation, which can 

be done even after data acquisition; however, real-time postural training sessions with feedback 

intervention need real-time computation of ergonomic indexes to assess user posture and 

provide prompt feedback. Although automatic and objective occupational risk monitoring is 

fundamental for recognizing hazardous work activities, to date, intervening in people's behavior 

and bad habits occurs only at the end of an ergonomic expert's analysis and risk assessment.  

For this reason, WEM-Platform differs from other solutions because it provides real-time 

index computation and feedback intervention, as the solution proposed by Manghisi et al. 

(2020), but with a set of indexes which is wider and more complete (i.e., RULA index analyses 

only upper limbs of system user, while the integration of other indexes with data coming from 

other sensors such as the heart rate monitoring device, can give a complete overview of the 

current health situation of the worker in real-time). In fact, another great feature of the platform 

lies in its scalability to capture input data from different systems. It can collect raw data from 

different hardware, thus not only coming from inertial units, and it can support additional 

analyses which can be integrated into the current version of the system. 



3. REAL-TIME DIGITAL ERGONOMIC PLATFORM 

50 

3.2.2 Platform Validation  

The validation of the results obtained from the platform was progressed with some 

laboratory tests. For this purpose, WEM-Platform continuously computed the data captured 

from the assembly process of a bedside table, for a cycle time equal to 7 minutes. The 

workstation consisted of an assembly station, with front and rear racks adapted to store all parts 

involved in the assembly process.  

The assembly process started by selecting the required components from the lowest level 

of the rear rack. To validate the software, 10 frames were sampled (Figure 3.8) from the 

assembly process. The frames chosen represent activities characterized by a high level of 

repeatability during the assembly activity. The aim of this validation test is to compare the 

results obtained in real time from the WEM-Platform with those obtained by computing 

ergonomic indexes with traditional post-processed video-recording evaluation. 

 

Figure 3.8: Set of postures for software validation 

The results for the proposed platform are very promising: The two scores for almost all 

the time frames evaluated, as reported in Figure 3.9, are close together. Only a few cases showed 

that the scores evaluated by the WEM-Platform were higher than those calculated manually. 
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Figure 3.9: Validation for RULA and REBA Ergonomics Indexes: Comparison of WEM-

Platform results, experts and, when available, Siemens Jack 

 

Figure 3.10: OWAS risk assessment: results from 

WEM-Platform and Siemens Jack 

 

Figure 3.11: PERA risk assessment: results from 

the WEM-Platform and expert evaluation 

These discrepancies occurred especially when the joint angles were close to an index 

threshold. Indeed, while the observer may mistakenly classify the angle, with high precision in 

the joint angle estimation of the inertial suit, the angle falls into the right range. In fact, a few 

degrees can have a significant impact on the final score. For the validations of the RULA and 

OWAS scores, the WEM-Platform outputs were compared with the results obtained with the 

Siemens Jack software. Figure 3.12 shows the graphical interface of the Jack software during 

the analysis of the first posture in Figure 3.8. 
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Figure 3.12: Posture validation through Jack Siemens software benchmark 

As shown in Figure 3.9, both ergonomic expert and Siemens software agreed mainly with 

the RULA index score proposed by the WEM-Platform. Jack software evaluates ergonomic 

postural risk with a single grand score, which does not refer to a specific side of the body, as 

WEM-Platform does. For this reason, Figure 3.9 reports the same value of the Siemens Jack 

analysis for both the right and left sides of the operator’s body. In some postures, the WEM-

Platform performs slightly higher risk scores compared to other assessments. The higher score 

provided by the WEM-Platform is mainly due to the computation of some joint angles that are 

not stated in the RULA index progression (i.e., a raised shoulder, an abducted upper arm, a bent 

wrist from the midline, etc.). For this reason, a range of movements was introduced to state 

whether to perform a scoring adjustment based on the ergo zone of the volunteer relative to the 

maximum threshold reached. For the OWAS index, Figure 3.10 shows that WEM-Platform 

output and Jack software scores are in complete agreement. The higher risk score for the first 

proposed postures is mainly related to the position of the trunk and legs. On the contrary, in the 

last frames of Figure 3.10, the operator performs less awkward postures, resulting in lower 

OWAS scores. Although for both RULA and OWAS scores a benchmark between WEM-

Platform and Siemens Jack software postural evaluation toolkit can be progressed, the 

validation of REBA and PERA scores relies only on the expert’s assessment. Figure 3.9 reports 

the comparison between the REBA score, assessed on both sides of the operator's body, 

provided by the WEM-Platform and the expert’s estimates. Similarly, Figure 3.11 reports 

WEM-Platform output and expert scores for each work task, as required by the analysis of the 
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PERA index. Task segmentation is performed manually by recognizing tasks characterized by 

distinct postures or work content, as reported by Chander & Cavatorta (2017). The score values 

presented for the activities analyzed are usually low due to the small force needed for their 

progression. However, awkward postures or long durations still clearly affect some tasks. 

3.3 Single-person postural risk assessment 

This section describes some practical applications of the WEM-Platform in real and 

laboratory test cases to evaluate the accuracy of the results obtained from the system and to test 

the efficacy of the feedback intervention to improve the postural behavior of the operator. 

3.3.1 Postural risk assessment in a real case 

The system was adopted in a real scenario to test the performance of postural risk 

assessment in a work environment. The operator performing the assembly activities could be 

considered a young but experienced worker. The inertial suit adopted in this test was the Xsens 

Awinda inertial suit with 17 IMUs. The data collected from the platform was progressed in real 

time and converted to ergonomic scores, which were displayed to the observers through the 

guided user interface, as described in Section 3.1. As an example, the RULA scores for the right 

and left sides of the worker's body are reported in Figure 3.13 and Figure 3.14.  

Figure 3.13: RULA scores for the right side of 

the worker’s body 

Figure 3.14: RULA scores for the left side of 

the worker’s body 

The results obtained from the WEM-Platform test showed that the worker performed on average 

posture risk, which was below the maximum threshold, however, few peaks of awkward 

postures were analyzed with the company, and solutions were proposed to smooth the risk in 

those hazardous situations. Furthermore, the platform calculated the percentage of time the 

operator's hands spent within the ergo-zone and the percentage of time spent in dangerous 
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positions and plotted the results in Figure 3.15. The graphs highlight that the left hand, which 

was not the operator's favorite hand, was out of the ergo zone for the highest percentage of time. 

This is imputable to the fact that the operator was used to use his favorite arm to accomplish 

the assigned tasks, which may be progressed in parallel with both arms, to increase the 

percentage of time of the left arm inside the ergo-zone. 

 

Figure 3.15: Percentage of time hands spent in ergo-zone (green) and in dangerous zone (red). 

3.3.2 Training effects on inexperienced worker 

The laboratory tests presented hereafter aim to investigate the influence and the benefits 

of the adoption of WEM-Platform feedback on the postural behavior of an inexperienced 

worker during an assembly process. Therefore, the same drawer assembly process was 

performed by an operator without and with WEM-Platform feedback. Due to the small 

dimension of the assembled object, the operator can work in front of the workbench. The 

laboratory setup is represented by a standard 1-meter-high workbench.  

During these two scenarios (i.e., assembly activities with and without feedback 

intervention), the WEM-Platform processes the data collected by an inertial MOCAP suit and 

computes in real time the scores of RULA, REBA, and OWAS. 
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Figure 3.16: Workplace layout for the postural training session 

Time performance is also considered an indicator of the efficiency of assembly activity. 

Only the RULA, REBA and OWAS indexes were adopted for this analysis because of their 

suitability for the assembly activities. However, additional safety risk indexes can be integrated 

into the analysis depending on the industrial context analyzed. As an example, for multi-person 

postural risk assessment on multi-manned workstations of automotive assembly lines, the 

platform could be extended with the European Assembly Worksheet (EAWS) (Schaub et al., 

2013) designed for the automotive industrial sector.  

In the first scenario, the operator performs the drawer assembly activity without previous 

training experience or external feedback intervention. For this scenario, the WEM-Platform 

calculates the RULA, REBA, and OWAS risk index during the assembly task, but no visual 

feedback is provided to the operator during the progression of the activity. 

In the second scenario, the same operator repeats the drawer assembly task. However, in 

this case, the operator received feedback from the WEM-Platform during the activity. The 

WEM-Platform constantly monitors the operator’s posture and assesses the postural risk scores 

of RULA, REBA, and OWAS in real time. In addition, a virtual representation of the posture 

of the trainee is shown on the workbench monitor to provide the operator with intuitive visual 

feedback while performing the assembly activity.  
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Figure 3.17: RULA index scores progressed in the two scenarios 

 

Figure 3.18: REBA index scores progressed in the two scenarios 

The results of the postural risk assessment performed in this analysis highlight the 

postural improvement of the operator in drawer assembly activity. Table 3.1 provides the 

RULA, REBA, and OWAS index scores for both sides of the worker's body. Improvement in 

postural behavior between the first and second scenarios is significant for all ergonomic index 

scores. The REBA index for the right side has the highest score improvement, corresponding 

to 34,3% of the initial value. 

Table 3.1: Impact of the feedback intervention on the inexperienced worker 

 

Index Side 
Without feedback 

from WEM-Platform 

With feedback from  

WEM-Platform 
Δ % 

RULA 
Right 5.32 4.39 -17.5% 

Left 5.44 4.66 -14.3% 

REBA 
Right 6.1 4.01 -34.3% 

Left 6.09 4.17 -31.5% 

OWAS - 149.37 112.74 -24.5% 

Time [sec] - 260 261 0.4% 
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Table 3.1 shows that the greatest improvements are achieved on the right side of the body. 

The reduction in the REBA score for both sides of the body is considerable, although the total 

assembly time did not increase. 

3.4 Multi-person postural risk assessment 

To test the scalability of the WEM-Platform for the simultaneous real-time postural risk 

assessment of two people collaborating on the same activity, two multi-person work scenarios 

were designed and tested in the Department Ergo-laboratory. The analysis focuses on multi-

person ergonomic assessment in materials picking and in assembly activities performed in a 

multi-manned workstation.  

3.4.1 Multi-manned assembly workstation 

In production sites, especially for medium and large product assembly lines, a group of 

workers can be employed at the same workstation to simultaneously perform different 

operations on the same product (Fattahi et al., 2011). A multi-manned assembly line is a type 

of production line where tasks are simultaneously performed on the same individual product by 

groups of workers in multi-manned workstations. The literature already provides models and 

solutions to multi-manned assembly line balancing problems to reduce the number of operators 

involved in the workstations or minimize the cycle time (Roshani & Giglio, 2017).  

 

Figure 3.19: A configuration of assembly line with multi-manned workstations 

The group of operators involved in these workplaces can have different levels of 

experience and different anthropometric characteristics. Dealing with such heterogeneity can 

be challenging for companies, which need advanced solutions to consider the individuality of 

the operator during the training phase and the assignment of the job. Postural training sessions 

are effective countermeasures against the onset of WMSD; however, the effectiveness of the 

training phase also depends on the level of experience of the trainee (Denadai et al., 2021). 
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3.4.2 Laboratory test case 

In the test case presented here, two volunteers were recruited to carry out the activities. 

• Operator #1: inexperienced worker with no previous experience in the product assembly 

process and not previously trained by the WEM-Platform (male, 30 y/o, 187 cm tall). 

• Operator #2: experienced worker in the assembly process under study and previously 

trained by the WEM-Platform (male, 27 y/o, 174 cm tall). 

Both participants have voluntarily participated in the study and signed a written consent 

to participate in laboratory tests. In detail, the activities studied are:  

• Scenario 1: Activity of picking up three large sheets and placing them on a shelf at three 

different heights. 

• Scenario 2: Assembly activity of a medium-size cart performed on a multi-manned 

workstation.  

Scenario 1 was designed to analyse the effect that the anthropometric characteristics of 

different operators may have on risk indexes. During the activity, each operator moves three 

large metal sheets from a 1-meter-high workbench. He picks up the first one and walks about 2 

meters to the rack to place the metal sheet at the ground level (i.e., 15 cm from the ground). He 

then goes back to take the second one and place it at the middle level (i.e., at the same height 

as the workbench). Finally, he picks up the last one and places it on the upper level of the rack 

(i.e., about 2 m. from the ground). This analysis aims to determine how the difference in height 

between the two operators can affect their posture risk scores while working in the same 

workplace. In this sense, the two volunteers have a height difference of almost 15 cm.  

The second scenario analyses a multi-person postural risk assessment for a cart assembly 

activity in a multi-manned workstation. The process consists of assembling two shelves, 

initially placed on a pallet close to the workstation, at different heights on the cart. Each shelf 

is fixed with two bolts on both sides of the cart. Due to the dimensions of the object, which can 

be considered a medium-sized product (150 x 93 x 70 cm), it was not possible to proceed with 

its assembly on the workbench. For this reason, assembly activity was carried out in front of 

the workbench, where two monitors displayed their postural risk assessment to both workers in 

real time (Figure 3.20).  
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Figure 3.20: Multi-person postural real-time risk assessment 

The analysis performed in Scenario 1 aims to test whether anthropometric characteristics 

affect ergonomic index scores. The results reported in Table 3.2 confirm initial expectations, 

especially for the REBA index time average values.  

Despite the greater experience in the assembly activity of Operator #2, his risk score 

increased due to the hazardous postures maintained while moving the metal sheets. Regarding 

the RULA index (Figure 3.21), there is a slight difference between the postural risks of the 

operators. 

Table 3.2: Postural risk assessment scores for multi-person pick-and-place activity 

Index Side Scenario 1 
Operator #1 Operator #2 

RULA Right 4.44 4.23 
Left 4.43 4.36 

REBA Right 3.42 4.82 
Left 3.49 4.93 

OWAS - 138.79 149.3 
Time [sec] - 36 

 

Although the value represents a warning for operator safety (i.e., a RULA index score 

greater than 4 requires the implementation of some actions to reduce the value for this activity), 

the RULA index itself does not provide other helpful information on the anthropometric 

differences between the two operators. 
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Figure 3.21: RULA index for pick-and-place activity (Scenario 1) 

In contrast, Figure 3.22 reports the REBA index, which clearly indicates that there are 

only a few cases throughout the duration of the activity where the postural risk of Operator #1 

exceeds that of his shorter colleague. 

 

Figure 3.22: REBA index for pick-and-place activity (Scenario 1) 

In the second scenario, the WEM-Platform was adopted to assess multi-person postural 

risk for two operators. Table 3.3 reports the results of this scenario, which involves two workers 

collaborating on a cart assembly task. Throughout the duration of the activity, the WEM-

Platform provides visual feedback in real time through two monitors placed on a nearby work 

bench (Figure 3.20). The monitors show the digital representation of the operators, the NIOSH 

angles, together with the RULA, REBA and OWAS risk index scores. The analysis aims to 

highlight the postural risk assessment of Operator #1 working together with an experienced 

operator. In a multi-manned assembly workstation, the activities performed by each operator 

may differ depending on product precedence constraints and task scheduling decision. 

Therefore, it is fundamental to monitor the behavior of both operators to highlight individual 

postural risk scores. 
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Table 3.3: Postural risk assessment of assembly activity in multi-manned workstation 

 

The computation of risk indexes in real time allows the ergonomist to immediately detect 

uncomfortable postures during the progression of the activity. The scores reported in Table 3.3 

show that Operator #2 completes the activity with a lower average risk value. Furthermore, 

Figure 3.23 and Figure 3.24 show that Operator #1 usually exceeds Operator #2 scores for both 

the RULA and REBA indicators. In conclusion, the expertise of Operator #2 allowed him to 

achieve a lower average risk compared to the inexperienced worker. 

 

Figure 3.23: RULA index for multi-manned assembly station (Scenario 2) 

 

Figure 3.24: REBA index for multi-manned assembly station (Scenario 2) 

Index Side Scenario 2 
Operator #1 Operator #2 

RULA Right 4.54 4.24 
Left 4.92 4.12 

REBA Right 5.38 5.49 
Left 5.92 4.49 

OWAS - 205.21 145.43 
Time [sec] - 288 
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Conclusion 

Human motion data capturing has recently become one of the most interesting research 

topics and one of the greatest opportunities for manufacturing companies to monitor workers 

for safety purposes, besides focusing on performance aspects. Therefore, discussions can arise 

about trust, employee rights, privacy, and trade unions. Complaints could arise if the human 

tracking system also performs a time tracking by recording employee attendance and absences 

from the production workstation. In the same way, tracking by collecting data on how 

employees spend their time during a work shift could also limit workers’ privacy. Finally, 

biological and physical data tracking could open the company to legal concerns with the 

General Data Protection Regulation 2016 (Regulation EU on GDPR, 2016), which governs the 

processing of personal data.  

Violating regulations could leave companies open to Human Resource (HR) complaints 

and lawsuits. Finally, monitoring every moment of an employee’s workday can damage 

employee morale. Employees may resent the intrusion and lack of trust, and this could lead to 

employee stress and burnout. Several limitations exist to the real implementation of 

environments where data are constantly monitored in real-time, even if the technologies and 

the methodological approaches are ready for this implementation. However, by correctly 

understanding the benefits on workers’ wellbeing and safety of such systems, it is possible to 

work toward more focused and efficient data collection, according to the different industrial 

contexts, employment contracts and labor relationship. 
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4  

Multi-objective job rotation  
scheduling model 

Introduction 

This chapter presents a new mathematical model to solve the job rotation scheduling 

problem considering system productivity, operator safety and boredom level. This model 

represents one of the first attempts to include such different objective functions in a single 

mathematical formulation. In fact, previous contributions aim to keep workforce safety as a 

constraint of the model and not as an objective. To calculate the risk level of the worker at each 

workstation, during the preliminary phase of field data collection, the WEM-Platform can be 

adopted to speed up ergonomic assessment. In this problem formulation, REBA index score 

was chosen because of its suitability to the characteristics of the jobs performed in the shop 

floor for this application test case. However, the risk index can be easily replaced with another 

method available among the list of indexes of the WEM-Platform assessment tool (e.g., the 

RULA index might be more suitable whether jobs are more static and can be performed mainly 

with the upper limbs of the workers).
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4.1 Research gap 

While past works on JRS have indeed been useful and knowledge-building, they have a 

singular lacuna: they mainly consider a single aspect at a time. Most of the prior works neglect 

to address the combinatorial effect that multiple parameters might have on the JRS model 

performance and results. For example, in a human-centric working space, body postures, tool 

vibrations, and noise should be jointly considered to better define a sustainable and human-

centric job rotation schedule. Similarly, there is little research on flexible shift duration times 

and different rest breaks developed to match the characteristics of individual workers. A notable 

exception is the study by Tharmmaphornphilas & Norman (2004), which investigates the 

effects that the frequency of intervals and break positioning can have on safety risk reduction 

by assessing the evaluation of the proper time length for rotating workers. However, they 

consider workers with similar attributes. Recent works in job rotation scheduling already 

include HF (i.e., occupational risk linked to postures and fatigue, experience/skill levels) related 

to long- and short-term decisions (i.e., Mehdizadeh et al., 2020; Mossa et al., 2016). However, 

they often neglect to consider worker attributes and ignore various complexities of worker 

involvement in input data estimation.  

Based on the theoretical fundamentals discussed in Section 1.1, this research proposes a 

new human-centric approach for solving a multi-objective job rotation scheduling problem. The 

proposed model breaks new ground in jointly considering a variety of realistic shop floor 

sociotechnical factors in JRS: ergonomics postural scores, vibration and noise risk constraints 

(respecting international standards threshold values), workers’ experience in performing jobs 

and individual physical limitations. Furthermore, workers' opinion is considered to define a 

similarity score between jobs, useful in finding solutions to minimize worker boredom. Finally, 

the number of shifts, as well as the break time between each shift, is optimally scheduled, as 

they strongly influence productivity and worker well-being. The duration of rest breaks is 

flexible because differences related to age and gender are considered. Improving on previous 

job rotation scheduling models (e.g., Hochdörffer et al., 2018; Song et al., 2016; Yoon et al., 

2016), the assumption made for this contribution is that break time between shifts is an 

opportunity for operators to recover, contingent on worker individual characteristics (age and 

gender, for example).  

In summary, this research model presents a new human-centric job rotation scheduling 

approach. The model aims to make the worker (and inferentially the production system) more 
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resilient to variability in ergonomic workloads and minimize boredom risks in human intensive 

working environments. The model is inspired by Industry 5.0 human-centric priorities and is 

grounded in previous research. More specifically, it seeks to maximize throughput while 

customizing job rotation schedules to match individual worker attributes. 

4.2 Workplace Risk Factors 

This section investigates the most common risks in the manufacturing field that can 

represent a threat to the safety and well-being of the workforce. Excess exposure to vibrations 

and noise can lead to diseases that endanger the health condition and workability of workers, 

which can bring the negative effects of prolonged exposure lifelong. For this reason, the main 

international standards that determine the maximum threshold for exposure to noise and 

vibration are investigated and introduced in the mathematical model developed in this research. 

4.2.1 Vibration exposure 

Manufacturing workplaces are often characterized by the presence of tools and machines 

that produce vibrations that are transferred to workers in proximity or directly using production 

tools. Prolonged vibration exposures can lead to adverse effects that can be localized in a 

specific part of the body, or they can interest the whole body, leading to harmful effects on the 

physical health of workers (McCallig et al., 2010). Vibrations can be transmitted directly from 

the tool to the hand-arm system, which can cause diseases in the upper extremities limbs of the 

body, called hand-arm vibration syndrome (HAVS) (Bovenzi et al., 2019). In contrast, when 

the whole body is exposed to vibrations, whole-body vibration (WBV) disorders can arise. 

Since vibration values depend on several aspects such as the frequency, magnitude and 

duration, several international standards have been developed to provide guidelines and policies 

to correctly estimate vibration exposure. Among the standards developed, two of the most 

widespread regulations are ISO 5349-1, 2001 and ISO/TR 18570, 2017.  ISO 5349-2, 2001 

defines that the daily vibration exposure duration requires an evaluation of the exposure 

duration associated with each work phase. During a workday, workers can use different tools 

to progress their work, but only some of them transmit vibrations to workers. Measurement of 

the vibration level of a tool must be performed with instruments according to 2017, measuring 

it in all three directions. In ISO 5349-1, 2001 the first measure to evaluate for each of the three 

axes (x, y, and z) is the root mean square (r.m.s.) frequency-weighted acceleration.  

Then, the total vibration value for a generic tool 𝑎ℎ𝑣 is defined as:  



4. MULTI-OBJECTIVE JOB ROTATION SCHEDULING MODEL 

66 

 𝑎ℎ𝑣 = √𝑎ℎ𝑣𝑥
2 + 𝑎ℎ𝑣𝑦

2 + 𝑎ℎ𝑣𝑧
2  (4.1) 

Equation (4.1) defines the vibration level produced by a vibrating tool that integrates the 

vibration values along the x, y and z axes in a single value. Following ISO 5349-1, 2001 the 

daily exposure through the total vibration value and its daily exposure duration is expressed as: 

 𝐴(𝑇0) = 𝑎ℎ𝑣√
𝑇

𝑇0
 (4.2) 

where T represents the total daily exposure to 𝑎ℎ𝑣 𝑎𝑛𝑑 𝑇0 represents the equivalent working 

time. However, when several tools are used during a working day, the daily vibration exposure 

is determined using the following equation: 

 𝐴(𝑇0) = 𝑎ℎ𝑣√
1

𝑇0
∑ 𝑎ℎ𝑣𝑖

2 𝑇𝑖

𝑛

𝑖=1
 (4.3) 

where the vibration value 𝑎ℎ𝑣𝑖 and the duration 𝑇𝑖 of the adoption of each tool is 

considered. 𝑇0 represents the shift time. Taking into account a typical workday of 8 h, ISO 

5349-1, 2001 defines a threshold value of 2.50 𝑚 𝑠2⁄  and a maximum limit exposure of 5.00 

𝑚 𝑠2⁄  of daily vibration exposure 𝐴(𝑇0). If the daily exposure is less than 8 h, according to 

Equation (4.2), the threshold and the maximum acceptable vibration value increase, as reported 

in Table 4.1. For example, for an exposure period of 30 min, the acceptable level of vibration 

can be high (20.00 𝑚 𝑠2⁄ ) if compared to the acceptable value related to 8 h. 

Table 4.1: Vibration limits according to ISO 5349-1, 2001 

Total daily exposure [hours] Threshold value [𝑚 𝑠2⁄ ] Maximum limit exposure [𝑚 𝑠2⁄ ] 

8 2.50 5.00 

6 2.89 5.77 

4 3.54 7.07 

2 5.00 10.00 

1 7.07 14.14 

0.5 10.00 20.00 
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4.2.2 Noise Exposure 

There is certified evidence that workers exposed to noise in the workplace (𝐿𝐴𝑒𝑞8ℎ𝑟 ≥

80 𝑑𝐵𝐴) have an increased risk of accident (Picard et al., 2008). Hearing loss caused by 

exposure to work-related noise is called occupational noise-induced hearing loss (NIHL) 

(Morata, 2012). The most effective means of preventing NIHL is to eliminate the noise hazard 

(NIOSH, 1996). According to the study by Tak et al. (2009), the manufacturing industry in the 

United States had the highest number of workers exposed to hazardous workplace noise 

exposure (estimated number of exposed workers, 5.7 million or 25% of all workers exposed to 

hazardous workplace noise), followed by construction (4.5 million) and retail trade (2.1 

million). In manufacturing industry, mechanics and repairers of vehicles and mobile equipment 

showed the highest prevalence (82%) of exposure to hazardous workplace noise exposure. 

When employees experience sounds that exceed those listed in Table 4.2, feasible 

administrative or engineering controls must be used. If such controls do not reduce the sound 

levels within the levels of Table 4.2, personal protective equipment shall be provided and used 

to reduce the sound levels within the levels of the table. 

Table 4.2: Permissible noise exposure according to the OSHA standard (OSHA 

1910.95) 

Duration per day [hours] Sound level [𝑑𝐵𝐴] 

8 90 

6 92 

4 95 

3 97 

2 100 

11
2⁄  102 

1 105 

                         1 2⁄  110 

                  1 4⁄  𝑜𝑟 𝑙𝑒𝑠𝑠 115 
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4.3 Mathematical model 

In this section, the new multi-objective job rotation scheduling model is presented. The 

aim is to maximize the throughput of the manufacturing system and to minimize the maximum 

level of boredom and safety risk in the work team, considering workers' differences in terms of 

age, gender, experience levels, and physical limitations according to specific jobs. Daily 

exposures to noise and vibration from tools are also considered additional constraints. 

4.3.1 Notation 

Sets and indices: 

• W  Set of workers, indexed by i 

• J   Set of jobs, indexed by j 

• K  Set of shifts, indexed by k 

Parameters: 

• 𝑁𝑗 Nominal execution time for job j [seconds] 

• 𝛼𝑖𝑗 Level of experience of worker i in executing job j 

• 𝛽𝑖𝑗 Physical limitation for worker i in performing job j 

• 𝑅𝐴𝑖𝑗  Rest allowance for worker i in executing job j 

• 𝑠𝑖𝑗𝑗′ Level of similarity defined by the worker i between jobs j and j’ 

• 𝑇𝑘  Time for shift k [seconds] 

• 𝐵𝑘 Break time for shift k [seconds] 

• 𝐸𝑗 Safety risk score for job j 

• 𝐿𝑗 Noise level for job j [seconds] 

• 𝑎𝑗  Acceleration value for job j [𝑚
𝑠2⁄ ]  

• 𝑎𝑙𝑖𝑚  Maximum acceleration value [𝑚
𝑠2⁄ ] 

• 𝐷  Workday duration [seconds] 

• 𝑧𝑗(𝑚𝑖𝑛) Minimum required throughput for job j [pcs] 

• 𝑧𝑗(𝑚𝑎𝑥) Maximum required throughput for job j [pcs] 

• UB Big number 

Decision variables: 
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• 𝑥𝑖𝑗𝑘 1 if worker i is assigned to job j during shift k; 0 otherwise 

• 𝑥𝑖𝑗′(𝑘+1) 1 if worker i is assigned to job j’ during shift k+1; 0 otherwise 

Variables: 

• 𝑧𝑖𝑗𝑘 The throughput obtained by worker i for job j during shift k 

• 𝑧𝑚𝑎𝑥 Total throughput  

• 𝐸𝑖 Safety risk to the worker i 

• 𝐸𝑚𝑎𝑥 Maximum safety risk 

• 𝑆𝑖 Job similarity level for worker i 

• 𝑆𝑚𝑎𝑥 Maximum similarity level 

The following assumptions are included in the model.  

• The set of jobs and workers is fixed. 

• In a working day, the same job can be assigned at least once to the same worker. 

• The number of jobs is larger than the number of operators, so at least one job will be 

assigned to each operator in each period. This assumption reflects common reality in 

industry. In fact, due to the variety of products, the number of jobs is generally higher 

than the number of workers. 

• A minimum quantity of product is required for each job.  

• For each job, a maximum number of products is defined to avoid higher inventory costs.  

• Each worker must complete the assigned job according to his/her physical capacity, 

limitations, and experience level. The time required to perform a job can be lower than or 

greater than the nominal execution time, depending on the level of experience.  

• For each job, data on noise and vibration levels, ergo-postural risks, and nominal 

execution time are known.  

• Each worker is directly involved in defining the level of similarity among jobs and, 

consequently, the perceived boredom.   

• The recovery time (RA) required for each job varies according to the worker. It considers 

the energy expenditure required to perform the job and the maximum acceptable energy 

expenditure of each worker according to Finco et al. (2019). 

• A suitable and dynamic rotation for the worker is guaranteed daily according to the 

characteristics of the workers.  

• All parameters are deterministic and constant. 
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4.3.2 Model Formulation 

The objective functions (O.F.) of the mathematical model can be defined as follows: 

 O.F.1: Maximize 𝑧𝑚𝑎𝑥 (4.4) 

 O.F.2: Minimize 𝑆𝑚𝑎𝑥 (4.5) 

 O.F.3: Minimize 𝐸𝑚𝑎𝑥 (4.6) 

Subject to: 

 ∑ 𝑥𝑖𝑗𝑘
𝑗

= 1 ∀ 𝑖 = 1, . . , 𝑊; 𝑘 = 1, . . , 𝐾 (4.7) 

 ∑ ∑ 𝑥𝑖𝑗𝑘 ≥
𝑘𝑖

1 ∀ 𝑗 = 1, . . , 𝐽 (4.8) 

 ∑ 𝑥𝑖𝑗𝑘 ≤
𝑖

1 ∀ 𝑗 = 1, . . , 𝐽; 𝑘 = 1, . . , 𝐾 (4.9) 

 𝑧𝑗_𝑚𝑖𝑛 ≤ ∑ ∑ 𝑧𝑖𝑗𝑘
𝑘𝑖

≤ 𝑧𝑗_𝑚𝑎𝑥  ∀ 𝑗 = 1, . . , 𝐽 (4.10) 

0 ≤ 𝑧𝑖𝑗𝑘 ≤
𝑇𝑘 − max(0; 𝑇𝑘𝑅𝐴𝑖𝑗 − 𝐵𝑘)

𝛼𝑖𝑗𝛽𝑖𝑗𝑁𝑗
 𝑥𝑖𝑗𝑘  ∀ 𝑖 = 1, . . , 𝑊; 𝑗 = 1, . . , 𝐽; 𝑘 = 1, . . , 𝐾 (4.11) 

 ∑ ∑ ∑ 𝑧𝑖𝑗𝑘
𝑖𝑗𝑘

≤  𝑧𝑚𝑎𝑥 (4.12) 

 Si =
∑ ∑ ∑ 𝑥𝑖𝑗𝑘𝑥𝑖𝑗′(𝑘+1)𝑠𝑖𝑗𝑗′

𝐽
𝑗′=1  𝐽

𝑗=1
𝐾−1
𝑘=1

𝐾 − 1
 ∀ 𝑖 = 1, . . , 𝑊 (4.13) 

 𝑆𝑚𝑎𝑥 ≥ Si ∀ 𝑖 = 1, . . , 𝑊 (4.14) 

 𝐸𝑖 =
1

𝐷
∑ ∑ 𝐸𝑗[𝑇𝑘 − max(0; 𝑇𝑘𝑅𝐴𝑖𝑗 − 𝐵𝑘)]𝑥𝑖𝑗𝑘

𝑘
 ∀ 𝑖 = 1, . . , 𝑊

𝑗
 (4.15) 

 𝐸𝑚𝑎𝑥 ≥ Ei ∀ 𝑖 = 1, . . , 𝑊 (4.16) 

 
1

𝐷
∑ ∑ 𝑎𝑗

2[𝑇𝑘 − max(0; 𝑇𝑘𝑅𝐴𝑖𝑗 − 𝐵𝑘)]𝑥𝑖𝑗𝑘
𝑘

≤ 𝑎𝑙𝑖𝑚
2

𝑗
 ∀ 𝑖 = 1, . . , 𝑊 (4.17) 

 ∑ ∑
𝛼𝑖𝑗𝛽𝑖𝑗𝑁𝑗

𝐿𝑗
𝑥𝑖𝑗𝑘

𝑘
≤

𝑗
1 ∀ 𝑖 = 1, . . , 𝑊 (4.18) 

 𝑥𝑖𝑗𝑘 ∈ {0,1} ∀ 𝑖 = 1, . . , 𝑊; 𝑗 = 1, . . , 𝐽; 𝑘 = 1, . . , 𝐾 (4.19) 

 𝑧𝑖𝑗𝑘 ∈ ℕ ∀ 𝑖 = 1, . . , 𝑊; 𝑗 = 1, . . , 𝐽; 𝑘 = 1, . . , 𝐾 (4.20) 

 𝑧𝑚𝑎𝑥 ∈ ℕ (4.21) 

 𝑆𝑖, 𝐸𝑖  ∈ ℝ ∀ 𝑖 = 1, . . , 𝑊 (4.22) 



 4.3. MATHEMATICAL MODEL 

71 

 𝑆𝑚𝑎𝑥, 𝐸𝑚𝑎𝑥  ∈ ℝ (4.23) 

Where O.F.1, hence the first objective function, maximizes the daily throughput. The 

second objective function, O.F.2, minimizes boredom (based on the worker’s perceived level 

of similarity between jobs). Finally, the third objective function, O.F.3, minimizes safety risk. 

Constraint (4.7) states that each worker in each rotation shift must perform only one job. 

Constraint (4.8) guarantees the execution of all jobs at least once during a working day, while 

constraint (4.9) defines that each job must be executed by a maximum of one worker in each 

rotation shift. Constraint (4.10) guarantees the respect of the minimum and maximum 

throughput for each job j, constraint (4.11) quantifies the throughput for job j obtained by 

worker i in rotation shift k. Constraint (4.11) considers the level of experience of worker i in 

performing job j, as well as the rest allowance and some physical limitations. Moreover, it 

evaluates whether to assign an extra amount of time, which is set as the maximum value 

between 0, and the difference between rest time (𝑇𝑘𝑅𝐴𝑖𝑗), defined as the product between the 

rotation shift length and the percentage of recovery time required for executing the job, and the 

beak time (𝐵𝑘).  

Constraint (4.12) quantifies the total daily throughput. Constraint (4.13) evaluates the 

average value of the similarity score for the worker i involved, while constraint (4.14) quantifies 

the maximum similarity level between workers. Constraints (4.15) and (4.16) evaluate the 

safety risk for each worker and the maximum safety risk score between workers to create a 

highly flexible model that can be applied to any type of occupational risk score. Constraints 

(4.17) and (4.18) ensure respect for vibration (Finco et al., 2020) and daily exposure to noise 

according to ISO5349-1:2001 and NIOSH. Finally, the constraints set (4.19)-(4.23) define the 

variable type.  

The model proposed here is not linear due to constraints (4.11) and (4.13). However, it 

can be linearized by adding additional constraints and variables, and thus a Mixed Integer 

Linear Programming (MILP) model can be obtained. Going in-depth of the linearization 

approach, constraint (8) can be replaced as follows: 

 0 ≤ 𝑧𝑖𝑗𝑘 ≤
𝑇𝑘𝑥𝑖𝑗𝑘 − 𝑅𝑖𝑗𝑘

𝛼𝑖𝑗𝛽𝑖𝑗𝑁𝑗
 ∀ 𝑖 = 1, . . , 𝑊; 𝑗 = 1, . . , 𝐽; 𝑘 = 1, . . , 𝐾 (4.24) 

The following additional constraints are included in the model:  
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 𝑅𝑖𝑗𝑘 ≥ 0 ∀ 𝑖 = 1, . . , 𝑊; 𝑗 = 1, . . , 𝐽; 𝑘 = 1, . . , 𝐾 (4.25) 

 𝑅𝑖𝑗𝑘 ≥ (𝑇𝑘𝑅𝐴𝑖𝑗 − 𝐵𝑘)𝑥𝑖𝑗𝑘 ∀ 𝑖 = 1, . . , 𝑊; 𝑗 = 1, . . , 𝐽; 𝑘 = 1, . . , 𝐾 (4.26) 

𝑅𝑖𝑗𝑘 ≤ (𝑇𝑘𝑅𝐴𝑖𝑗 − 𝐵𝑘)𝑥𝑖𝑗𝑘 + 𝑈𝐵(1 − 𝜑𝑖𝑗𝑘) ∀ 𝑖 = 1, . . , 𝑊; 𝑗 = 1, . . , 𝐽; 𝑘 = 1, . . , 𝐾 (4.27) 

 𝑅𝑖𝑗𝑘 ≤ 0 + 𝑈𝐵𝜑𝑖𝑗𝑘 ∀ 𝑖 = 1, . . , 𝑊; 𝑗 = 1, . . , 𝐽; 𝑘 = 1, . . , 𝐾 (4.28) 

 𝜑𝑖𝑗𝑘 ∈ {0,1} ∀ 𝑖 = 1, . . , 𝑊; 𝑗 = 1, . . , 𝐽; 𝑘 = 1, . . , 𝐾 (4.29) 

 𝑅𝑖𝑗𝑘 ∈ ℝ ∀ 𝑖 = 1, . . , 𝑊; 𝑗 = 1, . . , 𝐽; 𝑘 = 1, . . , 𝐾 (4.30) 

 Where 𝑅𝑖𝑗𝑘 assumes the maximum value between zero (no rest) and the rest time to 

assign to a worker in case the break time is not enough to cover the physical fatigue spent in 

performing the job. Constraints (4.25) - (4.28) set the value of 𝑅𝑖𝑗𝑘 for each worker, i, each job, 

j, and each shift, k. Finally, constraints (4.29) and (4.30) define the type of variable.  

Considering constraint (4.13) the non-linearity is due to the product between two Boolean 

variables. For this reason, an additional set of Boolean variables must be included in the final 

model and constraint (4.13) must be replaced as follows:  

 Sik = ∑ ∑ 𝛾𝑖𝑗𝑗′𝑘(𝑘+1)𝑠𝑖𝑗𝑗′  ∀ 𝑖 = 1, . . , 𝑊

𝐽

𝑗′=1

;  𝑘 = 1, . . , 𝐾

𝐽

𝑗=1

 (4.31) 

Moreover, the following additional constraints must be included: 

𝛾𝑖𝑗𝑗′𝑘(𝑘+1) ≤ 𝑥𝑖𝑗𝑘  ∀ 𝑖 = 1, . . , 𝑊; 𝑗 = 1, . . , 𝐽; 𝑗′ = 1, . . , 𝐽; 𝑘 = 1, . . , 𝐾 − 1 (4.32) 

𝛾𝑖𝑗𝑗′𝑘(𝑘+1) ≤ 𝑥𝑖𝑗′(𝑘+1)∀  𝑖 = 1, . . , 𝑊; 𝑗 = 1, . . , 𝐽; 𝑗′ = 1, . . , 𝐽; 𝑘 = 1, . . , 𝐾 − 1 (4.33) 

𝛾𝑖𝑗𝑗′𝑘(𝑘+1) ≥ 0 ∀ 𝑖 = 1, . . , 𝑊; 𝑗 = 1, . . , 𝐽; 𝑗′ = 1, . . , 𝐽; 𝑘 = 1, . . , 𝐾 − 1 (4.34) 

𝛾𝑖𝑗𝑗′𝑘(𝑘+1) + 1 − 𝑥𝑖𝑗𝑘 − 𝑥𝑖𝑗′(𝑘+1) ≥ 0 ∀ 𝑖 = 1, . . , 𝑊; 𝑗 = 1, . . , 𝐽; 𝑗′ = 1, . . , 𝐽; 

𝑘 = 1, . . , 𝐾 − 1 
(4.35) 

𝛾𝑖𝑗𝑗′𝑘(𝑘+1) ∈ {0,1} ∀ 𝑖 = 1, . . , 𝑊; 𝑗 = 1, . . , 𝐽; 𝑗′ = 1, . . , 𝐽; 𝑘 = 1, . . , 𝐾 − 1 (4.36) 

Where 𝛾𝑖𝑗𝑗′𝑘(𝑘+1) is the Boolean variable representing the product between 𝑥𝑖𝑗𝑘 and 

𝑥𝑖𝑗′(𝑘+1). The constraint set (4.32) - (4.35) is required to set the value of 𝛾𝑖𝑗𝑗′𝑘(𝑘+1) which can 

assume a value equal to 1 in case both 𝑥𝑖𝑗𝑘 and 𝑥𝑖𝑗′(𝑘+1)  assume a value of 1 or equal to 0 in 
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case of both or one Boolean variable among 𝑥𝑖𝑗𝑘 and 𝑥𝑖𝑗′(𝑘+1)  assume a 0 value. Finally, the 

constraint (4.36) sets the type of variables. 

4.4 Multi-objective solution procedure 

Since the model is multi-objective, the 𝜀-constraint algorithm was adopted to obtain the 

set of optimal solutions, thus the 3D Pareto’s front. With the ε-constraint algorithm, the multi-

objective problem is reduced to a single object, by adding the constraints that represent the 

remaining objective functions (Haimes Yv et al., 1971), Table 4.3 presents the pseudocode. 

Table 4.3: ε-constraint pseudo-code 

Algorithm: ε-constraint algorithm of the JRS model 

1: S = ∅; γ ← 0 

2: Set 

 E̅ ← Elim 

3: while (E̅ ≥ Emin) do 

4: Set: S̅ ← Slim 

5: while (S̅ ≥ Smin)) do 

6: Set Z′ ← solve JRS-S 

7: Set Sγ ← solve JRS-E 

8: Set Eγ ← solve JRS-T 

9: P ← P ∪ {(Eγ; Sγ; Z′)} 

10: Decrease the bound on the budget by 1 unit: E̅ ← Eγ − 1 

11: Decrease the bound on the budget by 1 unit: S̅ ← Sγ − 1 

12: γ ←  γ + 1 

13: end while 

14: return S (return the Pareto set S) 

 

Furthermore, in this specific case, the ε-constraint algorithm consists of two steps:  

Step 1: An upper bound of both ergonomics and similarity is set equal to �̅� and 𝑆̅ 

respectively. They represent the maximum ergonomic and similarity value that can be 

computed by considering jobs with the higher ergonomic score and similarity. Then, the 

mathematical model, denoted as JRS-HF (Job Rotation Scheduling - Human Factor) is solved 
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by considering 𝐸𝑚𝑎𝑥 ≥ �̅� and 𝑆𝑚𝑎𝑥 ≥ 𝑆̅ , constraints {(4.7)-(4.10);(4.12)-(4.36)} and O.F.1. 

JRS-HF defines a solution with respect to the fixed value of the ergonomic postural score and 

similarity. 

Step 2: the optimal value of 𝑍′, thus the throughput, obtained in Step 1 is fixed as a bound 

and the model is solved by minimizing the ergonomic safety score and similarity. In this way, 

the non-dominated point with respect to the fixed �̅� can be obtained. 

Finally, the algorithm decreases the ergonomic postural score and the similarity score by 

1 and returns to Step 1. The stopping condition is reached when the upper bound of throughput 

is reached. It corresponds to the situation related to the highest worker performance while 

performing the job according to their cognitive and physical abilities. 

4.5 Computational analysis 

In this section, the multi-objective job rotation scheduling model is applied to a numerical 

case. The data adopted in this case are collected from a production line of a multinational 

company, which is a world leader in the production of integrated technologies for industrial 

automation and mobile operating machines. The assembly workstations of the company have 

already adopted enabling technologies belonging to the Industry 4.0 paradigm, such as the 

integrated system for production control and advanced product movement systems. Due to the 

large amount of data needed for the application of the proposed model, it was not possible to 

find a case study in the literature on job rotation scheduling problems to perform a benchmark 

analysis because none of them considers such as a huge number of parameters related to noise 

exposure, vibration level, safety risk, and worker boredom in the same case study. 

4.5.1 Dataset generation 

In the following numerical case, ten different jobs are considered (data are reported in 

Table 4.4). Each job represents the entire production process of a water pump and includes 

different tasks such as pre-assemble, assembly, quality control, and packaging. Depending on 

the type of product, the job can be performed using automatic, semi-automatic or manual tools, 

leading to different values of vibration level and noise exposure.  

In this company, since the entire worker's body is involved in the progression of the job 

with variable cycle time (see Table 4.4), the Rapid Entire Body Assessment (REBA) (Hignett 

& McAtamney, 2000) was chosen as the index to assess the ergonomic score. In a real case 

study, the ergo-digital tool named WEM-Platform (Battini et al., 2022) can be adopted to 
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rapidly assess the postural risk related to each job, depending on the ergonomic method that 

more suits the characteristics of the job analyzed. The platform considers the entire set of body 

movements needed to perform the job, asking workers to wear the suit while performing the 

job. Moreover, the energy expenditure required to perform each job can also be calculated based 

on the same ergo-digital platform software (Battini et al., 2022). Finally, this input was used to 

evaluate the rest allowance (RA) for each worker when the worker is involved in the job for a 

rotation shift (according to the formulas provided by Finco et al. (2019)). Jobs execution times 

range from 10 to 28 minutes. J1 and J2 refer to basic products, while J8, J9, and J10 refer to 

complex products that require a higher level of experience.  

Furthermore, according to the management guidelines for each job, the minimum and 

maximum number of products to be produced in a day is established. Jobs J1 and J5 are entirely 

executed manually and, for this reason, acceleration and noise exposure values are respectively 

set as 0 𝑚 𝑠2⁄  (i.e., there is no vibration) and 100,000 minutes (i.e., there is no exposure to 

hazards noise exposure). The remaining jobs present both vibration and noise exposure. The 

higher the acceleration value (a), the higher the vibration exposure (Finco et al., 2020). The 

lower the time-exposure limit (𝐿), the higher the noise exposure. Finally, energy expenditure 

varies in the range of 3.2 kcal/min to 4.3 kcal/min. Jobs requiring higher values of energy 

expenditure refer to special models of water pumps that involve large and heavy parts that need 

to be lifted and moved manually. 

Table 4.4: Jobs features 

 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 

T [minutes] 10 12 15 15 17 19 21 25 27 28 

𝒁𝒎𝒊𝒏 [pcs/day] 5 5 5 5 1 1 1 1 1 1 

𝒁𝒎𝒂𝒙 [pcs/day] 40 40 25 25 25 25 20 20 20 20 

a [𝒎
𝒔𝟐⁄ ] 0 3.54 4.25 5.45 0 4.97 4.25 3.63 1.23 1.17 

L [minutes] 100000 525 1250 2480 100000 1460 2780 3230 630 720 

E [REBA] 5.5 5.9 4.6 4.2 3.7 5.4 6.4 3.5 4.7 3.8 

EE 

[kcal/minute] 
4.3 3.8 3.7 3.9 4.2 3.4 3.2 3.6 4.1 3.9 

 

The job can be performed by six workers whose characteristics are reported in Table 4.5. 

Two out of six workers (e.g., W5 and W6) can be considered ageing workers (Cloostermans et 

al., 2015) as they are older than 45 years. Also, they have a long experience. W1 is a young 

worker in his first job, so he has no experience. W2 and W4 have low levels of experience since 
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they have worked in the company for only a year. Following Finco et al. (2019), the Maximum 

Acceptable Energy Expenditure (MAEE) for each worker is provided and then used to define 

the rest allowances required for each worker while performing each job.  

Table 4.5: Workers’ attributes 

 W1 W2 W3 W4 W5 W6 
Age 23 31 37 42 52 58 

Experience Very low Low High Low Very high Very high 
MAEE [kcal/min] 4.8 4.7 4.4 4.2 3.8 3.5 

Physical limitations - - J1 J2, J7 J2, J6, J7 J2, J5, J9 

 

Table 4.6 reports the RA values. As can be seen, W1, W2, and W3 do not have RA, since 

the energy expenditure to execute each job is always lower than their MAEE.  

Table 4.6: Rest Allowance for a working day of eight hours (resp. six hours) 

 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 
W1 0 0 0 0 0 0 0 0 0 0 
W2 0 0 0 0 0 0 0 0 0 0 
W3 0 0 0 0 0 0 0 0 0 0 

W4 0.05 
(0.04) 

0 0 0 0 0 0 0 0 0 

W5 0.26 
(0.21) 0 0 

0.06 
(0.05) 

0.21 
(0.17) 0 0 0 

0.16 
(0.13) 

0.06 
(0.05) 

W6 0.49 
(0.40) 

0.19 
(0.16) 

0.13 
(0.11) 

0.25 
(0.20) 

0.43 
(0.35) 

0 0 0.07 
(0.06) 

0.37 
(0.30) 

0.25 
(0.20) 

 

Finally, according to the physical limit of the workers, W1 and W2 can perform all the 

jobs even if they have a low level of experience. W3, W4, W5 and W6 cannot perform some 

tasks, as they require a great deal of physical effort or were assessed as potentially hazardous 

activities according to their individual limitations (i.e., they correspond to a high ergonomic 

score). Depending on the experience of each worker, the time required to execute each job can 

be greater or lower than the nominal time. Finally, workers are directly involved in the short-

term decision process by providing their perceived similarity score among jobs. 

4.5.2 Scenario generation 

The following three scenarios are considered to analyze how the workday duration, the 

rotation shifts and breaks length time influence throughput, ergonomics, and similarity scores:  
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• Scenario 1 (S1): two rotation shifts (RS) and a break (B). 

• Scenario 2 (S2): three rotation shifts (RS) and two breaks (B). 

• Scenario 3 (S3): four rotation shifts (RS) and three breaks (B). 

For each scenario, two different working days (WD) durations were considered, which 

are equal, respectively, to 6 hours/day (Case A) and 8 hours/day (Case B). In Case A, workers 

are involved 6 days/week, while in Case B, they work 5 days/week. According to Finco et al. 

(2019), in Case A, the RA for each worker is reduced because their MAEE is higher, and the 

hourly throughput could be higher due to the lower rest that some workers can have. 

Furthermore, the maximum vibrations and noise exposure change according to Section 4.2. 

Then, for each case, the following shift and break time intervals have been considered (Table 

4.7). 

Table 4.7: Details of working and break shift durations for the three work-schedule scenarios 

Scenario Case A (WD duration: 6 hours) Case B (WD duration: 8 hours) 

S1 RS: 172 min/rotation shift 
B: 15 minutes/break 

RS: 232 min/ rotation shift 
B: 15 minutes/break 

S2 RS: 113 min / rotation shift 
B: 10 min / break 

RS: 153 min / rotation shift 
B: 10 min / break  

S3 RS: 86 min/ rotation shift 
B: 5 min / break 

RS: 116 min/rotation shift 
B: 5 min / break 

 

4.6 Results Discussion 

The main results of this analysis are discussed in this subsection. All scenarios for both 

cases (Case A and Case B) were analyzed for a total of six different cases. Furthermore, 

additional investigations were carried out on the impact of different safety risk scores and 

similarity values on the Pareto front. The CPLEX 22.1.0.0 version of the solver was used to 

obtain the set of optimal solutions. 

Figure 4.1 and Figure 4.2 report the set of feasible solutions and the non-dominated points 

for each case and scenario. As demonstrated by Otto & Scholl (2013), job rotation is an NP-

hard problem. Consequently, for the case study discussed here, the higher the number of 

rotation shifts, the higher the computational time required to get the entire optimal set of feasible 

results. In fact, in the case of two rotation shifts, the computational time was on average equal 

to 195 seconds for both Case A and Case B; while in the case of four rotation shifts, the 

computational time was on average equal to 12500 seconds.  
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Figure 4.1: Feasible set of solutions for different numbers of rotation shifts (Case A: 6 hours/day) 

 

Figure 4.2: Feasible set of solutions for different numbers of rotation shifts (Case B: 8 hours/day) 
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By comparing Case A and Case B, the hourly productivity decreases slightly by 1% for 

Case A (resp. 1% for Case B) in S2 and by 6% for Case A (resp. 2% for Case B) in S3. The 

main cause can be attributed to the different RA values required for older workers to cover the 

physical effort spent performing the job. In S1, they can use only one available break, but an 

additional amount of time is needed to cover all physical fatigue. By increasing the number of 

rotation shifts, a double benefit is achieved.  

1) Ageing workers can rest more, but an additional period of recovery time is still 

necessary for some of them to fully recover from fatigue.  

2) Ageing workers can also perform a high physical job for a shorter period. Finally, 

for the specific case study, ageing workers are also those who have more experience, 

and their experience can positively contribute to smoothing the extra recovery time 

assigned to them.    

Furthermore, by focusing on the comparison between scenarios, the same considerations 

can be raised for both Case A and Case B. The higher the number of rotations, the lower the 

maximum scores of safety risks and boredom. Coming to the details, by considering the non-

dominated point, Case A (resp. Case B) presents a safety risk range that is 4.7-5.90 (resp. 4.6-

5.80) for S1, 4.15-5.3 (resp. 4.12-5.60) for S2, and 4.00-5.10 (resp. 3.97-5.32) for S3. For the 

specific case study, the range is always in the safety risk of a medium level, but very close to 

the lower limit. Consequently, for this specific application case, the selection of one non-

dominated solution may not be considered influenced by the ergonomic score. However, in case 

some jobs are classified as hazardous activity from an ergonomic point of view, the choice of 

the best non-dominated point could be that one presenting an ergonomic score in a medium-

risk area.  

Moving to the boredom aspect, the higher the number of rotation shifts, the higher the 

chance to diversify jobs assignment to the same workers, and consequently, the similarity level 

can decrease since job variations increases. The boredom score range decreases by increasing 

the number of rotations shifts for both Case A and Case B. By focusing on non-dominated 

solutions, the boredom range varies for Case A (resp. Case B) as follows: 0.3-1.0 (resp. 0.3-

0.1) for S1, 0.3-0.9 (resp. 0.3-0.75) for S2 and, finally, 0.3-0.8 (resp. 0.3-0.8) for S3. The choice 

of one non-dominated point by focusing on boredom aspects can be conducted by managers in 

collaboration with the workers involved in the production process. In fact, according to Jeon et 

al. (2016), some workers might prefer to perform similar jobs during the work day, while others 
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suggest that greater variability leads to greater motivation. However, for the case study 

investigated here, greater boredom also leads to a slightly higher value of productivity.  

Table 4.8: Comparison analysis of Pareto front non-dominated solutions 

Case A Case B 

  

  

  

The box plots reported in Table 4.8, which represent the values obtained from the non-

dominated solutions per each objective function, can provide additional information on the 

results. First, the outcomes that emerge mostly are related to the safety risk scores of the Pareto 
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front solutions, which decrease the mean values as long as the number of rotation periods 

increases (results are reported in Table 4.9). In particular, the results obtained state that the 

average reduction of safety risk from the initial situation with two rotation periods per day 

(Scenario 1) decreased by 8% for both Case A (6 hours/day) and Case B (8 hours/day), when 

an additional rotation period is introduced (Scenario 2).  

Table 4.9: Safety risk performance for the analyzed scenarios 

Safety risk (Case A) Scenario 1 Scenario 2 Scenario 3 Δ(S1-S2) Δ(S1-S3) 
Average 5 4.61 4.36 -8% -13% 
First quartile (Q1) 4.75 4.4 4.1 -7% -14% 
Median (Q2) 4.85 4.55 4.25 -6% -13% 
Third quartile (Q3) 5.05 4.8 4.6 -5% -9% 
Interquartile range (IQR) 0.3 0.4 0.5 2% 5% 
Upper whisker 5.25 5.3 5.1 - - 
Lower whisker 4.7 4.15 4 - - 
Safety risk (Case B) Scenario 1 Scenario 2 Scenario 3 Δ(S1-S2) Δ(S1-S3) 
Average 4.98 4.59 4.46 -8% -10% 
First quartile (Q1) 4.75 4.37 4.22 -8% -11% 
Median (Q2) 4.9 4.545 4.445 -7% -9% 
Third quartile (Q3) 5.1 4.77 4.67 -6% -8% 
Interquartile range (IQR) 0.35 0.4 0.45 2% 3% 
Upper whisker 5.55 5.22 5.32 - - 
Lower whisker 4.6 4.12 3.97 - - 

Moreover, when the job rotation strategy includes 4 rotation periods (Scenario 3), 

compared to the scenario with only two rotation periods (Scenario 1), the reduction of the final 

throughput is limited to 13% for Case A and 10% for Case B (results are reported in Table 

4.10). This result is predictable since the application of job rotation strategies, especially 

considering a higher number of rotation periods, primarily aims to increase the variety of the 

movements accomplished by the worker in executing daily work activity, and consecutively, 

they aim to reduce the exposure of the same parts of the body to high repetitions, hence 

decreasing the chance of developing occupational disorders.  

Also, interesting comments can be made on productivity results. In fact, the average value 

of productivity does not decrease drastically as the number of rotation periods increases. The 

total throughput of the system depends on the skills of the operators, which impact the task time 

needed to perform the activity, but also on the rest-break time, which can affect the available 

time between rotation periods, when scheduled breaks are not enough to recover from 

accumulated fatigue. Consequently, one may expect that as the number of rotation periods 

increases, the chance of rest increases as well, and productivity can be affected by this 

scheduling decision, which prioritizes the reduction of safety risks on productivity. However, 
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the results obtained state that the average reduction in total throughput from the initial situation 

with 2 rotation periods per day (Scenario 1), only by 1% for both Case A (6 hours/day) and 

Case B (8 hours/day), when an additional rotation period is introduced (Scenario 2).  

Table 4.10: Productivity performance for the analyzed scenarios 

Productivity (Case A) Scenario 1 Scenario 2 Scenario 3 Δ(S1-S2) Δ(S1-S3) 
Average 120.6 118.9 112.8 -1% -6% 
First quartile (Q1) 118 116.75 105.5 -1% -11% 
Median (Q2) 122 120 112.5 -2% -8% 
Third quartile (Q3) 124 123 122.25 -1% -1% 
Interquartile range (IQR) 6 6.25 16.75 0% 9% 
Upper whisker 126 125 128 - - 
Lower whisker 113 108 91 - - 
Productivity (Case B) Scenario 1 Scenario 2 Scenario 3 Δ(S1-S2) Δ(S1-S3) 
Average 159.48 157.61 156.25 -1% -2% 
First quartile (Q1) 156 153 151 -2% -3% 
Median (Q2) 160 158.5 158 -1% -1% 
Third quartile (Q3) 163 163.25 164 0% 1% 
Interquartile range (IQR) 7 10.25 13 2% 4% 
Upper whisker 169 171 172 - - 
Lower whisker 149 140 133 - - 

Furthermore, when the job rotation strategy includes 4 rotation periods (Scenario 3), 

compared to the scenario with only two rotation periods (Scenario 1), the reduction of the final 

performance is limited to 6% for Case A and 2% for Case B. Finally, the level of boredom was 

positively affected by the adoption of the job rotation strategy with a higher number of rotation 

periods, already starting from the adoption of three rotation periods (results are reported in 

Table 4.11). 

Table 4.11: Boredom performance for the analyzed scenarios 

Boredom (Case A) Scenario 1 Scenario 2 Scenario 3 Δ(S1-S2) Δ(S1-S3) 
Average 0.59 0.50 0.52 -14% -11% 
First quartile (Q1) 0.4 0.35 0.4 -13% 0% 
Median (Q2) 0.5 0.45 0.5 -10% 0% 
Third quartile (Q3) 0.7 0.6 0.6 -14% -14% 
Interquartile range (IQR) 0.3 0.25 0.2 -2% -14% 
Upper whisker 1 0.9 0.8 - - 
Lower whisker 0.3 0.3 0.3 - - 
Boredom (Case B) Scenario 1 Scenario 2 Scenario 3 Δ(S1-S2) Δ(S1-S3) 
Average 0.64 0.51 0.52 -20% -21% 
First quartile (Q1) 0.4 0.4 0.4 0% 0% 
Median (Q2) 0.6 0.5 0.5 -17% -17% 
Third quartile (Q3) 0.9 0.6 0.6 -33% -33% 
Interquartile range (IQR) 0.5 0.2 0.2 -33% -33% 
Upper whisker 1 0.75 0.8 - - 
Lower whisker 0.3 0.3 0.3 - - 
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In the following subsections, the investigation focuses on how ergonomics risk scores, 

perceived boredom and workforce attributes can influence the decision process. The analysis is 

carried out only for Case A, since similar considerations could be made for Case B. 

4.6.1 Influence of safety risk scores 

Initially, three sets of safety risk values E1, E2, and E3 are randomly generated. They 

present a mean value and a standard deviation, respectively, equal to 4.5(+/-0.9), 5.9(+/-2.1), 

6.2(+/-1.8); in the last case, some jobs are critical, since they have an ergonomic score close to 

the critical threshold value (i.e., a score equal to 8 for REBA).  

Figure 4.3 depicts the Pareto front by assuming a fixed boredom value equal to 0.5 and 

varying the value of the safety risk score from E1 to E3. As shown in  

Figure 4.3, S2 and S3 present a larger Pareto front for both E2 and E3, while they present 

a more closed Pareto front for E1. In the last case (E1), since the ergonomic score difference is 

very slight (e.g., minimum value 3.70 and maximum value 4.35) the choice of the best rotation 

strategy should be one that guarantees higher throughput.  

Moving to the E2 and E3 cases, the ergonomic score gap increases, as well as the 

throughput, with a difference between the extremal points, which is equal, respectively, to 25% 

for the ergonomic risk and the 16% for the throughput. However, in all cases, the safety risk 

never assumes a critical value and, consequently, the optimal point could be selected 

considering the one that provides higher throughput. Focusing on S1, it has four non-dominated 

points, and the maximum achievable production exceeds the minimum one by 4% while the 

ergonomics risk improves from 4% (S1) to 13.45% (S3).  

Finally, when comparing E1, E2 and E3 in 4.3, maximum throughput is always achievable 

when considering S3. Furthermore, for E3 the same throughput is obtained for both S1, S2 and 

S3, however, S3 provides a lower safety risk with a slight difference of 2% compared to S2. 

Consequently, in this application case, a higher number of rotation shifts leads to lower daily 

safety risk postural scores without influencing performance. 
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Figure 4.3: Productivity and safety risk values for three rotation period strategies (S1, S2, S3) by 

varying the ergonomic scores of the postural job (E1, E2, E3). 

4.6.2 Influence of job boredom values 

In this section, the effects of perceived boredom between workers are investigated. In the 

specific case, the following scenarios are designed: (1) perceived boredom by all workers is 

close to 0.6 (B1), which is around a medium level (i.e., workers evaluated the similarity between 

different couples of jobs in the same way, by assigning scores closer to 0.6 on a scale 0-1), (2) 

perceived boredom is negligible (B2) (i.e., workers consider jobs as totally different between 

them; hence, on average, the similarity scores assigned from each worker to the couples of jobs 

are close to zero), (3) perceived boredom is very high for all workers (B3) (i.e., workers 

evaluated jobs as very similar, so the similarity scores for all the couples of jobs are close to 1). 

This analysis aims to investigate the values assumed by productivity and boredom scores for 

three cases (B1, B2, B3) differentiated for three job rotation strategies (i.e., scenario 1, scenario 

2, scenario 3). For this purpose, a hypothetical constant ergonomic score of 5 is assumed and 

Figure 6 depicts the Pareto fronts for each scenario, varying only boredom levels (B1, B2, B3). 
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Figure 4.4: Productivity and boredom values considering for the three rotation period strategies by 

varying the perceived boredom: medium level of boredom (B1), negligible boredom (B2), and high 

level of boredom (B3). 

The first results presented in Figure 4.4 (B1) show the case where all workers evaluated 

the couple of jobs with similar scores. In other words, all workers involved in the job rotation 

strategy evaluated the degree of similarity between different couples of jobs by assigning 

similar scores (e.g., all workers agreed that the degree of similarity between the couple of jobs 

can be described with a score that is almost the same for all workers). The results obtained for 

the highest level of productivity demonstrate that there are few differences amongst the optimal 

solutions for the three rotation strategies analyzed (S1, S2, S3). In particular, the solutions 

obtained with S3 dominate the solutions of S1 and S2 for the highest productivity value. Not 

surprisingly, the job rotation strategy with fewer rotation periods (S1) brought the highest level 

of boredom. However, due to the same job similarity scores, the boredom value was barely 

reduced even with the other job rotation strategies (S2, S3). Considering the same level of job 

similarity for every operator does not allow to progress the job assignment trying to match 

workers’ previous assignments and workers’ individual perceived level of similarity. However, 

the general trend of all scenarios highlights that the productivity level increases and the 

boredom score decreases when job rotations are more frequent. An exception related to low 

boredom values can be highlighted. In this case, the solution provided by the second scenario 
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(S2) dominates those obtained by S1 and S3, providing greater productivity compared to S3 

with a lower level of boredom than S1. In the second case presented in Figure 4.4 (B2), the 

level of similarity between jobs was evaluated by workers near zero (e.g., the degree of 

similarity between a couple of jobs was evaluated as totally different). The results obtained 

show that the scenario with three rotation shifts (S3) leads to the highest productivity. 

Furthermore, one can notice that the results obtained with two and three rotation shifts tend to 

overlap for higher production values, while in the other cases the distinction between S2 and 

S3 is more prominent. Similarly to the first case, the scenario with two rotation shifts (S2) offers 

the highest productivity amongst the solutions with the lowest value of boredom. Finally, Figure 

4.4 (B3) proposes the case in which workers assess the jobs as very similar. In this third case, 

the degree of similarity between couple of different jobs is close to the unit value, and boredom 

levels are the highest obtained so far in this analysis. Fewer rotation shifts lead to the highest 

boredom value (S1). This is the only case where three rotation shifts (S3) lead to the best results 

for both the lowest level of boredom and the highest productivity. In last case, the scenario with 

three rotation shifts outperforms the others for almost every value of productivity and boredom. 

4.6.3 Influence of workers’ attributes 

Finally, in this subsection, the investigation focuses on how performance can be 

influenced by the characteristics of workers. The age and level of experience are the two drivers 

that directly influence the execution time and thus the performance (see Equation (4.11)). 

Consequently, also in that case, three new sets of RA and experience values have been randomly 

generated, and the following scenarios have been analyzed:  

• Young working team with low experience levels (YWT): All workers are not older than 

40 years, so the contribution of recovery time determined by RA is negligible, as the 

maximum acceptable energy expenditure level of young workers is high and is rarely 

reached during the execution of the job (Finco et al., 2019). However, workers are not 

highly skilled and fully trained, and an additional amount of time compared to the 

nominal job duration is required to obtain a final product. 

• Aged Working Team with high experience levels: (AWT): all workers are older than 40 

years. Consequently, RA can occur for some jobs according to the physical effort 

required (Finco et al., 2019). In this case, the workers are highly skilled, and 

consequently, the higher RA needed can be smoothened by their greater experience, 

thus achieving a lower execution time.  
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• Mixed working team with high experience level (MWT): young and ageing workers are 

jointly involved and the whole team is highly skilled.  

Figure 4.5 reports the set of feasible solutions and non-dominated points by considering 

three rotation shifts. Even if young people do not necessarily need rest, their inexperience in 

executing jobs leads to lower productivity. The maximum value, which is 112 pcs/day, is 

achieved for a lower level of boredom and a higher value of safety risk (see Figure 4.5 YWT). 

For the AWT scenario (see Figure 4.5 AWT), the higher productivity is equal to 148 items/day, 

but in this case, it is also obtained considering the higher value of the ergonomic score. 

However, the case that corresponds to the lowest risk score (a safety risk score of 3.6) can be 

achieved with a higher boredom value and daily productivity equal to 110 pcs/day, which is 

close to the maximum daily throughput obtained for case YWT. Finally, the MWT scenario 

(see Figure 4.5 MWT) presents a maximum daily productivity of 139 pcs/day. The maximum 

throughput value is achieved with a boredom score of 0.3 and a safety risk value of 5.85. 

Consequently, MWT, which also represents a common scenario in several manufacturing 

companies, guarantees a proper balance among the three drivers included as objective functions 

and supports the idea that heterogeneous working teams can benefit system productivity. 

 

Figure 4.5: Feasible set of solutions by varying workers' experience and age 
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To conclude this subsection, some final considerations are raised by considering one 

single solution belonging to the Pareto 3D front of scenario AWT. The analyzed solution 

maximizes throughput of up to 141 pieces per day, while reaching a dangerous safety risk of 

5.35 and a boredom level of 0.3. Figure 8 shows the flexible job rotation scheduling solution 

obtained with three rotation shifts (Scenario 2) and 8 hours/day (Case B) as reported in Figure 

4.6.  

 

 

Figure 4.6: Gantt chart of a flexible working schedule with 3 rotation shifts, 8 hours/day (Case 

B) and an aged work team (AWT). 
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In the proposed charts, different colors are associated with different workers, fixed breaks 

between rotation periods are reported in blue, and the additional recovery times for each 

operator are reported in yellow. The recovery time portion was calculated considering the value 

of the rest allowance for each individual operator as reported in Equation (8). Older workers 

are more likely to need a longer recovery time, often exceeding the duration of the break. The 

solution analyzed aims to maximize system throughput; however, safety/health risks may arise 

due to a lack of adequate recovery time. Therefore, older workers may experience strenuous 

work periods that are not sustainable for a prolonged period. 

Conclusion 

The multi-objective job rotation scheduling model proposed in this chapter demonstrates 

the benefits of occupational risk reduction, when adopting a job rotation strategy. Amongst the 

most relevant results, the test case application of the model highlighted that the higher the 

number of rotation periods, the higher the benefits of frequent job rotation periods. 

Nevertheless, when rotation periods increase in number, the complexity increases, as well as 

the computational time to find optimal solutions. This effect is well depicted in Figure 4.1 (i.e., 

Scenario 3, Case A) and Figure 4.2 (i.e., Scenario 3, Case B), where test case whit 3 rotation 

periods were applied. In these cases, the number of solutions belonging to the Pareto front are 

fewer than the other scenarios because some of them overcome the maximum time limit 

imposed for the 𝜀-constraint algorithm. For this reason, as a future perspective of this work, a 

metaheuristic algorithm will be developed, enabling the reduction of the computational time 

and the determination of the breakeven point between the number of rotation periods and the 

effective benefits of job rotation, without penalize much the productivity of the company. Other 

limitations of the current mathematical model can be addressed in the next future, such as the 

impact of frequent job rotation periods on jobs nominal duration, which is also related to the 

learning and forgetting curves of operators, and on workplace conditions that are equals in the 

scenarios analyzed but that can change according to the work area where jobs are executed. 

Furthermore, the higher the number of parameters considered in the analysis, the higher the 

complexity of the final analysis. Hence, a more detailed sensitivity analysis can help to provide 

more information regarding the effects that each factor has on the results. 
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Conclusions 
This dissertation presents a novel approach to include, assess, and integrate sociotechnical 

aspects in job rotation scheduling models. Starting from the analysis of the models and methods 

that progress the job rotation strategy, including ergonomics aspects and human factors, few 

contributions have been found on a method that can jointly consider both technical and social 

aspects to carry out flexible work arrangements, considering workforce diversity. For this 

reason, in this research, a new multi-objective mathematical model was developed, improving 

in this way the current state-of-the-art. Furthermore, another research gap was highlighted on 

the lack of a methodological approach that can guide the collection and adoption of the 

information needed to develop a suitable work assignment based on the profile of the workforce 

and individual characteristics. Therefore, a methodological framework was designed aiming to 

be a useful tool for workforce management, to increase the resilience of the company against 

unforeseeable events, by providing a guide to rapidly react to workforce shortage or to high 

turnover rate, considering the introduction of new temporary personnel in a flexible work 

environment, able to accept workers with different characteristics. Finally, to improve the 

assessment of postural risk and the quality of the training session, a new ergonomic digital 

platform was designed. It allows postural risk assessment to accelerate through the computation 

of real-time ergonomic indexes and to provide on-site feedback to trainees during the training 

session to reduce their postural risk. Both the ergonomic digital platform and the multi-objective 

job rotation scheduling model have been tested and validated with numerical examples coming 

from data collected in real industrial case studies. The results of this research aim to increase 
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managers' awareness in managing workforce diversity when making operational and strategical 

decisions. The achievement of a higher degree of flexibility in workforce management is 

consistent with new human-centric industrial paradigms for the development of more resilient 

work environments against disruptive events. Furthermore, the application of a human-oriented 

job rotation scheduling model, which include sociotechnical aspects of the workforce and 

workplace, enables the development of safe and ergonomic work environments, which support 

workers’ inclusion. Increasing social sustainability in the company, considering workers’ 

perspective in operational decisions, demonstrated a positive impact on both workers’ 

performance and morale, sharing positive benefits also on economic sustainability.  

Theoretical and managerial insights 

The latest industrial paradigms are driving research and innovation to facilitate the 

transition to a sustainable, human-centered, and resilient industry. In the manufacturing context, 

workers' diversity in terms of experience, productivity, and physical capacity represents a 

significant challenge for companies, especially those characterized by high staff turnover and 

manual processes with high workload and poor ergonomics. The management of workforce 

diversity is increasingly gaining interest in manufacturing companies due to the complexity 

related to the development of flexible and suitable work plans based on the profile of available 

workers. The first chapter of my research investigates the state-of-the-art on job rotation 

scheduling problem, with the aim of answering the first research question. 

RQ1: “Do current workforce management methodologies include the characteristics of 

workers and their individual perspective for the development of flexible work plans?” 

Relatedly, substantive research has been conducted on job rotation scheduling approaches 

that incorporate human factors. The integration of human factors in operational decision 

processes has gained growing interest in the last decade (Sgarbossa et al., 2020; Neumann et 

al., 2021), however, joint effects of socio-technical aspects are scarcely included in literature. 

Despite the fact that human factors need to be integrated as soon as possible in the design of 

the system, as a method to prevent worker injuries and absenteeism (Battini et al., 2011), 

workers’ individual limitations and perspectives on job scheduling decisions have only started 

to be recently included in models and frameworks.  

This research proposes a methodological approach to guide the collection and the 

integration of such aspects, promoting the development of flexible and inclusive work plans, 
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based on the profile, limitations, and preferences of the workers (Berti et al., 2021). It also 

includes the adoption of industry 4.0 sensor-based technologies to progress the collection of 

technical data to be integrated into scheduling decisions. Following this technological 

paradigm, this research brought to the development of a new ergo-digital platform with several 

potential applications to increase the performance and quality of postural risk assessment and 

worker training. To investigate the impact that the latest technologies have had on the 

manufacturing work field, I conducted a survey on the current software and systems to answer 

the second research question. 

RQ2: 'How has the latest technological advancement shaped occupational risk 

assessment methods to create a safe and inclusive workplace?' 

The adoption of new technologies in manufacturing work field has enhanced the 

development of new risk assessment and training methods. Data collection can generate 

insightful information for product and safety managers, as well as ergonomists, to positively 

impact worker well-being (Romero et al., 2016). Providing real-time postural risk assessment 

and feedback to workers during work activities requires a system that is capable of rapidly 

assessing their posture and promptly giving feedback to correct their behavior in real time. 

WEM-Platform (Battini et al., 2022) represents a new solution that combines postural risk 

assessment with feedback intervention to overcome previous systems with a wider set of risk 

indices compared to existing solutions, capable of providing insightful information to 

ergonomists, safety risk experts and operational managers on workplace risks and worker 

behavior. Merging technical information collected from the workplace with real-time tools with 

social aspects, related to workforce diversity and individual characteristics, allows the 

progression of human-oriented scheduling decisions, which can jointly achieve the productive 

and efficiency target within ergonomic and inclusive workplaces. Consequently, this research 

proposes a new multi-objective optimization model to assign jobs to workers by considering 

multiple sociotechnical factors and three distinct objectives: worker productivity, job ergo-

quality level, and worker perceived boredom. The results of the model optimize multiple 

objective functions that encompass efficiency and psychological factors.  

The mathematical formulation proposed in this research led to results that can justify the 

adoption of a human-oriented perspective on managerial decisions. In particular, the results 

obtained from the multi-objective job rotation scheduling model answer the third research 

question: 
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RQ3: “What are the implications of adopting a human-oriented perspective in defining 

the workforce rotation strategy?” 

Adopting a human-oriented approach to make scheduling decisions and develop flexible 

work arrangements, based on sociotechnical aspects related to the profile and workplace of 

workers, can help develop a more inclusive and ergonomic workplace (Battini et al., 2022). 

Flexibility in work arrangements has recently emerged as a top-rated job trait for manufacturing 

workers. Flexible job scheduling approaches that include such factors would foster workforce 

motivation and inclusiveness in moving toward the Industry 5.0 factory of the future. Following 

the principles shared by the emergent Industry 5.0 paradigms, this research proposes a new 

multi-objective job rotation scheduling model which incorporates multiple sociotechnical 

factors and maximizes throughput, while minimizing boredom and ergonomics risks.  

The results suggest that different rotation strategies can affect system productivity, safety 

risk level, and operator boredom, depending on rotation frequency. The numerical results show 

that flexible job rotation plans can provide workers with opportunities to enrich their 

capabilities by acquiring experience in a variety of tasks in a short period of time, while 

reducing perceived boredom and increasing motivation and satisfaction. These results are also 

supportive of and align well with the recent and new ISO 25550:2022 for the age-inclusive 

workforce. The correct computation of rest times during the day can lead to different breaks for 

each worker considering individual worker attributes. In fact, the number of shifts, as well as 

the break time between each shift, is optimally scheduled, as they strongly influence 

productivity and worker well-being. Improving previous job rotation scheduling models (e.g., 

Hochdörffer et al., 2018; Song et al., 2016; Yoon et al., 2016), the proposed mathematical model 

assumes break time between shifts as an opportunity for operators to recover, contingent on 

worker individual characteristics.  

The proposed model also translates the Industry 5.0 principle of placing the well-being 

of the worker central to the production process into meaningful and practical task-related 

insights and recommendations. Human-centered focus can help managers make better decisions 

about improving inclusion and resilience in the workforce. The increased operational flexibility 

enabled by job re-assignment and re-planning can help management protect operations against 

unforeseen worker shortages or absenteeism. Furthermore, the resilience of the system can 

increase against disruptive events or unpredictable market demand due to the possibility to 

redistribute or hire new staff and introduce new employees in an inclusive workplace capable 
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of considering their physical characteristics and attitudes when progressing flexible work 

arrangements, ensuring the full and safe operational status of quick workers. The model 

provided can also be easily adapted to different work applications and contexts. It can develop 

sustainable and less hazardous job rotation plans by providing a set of optimal solutions based 

on the predominance of particular and possibly differently weighted human-oriented factors.  

In summary, this research presents a new human-centric job rotation scheduling approach 

whose model aims to make the worker (and inferentially the production system) more resilient 

to variability in ergonomic workloads and minimize boredom risks in human-intensive working 

environments. The model is inspired by the new human-centric Industry 5.0 paradigm and is 

grounded in previous research. 

Generalization of Results 

Enduring competitive advantage is seen as a goal for investments in digital, resilient and 

sustainable manufacturing systems (Breque et al., 2021; Renda et al., 2022). As such systems 

evolve, new paradigms emerge to guide and shape the manufacturing industry. A significant 

dynamic in this regard is the progressive movement of Industry 4.0 toward Industry 5.0 

paradigm, relaxing the focus on efficiency and productivity to embrace and reinforce the role 

and the contribution of industry to society. The sharper focus on societal value and worker 

wellbeing also manifests in the well-known ESG (Environment, Social and Governance) 

paradigm that adds people and the planet in equal proportion to traditional productivity goals 

(Duque-Grisales & Aguilera-Caracuel, 2021; Gbejewoh et al., 2021). In the era of Industry 4.0, 

disruptive technologies such as artificial intelligence, collaborative robotics, blockchain, 

Internet of Things, and digital twins have been the main paradigms for developing competitive 

and efficient manufacturing systems. However, these benefits did not come without 

consequences, especially in encounters related to human-machine conflicts. Choi et al. (2022) 

highlight worker welfare, health problems, and worker satisfaction as concerns of note in this 

regard. Industry 5.0 seeks to ameliorate and reconcile these human-machine frictions by 

specifically directing research and innovation to a sustainable, human-centric, and resilient 

paradigm (Neumann et al., 2021).  

Conceptually, the concepts shared by Industry 5.0 paradigm complement, rather than 

replace, Industry 4.0, while the latter is largely technology driven, the former is primarily 

values-oriented (Xu et al., 2021). However, the transition between the two paradigms poses 

interesting challenges. Notwithstanding technological advances, labor-intensive manufacturing 
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and logistics systems still see tasks being performed manually even when experiencing high 

levels of perceived fatigue and boredom. In these contexts, advanced and intelligent human-

machine interaction technologies of Industry 4.0 (Frank et al., 2019; Romero et al., 2020) may 

be difficult to fully implement. Reasons could range from limitations imposed by high manual 

task content, movement and space restrictions, individual worker attributes, low flexibility 

material handling systems, and worker hesitancy with new technology (Dornelles et al., 2022; 

Neumann et al., 2021). Throughput and system efficiency could be strongly influenced by 

human and work environment factors that impact worker satisfaction, motivation and physical 

stress (Digiesi et al., 2009). Therefore, differences in spatial working conditions, nature of the 

task, and individual worker characteristics would likely restrict a standardized approach to the 

physical implementation and installation of advanced technologies, affect the actual extent of 

use of such technologies by the individual worker and result in performance differences from 

similar investments in technology.  

Nevertheless, this research did not examine the interaction between human factors and 

advanced technology, which is a much-researched area as evident from the above-mentioned 

sites. Instead, it speaks directly towards the Industry 5.0 focus on worker well-being by 

developing ways in which finer-grain individual worker attributes can be tracked and 

incorporated effectively in work planning decisions. Workforce diversity finds reflection in 

individual capabilities, physical capacities, technology acceptance level, gender, age and more. 

It becomes a strategic imperative to actively identify, measure and consider diversity in work 

policies to enhance the satisfaction and the wellbeing of the workforce. In manual 

manufacturing and logistics systems, operating factors such as repetitiveness of tasks, unsafe 

or awkward postures, and exposure to noise and vibration, can negatively affect the well-being 

of workers to different degrees, depending on individual worker characteristics.  

Deteriorated performance results with consequent efficiency reductions and greater 

absenteeism (David, 2005). Careful consideration of worker diversity in determining work 

policy would result in a more resilient system. A worker whose specific capabilities and 

conditions have been systematically matched with task requirements and task schedules would 

be a better and more robust performer relative to performances obtained from a random or 

uniform allocation of tasks to the worker. Similarly, following the Covid-19 pandemic in 2020, 

Romero and Stahre (2021) introduced the notion of the “resilient operator 5.0” in order to make 

“human operators more resilient against a range of influencing factors”. In the long run, 

productivity and efficiency can be best achieved by explicitly incorporating human factors in 
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process design and operation. A ‘one size fits all workers’ approach is unlikely to be successful 

given the inherent heterogeneity in workforce demographics and capabilities.  

Limitations and future directions 

The proposed research is deeply related to the new human-centric perspective and the 

paradigm of ESG (Environment, Social and Governance) paradigm, also shared among the 

main concepts of Industry 5.0, for the creation of an ethical, sustainable and resilient work 

environment. This research topic has raised debates among researchers and practitioners about 

the novelties it brought in the manufacturing work field, compared to the previous concept of 

Industry 4.0. However, Industry 4.0 was notoriously a technology-driven approach, while new 

paradigms seem to favor the human-centered and human-oriented development of inclusive and 

ergonomic solutions to help diversity management within manufacturing companies. The 

model proposed in this research represents a first step towards the adoption of a more human-

oriented approach, which enables the inclusion of sociotechnical aspects during the progression 

of job scheduling decisions. The future perspectives of this work involve the development of 

alternative solutions for the proposed job rotation scheduling model, which can integrate 

additional social aspects to include the participation in scheduling decisions. However, the 

inclusion of social aspects increases subjective and qualitative information, which can distort 

the accuracy of suitable job arrangements.  

For this reason, the inclusion of a weighted method in the model may be a solution to 

consider sociotechnical contributions to final scheduling decisions. Moreover, as already 

mentioned in the literature review, job rotation scheduling is an NP-hard problem and as jobs 

and operators increase in number, the linear programming model decreases in its capability to 

provide optimal solutions in reasonable time. For this reason, a metaheuristic approach can 

reduce the computational time for large instances. Additionally, the model can be tested in other 

industrial sectors, such as, for example, healthcare systems for the management of nurses’ 

workload. Furthermore, the pursuit of increased worker involvement and improved work 

schedule flexibility could involve performing different rotation frequencies and different 

working days length for different workers, based on workers’ individual experience, age and 

physical limitations. Future research will finally consider the effect of different shapes of 

learning curve and training costs to accelerate the learning process in different jobs. 
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Abstract: One of the biggest management challenges for companies consists in including workers’ features during 
production process decisions to obtain more realistic planning and scheduling outcomes. The increasing percentage 
of ageing operators in manufacturing areas, due to the postponement of retirement age, contributes to enhance the 
level of both physical and cognitive disparity among workers. Moreover, workers could present physical limitations 
that restrict the execution of certain tasks. Strong seasonality and the current spread of e-commerce lead companies to 
face sudden high peaks of market demand through constant operators’ turnover. Consequently, workers are not equally 
skilled and work-related injuries can arise whether tasks are not performed correctly by an ergonomic viewpoint. In 
such a context, Industry 4.0 tools and real-time monitoring systems have gained higher attention since they can be 
adopted for training purpose and also such as data collector for every single worker in order to propose ad hoc job 
rotation solutions. In this paper, we propose a new methodological framework that integrates anthropometric and 
ergonomics measures during the scheduling decision process and defines all steps needed to define a worker-oriented 
and flexible scheduling of assembly tasks or job assignment. Each task is categorized in the framework according to 
three drivers: physical stress, ergonomic risk and execution time. According to the variability of each of them among 
workers, we propose a step-by-step procedure that can help practitioners to select the most suitable worker in executing 
each task aiming to reach flexible scheduling by an inclusive workforce. 

Keywords: Methodological framework, Ergonomics, Operator 4.0, Mocap system, Occupational Safety

1. Introduction 

In this particular period, as the world grapples with 
COVID-19, it is paramount to consider how the pandemic 
situation is going to change the market scenario for 
companies. Numerous enterprises, that previously were 
not used to cope with unpredictable peaks of demands, 
have been challenged to satisfy market needs with 
different volumes or additional services. Several specific 
business models found some benefits from the pandemic 
and their market area has increased. Moreover, several 
companies have experienced an increment in labor 
turnover and the need to fast train new and not expert 
workers, also by using virtual training sessions and fast 
methods to re-scheduling the jobs according to different 
scenarios. As a consequence, companies need to modify 
their level of flexibility by rapidly increasing the staffing 
level, to take the opportunities that derive from 
unpredictable events. On one hand, the human workforce 
remains the most flexible resource that allows pursuing 
this aim, but on the other hand, fast workforce turnover 
might lead to unwanted work-related consequences due to 
scarce attention to the initial training phase. According to 
the European Agency for Safety and Health at Work (EU-
OSHA) and the International Labour Organization (ILO), 
workers musculoskeletal disorders (MSDs) impact 15% of 
all the work-related causes of years of life lost or lived with 
disabilities (DALY) both for the European countries and 
worldwide. Work-related injuries and illnesses produce a 
loss of 3.9% of all work-years globally and 3.3% of those 
in the EU, which correspond to 476 billion costs for EU 
countries (EU-OSHA, 2017a). In addition, according to 
EC 2017, the working-age population is expected to rise 

by 9.4% in the following 40 years. The ageing workforce 
phenomenon is causing significant production system 
changes since older employees are more exposed to MSDs 
and cognitive decline (Gonzalez and Morer, 2016). The 
new forthcoming ISO 314 on Ageing Society will soon 
support EU companies to provide inclusive working 
environments, able to support an active ageing 
involvement by developing flexible and individualized 
working plans. 

The lack of knowledge about workforce characteristics, 
especially whenever workforce turnover is high, may lead 
to suboptimal job assignment, and consecutively to high 
probability to incur in health-related injuries and 
musculoskeletal disorders. 

In this context, a high workforce’s diversity needs to be 
managed within manufacturing fields, in terms of 
experience level, individual qualifications, age-related 
personal physical limitations and personal risk propensity. 
For this reason, just some practitioners and academics 
have started to include anthropometric and workers’ 
physical and cognitive features during operational 
processes (Sgarbossa et al., 2020). The main reason is due 
to some practical limitations that exist. In fact, data must 
be properly collected and workers must be completely 
involved before the task assignment phase.  

For this reason, in this work, a new methodological 
framework aims to integrate various aspects of employees 
that need to be considered in managerial decisions when 
job assignment is performed. In particular: Section 2 
provides a literature review on job rotation scheduling 
problem (JRSP) analysing how previous works measured 
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and integrated diversity aspects of the workforce in their 
model or approaches; Section 3 introduces the new step 
by step methodological framework with a complete 
description of the diversity aspects it considers. Finally, 
Section 4 and Section 5 explain the possible limitations of 
the implementation of the methodological framework and 
describes the benefits and their relevance to the industry, 
also providing some further research development.  

2. Literature review 

Amongst all the studies of the existing literature that 
propose solutions both for workload balancing and risk 
prevention, assembly line balancing and job rotation 
scheduling problem are the strategies of most interest. The 
first approach deals with task-to-station assignment in 
assembly lines while the second one defines worker-to-
station assignment. An exhaustive survey about different 
algorithms and models adopted in literature, aiming to 
reduce and balance physical ergonomic risks by 
considering ergonomic aspects, is performed by Otto and 
Battaïa (2017). Concerning the studies that adopt a job 
rotation strategy, two macro-categories can be outlined: 
field studies and line-balancing studies. In particular, field 
studies focus their attention on the effectiveness of job 
rotation as an intervention strategy for worker MSDs risk 
management, in various workplaces (Yoon et al, 2016). Of 
the existing literature on this subject, the present study 
reviewed only works regarding ergonomic risks reduction 
generated by flexible work plans through job rotation 
strategies adoption, by including workforce diversity 
aspects. The research has been performed in the Scopus 
database comprising papers until the end of March 2021. 
The keywords adopted for the research are “job rotation” 
and “ergonomic” which results into 141 hits. The query 
considered only "Title, abstract and keywords" and has 
been limited to papers written in English and published in 
Journals or Conference proceedings.  

2.1. Workforce diversity in job rotation scheduling 

The adoption of job rotation programs started at the 
beginning of the 1980s such as a strategy to reduce costs 
and time and, in the meanwhile, mitigate continuous 
exposure to the same risk factors due to repetitive 
mansions (Padula et al., 2017). According to the survey 
proposed by Otto and Battaïa (2017), physical ergonomic 
risks are much more integrated into present mathematical 
models and algorithms in comparison to psychological 
and psychosocial ergonomic risk factors, which are mostly 
absent in the ergonomic measurement methods currently 
adopted by companies. Job rotation strategies aim to 
prevent the arise of possible injuries or diseases for 
workers that repetitively perform the same actions during 
the entire work shift, involving the same group of muscles 
and joints of the body. In literature, the problem that most 
suits this goal is called the ergonomic job rotation 
scheduling problem (EJRSP) and was firstly introduced by 
Carnahan et al. (2000). Its main goal is to balance 
ergonomic risks between operators by minimizing the 
workload of the worker most exposed to ergonomic risks. 

Carnahan et al. (2000) presented a basic model to assign 
jobs, each one characterised by period-specific ergonomic 

risk points measured through the Job severity Index (JSI), 
to the workforce to mitigate ergonomic risks. Otto and 
Scholl, (2013) extended previous works on EJRSP by 
considering the possibility to include individual aspects for 
each worker, replacing general ergonomic points with 
dynamic and individual values (EJRSP-Ind). Workforce’s 
individuality is considered in the research of Asensio-
Cuesta et al. (2012) which defined a set of “vetoed 
assignments” to avoid incompatibilities between workers’ 
capabilities and physical, mental and/or communication 
demand of jobs. The identification of the physical limit of 
the workforce is often carried out by the Occupational 
Health and Safety Department of each company, in charge 
of capturing and preventing the possible onset of 
accidents and occupational diseases. Recently, Diego-Mas 
(2020) includes medical advice in the developed algorithm 
to progress job rotation considering individual limitations. 

Much more attention to the workforce profiling phase 
should be paid in the case of aged operators’ presence in 
the manufacturing system. For this purpose, Boenzi et al. 
(2015) developed an age-related model for JRSP where 
age-performance profiles of operators are considered 
during job assignment for overall system performance 
maximization with an ergonomic perspective. Finally, 
Finco et al. (2019) investigated the effect of gender and 
age on threshold limits of fatigue exposure for 
heterogeneous workers and they considered the individual 
physical threshold limit in a job rotation model (Finco et 
al. 2020). Recently, Berti et al. (2021) proposed a new 
Dual-resource-Constrained Job Shop scheduling problem 
including ageing and fatigue.  

2.2. Estimation of ergonomic risks 

The analysis of workload and physical ergonomic risks 
depends both on job and workplace characteristics. The 
intensity, frequency and duration of the exertion can 
strongly impact the workload risk estimation. In the case 
of job rotation strategy, the most frequent adopted risk 
assessment methods are reported in Table 1. Amongst all 
of them, the Occupational Repetitive Action tool (OCRA) 
(Occhipinti, 1998) is adopted to evaluate jobs with a large 
number of repetitive actions. Such as example, Asensio-
Cuesta et al. (2012) propose a genetic algorithm to balance 
the level of risk generated by high repetitive manual tasks 
with the OCRA ergonomic assessment method, to obtain 
job rotation schedules to prevent work-related injuries.  

Rapid posture assessment methods perform faster 
evaluations of working posture. Recently, Digiesi et al. 
(2018) recognised that literature concerning JRSP presents 
a lack of studies that incorporate Rapid Upper Limb 
Assessment (RULA) (McAtamney & Corlett, 1993). For 
this reason, the authors proposed a mixed-integer 
programming approach to balance ergonomic risks in 
JRSP with RULA-based ergonomic constraints.  

Furthermore, such as an extension of the upper body 
assessment, the Rapid Entire Body Assessment, (REBA) 
(Hignett and McAtamney, 2000) incorporates also legs risk 
evaluation. REBA method is adopted in Yoon et al. (2016) 
for the classification of each job, considering the average 
risk value performed by individual worker.  In the 
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presence of jobs where particular attention must be paid 
to lifting activities, the NIOSH lifting equation (Waters et 
al., 1993) is adopted to evaluate trunk risk assessment. 
Finally, with a particular focus on the automotive sector, 
the Ergonomic Assessment Work Sheet (EAWS) (Schaub 
et al., 2013) provides separated ergonomic risk assessment 
on the whole-body posture and awkward hand 
movements. 

The novelty of our approach, in comparison to the 
existing literature, is related to the progression of a step-
by-step framework that can evidence singular deficiency 
regarding risk tendency. In some prior works, job risk 
indexes were defined starting from the average score 
progressed by a group of workers. This approach is surely 
faster, but it can also penalize less skilled operators, from 

an ergonomic viewpoint, due to the scarce or absent 
training phase or by neglecting individual risk propensity 
for certain activities. On the other hand, with our 
approach, the main obstacle is related to the need of an 
accurate ergonomic risk assessment for each operator, 
which can be considered as much time and cost 
consuming. Moreover, another main problem of 
workforce diversity integration in mathematical models 
and methods consists in the difficulty to evaluate the 
differences among the workers involved in the 
manufacturing system.  

For this reason, we aim to propose a new framework to 
involve workforce’s perspectives and healthcare 
maintenance through ergonomic risk prevention. 

3. Method 

3.1. New Methodological framework 

The trend that can be outlined from the proposed 
literature review highlights that workers’ diversity and 
heterogeneity aspects are currently a source of interest in 
studies on mathematical models and approaches that cope 
with ergonomic risks exposure in JRSP. The procedure 
proposed by this framework consists of the integration of 
different inputs derived from three main analyses: 1) Job 
analysis defines the characteristics of each job and the 
common risks related to its execution, also related to 
workstation design; 2) Workforce profiling analysis 
involves workers’ perception and health state. It also 
considers the operator-job fitness according to individual 
preference and aptitude; 3) Ergo-time analysis is 

progressed with the inertial Motion Capture (MOCAP) 
system to assess ergonomic postural risk and also physical 
effort from heart rate monitoring device. This analysis also 
provides job execution time and helps to determine the 
experience level of each operator.  

The main objective of this framework concerns the 
individualisation of the different quantifiable aspects  
related to the personal profile of the workforce to perform 
job scheduling and workload balancing decision in several 
workplaces. This new methodology aims to describe data 
integration process, starting from initial data acquisition 
phase followed by the ergonomic risks quantification and 
concluding with managerial insight coming from EJRSP 
solution approach.  The procedure consists of 8 steps to 

Reference 
Measurement of 
ergonomic risks 

Values of ergonomic  
risk index determined with 

Individual 
qualification 

profile 

Individual 
physical 

limitations 

Carnahan et al. (2000) JSI-Diff Randomly generated from task characteristic -  

Asensio-Cuesta et al. (2012) OCRA On field observations and ergonomic analysis -  

Otto and Scholl (2013) EAWS 2 Random data sets, uniform distribution -  

Mossa et al. (2016) OCRA On field observations, ergonomic risk analysis  - 

Yoon et al. (2016) REBA Ergonomic analysis, 2 video camcorders report - - 

Song et al. (2016) NIOSH 
Job ergonomic assessment with NIOSH Lifting 

Equation 
-  

Hochdörffer et al. (2018) EAWS 
Colour scheme ergonomic risk assessment per 

each workstation 
  

Digiesi et al. (2018) RULA 
Ergonomic risk assessment and experts’ 

evaluation of obtained results 
 - 

Sana et al. (2019) 
NIOSH  
OCRA 
RULA 

Ergonomic risks scores are available or can be 
estimated by author’s assumption 

  

Botti et al. (2020) OCRA 
Videotaping analysis, ergonomic specialists’ risk 

assessment 
  

Table 1: Ergonomic risks methods adopted in job rotation models 
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be executed some in parallel and some in sequence to 
finally obtain an effective worker-oriented job rotation 
and job assignment solution.  

3.2. Profiling phase (Step 1 and Step 2) 

The profiling phase deals with the initial workforce data 
collection. In this phase, workers are involved to collect, 
for each job, some insights about the job description and 
physical attitude. Moreover, this phase aims to create 
updated profiles of each job and operator. Step 1 reports 
an exhaustive description of the job depending on its 
characteristics, like the repetitiveness of actions or the part 
of the body that are more exposed to musculoskeletal risk. 
Furthermore, Step 2 involves the operator’s opinion and 
perception about the personal health condition and job 
assignment preference (e.g., which work plan fits most 
operator’s capabilities in terms of competence, skills and 
attitude). Another important aspect is related to the 
workforce’s developed abilities. For this reason, skills are 
collected in the matrix where a binary parameter specifies 
whether a worker can perform a particular job or not. In 
phase 2, the subjective workload assessment is measured 
according to the NASA Task Load Index (Hart and  
Staveland, 1988). In this way, also the mental demand is 
measured as well as the frustration in performing such 
kind of tasks. Moreover, starting from the workforce’s 
viewpoint, it is also possible to highlight shared opinion 
and evaluation on part of the body, involved in job 
completion, most exposed to risk. Workers can provide 
subjective feedback according to the Borg C10 scale and 

is such a way they are able to also provide a quick measure 
of the physical and muscular fatigue (Morishita et al., 
2013). However, in this case, scores assigned to each task 
are influenced both by workstation design and also by the 
sequence of activities to be performed in job execution 
and for this reason different scenario are created.  

The most innovative aspect about the profiling phase 
concerns the collection of past, temporary or permanent 
physical limitations of workers and operators’ perceptions 
to perform improved values of job-operator fitness (Botti 
et al., 2020). In fact, it has been demonstrated that each 
worker’s life history has certainly impact on future work 
ability, in particular for older workers (Fischer and 
Martinez, 2013). In such a way, job rotation can better fit 
the worker’s physical and cognitive level. For this reason, 
the integration of data coming from workforce’s 
involvement phase and quantitative and qualitative 
information collected in this framework, represent our 
novelty and it is useful in completing the dataset with all 
data necessary as input for the model to solve EJRSP and 
to find optimal solutions, depending on company 
objectives and desired performance. 

In addition to the job-operator fitness score, physical 
restrictions and possible chronic diseases for each part of 
the body of each worker must be collected. These data are 
collected from occupational medicine practitioners, but 
also directly from the workforce’s opinions through 
questionnaire and self-evaluation approaches, developed 
to capture in advance possible incoming musculoskeletal 

Figure 1: Methodological framework for assessing a worker-oriented ergonomic job rotation scheduling problem 
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disorders or to avoid an aggravation of the global health 
status. These methods can help the company to judge the 
actual health condition of the workforce and the 
proneness to permanent or temporal injuries. This 
information becomes useful to avoid job assignment that 
can foster consequences such as workforce absenteeism 
and the relative arising costs. 

3.3. Ergo-time analysis (from Step 3 to Step 6) 

Thanks to the quick technology advancement fostered by 
the fourth industrial revolution, which bases its principles 
on data collection, new devices are continuously 
introduced in the market at accessible and more affordable 
prices. To perform a precise evaluation of working posture 
and to define relative postural risks during work 
progression, smart technologies like MOCAP systems are 
currently adopted also in the manufacturing field. The 
integration of these technologies allows us to save time 
and costs during posture assessment during the worker’s 
training phase. The amount of data needed to perform 
ergonomic risks evaluation for each operator are collected 
during the initial postural assessment. The execution of 
each job is performed wearing a MOCAP system which 
consist in several IMUs placed in the whole body. Data are 
collected and processed by a software platform able to 
calculate in real-time the ergonomic risks through the 
most suitable international indicator for the job analysed. 
Moreover, direct feedbacks to worker are given since they 
can see the monitor in front of their working place and 
easily understand which part of body is majorly stressed 
by an ergonomic point of view.   

The ergo-time analysis starts with an ergonomic 
assessment (Step 3) to evaluate the initial level of 
ergonomic experience of each worker. In fact, due to the 
strong turnover effect, new employees can perform the 
same job in several manners, depending on their attitude 
and experience level. This step assesses whether the 
worker needs to perform postural training with real-time 
feedback intervention and some practitioners’ 
suggestions, aiming to educate the operator to behave with 
proper movements to reduce postural ergonomic risk. We 
assume that after the postural training session (Step 4) job 
risk score is reduced to the lowest level, thanks to the 
training activity performed. Furthermore, in this phase, 
the amount of accumulated physical fatigue and stress for 
each worker can be monitored for further analysis (e.g., in 
the form of energy expenditure consumption, heart rate, 
oxygen consumption). Heart rate monitoring systems are 
nowadays easily affordable and reliable devices to monitor 
the worker’s heart rate. For example, they can be adopted 
to calculate energy expenditure for individuals (Li, 
Deurenberg, and Hautvast, 1993). In such a way, postural 
risk can be smothered together with physical effort in job 
scheduling activity. This information reflects the fact that 
different operators can process the same job progressing 
different amount of fatigue, based on the age and the 
physical condition of the worker. In this phase, ergonomic 
data are collected for each task, each worker and each part 
of the body involved. Since threshold limit on the postures 
changes according to the type of activity they are 
performing, in this phase ergonomic experts are involved. 

Step 4 does not collect data about performances. For this 
reason, Step 5 carries out a job duration assessment to 
provide information about the experience level of every 
worker in comparison to the standard time of job 
completion. This information can be displayed both such 
as the real job duration per each operator or by the 
incidence of experience and worker’s ability in comparison 
to the standard time of job completion. Once the 
workforce’s experience level, job duration, postural risk 
score and physical effort values have been collected, the 
workforce dataset is updated (Step 6) with all the 
information coming from the profiling phase (Step 1 and 
Step 2) and from the ergo-time analysis (from Step 3 to 
Step 5). 

3.4. Decisional phase and continuous improvement (Step 
7 and Step 8)  

Once the data acquisition process is completed and 
ergonomic indicators, attesting the work-related risk 
proneness for each worker, are finally progressed, the 
integration phase (Step 7) in the EJRSP can be initialised. 
In our case, the proposed EJRSP model is bi-objective, 
where productivity must be maximized by minimizing the 
ergonomic risk of each worker. According to the type of 
activity the appropriate ergonomic index is selected, for 
example, in picking activities NIOSH is selected. 
Moreover, additional constraints are included in the model 
aiming to consider physical and cognitive limits of each 
worker. In particular, the constraint related to the fatigue, 
as well as that one related the mental demand, are always 
included.  

Since data required in the model can be collected easily 
and in a faster way, the model can be applied each time 
new workers are involved as well as new tasks are 
performed. Our approach can ensure a balanced workload 
to the workforce depending on the individual physical 
characteristics and flexible work plans to smooth the 
fatigue accumulated and the risk exposure. Physical 
limitations, collected and constantly updated with 
continuous improvement phase (Step 8), will ensure 
feasible job rotation schedules by the restrictions imposed 
to operators that cannot perform some activities, avoiding 
the arise of physical impairments and musculoskeletal 
disorders.  

4. Relevance to industry 

The framework presented in this work should be 
considered as a starting point for individual and personal 
flexible and dynamically generated working plans and job 
rotation schedules. Other operator’s features can be 
further added to the framework, like psychosocial and 
psychological characteristics of the workforce as well as 
the learning and forgetting effects. However, as stated in 
Section 2.1, physical aspects are nowadays much more 
integrated into the current measurements progressed by 
companies because data are directly collectable and 
exploitable. For this reason, this work aims to exploit the 
initial postural assessment and, eventually, the training 
phase to collect data and further information on the 
workforce to obtain the most suitable work plan for 
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everyone depending on physical conditions and job-
operation fit.  

The information in the system needs to be constantly 
updated concerning the ergonomic level reached by the 
workforce with the experience matured in the working 
field. For this reason, the training process is not only 
progressed once, at the beginning of operator’s work 
experience but also repeated (Step 8), since the profile of 
operators can differ in terms of gained experience level or 
capabilities, but also for health status deterioration or due 
to high workforce turnover. According to current 
legislation, occupational medicine carries out medical 
examinations on an annual basis. This time window can be 
too wide to pursue risk detection on the workforce on a 
wide range. For this reason, constant workforce 
assessment sessions can support risk evaluation and 
investigation both on operators’ viewpoint and on 
workplace design. The solutions obtained from the EJRSP 
model, starting with all the information collected in the 
previous framework steps, must respect all the ergonomic 
and physical constraints outlined during the framework. 
From this set of solutions, managers can determine which 
one fits best the current objectives of the company. 
Whenever critical or unexpected periods arise, ergonomic 
aspects can be considered momentarily secondary in 
comparison to daily production performance.  

The strongest weakness of this framework resides in one 
of its major strength: workforce viewpoint integration. 
The high reliance on qualitative measurements, collected 
in the workforce integration phase, provides additional 
information to perform flexible and individual work plans 
based on operators’ health status. On the other hand, 
qualitative measurements, as well as ergonomic self-
assessments, are subjected to personal evaluation, which 
could lead to imprecise and precautionary assessments of 
the self-condition. To mitigate this problem, historical 
data of past operators’ work plans can be considered to 
avoid the risk of repetitive assignment to jobs that could 
urge the same parts of the body, allowing to naturally 
spread the stress in a uniform condition.  

Furthermore, data collection in manufacturing fields is 
highly restricted from privacy rights. Workers’ rejection of 
being profiled trough their personal data might leads the 
framework to neglect a part of the profiling phase, 
reducing work plans individualisation effect and benefits. 
From a practical viewpoint, the implementation of this 
framework starts with whom most perceives positive 
benefits from the individualisation of personal work plan 
and later spread among the rest of workforce. Such as 
other successful strategies, this framework pursues a 
bottom-up approach, driven by the forecasted benefits of 
personal and human-oriented job scheduling activity. 

5. Conclusions 

There is conflicting evidence about how the workforce’s 
diversity management, in terms of age, gender and 
personality, can lead to increase workers’ commitment or 
might foster conflicts that can damage the cohesiveness 
within a group (Bassett-Jones, 2005). Sometimes, the 
workforce is intentionally assumed homogeneous in terms 

of efficiency and quality (e.g., concerning operators’ 
gender or capabilities) to respect current regulations and 
territorial anti-discrimination laws, as reported both in 
Otto and Scholl, (2013) and in Hochdörffer et al., (2018).  

The choice to consider a heterogeneous workforce 
concerning gender, age and capabilities, represents a 
challenge to the management that can embrace diversity 
aspects such as a risky business to enhance overall 
company performance. Moreover, as defined in Sgarbossa 
et al. (2020) considering human factors leads to more 
reliable, efficient and safe workplaces. The novelty of the 
new methodological framework proposed in this paper is 
related to the possibility to rapidly profile each worker 
considering personal features for the execution of jobs 
dependently on the current level of qualification of each 
worker and on the health status in which the operator 
behaves. The integration of ergonomic features together 
with fatigue workload and job-operator fitness function 
represents an overall analysis of the health condition that 
allows monitoring and evaluating the risk related to the 
operator’s wellbeing during job execution.  

Future research on this framework will evaluate the 
feasible job rotation schedules obtained as output from 
the optimal model or from heuristic approaches adopted 
to solve EJRSP. The impact that each quantitative and 
qualitative variable considered in this framework on final 
results will be evaluated with various scenario analyses 
based on real-case application. 
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A B S T R A C T   

This article presents a new real-time full-body ergonomic platform: the Workforce Ergonomics and Management 
Platform (WEM-Platform). It provides ergonomic assessments in industrial and logistics environments based on 
motion capture using an inertial suit and an activity tracker. The platform also provides visual feedback to the 
workers involved in assembly, manufacturing, and picking operations. This innovative platform makes it possible 
to evaluate a set of ergonomic indexes (RULA, REBA, OWAS and PERA) and provide visual feedback in real-time 
to workers regarding posture and physical fatigue metrics. The graphical user interface (GUI) and the software 
were developed in house and support a variety of inertial suits, depth cameras, and activity tracker devices. The 
article discusses the WEM-Platform architecture, its state-of-the-art design, and crucially, its validation via 
rigorous laboratory testing.   

1. Introduction 

Despite the opportunities automation and Industry 4.0 solutions 
have created, several tasks and activities are still performed manually in 
industrial settings. Manufacturing contexts – characterized by complex 
products comprising hundreds of different parts and a high variety of 
assembly, lifting, and handling tasks – require a high level of flexibility 
that robots have not yet achieved (Zennaro, Finco, Battini, & Persona, 
2019). In addition, humans have cognitive and physical skills that are 
very difficult to replicate (Sgarbossa, Grosse, Neumann, Battini, & 
Glock, 2020). In such contexts, tasks repetitiveness, hazardous or 
awkward postures, heavy loads and other ergonomic risks can nega-
tively impact workers’ well-being, causing Work Related Musculoskel-
etal Disorders (WRMSDs). According to Luttmann et al. (2003), 
WRMSDs refer to all health problems of the locomotor apparatus and all 
forms of ill-health disorders or injuries induced by work circumstances 
and performances. 

Consequently, it is necessary to sustain workers’ physical and 
cognitive well-being by reducing ergonomic risk through human- 
oriented production systems and workplaces design (Berti, Finco, Bat-
taïa, & Delorme, 2021). This is confirmed by a recent report of the Eu-
ropean Agency for Safety and Health at Work (EU-OSHA, 2019), which 

states that more than half of the EU workforce reports WRMSDs, espe-
cially located in the shoulders, neck, and upper limbs. Moreover, 
WRMSDs cause about 90% of absenteeism and injuries. 

There are two main consequences related to WRMSDs: 1) they 
directly affect workers’ well-being, and 2) productivity decreases due to 
absenteeism or higher turnover rates (Battini, Faccio, Persona, & Sgar-
bossa, 2011). Aiming to limit the negative consequences of WRMSDs, 
several tools, new prototypes or equipment and ergonomics analysis 
techniques have been developed to support the ergonomics assessment 
necessary to evaluating workers’ body postures (Lowe, Dempsey, & 
Jones, 2019; Mgbemena, Tiwari, Xu, Prabhu, & Hutabarat, 2020; Takala 
et al., 2010). At the same time, academics and practitioners have placed 
more emphasis on the need to design safe and proper work environ-
ments, including implementing more robust safety practices and human- 
oriented workplace design solutions (Sgarbossa et al., 2020). Postural 
training for the workforce plays a strategic role in this objective. In fact, 
it permits workers to evaluate and correct poor postures assumed while 
performing tasks, as well as provide feedback when they are incorrectly 
executed (Cerqueira, Da Silva, & Santos, 2020). 

The so-called ‘Smart Factory’ resulting from digitalization and In-
dustry 4.0 can be beneficial for all actors involved in improving and 
performing the manufacturing process, with several tools already 
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developed and being continuously improved. Recently, Kadir, Broberg, 
and da Conceicao (2019) analyzed the interaction between Industry 4.0 
systems and human factors, and they highlighted that wearable and 
handheld devices lead to improvements in ergonomic feedback. More-
over, collected data can be shared among product and safety managers 
as well as ergonomists to positively impact workers’ well-being 
(Romero, Stahre, Wuest, Noran, Bernus, Fast-Berglund, & Gorecky, 
2016). By focusing on some devices which are commonly used in 
manufacturing contexts the inertial measurement units (IMUs) gain 
higher and higher attention to collect data from machines and workers 
too. IMUs are sensors that can be adapted to capture postures and 
movements during a typical working day. IMUs are small and portable 
devices that combine information obtained from multiple electrome-
chanical sensors (i.e., accelerometers, gyroscopes, and magnetometers) 
to estimate the spatial orientation of an object using recursive sensor 
fusion algorithms. In recent years, their high accuracy has earned them a 
great deal of attention in the field of ergonomics. In particular, they have 
been used to provide real-time posture data or feedback based on one or 
more of the existing ergonomic assessment tools (Alberto, Draicchio, 
Varrecchia, Silvetti, & Iavicoli, 2018). Some studies have evaluated er-
gonomic risks on site (e.g., Yan, Li, Li, & Zhang, 2017) while others have 
tested the IMUs system they developed in laboratory conditions – in 
some cases, they have reported substantial differences between these 
and real work environments (Vignais et al., 2013). Most of the existing 
research provides feedback calculating only a single ergonomic index 
(Vignais et al., 2013), and only a few evaluate multiple ergonomic in-
dexes in real time (Otto, Campos, & de Souza, 2017; Cerqueira et al., 
2020; Akamnu et al., 2020). Moreover, additional tools such as activity 
trackers, heart rate devices, or smartwatches that were initially devel-
oped for other purposes (e.g., leisure or sports) are getting more atten-
tion and are increasingly used to evaluate the status of workers’ well- 
being in production or logistics processes. 

Starting from these initial considerations, this article presents an 
innovative ergonomics digital platform based on an inertial suit, an 
activity tracker device, and a distributed software the authors developed 
that provides a real-time ergonomic assessment, posture feedback to 
workers and productivity Key Performance Indicators (KPIs). Moreover, 
additional details of the worker involved in the activity (e.g., skin 
temperature and heart and respiration rate) are provided to continu-
ously monitor each worker’s personal health status. 

In its current state, the platform evaluates four ergonomic risk in-
dexes: RULA, REBA, OWAS, and PERA. They have been selected for their 
versatility and extensive use in manual assembly environments. More-
over, their computation is mainly based on the postures assumed in 
performing tasks requiring only a few additional information to be 
manually added in the software. For these reasons, they represent an 
appropriate ergonomic index set to be computed in real-time from the 
joint angles provided by an inertial suit, as presented, or from other 
sensors such as depth cameras. The platform is a multi-purpose tool 
since it can be adopted both in postural training sessions and worksta-
tion design evaluation. In fact, it permits to easily understand if the 
worker is performing the task ergonomically and which human muscle 
districts are affected by wrong postures. Moreover, it supports a real- 
time assessment of ergonomics risk parameters, indispensable to eval-
uate the ergo-quality design of the workplace by ergonomists and in-
dustrial engineers. 

The main novelty of the WEM-Platform consists in both capturing 
postures and computing several ergonomic indexes in real-time. In fact, 
according to the state of the art provided in Section 2, the real-time 
concept is usually related to the data capturing phase only, while the 
ergonomic risk evaluation is generally made in a post-processing phase. 

Finally, the platform not only provides information for ergonomic 
postures and risks but also computes in real-time productive KPIs. They 
are available to all actors involved in improving the production process, 
including workers, ergonomists, and safety managers. The focus on final 
stakeholders’ needs inspired the name WEM-Platform: workforce, 

ergonomics, and management. 
The remainder of this article is organised as follows. In Section 2, we 

analyze existing motion-capture technologies and demonstrate the 
novelty of our solution. We also give a brief description of the ergonomic 
indexes included in the WEM-Platform. In Section 3, we present the 
methodological framework we use in our platform. Section 4 describes 
the hardware and software architecture we developed for the real-time 
evaluation of postures and ergonomic indexes during production and 
handling activities (e.g., manual assembly and picking). In Section 5, we 
validate the ergonomics platform with a laboratory case study related to 
a medium-size bed-side table assembly process and discuss the main 
outcomes of this study. We conclude with Section 6, suggesting oppor-
tunities for future research. 

2. Literature review 

In this section, we describe the existing methods to conduct ergo-
nomic assessments of working conditions (Section 2.1.), the different 
MOtion CAPture (MOCAP) systems used to track human movements 
(Section 2.2), and the existing research providing ergonomic assessment 
and feedback to workers using MOCAP systems and activity trackers 
(Section 2.3). 

2.1. Ergonomic assessment in production systems 

Engineers and ergonomists have developed assessment methods for 
WRMSDs risk quantification to reduce workers’ exposure to hazardous 
environments and tasks. These tools can be divided into three main 
categories: self-reports, observational methods, and direct/instrument- 
based methods (David, 2005). Self-assessment tools collect data on 
risk exposure using questionnaires, checklists, or interviews that worker 
themselves fill out. These reports are based on workers’ perceptions and 
feelings, which can lead to imprecise and subjective analyses. To over-
come this limit, observational methods allow analysts to make postural 
evaluations based on direct observations or videorecording the tasks 
under examination. The most used and widely known observational 
methods follow international standard ergonomic indexes, such as the 
Occupational Repetitive Actions (OCRA) (Occhipinti, 1998), NIOSH 
lifting equation (National Institute of Occupational Safety and Health 
Lifting Index) (Waters, Putz-Anderson, Garg, & Fine, 1993) and Job 
strain Index (JSI) (Steven Moore & Garg, 1995). 

According to the ISO standard 11228-3:2007(E) (ISO, 2007), 
simplified ergonomics methods can be adopted in the initial ergonomics 
analysis due to their simplicity and short computational time. Simplified 
methods that can rapidly provide ergonomic risk evaluations, especially 
for static tasks, are the Rapid Upper Limb Assessment (RULA) (McA-
tamney & Corlett, 1993), the Rapid Entire Body Assessment (REBA) 
(Hignett & McAtamney, 2000), the Ovako Working posture Assessment 
System (OWAS) (Karhu, Kansi, & Kuorinka, 1977) and, most recently, 
the Postural Ergonomic Risk Assessment (PERA) (Chander & Cavatorta, 
2017). Since one of our main research objectives is a real-time ergo-
nomic risk evaluation through workers’ postures, we have incorporated 
these four indexes into the WEM-Platform. 

In particular, the OWAS score analyses the position of both upper 
and lower body parts. It provides one single-digit score for each part of 
the body, starting from the back, arms, legs and the loads carried during 
the activity. These four digits are used as an input for the table that 
includes all possible digit combinations and their corresponding ergo-
nomic risk. OWAS classifies action risk into four categories ranging from 
1 = no risk to 4 = high risk. 

RULA and REBA are two similar methods for screening and identi-
fying harmful postures. RULA is more suitable for intensive hand-arm 
activities, such as sitting assembly work. At the same time, REBA eval-
uates the entire body and is more appropriate when both upper and 
lower body are involved, such as during picking or construction activ-
ities. Generally, several snapshot observations are collected to evaluate 
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the most critical working position and posture. Nowadays, the possi-
bility that RULA and REBA scores are influenced by the subjectivity of 
the evaluator is minimized thanks to the automation of the posture risk 
assessment, which allow to have precise outcomes in short time. 

RULA worksheet evaluates position deviation in six body regions 
(upper arm, forearm, wrist, neck, trunk, and legs) from their neutral 
position as well as the carried weight carried and the type of movement 
(static or dynamic). The final score varies from 1 to 7, where 1 describes 
a work situation without risk and 7 highlights the necessity to act via 
immediate adjustments. 

REBA worksheet evaluates the same body regions as RULA, but it 
also includes grips and coupling in the analyses. The final score ranges 
from 1 to 5. As long as the score is lower than 3, minor corrections are 
necessary. Conversely, a score ranging from 4 to 7 requires corrective 
actions. Whenever the score exceeds 7 points, corrective interventions 
need to be implemented as soon as possible, as the repetitiveness of the 
analysed work posture can cause ergonomics diseases over time. 

Finally, PERA (Chander & Cavatorta, 2017) analyses each work task, 
particularly in the case of short cyclic assembly works. The method 
progresses seven main steps starting from work cycle segmentation, task 
posture and force analysis categorization in terms of risk and finally the 
score computation. 

As Chander and Cavatorta (2017) demonstrated that, even though it 
is simpler, PERA can deliver the same evaluation as the European As-
sembly Worksheets (EAWS) (Schaub, Caragnano, Britzke, & Bruder, 
2013). 

All the presented ergonomic indexes can be automatically computed 
when technology is available to stream real-time collected data. How-
ever, it is not sufficient to stream data in real-time to perform real-time 
index progression and evaluation. With this purpose, we provide an 
overview of the main literature results concerning the use of technolo-
gies that are able to perform real-time ergonomic assessment and feed-
back intervention in the next section. 

2.2. Background literature on MOCAP systems 

In the last decade, thanks to technological advancements, direct 
methods have surpassed prior approaches by providing objective mea-
surements in real-time. Both static and dynamic body posture assess-
ments have progressed, now at the point where they can prevent critical 
situations. The monitoring systems adopted for this purpose exploit in-
ertial sensors, depth cameras, reflective markers, and wearable medical 
devices. Battini, Persona, and Sgarbossa (2014) created a full-body 
system based on inertial sensors featuring integrated compensation of 
magnetic interference and long wireless connection. They used it to 
evaluate the ergonomics of manual material-handling in warehouse 
environments in which all parts of the body are in use while executing 
the activities. The system gives feedback to the ergonomists using it after 
post-processing the collected data. 

More recently, Menolotto, Komaris, Tedesco, O’Flynn, and Walsh 
(2020) conducted a systematic review on MOCAP systems in different 
industrial applications. They divided MOCAP technologies into two 
main categories: IMUs and camera-based systems. IMUs are mainly 
composed of accelerometers and gyroscopes; they are usually adopted to 
reconstruct the position or orientation of the limb they are attached to. 
In many cases, a three-axis magnetometer is integrated into an IMU 
tracking system to correct mis-orientation of the sensors due to time- 
varying biases and noise interference. Filippeschi et al. (2017) con-
ducted an exhaustive survey of IMU-based motion-tracking methods; 
they placed particular focus on upper limb human motion-tracking in 
different applications. In a recent example of IMU adoption to progress a 
real-time ergonomic assessment, Giannini, Bassani, Avizzano, and Fili-
ppeschi (2020) estimated four different ergonomic indexes – NIOSH 
(Snook & Ciriello, 1991), REBA, and JSI – beginning with body-tracking 
a worker in real time. Like IMUs, camera-based sensors can detect 
human body position and orientation through various technologies (e.g., 

RGB, infrared, depth, or optical cameras) (Menelotto et al., 2020). These 
systems can track the position and orientation of limbs without any 
sensors – they can even adopt certain markers (e.g., marker-based 
MOCAP) captured by a fleet of cameras. Markers can actively 
contribute to body monitoring by emitting light at a high frequency or 
by being passive (using a retro-reflecting surface that reflects the 
infrared emission the cameras produce). Bortolini, Faccio, Gamberi, and 
Pilati (2020) adopted camera-based technology in their Motion Analysis 
System (MAS), which assesses four international ergonomic indexes: 
OWAS, REBA, NIOSH, and EAWS using a network of four depth cameras. 

Although automatic and objective ergonomic risk-monitoring is 
fundamental for recognising hazardous working activities, thus far, 
intervening in people’s conduct and bad habits only occurs at the end of 
an ergonomic specialist’s analysis and risk assessment. 

2.3. Applying MOCAP systems to ergonomic assessment and real-time 
feedback 

Providing real-time feedback to workers during working activities 
requires a system that is capable of rapidly assessing their posture and 
promptly giving feedback to correct their behavior in real-time, ulti-
mately avoiding the risk of WRMSDs. Depending on the application 
sector, different technologies in pursuit of this objective have emerged 
in the literature. The construction field has been heavily researched due 
to the dangerous positions assumed by workers during task progression. 
In this sector, feedback intervention has yielded the best results in terms 
of training and posture correction for trunk position (Yan et al., 2017, 
2018), especially in lifting activities, but also for the lower back, legs, 
and joint angles (Valero, Sivanathan, Bosché, & Abdel-Wahab, 2016). 
The presence of many obstacles in the workplace means it is not always 
easy to monitor workers’ performance. Virtual reality (VR) and 
immersive reality (IR) represent solutions to achieve posture-monitoring 
wherever other technologies cannot work (Akanmu, Olayiwola, Ogun-
seiju, & McFeeters, 2020; Battini et al., 2018; Simonetto, Arena, & 
Peron, 2022; Sivanathan, Abdel-Wahab, Bosche, & Lim, 2014). Another 
sector with a great deal of work monitors the effect of feedback on 
caregivers and nurses during work activities and during the training 
phase. Researchers have tested wearable devices and garments with 
real-time auditory biofeedback or vibrotactile intervention (Doss, 
Robathan, Abdel-Malek, & Holmes, 2018; Kamachi, Owlia, & Dutta, 
2019; Owlia, Ng, Ledda, Kamachi, Longfield, & Dutta, 2018), prototypes 
of systems that educate student trainees’ lifting behaviours (Bootsman 
et al., 2020) by providing improved movement strategies for spine 
postures or for posture rehabilitation, and real-time feedback provision 
to correct training (Alahakone & Senanayake, 2010). 

Moving into the manufacturing sector, the literature contains several 
examples of wearable devices and prototypes of systems that progress 
training techniques through real-time feedback intervention. Some of 
these systems can progress full body assessment and provide feedback to 
workers during dedicated actions or movements such as lifting activities 
(Delpresto, Duan, Layiktez, Moju-Igbene, Wood, & Beling, 2013) as well 
as (and mainly) during daily work through visual (Otto et al., 2017; 
Zhang et al., 2021) and vibrotactile stimuli (Lins, Fudickar, Gerka, & 
Hein, 2018; Mgbemena, Oyekan, Hutabarat, Xu, & Tiwari, 2018). 
Nevertheless, most of the activities progressed by the workforce in in-
dustrial contexts involve workers’ upper bodies; thus, most of the rele-
vant literature focuses only on upper limb movements. Here, optical 
MOCAP systems are adopted to track body movements in static activities 
(e.g., workers do not need to leave their workstations to progress the 
overall task). In this case, feedback provision is mainly actuated through 
visual graphical interfaces on monitors (Kim, Lorenzini, Kapıcıoğlu, & 
Ajoudani, 2018) or directly projected into the workplace (Mengoni, 
Ceccacci, Generosi, & Leopardi, 2018). Wearable devices become 
necessary to track body movements in the work field whenever task 
progression requires workers’ displacement. Recent prototypes of smart 
garments have been developed to progress vibrotactile feedback 
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intervention in general manufacturing activities (Cerqueira et al., 2020), 
picking simulations (Lind et al., 2020), and automotive assembly tasks 
(Raso, Emrich, Burghardt, Schlenker, Gudehus, Strter, & Loos, 2018). 

Real-time postural feedback intervention and ergonomic risk 
assessment are rarely progressed together by the same software or 
platform (Lim & D’Souza, 2020). In a pioneering contribution, Vignais 
et al. (2013) developed a promising system to perform both real-time 
ergonomic risk assessment and feedback provision. Arroyave-Tobón 
and Osorio-Gómez (2017) give a similar example – they provide visual 
real-time feedback alongside an ergonomic risk assessment through 
users’ head-mounted displays (HMDs). Continuous automation 
advancement has created the opportunity to involve collaborative ro-
bots to support workers’ activities. Busch, Maeda, Mollard, Demangeat, 
and Lopes (2017) provided evidence that robot behavior can lead 
workers toward posture correction through real-time posture analysis 
and visual feedback correction. Manghisi et al. (2020) proposed an 
automatic software tool for ergonomic postural risk-monitoring with a 
visual graphical user interface focusing mainly on upper body assess-
ment. The authors adopt both visual and acoustic feedback as their 
feedback intervention method. 

Few prior works have progressed ergonomic risk evaluation and 
feedback intervention at the same time, and a recent review of past 
literature reported that a limited number of studies assessed and 
improved ergonomic risk factors using feedback strategies (Stefana, 
Marciano, Rossi, Cocca, & Tomasoni, 2021). 

Table 1 contains a selection of papers that implement a platform or a 

system able to provide real-time feedback intervention, and, in some 
cases, real-time ergonomic risk index progression. In particular, the 
literature shows that feedback intervention is often adopted in three 
main application sectors: medical, construction, and industrial. Table 1 
shows that there is often a correlation between the analyzed body part 
and the application sector. In particular, analyses of healthcare workers’ 
posture focus their feedback intervention on trunk wellness, whereas in 
the manufacturing context, legs and lower back are often neglected due 
to the characteristics of assembly activities. Moreover, Table 1 high-
lights that different devices are adopted to provide feedback interven-
tion based on the application context. For example, graphical user 
interfaces are widely adopted in the manufacturing research field, 
particularly at assembly workstations. In contrast, audio and haptic 
feedback are preferred in manual material-handling activities due to 
workers’ continuous displacement. 

The literature reveals that feedback intervention is often triggered by 
thresholds set based on ergonomic indexes or international standards. 
However, the healthcare sector prefers to adopt thresholds based on 
customised values determined by an individual’s maximum flexion or 
extension measurements. Only four of the works contained in Table 1 
(Arroyave-Tobón & Osorio-Gómez, 2017; Manghisi et al., 2020; Men-
goni et al., 2018; Vignais et al., 2013) develop systems that simulta-
neously provide real-time feedback to users and display ergonomic 
indexes to ergonomists for on-site risk assessment. Finally, many pre-
vious works evaluate the ergonomic risk through a single ergonomic 
score (RULA) and by performing an upper limb evaluation, neglecting 

Table 1 
List of published works concerning feedback intervention and real-time ergonomic assessment.  

Paper Motion capture 
stem 

Application 
sector 

Body part 
analyzed 

Real-time 
feedback 

Feedback threshold 
based on 

Real-time ergonomic 
indexes 

Vignais et al. (2013) Inertial (7 IMUs) MMH Upper I (AR) - A RULA RULA 
Delpresto et al. (2013) Marker-less M Full I NIOSH – 
Busch et al. (2017) Marker-less M Full I REBA – 
Yan et al. (2017) Inertial 

(2 IMUs) 
C Trunk I - A ISO 11226:2000 – 

Arroyave-Tobón and Osorio-Gómez (2017) Marker-less M Upper I (AR) RULA RULA 
Otto et al. (2017) Accelerometers M Full I RULA 

REBA 
– 

Yan, Li, Zhang, and Rose (2018) Inertial  

(2 IMUs) 

C Trunk I - A OWAS – 

Mengoni et al. (2018) Marker-less M Upper I RULA RULA 
Kim et al. (2018) Inertial  

(1 IMU) 

M Trunk I - V Customized – 

Lins et al. (2018) Marker-less M Upper V OWAS – 
Raso et al. (2018) Strain sensors MMH Upper I - H EAWS – 
Owlia et al. (2018) Inertial  

(2 IMUs) 

H Trunk A Customized – 

Doss et al. (2018) Accelerometers H Trunk A Customized – 
Mgbemena et al. (2018) Marker-less M Upper I RULA – 
Bootsman, Markopoulos, Qi, Wang, and 

Timmermans (2019) 
Inertial  

(2 IMUs) 

H Trunk A - V Customized – 

Cerqueira et al. (2020) Inertial  

(4 IMUs) 

M Upper V RULA 
LUBA 

– 

Kamachi et al. (2019) Inertial  

(2 IMUs) 

H Trunk A Customized – 

Lind et al. (2020) Inertial  

(3 IMUs) 

MMH Upper V Customized – 

Akanmu et al. (2020) Inertial  

(19 IMs) 

C Full I (VR) ISO 11226:2000 
PERA 

– 

Manghisi et al., 2020 Marker-less M Upper A - V RULA RULA 
Zhao, Obonyo, & Bilén, 2021 Marker-less C Full V OWAS – 

Application Sector: M: Manufacturing; C: Construction; H: Healthcare; R: Rehabilitation; MMH: Manual material handling; 
Real-time feedback: I: Interface visual; A: Auditory; H: Haptic; V: Vibration; VR: Virtual Reality; AR: Augmented Reality. 
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total body assessments. 
For these reasons, we aim to progress the existing literature by 

providing an in-house-developed ergonomic platform that can evaluate 
four ergonomic indexes and give feedback to workers in real time. 
Despite the available solutions, which mainly assess upper limb pos-
tures, the digital platform we propose can be adopted within several 
industrial contexts to perform full body evaluations of workers’ posture 
and health status. The WEM-Platform’s user-friendly visual interface can 
provide real-time feedback to three actors during the analysis: the 
ergonomist and safety expert, the operation manager, and the worker. 
These stakeholders have different knowledge about ergonomic risk – 
consequently, we provide them with the right tools to evaluate the risk 
of executing tasks to define future improvements (see Figs. 1, 2 and 3). 

3. Methodological framework 

Fig. 4 conveys the methodological framework of the WEM-Platform. 
The platform collects two main types of input data: 1) real-time data 
provided by devices monitoring the users (currently, an inertial MOCAP 
system and an activity tracker), and 2) static data assessed offline and 
manually introduced by the ergonomists and operation managers in a 
specific toolbox of the GUI software. The static data represent the fea-
tures concerning the job to be performed and the worker’s physical 
characteristics. At the beginning of the setup phase, the worker’s 
anthropometric physical properties such as age, gender, weight, and 
height are entered into the system. Moreover, job characteristics need to 
be specified both in the initial phase and during the training session, as 
the job segmentation adopted for the postural evaluation of each activity 
is still manually estimated. Workplace layout and components features 
are defined during the offline phase, whereas task duration and fre-
quency must be specified during the training session. In this way, the 
ergonomist can determine the length of each activity for which online 
postural assessment is being evaluated. 

Real-time data are collected for the entire duration of the training 
session. The real-time data consist of heart rate, breathing rate, and skin 
temperature; these are collected through an activity tracker, whereas the 
joint angles and positions are collected with the MOCAP system. The 

platform is designed to work independently of the type of MOCAP sys-
tem used for the postural assessment. However, the precision of the 
output will be affected by the quality of the data received from the 
MOCAP system. The data are directly integrated into the ergonomic 
platform that outputs the four ergonomic indexes’ values, a represen-
tation of the human posture, and the posture scores according to the 
NIOSH. Once the assembly or logistic process begins, the platform can 

Fig. 1. The integrated methodological framework of the WEM-Platform.  

Fig. 2. MOCAP suits used in the laboratory tests: (a) Mtw Awinda, (b) G4 
MOCAPSUIT, and (c) the Aidlab activity tracker. 
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process all the data in real time and thus directly provide the output. 
Four are the output of the WEM-Platform. 
In the first output, the real-time visual feedback for the worker is 

displayed online during the whole production process. A representation 
of human body and a table containing all the main joint angles created 
according to the ISO 11226 allows workers to see their heart rate, 
breathing rate, and skin temperature as well as their posture. In this way, 
workers can see incorrect postures and adjust and change their move-
ments until they reach a correct state. 

In the second output, real-time ergonomic indexes (RULA, REBA, 
OWAS, and PERA) are continuously computed and reported to the 
ergonomist through visual dashboards to evaluate workers’ posture. 
Both current values and graphs of time trends are provided for each of 
the four indexes. 

In the third output, three KPIs are determined in real-time to monitor 
workers’ efficiency, production rate, and walking path. Here, a hip 
movement spaghetti chart and a hand height chart during the produc-
tion process are given. 

Finally, the last output is defined at the end of the training activity. It 
is a summary report automatically created with post-processed infor-
mation for additional insights. 

4. Hardware and software architecture 

4.1. Hardware 

Our software is not dependent upon a particular hardware device if it 
is able to produce the required input data. The software design allows 
the user to adopt different MOCAP technologies to collect postures and 
process the output in real-time. We used two IMU-based MOCAP suits 
(MTw Awinda [Xsens] and G4 MOCAPSUIT [Synertial]) and an activity 
tracker [Aidlab]) in our laboratory tests (Fig. 5). The MTw Awinda has 
17 IMUs. The system includes a shirt with trunk and shoulder IMUs 
placed on special straps, one headband, two hand bands, and 11 strips 
for the rest of the body. It provides data up to 60 Hz; further, the external 
antenna of the Awinda station enables an indoor wireless range of 20 m 
and an outdoor range of 50 m. 

The G4 MOCAPSUIT has 29 IMUs, 14 of which are used to capture 
the wearer’s finger angles and positions. This inertial suit links all the 
IMUs, which are cabled, to a master device that sends data to the soft-
ware wirelessly over Wi-Fi. A main limitation of this suit is the con-
necting cables, which can limit the wearer’s movements. The Aidlab 
activity tracker is extremely light (46 g) and integrates five sensors: ECG, 
heart rate, skin temperature, respiration, and a microphone. It sends 
data to the WEM-Platform via a Bluetooth 4.0 + connection. 

4.2. Software 

The inputs driving the WEM-Platform come from heterogeneous 
acquisition systems. In the current scenario, joint angles are estimated 
using different IMU-based MOCAP suits that are wirelessly connected to 
the central platform. At the same time, an affordable activity tracker 
provides data through a Bluetooth connection. Future scenarios will 
require integrating new devices working on different operating systems 
and connected through other communication channels. 

To keep the project stable and long-lasting despite the progress in 
sensors, processors, and networks and the changes in final user re-
quirements, we have based the WEM-Platform on the Robot Operating 
System (ROS) (Quigley, Conley, Gerkey, Faust, Foote, Leibs, & Ng, 
2009), the de facto standard for developing robotic software. ROS pro-
vides a set of open-source libraries and tools for developing software 
modules that communicate with each other in a loosely coupled, multi- 
process, distributed environment. 

Briefly, a ROS-based system is composed of nodes, which are pro-
cesses that perform a computation from running algorithms to inter-
facing with sensors or actuating devices. Nodes communicate with each 

Fig. 3. Modular, extendable, and reconfigurable architecture based on ROS in the current version of the WEM-Platform.  

Fig. 4. The assembled bedside table.  
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other using a publish/subscribe model (i.e., a node that produces data 
publishes them on a named topic). ROS takes charge of distributing the 
data only to nodes that previously subscribed to this topic. While ROS is 
more complicated and features many other concepts, it is not necessary 
to include them in the background description for the WEM-Platform. 

A Windows computer running a ROS-based executable program, ROS 
Node, reads the data from the MOCAP suit through proprietary SDK 
software and distributes it to other nodes. The worker’s pose is pub-
lished as a standard sensor_msgs/JointState message in the /joint_angles 
topic, whereas data from the Aidlab tracker is published as a custom 
message in the /body_data topic. Another ROS node implements the real- 
time computation of the ergonomic indexes; this node subscribes to the 
/joint_angles and /body_data topics and publishes an /ergonomic_indexes 
topic. Finally, we have implemented several ROS nodes that subscribe to 
the previous topics and provide the most suitable data representation 
based on the users’ needs. 

ROS adoption will support developing a platform that can evolve 
into a complex network of sensors, devices, drives, and algorithms that 
run concurrently on distributed systems. Indeed, using ROS as the base 
software architecture allows us to move the node’s execution to another 
computer, eventually running a different operating system without any 
change in the code implementation. Another property of ROS, coming 
from publisher/subscriber, is that a change in the ROS node publisher of 
a topic does not affect the other nodes of the architecture. Therefore, if a 
camera instead of a MOCAP suit estimates the joint angles, or if multiple 
sensors replace the simple Aidlab tracker, this does not change the 
implementation of the other ROS nodes. 

5. Application, validation, and discussion 

Here, we describe the laboratory tests we used to validate our plat-
form. We use both MOCAP suits and the activity tracker described in 
Section 4.1. 

A volunteer (male, 27 years old, 175 cm tall, weighing 70 kg) is 
involved in the assembly process of a bedside table (Fig. 4). We evaluate 
the assembly process only for the bedside table frame, as we assume the 
drawers are sub-assembled components. The worker is very familiar 
with the components as well as the whole assembly process. 

The participant executes the assembly process within the cycle time 
of 7 min; our WEM-Platform continuously executes for the entire anal-
ysis. The workplace is composed of an assembly station with front and 
rear racks adapted to store all the parts involved in the assembly process. 
We have intentionally placed all the components on shelves at different 
heights. Moreover, the drawers are on a conveyor system since they 

were assembled at another station. The assembly process starts by 
picking the required components from the lowest level of the rear rack. 

To validate our software, we selected 10 frames (Fig. 5) of the as-
sembly process. Here, we compared the results obtained in real-time 
from the WEM-Platform with those obtained by computing ergonomic 
indexes with traditional post-processed videorecording evaluation. The 
frames represent activities characterized by a high level of repeatability 
during the assembly activity. Consequently, we have been able to 
analyze a higher number of postures based only on this small sample. 

The results for the proposed platform are very promising – the two 
scores for almost all the evaluated time frames, as reported in Fig. 6, are 
close together. In only a few cases were the scores evaluated by the 
WEM-Platform higher than the ones that were manually calculated. This 
discrepancy happens when the joint angles are close to an index 
threshold. Indeed, while the observer may wrongly classify the angle, 
with the high precision in the joint angle estimation of the inertial suit, 
the angle falls into the right range. Indeed, a few degrees can have a 
remarkable impact on the final score. 

For the validations of RULA and OWAS, we compared WEM-Platform 
outputs with the results from both an expert and the Siemens Jack 
software. Fig. 8 shows the graphical interface of Jack software during 
the analysis of the first posture in Fig. 5. As shown in Fig. 6, both the 
ergonomic expert and Siemens software mostly agreed with the RULA 
ergonomic assessment proposed by the WEM-Platform. 

Jack software evaluates ergonomic postural risk with one single 
grand score, which does not refer to a specific side of the body, as WEM- 
Platform does. For this reason, Fig. 6 reports the same value from the 
Siemens Jack analysis for both the right and left sides of the operator’s 
body. In a few postures, the WEM-Platform performs slightly higher risk 
scores in comparison to other assessments. The higher score provides by 
the WEM-Platform is mainly due to the computation of some joint angles 
which are not stated in RULA index progression (i.e., a raised shoulder, 
an abducted upper arm, a bent wrist from the midline, etc.). For this 
reason, we introduced some range of movements to state whether to 
perform a scoring adjustment, based on the volunteer’s ergo-zone in 
relation to his maximum reached threshold. 

For the OWAS index, Fig. 7a shows that our outputs and Jack soft-
ware scores are in complete agreement. The higher risk score for the first 
proposed postures is mainly related to trunk and legs position. On the 
contrary, in the last frames of Fig. 5, the operator performs less awkward 
postures resulting in lower OWAS scores. Whilst for both RULA and 
OWAS scores we could also perform a benchmark between WEM- 
Platform and Siemens Jack software postural evaluation toolkit, REBA 
and PERA scores validation rely only on the expert’s assessment. Fig. 6 

Fig. 5. Postures collected for WEM-Platform score validation.  
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reports the comparison between REBA score, assessed for both side of 
operator’s body, provided by the WEM-Platform and expert’s estima-
tion. Likewise, Fig. 7b reports our output and expert scores per each 
work task, as required by the PERA index analysis. Task segmentation is 
manually performed by recognizing tasks characterized by distinct 
postures or work content, as reported in Chander and Cavatorta (2017). 
The score values presented for the analyzed activities are usually low 
due to the scarce force needed for their progression. However, awkward 
postures or long durations are still clearly affecting a few tasks. 

The goal of our platform is to provide direct visual real-time feedback 
to three different users: the worker, the ergonomist, and the operation 
manager. For this reason, the main screen is divided into three coloured 
areas: pink, white, and blue. The pink area is mainly oriented to the 
ergonomists and safety managers, the white area to the worker, and the 
blue area to the operation manager. The real-time visual feedback is 
provided both through a real-time chart progression of the heart rate 
values and ergonomics scores and by coloured dots. We used traffic light 
colours for feedback provision:  

● Green dots represent postures that do not need to be further analyzed 
since they do not have ergonomic risks.  

● Yellow dots warn experts and workers that there might be a possible 
risk arising from the current posture.  

● Red dots alert users that the current posture represents a severe risk 
for the worker’s wellbeing and needs improvement. 

To avoid sudden colour changes when repetitive movements are 
performed, we introduce two additional scales of colours into the tran-
sition between green and yellow and between yellow and red. In these 
cases, orange and light green colours appear to signal changing situa-
tions. In such a way, we evaluate the transition from a right to a wrong 
posture according to a continuous transition instead of a discrete way. 

Fig. 9 shows the division of the graphical user interface into the three 
colours:  

● Pink area: the left side of the screen is dedicated to the ergonomist, 
who wants to know the ergonomics scores and see when they reach a 
critical value during the process. We group together all the indexes 
that allow experts to rapidly evaluate the current situation through 
the real-time computation of ergonomic indexes. For example, the 
frame in Figs. 10a and 10b represents a worker tightening a screw. 
The high postural risk score highlighted by the red traffic light is 

Fig. 6. WEM-Platform validation for RULA and REBA ergonomic indexes: Comparison of WEM-Platform results, experts and, when available, Siemens Jack 
evaluations. 

Fig. 7. a: OWAS ergonomic risk assessment: results from WEM-Platform and Siemens Jack; b: PERA ergonomic risk assessment: results from WEM-Platform and 
expert evaluation. 
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mainly attributable to the awkward position of the worker’s trunk, 
which is both bent and twisted during the activity. In particular, the 
right side of the worker’s body is suffering more due to the raised 
shoulder and abducted right upper arm position. Whilst the RULA 
and REBA indexes depict severe ergonomic risk for the worker’s 
static posture, the OWAS and PERA indexes, which are time- 

weighted scores, outline low risk values for the whole assembly ac-
tivity performed until the last captured frame. The reason for these 
scores is attributable to the previous frames analyzed by the plat-
form, which are characterized by postures with lower ergonomic risk 
values. These seem to balance the current ergonomic risk of the 
posture depicted in Fig. 9. For this reason, the platform reports a 

Fig. 8. Validation of RULA and OWAS ergonomic indexes with Siemens Jack Task Analysis Toolkit software through post-progressed ergonomic assessment.  

Fig. 9. Graphical user interface of the WEM-Platform (we have obscured the logos on the bottom-right part of the screen to preserve anonymity during the revi-
sion process). 
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green time-weighted risk score for the overall activity the worker 
performs. For clarity’s sake, we intentionally avoid crowding the 
screen with real-time graphs, which might divert both workers’ and 
experts’ focus. Whenever ergonomists need more detail, they can 
open a separate page by tapping the button marked ‘Show graphs’ to 
access the real-time evolution of all ergonomic indexes during the 
cycle time. In Figs. 10a and 10b, we report the RULA and REBA 
graphs for the whole assembly process. As can be seen, both graphs 
present a swinging trend that mainly resides in the upper part of the 
graphs This visual feedback can provide quick evidence to experts 
regarding the high percentage of time the worker spends in wrong 
postures during the assembly process. This information is designated 
for the ergonomist, but it can also benefit the worker, who can 
visually interpret the overall risk. For this reason, only these two 
graphs are shown on the main screen together with the worker’s 
visual feedback.  

● White area: the central part of the screen represents an overall 
evaluation of the current worker’s posture; it is dedicated to the 
worker because by looking at the representation of their body, they 
can receive immediate feedback on their personal parameters and on 
the wrong postures assumed during the task execution. Here, the 
provided information includes the instant value of the heart rate and 
its time progression (Fig. 11), breathing rate, and skin temperature. 
In such a way, the worker can check his/her health status by 
comparing the heart rate during tasks execution with his/her 
maximum achievable value according to his/her physical features. 
Skin temperature is used to monitor the general working conditions 
since high values for a long period represent a warning for ergono-
mists and operation managers and a decline in safety for the whole 
working team (particularly during the current post-Covid emergency 
period). Finally, critical situations or specific cases of fatigue over-
exertion can be detected from the breathing rate value. Fig. 11 shows 
a heart rate trend: there is just a pick over 130 bpm for a relatively 
short period and, consequently, the assembly process under study is 
not critical from a physical effort point of view. 

Moreover, a representation of the operator’s body with 17 coloured 
dots provides real-time visual feedback to the worker, who can visually 
understand which body parts do not assume a correct position in the 
current working posture. 

Blue area: the right side of the screen is dedicated to the worker’s 
feedback intervention and helps the operation manager to understand 
which movements need to be carefully analyzed and improved. The area 
reports the NIOSH angle values and permits the operation manager to 
immediately understand when a task needs to be modified or enhanced 
to limit overexertion in lifting, overexertion in pushing or pulling ob-
jects, or overexertion in holding, carrying, or turning objects. We adopt 

the angle values related to the ISO 11226:2014. In particular, we have 
dedicated three angles to right and left arm posture assessment and two 
angles to trunk posture. The platform adopts the same visual feedback 
intervention previously described for the ergonomic indexes. The hand 
height chart is dynamically progressed together with the percentage of 
time spent in dangerous positions, or in the ergo-zone, to help operation 
managers evaluate the amount of time the worker’s hands are active 
during the assembly process in real time. 

At any moment during the training activity by tapping the button 
‘Report KPI’ or automatically at the end of the session, the WEM- 
Platform will print a report with the three performance KPIs related to 
the tracked activity. Productivity KPI is strongly affected by a worker’s 
dexterity and capabilities. The segmentation of each activity is manually 
performed by the worker at the end of the progression of each task by 
pressing a button on the monitor. In the final report, the number of 
assembled products is reported. Moreover, a spaghetti chart and an 
overall hand height plot give a complete overview of the worker’s 
movements in the workspace along the horizontal and vertical planes. 
Fig. 12 highlights the KPIs related to the percentage of time spent within 
the ergo-zone and the percentage of time spent in dangerous positions. 

To conclude, the button ‘Report raw data’ allows the user to obtain a 
report with all the positions and the orientations of each joint of the 
body along the three axes; this can be used to perform additional 
evaluations. 

The spaghetti chart of the laboratory test case is represented in 
Fig. 13. The graph obtained refers to the pelvis position. By considering 
the graphical output, we can conclude that the working area for this case 
is limited near the workbench. The assembler concentrates all his body 
movements within the workplace, avoiding any movements far from the 
assembly workbench. This is not a surprising output for this application 
since we intentionally placed all the parts and components near the 
worker. Only a few components, which are easily detectable in Fig. 13, 
represent some exceptions by performing slightly far routes to grab the 
heaviest components from the rear rack. 

In addition, both hand heights are represented in Fig. 14. According 
to the ergonomic standards, hand height for assembly operations should 
remain between 900 and 1200 mm. In our test case, this standard is 
respected most of the time. We highlight only some peaks that refer to 
when the participant picked up screws from the front of the workbench, 
inserted drawers into the final structure of the bedside table and picked 
up certain parts in the rear rack. From this analysis, we can conclude that 
components in the rear rack should be placed higher up to ensure a 
better hand working area. Furthermore, the height of the left hand was 
slightly lower than 900 mm for a limited amount of time. However, this 
was not a problem, as the hand did not do any work during this time, and 
the assembler placed it in alignment with his body. Finally, we can note 
two similar values for both hands for a reduced amount of time. In this 

Fig. 10a. RULA scores for the assembly process.  
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Fig. 10b. REBA scores for the assembly process.  

Fig. 11. Heart rate value graph related to the assembly process.  

Fig. 12. Percentage of assembly time the hands spend in the ergo-zone (green) and in dangerous positions (red).  
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case, aiming to measure the productivity, we asked the assembler to put 
the right hand in the same position for a couple of seconds in order to 
understand how the assembly process starts each time. For this example, 
he has completed a product and started another one. 

6. Conclusions 

In this article, we present our new WEM-Platform, which provides 
real-time ergonomic analysis to experts (ergonomists and operation 
managers) and visual feedback to workers, enabling all stakeholders to 
learn correct postures through real-time postural training. Moreover, 
our platform enables offline analysis because the final report with all the 
data, ergonomic indexes, and postures can be downloaded to allow for 
data post-processing. 

The WEM-Platform aims to reduce several existing gaps in current 
technology. It is a multi-purpose platform; thus, it can be applied in 
several contexts in which human workers execute manual jobs (e.g., 
picking, assembly, construction, general production systems). It com-
putes four ergonomic risk indexes and eight NIOSH angles – this is a step 
forward from the existing literature, which generally evaluates just one 
or two ergonomic indexes that are mainly based on upper limbs instead 
of on the full body (Stefana et al., 2021). Moreover, our platform couples 

ergonomic postural scores and fatigue measures in one unique instru-
ment. Referencing Sgarbossa et al. (2020), we can now close the gap 
between ideal and real production systems’ models and methods. 
Through the WEM-Platform, we can easily derive ergonomic risk values, 
postures, heart rate and respiration values in order to improve work-
place design, balance assembly/production lines, and introduce job 
rotation strategies (Finco, Calzavara, Sgarbossa, & Zennaro, 2020; 
Finco, Zennaro, Battini, & Persona, 2020). 

Finally, the WEM-Platform can easily be used in real industrial 
contexts since it respects the recent EU General Data Protection Regu-
lation (GDPR) (2016). Personal data protection is ensured at every stage, 
and users can request and directly obtain the removal of their collected 
data. An agreement with the workers involved in the capturing and 
analysis processes is always signed. 

As further research, to reduce some limits of WEM-Platform current 
version, the following points will be addressed:  

• Integration of depth cameras as a tool to collect posture data  
• Estimation of more complex ergonomic indexes (e.g., OCRA)  
• Workers’ vibrotactile feedback to immediate alert in case of high 

ergonomic risk levels 

Fig. 13. Spaghetti chart movement.  

Fig. 14. Hand height throughout the assembly process.  
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• Workers’ visual feedback with augmented reality tools to avoid 
obstruction of the workplace by the screen. 

Moreover, by using the WEM-Platform, a real-time resource assign-
ment and scheduling process as well as a workstation re-design can be 
accomplished by following a digital-twin approach. In fact, collected 
data can directly drive real-time models to improve safety and 
efficiency. 
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A B S T R A C T   

The new Industry 5.0 paradigm complements the well-known Industry 4.0 approach by specifically driving 
research and innovation to facilitate the transition to sustainable, human-centric and resilient industry. In the 
manufacturing context, workers’ diversity in terms of experience, productivity and physical capacity represents a 
significant challenge for companies, especially those characterized by high staff turnover and manual processes 
with high workload and poor ergonomics. In seeking to address such challenges, this research adopts a human- 
centric perspective to define new flexible job arrangements by developing a new multi-objective job rotation 
scheduling model. The proposed model is unique in that it aims to achieve multiple job assignment objectives by 
simultaneously considering different socio-technical factors: workers’ experience, physical capacity and limita-
tions, postural ergonomic risks, noise and vibration exposure, and workers’ boredom. The model’s imple-
mentation in real environments can be supported by new sensor-based technologies that collect data on workers’ 
efficiency, ergonomic scores and task performance and enable workers to participate in measuring perceived 
fatigue and boredom. The primary goal of our model is to find the most appropriate assignment of job and 
individual-flexible rest-break plan for each worker. The authors test the model application in an industrial 
setting. Useful managerial insights emerge and prescriptive recommendations are provided.   

1. Introduction 

Enduring competitive advantage is seen as a goal for investments in 
digital, resilient and sustainable manufacturing systems (European 
Commission 2021 and 2022). As such systems evolve, new paradigms 
emerge to guide and shape manufacturing industry. A significant dy-
namic in this regard is the progressive movement of Industry 4.0 to In-
dustry 5.0 transcending efficiency and productivity to emphasize and 
reinforce the role and the contribution of industry to society. The 
sharper focus on societal value and worker wellbeing also manifests in 
the well-known ESG (Environment, Social and Governance) paradigm 
that adds people and the planet in equal proportion to traditional pro-
ductivity goals (Duque-Grisales and Aguilera-Caracuel, 2021; Gbejewoh 
et al., 2021). In the Industry 4.0 era, disruptive technologies such as 
artificial intelligence, robotics, blockchain, 3D printing, Internet of 
Things, and digital twins have been the main paradigms in developing 
competitive and efficient manufacturing systems. However, these ben-
efits did not come without consequences, especially in encounters 
related to human-machine conflicts. Choi et al. (2022) highlight worker 

welfare, health problems, and worker satisfaction as concerns of note in 
this regard. Industry 5.0 seeks to ameliorate and reconcile such 
human-machine frictions by specifically directing research and inno-
vation to a sustainable, human-centric, and resilient paradigm (Neu-
mann et al., 2021). Conceptually, Industry 5.0 complements, rather than 
replaces Industry 4.0 – while the latter is largely technology driven, the 
former is primarily focused on values (Xu et al., 2021). However, the 
juxtaposition of the two paradigms poses interesting challenges. 
Notwithstanding technology advances, labor-intensive Manufacturing 
and Logistics (M&L) systems still see tasks being performed manually 
even when experiencing high levels of perceived fatigue and boredom. 
Consider, for instance, complex product assembly systems or job shop 
operations in which tasks are carried out by shop floor operators; or 
distribution centers in which a high proportion of picking, storing and 
packing activities are performed manually by humans; or waste collec-
tion and recycling services in municipalities. In these contexts, Industry 
4.0 smart and advanced human-machine interaction technologies 
(Frank et al., 2019; Dornelles et al., 2022; Romero et al., 2019) may be 
difficult to implement and benefit from, fully. Reasons could range from 
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limitations imposed by high manual task content, movement and space 
restrictions, individual worker attributes, low flexibility material 
handling systems and worker hesitancy with new technology (Dornelles 
et al., 2022; Neumann et al., 2021). Throughput and system efficiency 
could be strongly influenced by human and work environment factors 
that impact worker satisfaction, motivation and physical stress (Digiesi 
et al., 2009; Katiraee et al., 2021a; Simonetto et al., 2022). Thus, dif-
ferences in spatial working conditions, nature of task, and individual 
worker characteristics would likely a) constrain a standardized 
approach to physical implementation/installation of advanced tech-
nologies, b) affect the actual extent of use of such technologies by the 
individual worker, and c) result in performance differentials from 
similar investments in technology. Our research does not however 
examine the interaction between HF and advanced technology – a much 
researched area as evident from the above-mentioned sites. 

Instead, it speaks directly to the Industry 5.0 focus on worker well- 
being by developing ways in which finer grain individual worker attri-
butes can be tracked and incorporated effectively in work planning 
decisions. Workforce diversity finds reflection in individual capabilities, 
physical capacities, technology acceptance level, gender, age, and more. 
It becomes a strategic imperative to actively identify, measure and 
considers diversity in work policies in order to a) enhance the satisfac-
tion and the wellbeing of the workforce (Katiraee et al., 2021a) and b) 
achieve improved performance by better matching work policy and 
practice decisions with the diversity among individual worker qualities. 
In manual M&L systems, operating factors such as task repetitiveness, 
hazardous or awkward postures, and noise and vibration exposure can 
negatively affect worker well-being to different degrees, depending on 
individual worker characteristics. Deteriorated performance results with 
consequent efficiency reductions and greater absenteeism (David, 
2005). These effects are seen to be more pronounced for ageing workers 
employed in labor-intensive jobs (Bogataj et al., 2019; Berti et al., 
2021a). Careful consideration of worker diversity in determining work 
policy would result in a more resilient system. A worker whose specific 
capabilities and conditions have been systematically matched with task 
requirements and task schedules would be a better and more robust 
performer, relative to performances obtained from a haphazard or uni-
form allocation of tasks to worker. Relatedly, following the Covid 
pandemic disruption in 2020, Romero and Stahre , (2021) introduced 
the notion of the “resilient operator 5.0” in order to make “human op-
erators – being the most agile and flexible resource in a manufacturing 
system while simultaneously the most fragile one – more resilient 
against a range of influencing factors”. 

In the longer run, productivity and efficiency can best be achieved by 
explicitly incorporating human factors in process design and operation. 
A ‘one size fits all workers’ approach is unlikely to be successful given 
the inherent heterogeneity in workforce demographics and capabilities. 
Consequently, we propose a new multi-objective optimization model to 
assign jobs to workers by considering (simultaneously) different socio- 
technical factors and three distinct objectives: worker productivity, 
job ergo-quality level and worker perceived boredom. The model input 
is unique in that it simultaneously employs workers’ anthropometric 
data, workers’ physical limitations, experience levels, job ergonomic 
risks, fatigue and recovery, and perceived boredom. The model out-
comes are also unique in that it optimizes multiple objective functions 
encompassing efficiency and psychological factors. Anthropometric 
data (age and gender, for instance) are used to assign tasks 
appropriately. 

The rest of the paper is organized as follows. Section 2 provides the 
theoretical background to our research while section 3 describes a new 
flexible multi-objective JRS model. Section 4 provides the computa-
tional experimentation of the model and a numerical application with 
insights related to the impacts of different break lengths and workers’ 
attributes on the objective functions. Section 5 concludes the study and 
discusses future steps and research opportunities. 

2. Theoretical background 

This section provides a review of closely related literature and builds 
a theoretical precursor for the methodology introduced in Section 3. 

2.1. Human factors consideration in job rotation scheduling 

Job Shop Scheduling and Job Rotation Scheduling (JRS) strategies 
have been introduced in M&L systems starting from the 1980s aiming to 
improve workforce flexibility and performance (Padula et al., 2017). 
JRS has received considerable research attention, especially concerning 
economic aspects and system productivity. It was just in the last decade 
though those worker-related social aspects began to appear in produc-
tion planning strategies and JRS (Trost et al., 2022). The initial concern 
was to prevent Worker Musculoskeletal Disorders (WMSDs) or other 
diseases caused by the prolonged exposure of operators to high ergo-
nomic risk factors (Leider et al., 2015). The aim was to avoid excessive 
exposure to the same set of jobs characterized by heavy loads, vibra-
tions, awkward postures or repetitive movements performed during the 
work activity (Otto and Scholl, 2013; Otto and Battaïa, 2017; Padula 
et al., 2017). Carnahan et al. (2000) a pioneer in including human fac-
tors and ergonomics in JRS, developed the first mathematical contri-
bution to worker ergonomic load minimization by considering the Job 
Severity Index. They developed both Linear Programming (LP) and 
Genetic Algorithm (GA) methods to find over 400 unique solutions to 
the rotation plan, involving 8 rotation periods within the same work 
shift. Asensio-Cuesta et al. (2012a) introduced a fitness function based 
on the Occupational Repetitive Actions index (OCRA, Occhipinti, 1998) 
to avoid the worker’s job repetition and increase the variability of the 
risk level that workers are exposed to. The authors proposed a GA to find 
the best feasible solutions corresponding to the fitness function with the 
lowest value, considering the penalties for the incompatibilities between 
jobs and workers’ physical, mental and communication capabilities. 
Asensio-Cuesta et al. (2012b) employed 39 different criteria to develop a 
multi-criteria GA to generate job rotation schedules considering 
workers’ ergonomic movements, physical skills and individual compe-
tence. Otto and Scholl (2013) developed a smoothing heuristic able to 
provide initial solutions as input for the tabu search procedure. Mossa 
et al. (2016) proposed a model for the maximization of production rate 
in work environments characterized by high repetition frequency. The 
authors adopted the OCRA score method to car seat assembly line 
workstations to determine task acceptability and to balance workloads 
and ergonomic risk among workers. Song et al. (2016) developed a 
hybrid GA for the minimization of WMSDs considering muscle fatigue, 
working height and the NIOSH (National Institute for Occupational 
Safety and Health) Lifting Index, but neglecting physical and psycho-
logical factors such as motivation, personal preferences and fatigue, 
which are considered by the authors as limitations of their research. 
Yoon et al. (2016) estimated the perceived workload in three automo-
tive assembly lines through Rapid Entire Body Assessment index (REBA) 
(Hignett and McAtamney, 2000) to avoid successively workload in the 
same body regions. Furthermore, Digiesi et al. (2018) developed a 
model to reduce the ergonomic risk of the workload within acceptable 
limits while ensuring productivity goals by minimizing the weighted 
Rapid Upper Limb Assessment index (RULA). Table 1 shows published 
works on JRS with human factors consideration. 

While past work on JRS has indeed been useful and knowledge 
building, they have a singular lacuna – they consider a single aspect at a 
time. The majority of the work neglects to address the combinatorial 
effect that multiple parameters might have on JRS model performance 
and results. For instance, in a human-centric working space, body pos-
tures, tools’ vibration, and noise should be jointly considered to better 
define a sustainable and human-centric job rotation schedule. Similarly, 
there is scant investigation about flexible shift duration times and 
different rest break schedules developed to match individual workers’ 
attributes. A notable exception is the study by Tharmmaphornphilas and 
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Norman (2004) which researches the effects that the frequency of in-
tervals and break positioning can have on ergonomic risk reduction, by 
assessing the evaluation of the proper time length for rotating workers. 
However, they consider workers with similar attributes. 

2.2. Theoretical foundation and methodological framework 

Our new JRS model rests its conceptual and theoretical foundation 
on three central studies: Berti et al., (2021b), Finco et al., (2019a), and 
Battini et al., (2022). 

Berti et al. (2021b) proposed a methodological framework that in-
tegrates anthropometric and ergonomics measures during the job 
scheduling decision process, and defines steps needed to define a 
worker-oriented and flexible scheduling of jobs. Each task is categorized 
in the framework according to three drivers: physical stress, ergonomic 
risk and execution time. 

The Berti et al. (2021b) framework is compatible with the formulas 
developed by Finco et al. (2019b) that calculate energy consumptions 

and recovery times for workers of different age and gender and with 
Finco et al. (2019a), that estimate vibrations exposure in manufacturing 
systems. Finally, Battini et al., 2022 developed a digital real-time plat-
form for full-body ergonomic assessment and feedback to calculate er-
gonomics parameters from wearable workers sensors. The platform is 
validated using laboratory tests, using sensor provided workers’ input 
data for targeting and assigning jobs appropriate to the worker. Finco 
et al. (2019a; 2019b) and Battini et al. (2022) works are consistent with 
the methodological approach described in Berti et al. (2021b). Fig. 1 
below derives from and extends Berti et al. (2021b), and shows how our 
new optimization model can be seen as the culminating step of a whole 
human-centric methodology. 

Our theoretical logic also finds support from the new international 
standards published by ISO in 2022 (ISO 25550–2022), which provide 
specific requirements and guidelines to achieve an age-inclusive work-
force. ISO directs attention to making available options for flexibility in 
job assignments and working arrangements to accommodate age-related 
factors. Such options include flex-time, job sharing, job redesign, 

Table 1 
Published works on Job Rotation Scheduling with human factors consideration.  

Authors (year) Human factors involved Workers’ Features Workers’ 
involvement 

Recovery and 
fatigue aspects 

Rotation period 
length 

Model & Method 

Costa and Miralles 
(2009) 

Job repetitiveness 
Skills improvement 

Task-worker 
incompatibilities 

N/I N/I Consideration of 
Different Rotation 
Schemes 

MILP - Heuristic 
decomposition 
method 

Azizi et al. (2010) Skills improvement Worker’s learning and 
forgetting rate 
Individual motivation and 
boredom slopes 

N/I N/I Consideration of 
different rotation 
schemes 

SAMED-JR algorithm 
Metaheuristic 

Asensio-Cuesta 
et al. (2012a) 

Job repetitiveness (OCRA) 
Postural risk (OCRA) 

Worker’s restrictions N/I Recovery period 
multiplier (OCRA) 

N/I (Fitness function) - 
Genetic algorithm 

Asensio-Cuesta 
et al. (2012b) 

Ergonomic criteria 
Physical skill criteria 

Competence criteria 
Workers’ physical 
limitations 

N/I Cumulative 
fatigue effects 

N/I (Fitness function) 
Genetic algorithm 

Moreira and Costa 
(2013) 

Job repetitiveness 
Skills improvement 

Infeasible task-worker pairs 
Variability of execution time 

N/I N/I Consideration of 
different rotation 
schemes 

Mixed IP - 
Metaheuristic and 
hybrid algorithm 

Otto and Scholl 
(2013) 

Postural risk (EAWS) N/I N/I N/I N/I Mixed IP - Tabu search 
approach - Heuristic 

Mossa et al. (2016) Job repetitiveness (OCRA) 
Postural risk (OCRA) 

Individual risk limits N/I Recovery period 
multiplier (OCRA) 

N/I MINLP 

Song et al. (2016) Postural risk (NIOSH LI) N/I N/I Rodgers Muscle 
Fatigue Analysis 

N/I Non linear 
Hybrid genetic 
algorithm 

Yoon et al. (2016) Postural risk (REBA) N/I N/I N/I N/I Non linear 
Digiesi et al. 

(2018) 
Postural risk (RULA) Individual ergonomic risk 

threshold 
N/I N/I N/I MINLP 

Hochdörffer et al. 
(2018) 

Postural risk (EAWS) Permanent or temporary 
impairments 

N/I N/I Consideration of 
Different Rotation 
Schemes 

IP Linear 
Heuristic 

Asensio-Cuesta 
et al. (2019) 

Risk exposure Physical/Psychological 
limitations 

Worker’s job 
preference and 
competence lists 

Accumulated 
fatigue 

Consideration of 
different rotation 
schemes 

(Fitness function) 
Gale-Shapley 
algorithm 

Moussavi et al. 
(2019) 

Job repetitiveness 
Postural risk (SES) 
Energy consumption 

N/I N/I N/I Consideration of 
different rotation 
schemes 

MILP 
Optimal solution 

Sana et al. (2019) RULA, OCRA, NIOSH LI Worker’s restrictions Worker’s 
preferences 

Recovery period 
multiplier (OCRA) 

N/I Multi-objective ILP 
Genetic algorithm 

Diego-Mas (2020) Force loads, postures, 
movements score 

Mental and communication 
skills, temporal disabilities 

Worker’s 
preferences 

Cumulative 
fatigue effects 

N/I (Fitness function) 
Evolutionary 
algorithm 

Mehdizadeh et al. 
(2020) 

Postural risk: Low back 
(LiFFT tool), Upper 
extremities (DUET tool) 

N/I No workers’ 
preference 

N/I Consideration of 
different rotation 
schemes 

IP - Heuristic 

Adem and 
Dağdeviren 
(2021) 

Working environment 
(HAV) 

N/I Skill level 
Day-off preferences 

N/I N/I Linear – Branch & 
Bound 
Non linear – Program- 
Baron solver 

Botti et al. (2021) Job repetitiveness (OCRA) 
Postural risk (OCRA) 

Functional capacities and 
senses, competencies and 
technical skills 

Relational skills and 
mental capacities 
Person-job fitness 

Recovery period 
multiplier (OCRA) 

N/I Bi-objective ILP model 
Pareto frontier 

N/I: Not Included; JSI: Job Severity Index; TWA: Time-Weighted Average (OSHA); EAWS: European Assembly Worksheets (Schaub et al., 2013); LI: Lift Index; HAV: 
Hand-Arm Vibration; IP: Integer Programming model; MILP: Mixed Integer Linear Programming model. 
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swapping shifts, allowing time to adapt to new tasks as also flexibility in 
rest breaks during working shifts. Such facilitations in work conditions 
are envisaged to potentially and especially benefit older workers and 
may also help workers with health problems to work consistently and 
stay longer in the workforce. Recent academic literature is beginning to 
develop worker-inclusive decision-making tools and human-centric and 
flexible job scheduling models. Some stress the need to involve the 
worker in the individual data collection phase as well as in the decision- 
making phase in order to develop more work-inclusive solutions (Sgar-
bossa et al., 2020. Finco et al., 2020a, 2020b; Vijayakumar et al., 2022; 
Katiraee et al., 2021b). Others stress the need to better manage expert 
workers and involve them in mentoring and training rookies (Katiraee 
et al. 2021c). 

Recent works in job rotation scheduling already include HF (i.e., 
ergonomic risks linked to postures and fatigue, experience/skill levels) 
in both long and short-term decisions (i.e. Mehdizadeh et al., 2020 and 
Mossa et al., 2016). However, they often neglect to consider worker 
attributes and ignore various complexities of worker involvement in 
input data estimation. 

Based on the theoretical fundamentals discussed earlier and the In-
dustry 5.0 vision presented in the first section, this research proposes a 
new human-centric approach for solving a multi-objective Job Rotation 
Scheduling problem. Our model breaks new ground in jointly consid-
ering a variety of realistic shop floor socio-technical factors in JRS: er-
gonomics postural scores, vibration and noise risk constraints (by 
respecting international standards threshold values), workers’ experi-
ence in performing jobs and individual physical limitations. Further, 
workers’ opinion is considered to define a similarity score among jobs, 
useful in finding solutions to minimize worker boredom. Finally, the 
number of shifts, as well as the break time among each shift, are opti-
mally scheduled since they strongly influence productivity and workers’ 
well-being. Rest break durations are flexible since age- and gender- 
related differences are taken into account. Improving on previous job 

rotation scheduling models (e.g., Hochdörffer et al., 2018; Song et al., 
2016; Yoon et al., 2016), we assume that the break time between shifts is 
an opportunity for operators to recover, contingent on worker individual 
characteristics (age and gender, for example). In summary, our research 
model presents a new human centric job rotation scheduling approach. 
The model aims to make the worker (and inferentially the production 
system) more resilient to variability in ergonomic workloads, and 
minimize boredom risks in human intensive working environments. The 
model is motivated by Industry 5.0 human centric priorities and is 
grounded in past research. More specifically, our model seeks to maxi-
mize throughput while customizing job rotation schedules to match 
individual worker attributes. 

3. Problem definition and mathematical model 

In this section, a new multi-objective job rotation scheduling model 
is presented. It maximizes the manufacturing system throughput and 
minimizes the maximum level of boredom and ergonomic risk in the 
work team, by considering workers’ differences in terms of age, gender, 
experience levels, and physical limitations according to specific jobs. 
Daily exposures to noise and tools vibration are also considered addi-
tional constraints. 

Table 2 reports all the indices, parameters and decision variables we 
will use in the sequel. 

The following assumptions are included in the model:  

1) The set of jobs and workers is fixed.  
2) In a working day, the same job can be assigned at least once to the 

same worker.  
3) The number of jobs is larger than the number of operators, so at 

least one job will be assigned to each operator in each period. 
This assumption reflects common reality in industry. In fact, due 

Fig. 1. Theory-based methodological framework supporting the implementation of new JRS model (derived from Berti et al., 2021b).  
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to the variety of products, the number of jobs is generally higher 
than the number of workers.  

4) A minimum quantity of product is required for each job.  
5) For each job, a maximum number of products is defined to avoid 

higher inventory costs.  
6) Each worker must complete the assigned job according to his/her 

physical capacity, limitations and experience level. The time 
required to perform a job can be lower or higher than the nominal 
execution time depending on the level of experience.  

7) For each job, data concerning noise and vibration levels, ergo- 
postural risks, and nominal execution time are known.  

8) Each worker is directly involved in defining the level of similarity 
among jobs and, as a consequence, the perceived boredom.  

9) The recovery time (RA) required for each job varies according to 
the worker. It considers the energy expenditure required to 
perform the job and the maximum acceptable energy expenditure 
of each worker according to Finco et al. (2019b).  

10) A dynamic and suited rotation for the worker is guaranteed daily 
according to the characteristics of the workers.  

11) All parameters are deterministic and constant. 

The objective functions (O.F.) of the mathematical model can be 
defined as follows: 

O.F.1 : Maximize zmax (1)  

O.F.2 : Minimize Smax (2)  

O.F.3 : Minimize Emax (3)  

Subject to: 
∑

j
xijk = 1 ∀ i = 1, ..,W; k = 1, ..,K (4)  

∑

i

∑

k
xijk ≥ 1 ∀ j = 1, .., J (5)  

∑

i
xijk ≤ 1 ∀ j = 1, .., J; k = 1, ..,K (6)  

zj min ≤
∑

i

∑

k
zijk ≤ zj max ∀ j = 1, .., J (7)  

0≤ zijk ≤
Tk − max

(
0; TkRAij − Bk

)

αijβijTj
xijk ∀ i= 1, ..,W; j= 1, .., J; k= 1, ..,K

(8)  
∑

k

∑

j

∑

i
zijk ≤ zmax (9)  

Si =

∑K−1
k=1

∑J
j=1

∑J
j′ =1xijkxij′ (k+1)sijj′

K − 1
∀ i = 1, ..,W (10)  

Smax ≥ Si ∀ i = 1, ..,W (11)  

Ei =
1
To

∑

j

∑

k
Ej
[
Tk −max

(
0; TkRAij −Bk

)]
xijk ∀ i= 1, ..,W (12)  

Emax ≥Ei ∀ i = 1, ..,W (13)  

1
T0

∑

j

∑

k
a2

j

[
Tk −max

(
0;TkRAij −Bk

)]
xijk ≤ a2

lim ∀ i= 1, ..,W (14)  

∑

j

∑

k

αijβijTj

Lj
xijk ≤ 1 ∀ i = 1, ..,W (15)  

xijk ∈{0, 1} ∀ i= 1, ..,W; j= 1, .., J; k= 1, ..,K (16)  

zijk ∈N ∀ i = 1, ..,W; j = 1, .., J; k = 1, ..,K (17)  

zmax ∈ N (18)  

Si, Ei ∈R ∀ i = 1, ..,W (19)  

Smax, Emax ∈ R (20)  

where O.F. 1, hence the first objective function, maximizes the daily 
throughput. The second objective function, O.F. 2, minimizes boredom 
(based on the worker’s perceived similarity level between jobs). Finally, 
the third objective function, O.F.3, minimizes ergonomic risk. 
Constraint (4) states that each worker in each rotation shift must 
perform only one job. Constraint (5) guarantees the execution of all jobs 
at least once during a working day, while constraint (6) defines that each 
job must be executed by a maximum of one worker in each rotation shift. 
Constraint (7) guarantees the respect of the minimum and maximum 
throughput for each job j, constraint (8) quantifies the throughput for 
job j obtained by worker i in rotation shift k. Constraint (8) considers the 
level of experience of worker i in executing job j, as well as the rest 
allowance and some physical limitations. Moreover, it evaluates 
whether to assign an extra amount of time, which is set as the maximum 
value between 0, and the difference between rest time (TkRAij), defined 
as the product between the rotation shift length and the percentage of 
recovery time required for executing the job, and the beak time (Bk). 

Constraint (9) quantifies the total daily throughput. Constraint (10) 
evaluates the average value of the similarity score for the worker i 
involved, while constraint (11) quantifies the maximum similarity level 
between workers. Constraints (12) and (13) evaluate the ergonomic risk 
for each worker and the maximum ergonomic risk score between 
workers to create a highly flexible model which can be applied to any 
kind of ergonomic risk score linked to postural job evaluation. 

Table 2 
List of all indices, parameters, variables and decision variables.  

Indices 

I Index for Workers 
J Index of jobs 
K Index for shifts 
Parameters 
W Number of workers 
J Number of jobs 
K Number of shifts 
UB Big number 
Tj Nominal execution time for job j [seconds] 
αij Level of experience of worker i in executing job j 
βij Physical limitation for worker i in executing job j 
RAij Rest allowance for worker i in executing job j 
sijj′ The level of similarity defined by worker i between jobs j and j’ 
Tk Time for the shift k [seconds] 
Bk Break time for shift k [seconds] 
Ej Ergonomic risks score for job j 
Lj Noise level for job j [s] 
aj Acceleration value for job j [m/s2] 
alim Maximum acceleration value [m/s2] 
T0 Workday duration [seconds] 
zj min Minimum required throughput for job j 
zj max Maximum required throughput for job j 
Variables 
zijk Throughput obtained by worker i for job j during shift k 
zmax Total throughput 
Ei Ergonomic risk for worker i 
Emax Maximum ergonomic risk 
Si Job similarity level for worker i 
Smax Maximum similarity level 
Decision variable 
xijk Boolean variable that assumes a value 1 if worker i is assigned to job j during 

shift k, 0 otherwise  
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Constraints (14) and (15) ensure the respect for vibration (Finco et al., 
2019a) and daily exposure to noise in accordance with ISO5349–1:2001 
and NIOSH. Finally, the constraints set (16)–(20) define variable type. 

The model proposed here is not linear due to constraints (8) and (10). 
However, it can be linearized by adding additional constraints and 
variables, and thus a Mixed Integer Linear Programming (MILP) model 
can be obtained. Going in-depth of the linearization approach, 
constraint (8) can be replaced as follows: 

0≤ zijk ≤
Tkxijk − Rijk

αijβijTj
∀ i = 1, ..,W; j = 1, .., J; k = 1, ..,K (21) 

The following additional constraints are included in the model: 

Rijk ≥ 0 ∀ i = 1, ..,W; j = 1, .., J; k = 1, ..,K (22)  

Rijk ≥
(
TkRAij −Bk

)
xijk ∀ i = 1, ..,W; j = 1, .., J; k = 1, ..,K (23)  

Rijk ≤
(
TkRAij −Bk

)
xijk + UB

(
1−φijk

)
∀ i = 1, ..,W; j = 1, .., J; k = 1, .., K

(24)  

Rijk ≤ 0 + UBφijk ∀ i = 1, ..,W; j = 1, .., J; k = 1, ..,K (25)  

φijk ∈{0, 1} ∀ i= 1, ..,W; j= 1, .., J; k= 1, ..,K (26)  

Rijk ∈R ∀ i = 1, ..,W; j = 1, .., J; k = 1, ..,K (27)  

where Rijk assumes the maximum value between zero (no rest) and the 
rest time to assign to a worker in case the break time is not enough to 
cover the physical fatigue spent in performing the job. Constraints (22)– 
(25) set the value of Rijk for each worker, i, each job, j, and each shift, k. 
Finally, constraints (26) and (27) define the type of variable. 

Considering constraint (10) the non-linearity is due to the product 
between two Boolean variables. For this reason, an additional set of 
Boolean variables must be included in the final model and constraint 
(10) must be replaced as follows: 

Sik =
∑J

j=1

∑J

j′ =1

γijj′ k(k+1)Sij(j+u) ∀ i = 1, ..,W; k = 1, ..,K (28) 

Moreover, the following additional constraints must be included: 

γijj′ k(k+1) ≤ xijk ∀ i = 1, ..,W; j = 1, .., J; j′ = 1, .., J; k = 1, ..,K − 1 (29)  

γijj′ k(k+1) ≤ xij′ (k+1) ∀ i= 1, ..,W; j= 1, .., J; j
′

= 1, .., J; k= 1, ..,K − 1 (30)  

γijj′ k(k+1) ≥ 0 ∀ i = 1, ..,W; j = 1, .., J; j′ = 1, .., J; k = 1, ..,K − 1 (31)  

γijj′ k(k+1) +1−xijk −xij′ (k+1) ≥0∀ i=1, ..,W; j=1, ..,J; j′ =1, ..,J; k=1, ..,K−1
(32)  

γijj′ k(k+1) ∈ {0, 1} ∀ i= 1, ..,W; j= 1, .., J; j′ = 1, .., J; k= 1, ..,K − 1 (33)  

where γijj′ k(k+1) is the Boolean variable representing the product between 
xijk and xij′ (k+1). Constraints set (29)–(32) is required to set the value of 
γijj′ k(k+1) which can assume a value equal to 1 in case both xijk and xij′ (k+1)

assume a value of 1 or equal to 0 in case of both or one Boolean variable 
among xijk and xij′ (k+1) assume a 0 value. Finally, the constraint (33) sets 
the type of variables. 

Since the model is multi-objective, we applied the ε-constraint al-
gorithm to obtain the set of optimal solutions, thus the 3D Pareto’s front. 
With the ε-constraint algorithm, the multi-objective problem is reduced 
to a single object, by adding the constraints that represent the remaining 
objective functions. Fig. 2 presents the pseudocode. 

Moreover, in this specific case, the ε-constraint algorithm consists of 
two steps: 

Step 1. an upper bound of both ergonomics and similarity is set equal 
to E and S respectively. They represent the maximum ergonomic and 
similarity value which can be computed by considering the jobs with the 
higher ergonomic score and similarity. Then, the mathematical model, 
denoted as JRS-HF (Job Rotation Scheduling - Human Factor) is solved 
by considering Emax ≥ E and Smax ≥ S , constraints {(4)–(7); (9)–(33)} 
and O.F. 1. JRS-HF defines a solution by respecting the fixed value of 
ergonomic postural score and similarity. 

Step 2. the optimal value of Z′ , thus the throughput, obtained in Step 1 
is fixed as a bound and the model is solved by minimizing the ergonomic 
postural score as well as the similarity. In this way, the non-dominated 
point with respect to the fixed Z can be obtained. 

Finally, the algorithm decreases the ergonomic postural score and 
the similarity score by 1 and goes back to Step 1. The stopping condition 
is reached when the upper bound of throughput is reached. It corre-
sponds to the situation related to the highest worker performance while 
performing the job according to their cognitive and physical abilities. 

4. Test-case and managerial insights 

4.1. Test case description 

In this section, we apply the model to a numerical case inspired by a 
real industrial scenario. Ten different jobs are considered (the data are 
reported in Table 3). Each job represents the entire production process of 
a water pump and includes different tasks such as preassembly, assem-
bly, quality control, and packaging. According to the type of product, the 
job can be performed by using automatic, semi-automatic, or manual 
tools, which lead to different values of vibrations and noise exposure. In 
this company, since worker’s whole body is involved in job progression 
with variable cycle time (see Table 3), we decide to compute the Rapid 
Entire Body Assessment (REBA) as the index to assess ergonomic score. 
In our case, the value of this index is always lower than the threshold 
value for each job, referring to the urgent necessity to implement 
changes in the workplace design - which is set to 8 for REBA. The er-
gonomic score for each job, defined through the REBA index (Hignett 
and McAtamney, 2000), was computed by using the ergo-digital plat-
form described in Battini et al. (2022). The platform considers the whole 
set of body movements needed to execute the job, asking workers to 
wear the suit while executing the job. Next, the energy expenditure 
required to perform each job was calculated based on the ergo-digital 
platform software (Battini et al., 2022). Finally, this input was then 
used to evaluate the rest allowance (RA) for each worker in case he/she 

Fig. 2. ε-constraint pseudo-code.  
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is involved in the job for a rotation shift (according to the formulas 
provided by Finco et al., 2019b). Jobs execution times vary from 10 to 
28 min. In particular, J1 and J2 refer to basic products, while J8, J9, and 
J10 refer to complex products that require a higher experience level. 
Moreover, according to managerial guidelines for each job, the mini-
mum and maximum number of products to produce in a day are set. Jobs 
J1 and J5 are entirely executed manually and, for this reason, acceler-
ation and noise exposure values are respectively set as 0 m/s2 (e.g., there 
is no vibration) and 100,000 min (e.g., there is no hazards noise expo-
sure). The remaining jobs present both vibration and noise exposure. 
The higher the acceleration value (a), the higher the vibration exposure 
(Finco et al., 2019a). The lower the time-exposure limit (L), the higher 
the noise exposure. Finally, energy expenditure varies in the range of 
3.2 kcal/min to 4.3 kcal/min. Jobs requiring higher values of energy 
expenditure refer to water pump special models involving heavy and 
large parts that need to be lifted and moved manually. 

The job can be performed by six workers whose features are reported 
in Table 4. Two out of six workers (e.g., W5 and W6) can be considered 
ageing workers (Cloostermans et al., 2015) since they are more than 45 
years old. Also, they have long experience. W1 is a young worker in his 
first job, so he has no experience. W2 and W4 have low levels of expe-
rience since they have worked in the company for just a year. Following 
Finco et al. (2019b), the Maximum Acceptable Energy Expenditure 
(MAEE) for each worker is provided and then used to define the rest 
allowances required for each worker while performing each job. Table 5 
reports the RA values. As we can see, W1, W2, and W3 do not have RA 
since the energy expenditure for executing each job is always lower than 
their MAEE. Finally, according to the physical limit of the workers, W1 
and W2 can perform all jobs even if they have low experience level. W3, 
W4, W5, and W6 cannot perform some jobs since they require high 
physical effort or were assessed as potentially hazardous activities ac-
cording to their individual limitations (i.e., they correspond to a high 
ergonomic score). 

Depending on the experience of each worker, the required time to 
execute each job can be higher or lower than the nominal time. The 
experience percentage (αij) for each worker and each job is presented in 
Table A1 in the appendix section. 

Finally, workers are directly involved in the short-term decision 
process by providing their perceived similarity score among jobs (details 
are presented in Figure A2 in the Appendix section). 

We consider the following three scenarios to understand how the 
working day duration and the rotation shifts and breaks length time 
influence throughput, ergonomics, and similarity scores.:  

- Scenario 1 (S1): two rotation shifts (RS) and a break (B)  
- Scenario 2 (S2): three rotation shifts (RS) and two breaks (B)  
- Scenario 3 (S3): four rotation shifts (RS) and three breaks (B) 

For each scenario, we also consider two different working days (WD) 
durations which are equal, respectively, to 6 h/day (Case A) and 8 h/day 
(Case B). In Case A workers are involved 6 days/week, while in Case B 
they work 5 days/week. According to Finco et al. (2019), 2019b in Case 
A, the RA for each worker is reduced since their MAEE is higher, and the 
hourly throughput could be higher due to the lower rest that some 
workers can have. Furthermore, the maximum vibrations and noise 
exposure change according to Section 2.1. Then, for each case the 
following shifts and breaks time lengths have been considered: 

Details of each scenario are reported in Table 6. 
The rotation shifts and breaks time values defined above represent 

the nominal times; in fact, according to Equation (8) workers could 
require more rest according to their individual attributes (Table 4). 

To obtain the set of optimal feasible solutions, we apply the ε -con-
straints algorithm by assuming the ergonomic risk score and boredom 
value as constraints, and maximizing throughput. 

4.2. Results analysis 

In this subsection, the main outcomes of our analysis are discussed. 
We provide an analysis of all scenarios for both cases (Case A and Case 
B). Then, we investigate how the ergonomic risk score and the similarity 
among tasks influence the Pareto front, thus the throughput. The CPLEX 
22.1.0.0 version of the solver was used to obtain the set of optimal 
solutions. 

Fig. 3 and Fig. 4 report the set of feasible solutions and the non- 
dominated points for each case and scenario. As demonstrated by Otto 
and Scholl (2013), job rotation is an NP-hard problem. Consequently, for 
the case study discussed here, the higher the number of rotation shifts, 
the higher the computational time required to get the whole optimal set 
of feasible results. In fact, in the case of two rotation shifts, the 
computational time was on average equal to 195 s for both Case A and 
Case B; while in the case of four rotation shifts, the computational time 
was on average equal to 12500 s. 

By comparing Case A and Case B, the hourly productivity increases 
by 5% for S1, while it decreases by 5% for S2 and 3.5% for S3. The main 
cause is related to the different RA values required for older workers to 
cover the physical effort spent in performing the job. In S1 they can use 
the break, but an additional amount of time is needed to cover all 
physical fatigue. By increasing the number of rotation shifts, a double 
benefit is achieved: 1) ageing workers can rest more, but an additional 
period of recovery time is still necessary for some of them to fully 
recover from fatigue; 2) a high physical job can be executed also by 
ageing workers for a lower period of time. Finally, for the specific case 
study, ageing workers are also those possessing greater experience, and 
their experience can positively contribute to smoothing the extra re-
covery time assigned to them. 

By focusing on the comparison between scenarios, the same con-
siderations can be done for both Case A and Case B. The higher the 
number of rotations, the lower maximum values of both ergonomics 

Table 3 
Jobs features.   

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 

T [minutes] 10 12 15 15 17 19 21 25 27 28 
Z_min [pcs/day] 5 5 5 5 1 1 1 1 1 1 
Z_max [pcs/day] 40 40 25 25 25 25 20 20 20 20 
a [m/s2] 0 3.54 4.25 5.45 0 4.97 4.25 3.63 1.23 1.17 

L [minutes] 100000 525 1250 2480 100000 1460 2780 3230 630 720 
E [REBA] 5.5 5.9 4.6 4.2 3.7 5.4 6.4 3.5 4.7 3.8 
EE [kcal/minute] 4.3 3.8 3.7 3.9 4.2 3.4 3.2 3.6 4.1 3.9  

Table 4 
Workers’ attributes.   

W1 W2 W3 W4 W5 W6 

Age 23 31 37 42 52 58 
Experience Very 

low 
Low High Low Very 

high 
Very 
high 

MAEE [kcal/min] 4.8 4.7 4.4 4.2 3.8 3.5 
Physical 

limitations 
– – J1 J2, 

J7 
J2, J6, 
J7 

J2, J5, 
J9  
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risks and boredom. Going in-depth, by considering the non-dominated 
point, Case A (resp. Case B) presents an ergonomics risks range which 
is 4.75–5.90 (resp. 4.65–5.80) for S1, 4.20–5.30 (resp. 4.15–5.60) for S2, 
and 4.00–5.10 (resp. 4.00–5.40) for S3. For the specific case study, the 

range is always in the orange (medium-level) ergonomic risk area and is 
very close to the lower bound. Consequently, for this specific application 
case, the selection of one non-dominated point cannot be considered as 
influenced by the ergonomic score. 

However, in case some jobs are classified as hazardous activity from 
an ergonomic point of view, the choice of the best non-dominated point 
could be that one presenting an ergonomic score in a medium risk area. 

Moving to the boredom aspect, the higher the number of rotation 
shifts, the higher the chance to assign diversified jobs to the same 
workers and consequently the similarity level decreases since job vari-
ations increases. The boredom score range decreases by increasing the 
number of rotations shifts for both Case A and Case B. By focusing on 
non-dominated points, the boredom range varies for Case A (resp. Case 
B) as follows: 0.3–1.0 (resp. 0.3–0.85) for S1, 0.3–0.8 (resp. 0.3–0.75) 
for S2 and, finally, 0.3–0.65 (resp. 0.30–0.70) for S3. The choice of one 

Table 5 
Rest Allowance for a working day of 8 h (resp. Six hours).   

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 

W1 0 0 0 0 0 0 0 0 0 0 
W2 0 0 0 0 0 0 0 0 0 0 
W3 0 0 0 0 0 0 0 0 0 0 
W4 0.05 (0.04) 0 0 0 0 0 0 0 0 0 
W5 0.26 (0.21) 0 0 0.06 (0.05) 0.21 (0.17) 0 0 0 0.16 (0.13) 0.06 (0.05) 
W6 0.49 (0.40) 0.19 (0.16) 0.13 (0.11) 0.25 (0.20) 0.43 (0.35) 0 0 0.07 (0.06) 0.37 (0.30) 0.25 (0.20)  

Table 6 
Details of working and break shift durations for the three work-schedule 
scenarios.  

Scenario Case A (WD duration: 6 h) Case B (WD duration: 8 h) 

S1 RS: 172 min/rotation shift RS: 232 min/rotation shift 
B: 15 min/break B: 15 min/break 

S2 RS: 113 min/rotation shift RS: 153 min/rotation shift 
B: 10 min/break B: 10 min/break 

S3 RS: 86 min/rotation shift RS: 116 min/rotation shift 
B: 5 min/break B: 5 min/break  

Fig. 3. Feasible set of solutions by varying the number of rotation shifts with 6 h/day (Case A).  

D. Battini et al.                                                                                                                                                                                                                                  



International Journal of Production Economics xxx (xxxx) xxx

9

non-dominated point by focusing on boredom aspects can be conducted 
by managers in collaboration with the workers involved in the pro-
duction process. In fact, according to Jeon and Jeong (2016), some 
workers prefer to execute similar jobs during the work day, while others 
suggest that greater variability leads to higher motivation. However, for 
the case study here investigated, higher boredom also leads to a slightly 
higher value of productivity. 

In the next subsections, we investigate how ergonomics risk scores, 
perceived boredom, and workforce attributes influence the decision 
process. The analysis is carried out only for Case A since similar con-
siderations could be made for Case B. 

4.3. Influence of jobs’ ergonomics risk scores values 

We randomly generate three sets of the ergonomic risk values E1, E2, 
E3, presenting a mean value and a standard deviation, respectively, 
equal to 4.5(±0.9), 5.9(±2.1), 6.2(±1.8); in the last case, some jobs are 
critical since they have an ergonomic score close to the critical threshold 
value (i.e., a score equals to 8 for REBA). Fig. 5 depicts the Pareto front 
by assuming a fixed boredom value equals to 0.5 and varying the er-
gonomic risk score value from E1 to E3. As shown in Fig. 5, S2 and S3 
present a larger Pareto front for both E2 and E3, while they present a 
more closed Pareto front for E1. In the last case (E1), since the ergo-
nomic score difference is very slight (e.g., minimum value 3.70 and 
maximum value 4.35) the choice of the best rotation strategy should be 

the one that guarantees the higher throughput. Moving to E2 and E3 
cases, the ergonomic score gap increases as well as the throughput with a 
difference between the extremal points which is equal respectively to 
25% for the ergonomics risk and the 16% for the throughput. However, 
in all cases, the ergonomic risk never assumes a critical value, and, 
consequently, the optimal point could be selected by considering the one 
that provides higher throughput. Focusing on S1, it has four non- 
dominated points and the maximum achievable production exceeds 
the minimum one by 4% while the ergonomics risk improves from 4% 
(S1) to 13.45% (S3). Finally, comparing E1, E2, and E3 in Fig. 5, we can 
see that the maximum throughput is always achievable when S3 is 
considered. Moreover, for E3 the same throughput is obtained for both 
S1, S2 and S3 however S3 provides a lower ergonomic risk with a slight 
difference of 2% compared to S2. Consequently, in this application case, 
a higher number of rotation shifts leads to lower daily ergonomics risk 
postural scores without influencing the throughput. 

4.4. Influence of job’s boredom values 

In this section, we investigate the effects of the perceived boredom 
between workers. In the specific case, we generate the following sce-
narios: (1) perceived boredom by all the workers is closed to 0.6 (B1) 
that is around a medium level, (i.e., workers evaluated the similarity 
between different couples of jobs in the same way, by assigning scores 
closer to 0.6 on a scale 0–1), (2) perceived boredom is negligible (B2) (i. 

Fig. 4. Feasible set of solutions by varying the number of rotation shifts with 8 h/day (Case B).  
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e., workers consider jobs as totally different between them, hence, on 
average, the similarity scores assigned from each worker to the couples 
of jobs are close to zero), (3) perceived boredom is very high for all the 
workers (B3) (i.e., workers evaluated jobs as very similar, so the simi-
larity scores for all the couples of jobs are close to 1). This analysis aims 
to investigate the values assumed by productivity and boredom scores 
for three cases (B1, B2, B3) differentiated for three job rotation strategies 
(i.e., scenario 1, scenario 2, scenario 3). For this purpose, we assume a 
hypothetical constant ergonomic score equals 5, and we determine in 
Fig. 6 the Pareto fronts for each scenario, by varying only boredom levels 
(B1, B2, B3). 

The first results presented in Fig. 6 (B1) depict the case where all 
workers evaluated the couple of jobs with similar scores. In other words, 
all the workers involved in the job rotation strategy evaluated the degree 
of similarity between different couples of jobs by assigning similar 
scores (e.g., all workers agreed that the degree of similarity between the 
couple of jobs can be described with a score which is almost the same for 
all the workers). The results obtained for the highest level of produc-
tivity demonstrate that there are few differences amongst the optimal 
solutions for the three rotation strategies analyzed (S1, S2, S3). In 
particular, the solutions obtained with S3 dominate the solutions of S1 
and S2 for the highest productivity value. Not surprisingly, the job 
rotation strategy with fewer rotation periods (S1) brought the highest 
level of boredom. However, due to the same job similarity scores, 
boredom value was barely reduced even with the other job rotation 
strategies (S2, S3). Considering the same level of job similarity for every 
operator does not allow to progress the job assignment trying to match 
workers’ previous assignments and workers’ individual perceived level 
of similarity. However, the general trend of all scenarios highlights that 
the productivity level increases, as well as the boredom score decreases, 

when job rotations are more frequent. We can highlight only one 
exception related to low boredom values. In this case, the solution 
provided by the second scenario (S2) dominates those obtained by S1 
and S3, by providing greater productivity compared to S3 with a lower 
level of boredom than S1. In the second case presented in Fig. 6 (B2), the 
level of similarity between jobs was evaluated by the workers near zero 
(e.g., the degree of similarity between couple of jobs was evaluated as 
totally different). The results we obtained show that the scenario with 
three rotation shift (S3) leads to the highest productivity. Furthermore, 
one can notice that the results obtained with two and three rotation 
shifts tend to overlap for higher production values, while in the other 
cases the distinction between S2 and S3 is more prominent. Similarly, to 
the first case we presented, the scenario with two rotation shifts (S2) 
offers the highest productivity amongst the solutions with the lowest 
value of boredom. Finally, Fig. 6 (B3) proposes the case in which 
workers evaluate jobs as very similar. In this third case, the degree of 
similarity between couple of different jobs is close to the unit value, and 
boredom levels are the highest we have noticed so far in this analysis. 
Fewer rotation shifts lead to the highest boredom value (S1). This is the 
only case where three rotation shifts (S3) lead to the best results for both 
the lowest level of boredom and the highest productivity. In the last 
case, the scenario with three rotation shifts outperforms the others for 
almost every value of productivity and boredom. 

4.5. Influence of workers’ attributes 

Finally, in this subsection, we investigate how performance can be 
influenced by the characteristics of workers. The age and level of 
experience are the two drivers that directly influence the execution time 
and thus the performance (see Equation (8)). Consequently, also in that 

Fig. 5. Productivity and ergonomics risk values for three rotation period strategies (S1, S2, S3) by varying ergonomic scores of the postural job (E1, E2, E3).  
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case, three new sets of RA and experience values have been randomly 
generated, and the following scenarios have been analyzed:  

• Young working team with low experience levels (YWT): All workers 
are no more than 40 years old, so the contribution of recovery time 
determined by RA is negligible, since the maximum acceptable en-
ergy expenditure level of young workers is high and is rarely reached 
during job execution (Finco et al., 2019a). However, workers are not 
highly skilled and fully trained and an additional amount of time 
compared to the nominal job duration is required to obtain a final 
product.  

• Aged Working Team with high experience levels: (AWT): all workers 
are older than 40 years. Consequently, RA can occur for some jobs 
according to the physical effort required (Finco et al., 2019b). In this 
case, the workers are highly skilled and, consequently, the higher RA 
needed can be smoothened by their greater experience thus 
achieving a lower execution time.  

• Mixed working team with high experience level (MWT): young and 
ageing workers are jointly involved and the whole team is highly 
skilled. 

Fig. 7 reports the set of feasible solutions and non-dominated points 
by considering three rotation shifts. As we can see, even if young people 
do not necessarily require rest time, their inexperience in executing jobs 
leads to lower productivity. The maximum value, which is equal to 112 
pcs/day, is achieved for a lower level of boredom and the higher value of 
ergonomic risk (see Fig. 7 YWT). For the AWT scenario (see Fig. 7 AWT), 
the higher productivity is equal to 148 items/day, but in this case it is 
also obtained by considering the higher value of ergonomic score. 
However, the case which correspond to the lowest ergonomics score (an 
ergonomics score of 3.6) can be achieved with a higher boredom value 

and daily productivity equal to 110 pcs/day, which is close to the 
maximum daily throughput obtained for case YWT. In brief, we 
demonstrate that Thus, experienced worker productivity, which in-
cludes also rest breaks, exceeds that of inexperienced younger workers 
who can work longer hours without rest breaks. 

Finally, the MWT scenario (see Fig. 7 MWT) presents a maximum 
daily productivity of 139 pcs/day. The maximum throughput value is 
achieved with a boredom score equals to 0.3 and an ergonomic risk 
value of 5.85. Consequently, MWT, which also represents a common 
scenario in several manufacturing companies, guarantees a proper bal-
ance among the three drivers we have included as objective functions 
and supports the idea that heterogeneous working teams can benefit 
system productivity. 

To conclude this subsection, we raise some final considerations 
regarding one single solution belonging to the Pareto 3D front of Sce-
nario AWT. The solution we analyzed maximizes throughput up to 141 
pieces per day, while reaching a hazardous ergonomic risk of 5.35 and a 
boredom level of 0.3. Fig. 8 shows the flexible job rotation scheduling 
solution obtained with three rotation shifts (Scenario 2) and 8 h/day 
(Case B) as reported in Fig. 7. In the proposed charts, different colors are 
associated to different workers, fixed breaks between rotation periods 
are reported in blue, and the additional recovery time for each operator 
are reported in yellow. The portion of recovery time was calculated 
considering the value of the rest allowance of each individual operator 
as reported in Equation (8). Older workers are more likely to need a 
longer recovery time, often exceeding the duration of the break. The 
solution analyzed aims at the maximization of system throughput; 
however, safety/health risks may arise due to lack of adequate recovery 
time. Older workers may thus experience strenuous work periods that 
are not sustainable for a prolonged period of time. 

Fig. 6. Productivity and boredom values considering for the three rotation period strategies by varying the perceived boredom: medium level of boredom (B1), 
negligible boredom (B2) and high level of boredom (B3). 
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5. Conclusions and future research 

Integration of human factors in operational decision processes has 
gained growing interest in the last decade (Sgarbossa et al., 2020). 
Relatedly, substantive research has been conducted in Job Rotation 
Scheduling approaches incorporating human factors (as reported in 
Table 1). However, joint effects are scarcely studied in this literature. 
Following emergent Industry 5.0 paradigms, we propose a new 
multi-objective job rotation scheduling model which explicitly in-
corporates multiple socio-technical factors and maximizes throughput, 
while minimizing boredom and ergonomics risks. Workers’ character-
istics such as age, gender, experience, individual physical limitations 
and perceived boredom are considered as important human elements in 
the design and scheduling of work. In addition, constraints are included 
to reflect the vibration and noise exposure of tools in the workplace 
according to ISO5349–1:2001 and the NIOSH method. The model is not 
linear, and, consequently, a linear formulation has been proposed. The 
results suggest that different job rotation schedules can affect system 
productivity, ergonomic risk level, and operator boredom, based on the 
rotation frequency and number and length of the rest times. Flexible job 
scheduling approaches that include such factors would foster workforce 
motivation and inclusiveness in moving towards the Industry 5.0 factory 
of the future. Flexibility in work arrangements has recently emerged as a 
top-rated job trait for manufacturing workers. A 2022 survey of over 19, 
000 manufacturing and warehouse workers in the USA revealed that 

flexibility in work schedule figures as a key factor in job retention, 
especially when compensation and job security may already be 
competitive (Employbridge, 2022). Our numerical results show that 
flexible job rotation plans can provide workers with opportunities to 
enrich their capabilities by acquiring experience in a variety of tasks in 
short time, while reducing perceived boredom and raising motivation 
and satisfaction. These results are also supportive of, and align well with 
the recent and new ISO 25550–2022 for age-inclusive workforce. We 
note that the correct computation of rest times during the day can lead to 
different breaks for each worker (as shown in Fig. 8, the yellow bars are 
differentiated for each worker), considering individual worker attri-
butes. As a consequence, our model directly moves Industry 5.0 concept 
into practice. We translate the Industry 5.0 principle of placing the 
well-being of the worker central to the production process into mean-
ingful and practical task-concerned insights and recommendations. Our 
human-centric focus can help managerial decisions on improving 
inclusiveness and resilience in the workforce. We offer tangible ways to 
maximize productivity while attending to, and optimizing opportunities 
and constraints inherent in worker profiles and capabilities. We attend 
to concerns of workers with specific needs or physical limitations. The 
increased operational flexibility enabled by job re-assignment and 
re-planning can help management protect operations against unforeseen 
worker shortages or absenteeism. The model provided here can be easily 
adapted to different work contexts. It can develop sustainable and less 
hazardous job rotation plans by providing a set of optimal solutions 

Fig. 7. Feasible set of solutions by varying workers’ experience and age.  
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based on the predominance of particular, possibly differently weighted 
human-oriented factors. 

The future perspectives of this work involve the development of 
alternative solutions for the proposed model. As we have already 
mentioned in the literature review, job rotation scheduling is an NP-hard 
problem and as jobs and operators increase in number, the linear pro-
gramming model decreases in its capability to provide optimal solutions 
in reasonable time. For this reason, we intend to develop a metaheuristic 
approach to reduce computational time for large instances and test the 
method in other industrial sectors. Furthermore, the pursuit of increased 
worker involvement and improved work schedule flexibility could 
involve performing different rotation frequencies and different working 
days length for different workers, based on workers’ individual 

experience, age and physical limitations. Future investigations will 
finally take in consideration the effect of different learning curve shapes 
and the training costs to accelerate the learning process in different jobs. 

Data availability 

Data will be made available on request. 
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Appendix  

Table 1.A 
Level of experience for each worker and job. 

Fig. 1.A. Values of similarity scores used for the case study.  
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