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Integral equation method for a Robin-type traction

problem in a periodic domain
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Abstract: In this note, we consider a Robin-type traction problem for a linearly
elastic body occupying an infinite periodically perforated domain. After proving the
uniqueness of the solution we use periodic elastic layer potentials to show that the
solution can be written as the sum of a single layer potential, a constant function and a
linear function of the space variable. The density of the periodic single layer potential
and the constant are identified as the unique solutions of a certain integral equation.
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1 Introduction

The analysis of problems for perforated plates and other porous materials started at the
beginning of the 20th century (see, e.g., [49, 25, 24, 4, 23]) and, at least in the first stage
of development, was mainly dedicated to problems with classic boundary conditions
of Dirichlet and Neumann types (see Mityushev et al. [44] for a thorough review).
Recent advances in material sciences, however, brought the attention to problems with
different kinds of boundary conditions, and even to problems with boundary conditions
of nonlinear type.

One example comes from the employment of porous coating, or interfacial coatings
in the case of inclusions, that are used to produce metamaterials with properties that
are not typically present in nature and to enhance desirable characteristics, such as the
corrosion resistance, biocompatibility, biodegradation, and so on. When the thickness
of the coating is negligibly smaller than the characteristic size of the pores, while its ma-
terial properties (elastic, thermal, magneto-electric, etc.) are, in a sense, weaker/softer
in comparison with those of the main composite material (matrix), the corresponding
mathematical problems may degenerate into periodic boundary value problems with
conditions of Robin type (see [30, 40, 3, 41, 42, 43, 5, 50, 52]). To the best of our knowl-
edge, these problems seem to be rarely considered in literature, and, therefore, we show
in this note how we can effectually employ an integral equations approach.

Indeed, integral equation methods have proven to be a very useful tool to deal with
problems that are relevant in the applications. The literature is massive and a com-
plete list of applications may range from scattering theory and inverse problems (as, for
example, in Ammari and Kang [1], Castro et al. [6], Colton and Kress [8], Kirsch and
Hettlich [29]), to elasticity and thermoelasticity (as in Duduchava [16], Duduchava et
al. [17, 18], Kupradze et al. [32]), fluid mechanics (for example in Kohr et al. [31]), and
to the composite materials that are the subject of the present note (see also Chkadua et
al. [7], Duduchava et al. [19]).
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In addition, the study of composite materials often boils down to the analysis of
boundary value problems in periodic domains (see, e.g., Milton [39, Ch. 1], Movchan et
al. [46]). In dimension 2, these problems can be tackled with complex variable techniques
(see, e.g., Kapanadze et al. [26, 27], Drygaś, et al. [15], Gluzman et al. [22], Kapanadze
et al. [28], Mityushev et al. [45]). In higher dimensions, complex variable techniques are
in general not an option, but integral equation methods provide an effective alternative.

We now describe the problem of this note: We consider a linearly elastic body that
occupies an infinite periodically perforated domain. On the boundary of the body we set
a Robin-type traction condition, which prescribes a linear relation between the traction
applied to the boundary and the displacement of the boundary points. After introducing
the corresponding system of differential equations and boundary conditions, we will
analyze it by means of the integral equation method. We start by introducing the
geometric setting. We fix once for all

n ∈ N \ {0, 1} , (q11, . . . , qnn) ∈]0,+∞[n .

Here N denotes the set of natural numbers including 0. We denote by Q the fundamental
periodicity cell defined by

Q ≡ Πn
j=1]0, qjj [ (1)

and by νQ the outward unit normal to ∂Q, where it exists. We denote by q the diagonal
matrix defined by

q ≡









q11 0 . . . 0
0 q22 . . . 0
. . . . . . . . . . . .
0 0 . . . qnn









. (2)

We will define our periodically perforated domain, by removing from Rn congruent copies
of a bounded domain of class Cm,α. Therefore, we fix once and for all

m ∈ N \ {0} , α ∈]0, 1[ .

Then we assume that

ΩQ is a bounded open subset of Rn of class Cm,α such that ΩQ ⊆ Q,

and we define the periodic domains

S[ΩQ] ≡
⋃

z∈Zn

(qz +ΩQ) = qZn +ΩQ , S[ΩQ]
− ≡ R

n \ S[ΩQ] .

We now introduce a Robin boundary value problem in S[ΩQ]
− for the Lamé equations

in S[ΩQ]. To do so, we denote by T the function from ]1−(2/n),+∞[×Mn(R) toMn(R)
defined by

T (ω,A) ≡ (ω − 1)(trA)In + (A+At) ∀ω ∈]1 − (2/n),+∞[ , A ∈Mn(R) .

Here Mn(R) denotes the space of n× n matrices with real entries, In denotes the n× n
identity matrix, trA and At denote the trace and the transpose matrix of A, respectively.
We note that (ω − 1) plays the role of the ratio between the first and second Lamé
constants and that the classical linearization of the Piola Kirchoff tensor equals the
second Lamé constant times T (ω, ·) (cf., e.g., Kupradze et al. [32]). Then we consider
also the following assumptions:

Let B ∈Mn(R).

Let a, b ∈ Cm−1,α(∂ΩQ,Mn(R)) be such that:

• det a(x) 6= 0 for all x ∈ ∂ΩQ,

• ξta−1(x)b(x)ξ ≤ 0 for all x ∈ ∂ΩQ, ξ ∈ R
n, and det

ˆ

∂ΩQ

a−1b dσ 6= 0,

• there exists x0 ∈ ∂ΩQ such that det b(x0) 6= 0.

Let g ∈ Cm−1,α(∂ΩQ,R
n).
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As we shall see the conditions on a and b play a crucial role for the existence and
uniqueness of a solution. Then we take

ω ∈]1− (2/n),+∞[ ,

and we consider the following Robin boundary value problem







div T (ω,Du) = 0 in S[ΩQ]
− ,

u(x+ qej) = u(x) +Bej ∀x ∈ S[ΩQ]−, ∀j ∈ {1, . . . , n},
a(x)T (ω,Du(x))νΩQ

(x) + b(x)u(x) = g(x) ∀x ∈ ∂ΩQ ,
(3)

where {e1, . . . , en} denotes the canonical basis of Rn and νΩQ
denotes the outward unit

normal to ∂ΩQ.
The aim of this note is to prove that the solution to problem (3) exists and is unique,

then to convert problem (3) into an equivalent integral equation, and finally to show
that the solution can be written as the application of a specific integral operator to a
density function that is the solution of a certain boundary integral equation. The long
term goal is to provide some tools that can be used to analyze perturbation problems for
the Lamé equations in periodic domains by means of the so-called Functional Analytic
Approach (see [11]). Indeed, the Functional Analytic Approach has been largely used
to study periodic problems for the Laplace equations, also in connection to the analysis
of effective properties (see, e.g., [12, 13, 37, 38]), but the application to perturbation
problems for the Lamé equations in periodic domains is more limited (see the papers
[14] and [20]). In particular, although several techniques are available for the analysis of
this type of problems, in this note we develop the tools we wish to use to carry out the
analysis done in [48] for the analysis of degenerating boundary conditions in the case
of a (non-periodic) mixed problem for the Laplace equation. More precisely, with the
results of the present note we wish to study the asymptotic behavior of the solution of
a problem like (3) where the coefficient in front of u tends to 0.

2 Some notation

We denote the norm on a normed space X by ‖ · ‖X . Let X and Y be normed spaces.
We equip the space X × Y with the norm defined by ‖(x, y)‖X×Y ≡ ‖x‖X + ‖y‖Y for
all (x, y) ∈ X × Y, while we use the Euclidean norm for Rn. We denote by L(X ,Y) the
space of linear and continuous maps from X to Y, equipped with its usual norm of the
uniform convergence on the unit sphere of X . We denote by I the identity operator. The
inverse function of an invertible function f is denoted f (−1), as opposed to the reciprocal
of a real-valued function g, or the inverse of a matrix B, which are denoted g−1 and
B−1, respectively. If B is a matrix, then Bij denotes the (i, j) entry of B. If x ∈ Rn,
then xj denotes the j-th coordinate of x and |x| denotes the Euclidean modulus of x.
A dot “·” denotes the inner product in R

n. For all R > 0 and all x ∈ R
n we denote

by Bn(x,R) the ball {y ∈ Rn : |x − y| < R}. If S is a subset of Rn, then S denotes
the closure of S and ∂S denotes the boundary of S. If we further assume that S is
measurable then |S| denotes the n-dimensional measure of S. Let q be as in definition
(2). Let P be a subset of Rn such that x+ qz ∈ P for all x ∈ P and for all z ∈ Zn. We
say that a function f on P is q-periodic if

f(x+ qz) = f(x) ∀x ∈ P , ∀z ∈ Z
n .

Let O be an open subset of Rn. Let k ∈ N. The space of k times continuously differen-
tiable real-valued functions on O is denoted by Ck(O,R), or more simply by Ck(O). If

f ∈ Ck(O) then ∇f denotes the gradient
(

∂f
∂x1

, . . . , ∂f
∂xn

)

which we think as a column

vector. Let r ∈ N\{0}. Let f ≡ (f1, . . . , fr) ∈
(

Ck(O)
)r
. ThenDf denotes the Jacobian

matrix
(

∂fs
∂xl

)

(s,l)∈{1,...,r}×{1,...,n}
. Let η ≡ (η1, . . . , ηn) ∈ N

n, |η| ≡ η1 + · · ·+ ηn. Then

Dηf denotes ∂|η|f

∂x
η1
1

...∂x
ηn
n

. The subspace of Ck(O) of those functions f whose derivatives

Dηf of order |η| ≤ k can be extended with continuity to O is denoted Ck(O). Let
β ∈]0, 1[. The subspace of Ck(O) whose functions have k-th order derivatives that are
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uniformly Hölder continuous in O with exponent β is denoted Ck,β(O) (cf., e.g., Gilbarg
and Trudinger [21]). If f ∈ C0,β(O), then its β-Hölder constant |f : O|β is defined

as sup
{

|f(x)−f(y)|
|x−y|β

: x, y ∈ O, x 6= y
}

. The subspace of Ck(O) of those functions f such

that f|(O∩Bn(0,R)) ∈ Ck,β((O ∩ Bn(0, R))) for all R ∈]0,+∞[ is denoted Ck,β
loc (O). Let

S ⊆ Rr. Then Ck,β(O,S) denotes
{

f ∈
(

Ck,β(O)
)r

: f(O) ⊆ S
}

. Then we set

Ck
b (O,R

n) ≡ {u ∈ Ck(O,Rn) : Dηu is bounded for all η ∈ N
n with |η| ≤ k} ,

and we equip Ck
b (O,R

n) with its usual norm

‖u‖Ck
b
(O,Rn) ≡

∑

η∈Nn , |η|≤k

sup
x∈Ω

|Dηu(x)| .

We define

Ck,β
b (O,Rn) ≡ {u ∈ Ck,β(O,Rn) : Dηu is bounded for all η ∈ N

n with |η| ≤ k} ,

and we equip Ck,β
b (O,Rn) with its usual norm

‖u‖
C

k,β

b
(O,Rn) ≡

∑

η∈Nn , |η|≤k

sup
x∈O

|Dηu(x)|+
∑

η∈Nn , |η|=k

|Dηu : O|β .

Let O be a bounded open subset of Rn. Then Ck(O) and Ck,β(O) equipped with
their usual norm are well known to be Banach spaces (cf., e.g., Troianiello [51, §1.2.1]).
We say that a bounded open subset O of Rn is of class Ck or of class Ck,β , if its closure
is a manifold with boundary imbedded in R

n of class Ck or Ck,β , respectively (cf., e.g.,
Gilbarg and Trudinger [21, §6.2]). For standard properties of functions in Schauder
spaces, we refer the reader to Gilbarg and Trudinger [21] and to Troianiello [51] (see also
Lanza de Cristoforis [33, §2, Lem. 3.1, 4.26, Thm. 4.28], Lanza de Cristoforis and Rossi
[35, §2]). If M is a manifold imbedded in Rn of class Ck,β with k ≥ 1, then we can define
the Schauder spaces also on M by exploiting the local parametrization. In particular,
if O is a bounded open set of class Ck,β with k ≥ 1, then we can consider the space
Cl,β(∂O) on ∂O with l ∈ {0, . . . , k} and the trace operator from Cl,β(O) to Cl,β(∂O) is
linear and continuous. Now let Q be as in definition (1). If SQ is an arbitrary subset of
Rn such that SQ ⊆ Q, then we define

S[SQ] ≡
⋃

z∈Zn

(qz + SQ) = qZn + SQ , S[SQ]
− ≡ R

n \ S[SQ] .

We note that if Rn \ SQ is connected, then S[SQ]
− is also connected. If ΩQ is an open

subset of Rn such that ΩQ ⊆ Q, then we denote by Ck
q (S[ΩQ],R

n), Ck,β
q (S[ΩQ],R

n),

Ck
q (S[ΩQ]−,R

n), and Ck,β
q (S[ΩQ]−,R

n) the subsets of the q-periodic functions belong-

ing to Ck
b (S[ΩQ],R

n), to Ck,β
b (S[ΩQ],R

n), to Ck
b (S[ΩQ]−,R

n), and to Ck,β
b (S[ΩQ]−,R

n),
respectively.
We regard Ck

q (S[ΩQ],R
n), Ck,β

q (S[ΩQ],R
n), Ck

q (S[ΩQ]−,R
n), and Ck,β

q (S[ΩQ]−,R
n) as

Banach subspaces of Ck
b (S[ΩQ],R

n), of Ck,β
b (S[ΩQ],R

n), of Ck
b (S[ΩQ]−,R

n), and of

Ck,β
b (S[ΩQ]−,R

n), respectively.

3 Preliminaries of periodic potential theory for the

Lamé equations

In order to construct the solution of problem (3), we will exploit a periodic version of
potential theory for the Lamé equations and we begin by introducing some notation and
tools.

We start by denoting by Sn the function from R
n \ {0} to R defined by

Sn(x) ≡

{ 1
sn

log |x| ∀x ∈ Rn \ {0}, if n = 2 ,
1

(2−n)sn
|x|2−n ∀x ∈ Rn \ {0}, if n > 2 ,
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where sn denotes the (n− 1)-dimensional measure of ∂Bn(0, 1). Sn is well-known to be
a fundamental solution of the Laplace operator ∆ =

∑n
j=1 ∂

2
xj
.

We denote by Γn,ω(·) the matrix valued function from Rn \ {0} to Mn(R) that takes
x to the matrix Γn,ω(x) with (i, j) entry defined by

Γj
n,ω,i(x) ≡

ω + 2

2(ω + 1)
δi,jSn(x)−

ω

2(ω + 1)

1

sn

xixj
|x|n

∀(i, j) ∈ {1, . . . , n}2 ,

where δi,j = 1 if i = j, and δi,j = 0 if i 6= j. It is well known that Γn,ω is a fundamental
solution of the operator

L[ω] ≡ ∆+ ω∇div .

We observe that the classical operator of linearized homogenous isotropic elastostatics
equals L[ω] times the second constant of Lamé, and that L[ω]u = div T (ω,Du) for
all regular vector valued functions u, and that the classical fundamental solution of
the operator of linearized homogenous and isotropic elastostatics equals Γn,ω times the
reciprocal of the second constant of Lamé (cf., e.g., Kupradze et al. [32]). We find also
convenient to set

Γj
n,ω ≡

(

Γj
n,ω,i

)

i∈{1,...,n}
,

which we think as a column vector for all j ∈ {1, . . . , n}.
To construct periodic elastic layer potentials, we need to use a periodic fundamen-

tal solution for the Lamé equations. In the following theorem (see [14, Thm. 3.1]) we
introduce a periodic analog of the fundamental solution of L[ω] (cf., e.g., Ammari and
Kang [1, Lemma 9.21], Ammari et al. [2, Lemma 3.2]). To do so we need the following
notation. We denote by S(Rn,C) the Schwartz space of complex valued rapidly de-
creasing functions. S ′(Rn,C) denotes the space of complex tempered distributions and
Mn

(

S ′(Rn,C)
)

denotes the set of n×n matrices with entries in S ′(Rn,C). If y ∈ Rn and
f is a function defined in Rn, we set τyf(x) ≡ f(x− y) for all x ∈ Rn. If u ∈ S ′(Rn,C),
then we set

< τyu, f >≡< u, τ−yf > ∀f ∈ S(Rn,C) .

Finally, L1
loc(R

n) denotes the space of (equivalence classes of) locally summable mea-
surable functions from Rn to R.

Theorem 3.1. Let Γq
n,ω ≡ (Γq,k

n,ω,j)(j,k)∈{1,...,n}2 be the element of Mn

(

S ′(Rn,C)
)

with
(j, k) entry defined by

Γq,k
n,ω,j ≡

∑

z∈Zn\{0}

1

4π2|Q||q−1z|2

[

−δj,k +
ω

ω + 1

(q−1z)j(q
−1z)k

|q−1z|2

]

E2πiq−1z

∀(j, k) ∈ {1, . . . , n}2 ,

where E2πiq−1z is the function from Rn to C defined by

E2πiq−1z(x) ≡ e2πi(q
−1z)·x ∀x ∈ R

n

for all z ∈ Zn. Then the following statements hold.

(i)

τqllelΓ
q,k
n,ω,j = Γq,k

n,ω,j ∀l ∈ {1, . . . , n} ,

for all (j, k) ∈ {1, . . . , n}2.

(ii)

L[ω]Γq
n,ω =

∑

z∈Zn

δqzIn −
1

|Q|
In in Mn

(

S ′(Rn,C)
)

,

where δqz denotes the Dirac measure with mass at qz for all z ∈ Zn.

(iii) Γq
n,ω is real analytic from Rn \ qZn to Mn(R).
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(iv) The difference Γq
n,ω − Γn,ω can be extended to a real analytic function from (Rn \

qZn) ∪ {0} to Mn(R) which we denote by Rq
n,ω. Moreover

L[ω]Rq
n,ω =

∑

z∈Zn\{0}

δqzIn −
1

|Q|
In

in the sense of distributions.

(v) Γq,k
n,ω,j is real valued and is in L1

loc(R
n), for all (j, k) ∈ {1, . . . , n}2.

(vi) Γq
n,ω(x) = Γq

n,ω(−x) for all x ∈ R
n \ qZn.

Remark 3.2. We observe that constructions similar to that of Theorem 3.1 have been
used in [47] for a periodic fundamental solution of the Laplace equation, in [34] for the
Helmholtz equation, and in Luzzini [36] for the heat equation.

Now that we have defined a periodic analog of the fundamental solution for the Lamé
equations, we find convenient to set

Γq,j
n,ω ≡

(

Γq,j
n,ω,i

)

i∈{1,...,n}
, Rq,j

n,ω ≡
(

Rq,j
n,ω,i

)

i∈{1,...,n}
,

which we think as column vectors for all j ∈ {1, . . . , n}.
We are now in the position to introduce the periodic single layer potential. To define

it, it is sufficient to replace in the definition of the standard single layer potential for
the Lamé equation the fundamental solution Γn,ω with its periodic analog Γq

n,ω. So,
if µ ∈ C0,α(∂ΩQ,R

n), then we denote by vq[ω, µ] the periodic single layer potential,
namely the function from Rn to Rn defined by

vq[ω, µ](x) ≡

ˆ

∂ΩQ

Γq
n,ω(x− y)µ(y) dσy ∀x ∈ R

n .

We note here that the fundamental solution Γq
n,ω takes values in Mn(R) (cf. Theorem

3.1 (ii) and (iii)). We also find convenient to set

W ∗
q [ω, µ](x) ≡

ˆ

∂ΩQ

n
∑

l=1

µl(y)T (ω,DΓq,l
n,ω(x− y))νΩQ

(x) dσy ∀x ∈ ∂ΩQ . (4)

In order to use the periodic single layer potential vq[ω, µ] to solve problem (3), in the
following theorem we present some properties of vq[ω, µ] (see [14, Thm. 3.2]).

Theorem 3.3. The following statements hold.

(i) If µ ∈ C0,α(∂ΩQ,R
n), then vq[ω, µ] is q-periodic and

L[ω]vq[ω, µ](x) = −
1

|Q|

ˆ

∂ΩQ

µ dσ

for all x ∈ Rn \ ∂S[ΩQ].

(ii) If µ ∈ Cm−1,α(∂ΩQ,R
n), then the function v+q [ω, µ] ≡ vq[ω, µ]|S[ΩQ] belongs to

Cm,α
q (S[ΩQ],R

n) and the operator that takes µ to v+q [ω, µ] is continuous from

Cm−1,α(∂ΩQ,R
n) to Cm,α

q (S[ΩQ],R
n).

(iii) If µ ∈ Cm−1,α(∂ΩQ,R
n), then the function v−q [ω, µ] ≡ vq[ω, µ]|S[ΩQ]−

belongs to

Cm,α
q (S[ΩQ]−,R

n) and the operator that takes µ to v−q [ω, µ] is continuous from

Cm−1,α(∂ΩQ,R
n) to Cm,α

q (S[ΩQ]−,R
n).

(iv) The operator that takes µ to W ∗
q [ω, µ] is continuous from Cm−1,α(∂ΩQ,R

n) to
itself, and we have

T
(

ω,Dv±q [ω, µ](x)
)

νΩQ
(x) = ∓

1

2
µ(x) +W ∗

q [ω, µ](x) ∀x ∈ ∂ΩQ ,

for all µ ∈ Cm−1,α(∂ΩQ,R
n).
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(v) We have
ˆ

∂ΩQ

W ∗
q [ω, µ] dσ =

(

1

2
−

|ΩQ|

|Q|

)
ˆ

∂ΩQ

µ dσ .

To solve problem (3) we will need to exploit some properties of the auxiliary operator
1
2I +W ∗

q [ω, ·]. Therefore, we recall the following result of [14, Prop. 3.4].

Proposition 3.4. The operator 1
2I+W

∗
q [ω, ·] is a linear homeomorphism from the space

Cm−1,α(∂ΩQ,R
n) to itself.

In the following proposition, we recall the representation formula of [14, Prop. 3.5]
for a periodic function u defined on the set S[ΩQ]− and such that L[ω]u = 0. To do so
we need to introduce the following set of functions with zero integral on ∂ΩQ:

Cm−1,α(∂ΩQ,R
n)0 ≡

{

f ∈ Cm−1,α(∂ΩQ,R
n) :

ˆ

∂Ω

f dσ = 0

}

.

Then we are in the position to formulate the following result, which states that any
function u ∈ Cm,α

q (S[ΩQ]−,R
n) such that L[ω]u(x) = 0 for all x ∈ S[ΩQ]

− can be
represented as the sum of a periodic single layer potential and a constant.

Proposition 3.5. Let u ∈ Cm,α
q (S[ΩQ]−,R

n). Assume that

L[ω]u(x) = 0 ∀x ∈ S[ΩQ]
− .

Then there exists a unique pair (µ, c) ∈ Cm−1,α(∂ΩQ,R
n)0 × Rn such that

u(x) = v−q [ω, µ](x) + c ∀x ∈ S[ΩQ]− .

4 Existence and uniqueness for the solution of prob-

lem (3)

In this section, we prove existence and uniqueness for the solution of problem (3). First,
we start with this uniqueness result for the solution of an homogeneous Robin problem
with periodicity condition (i.e., with B = 0).

Proposition 4.1. Let u ∈ Cm,α
q (S[ΩQ]−,R

n) be such that







L[ω]u = 0 in S[ΩQ]
− ,

u(x+ qej) = u(x) ∀x ∈ S[ΩQ]−, ∀j ∈ {1, . . . , n},
a(x)T (ω,Du(x))νΩQ

(x) + b(x)u(x) = 0 ∀x ∈ ∂ΩQ .

(5)

Then u(x) = 0 for all x ∈ S[ΩQ]−.

Proof. By the periodicity of u we have
´

∂Q
utT (ω,Du)νQ dσ = 0. Moreover, the third

condition in (5) implies that

T (ω,Du(x))νΩQ
(x) = −a−1(x)b(x)u(x) ∀x ∈ ∂ΩQ.

Thus the Divergence Theorem implies that

0 ≤

ˆ

Q\ΩQ

tr
(

T (ω,Du)Dtu
)

dx = −

ˆ

∂ΩQ

utT (ω,Du)νΩQ
dσ =

ˆ

∂ΩQ

uta−1bu dσ ≤ 0 ,

since, by assumption on a, b, we have

ut(x)a−1(x)b(x)u(x) ≤ 0 ∀x ∈ ∂ΩQ .

Then tr
(

T (ω,Du)Dtu
)

= 0 in Q \ΩQ, and by arguing as in [9, Proposition 2.1], we can
prove that there exist a skew symmetric matrix A ∈Mn(R) and c ∈ Rn, such that

u(x) = Ax+ c ∀x ∈ Q \ ΩQ .
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By the periodicity of u, we have

Aqek = u(qek)− u(0) = 0 ∀k ∈ {1, . . . , n} .

Accordingly, A = 0. Hence, u(x) = c for all x ∈ Q \ ΩQ, and thus, by periodicity,

u(x) = c for all x ∈ S[ΩQ]−. Then again by the third condition in (5) we deduce that

0 + b(x)c = 0 ∀x ∈ ∂ΩQ ,

and thus, in particular
b(x0)c = 0 ,

which together with det b(x0) 6= 0 implies c = 0.

In Proposition 4.3 below, we show that the operator

(µ, c) 7→
1

2
µ+W ∗

q [ω, µ]|∂ΩQ
+ a−1b

(

vq[ω, µ] + c
)

is a linear homeomorphism from Cm−1,α(∂ΩQ,R
n)0 ×Rn to Cm−1,α(∂ΩQ,R

n) (cf. def-
inition (4)). As we shall see, such operator appears if we want to solve a periodic Robin
boundary value problem for the Lamé equations in terms of a single layer potential plus
a costant. However, before proving Proposition 4.3, we need the following intermediate
step, which is the periodic counterpart of [14, Prop. 4.4].

Lemma 4.2. Let D ≡ (dij(·))(i,j)∈{1,...,n}2 ∈ Cm−1,α(∂ΩQ,Mn(R)) be such that the
matrix

ˆ

∂ΩQ

D(y) dσy ≡

(

ˆ

∂ΩQ

dij(y) dσy

)

(i,j)∈{1,...,n}2

is invertible. Then the operator from Cm−1,α(∂ΩQ,R
n)0×R

n to Cm−1,α(∂ΩQ,R
n) that

takes (µ, c) to the function
1

2
µ+W ∗

q [ω, µ] +Dc

is a linear homeomorphism.

Proof. We start by denoting by H the linear operator from Cm−1,α(∂ΩQ,R
n)0 × Rn to

Cm−1,α(∂ΩQ,R
n) defined by

H[µ, c] ≡
1

2
µ+W ∗

q [ω, µ] +Dc ,

for all (µ, c) ∈ Cm−1,α(∂ΩQ,R
n)0 × R

n. By Theorem 3.3, H is a linear and continuous
operator from Cm−1,α(∂ΩQ,R

n)0 × Rn to Cm−1,α(∂ΩQ,R
n). To prove the lemma, we

need to show that H is a linear homeomorphism. Thus, by the Open Mapping Theorem,
it suffices to prove that it is a bijection. So let ψ ∈ Cm−1,α(∂ΩQ,R

n). We need to prove
that there exists a unique pair (µ, c) ∈ Cm−1,α(∂ΩQ,R

n)0 × Rn such that

1

2
µ(x) +W ∗

q [ω, µ](x) +D(x)c = ψ(x) ∀x ∈ ∂ΩQ . (6)

We first prove uniqueness. Let us assume that the pair (µ, c) ∈ Cm−1,α(∂ΩQ,R
n)0×Rn

solves equation (6). By integrating both sides of equation (6), and by the identity

ˆ

∂ΩQ

(1

2
µ(x) +W ∗

q [ω, µ](x)
)

dσx =

(

1−
|ΩQ|

|Q|

)
ˆ

∂ΩQ

µ(x) dσx (7)

(cf. Theorem 3.3 (v)), we obtain

(

ˆ

∂ΩQ

D(x) dσx

)

c =

ˆ

∂ΩQ

ψ(x) dσx ,

and thus

c =
(

ˆ

∂ΩQ

D(x) dσx

)−1
ˆ

∂ΩQ

ψ(x) dσx . (8)
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As a consequence, by Proposition 3.4, µ is the unique solution in Cm−1,α(∂ΩQ,R
n) of

equation

1

2
µ(x) +W ∗

q [ω, µ](x) = ψ(x) −D(x)
(

ˆ

∂ΩQ

D(y) dσy

)−1
ˆ

∂ΩQ

ψ(y) dσy ∀x ∈ ∂ΩQ .

(9)
We also note that by equality (7) the unique solution of equation (9) is in the space
Cm−1,α(∂ΩQ,R

n)0. Hence uniqueness follows. In order to prove existence, it suffices to
observe that the pair (µ, c) ∈ Cm−1,α(∂ΩQ,R

n)0 × Rn identified by equations (8), (9)
solves equation (6) (cf. Proposition 3.4).

We are now ready to prove the following.

Proposition 4.3. The operator from Cm−1,α(∂ΩQ,R
n)0×Rn to Cm−1,α(∂ΩQ,R

n) that
takes a pair (µ, c) to

1

2
µ+W ∗

q [ω, µ] + a−1b
(

vq[ω, µ]|∂ΩQ
+ c
)

(10)

is a linear homeomorphism.

Proof. We first note that by Lemma 4.2 the operator from Cm−1,α(∂ΩQ,R
n)0 × Rn to

Cm−1,α(∂ΩQ,R
n) that takes a pair (µ, c) to

1

2
µ+W ∗

q [ω, µ] + a−1bc

is a linear homeomorphism. Moreover, vq[ω, ·]|∂ΩQ
maps continuouslyCm−1,α(∂ΩQ,R

n)0
into Cm,α(∂ΩQ,R

n), which is compactly embedded into Cm−1,α(∂ΩQ,R
n). Therefore,

the operator in (10) is a compact perturbation of a Fredholm operator of index 0, and
thus is itself a Fredholm operator of index 0. By the Open Mapping Theorem, in order
to prove the operator in (10) is a linear homeomorphism, it suffices to show that it is
a bijection. Also, by the Fredholm theory, to show that it is surjective, it is enough to
prove the injectivity. To do so, we verify that if

1

2
µ+W ∗

q [ω, µ] + a−1b
(

vq[ω, µ]|∂ΩQ
+ c
)

= 0 , (11)

then (µ, c) = (0, 0). So let (µ, c) be such that (11) holds. Then the function v−q [ω, µ] + c
is a solution of boundary value problem (5), and thus Proposition 4.1 implies that
v−q [ω, µ] + c = 0 in S[ΩQ]−. Finally, Proposition 3.5 implies that (µ, c) = (0, 0).

We are now ready to prove our main result on the solvability of the Robin boundary
value problem.

Theorem 4.4. There exists a unique function u ∈ Cm,α
loc (S[ΩQ]−,R

n) such that







L[ω]u = 0 in S[ΩQ]
− ,

u(x+ qej) = u(x) +Bej ∀x ∈ S[ΩQ]−, ∀j ∈ {1, . . . , n},
a(x)T (ω,Du(x))νΩQ

(x) + b(x)u(x) = g(x) ∀x ∈ ∂ΩQ .

(12)

Moreover,
u(x) = v−q [ω, µ](x) + c+Bq−1x ∀x ∈ S[ΩQ]− , (13)

where (µ, c) is the unique pair in Cm−1,α(∂ΩQ,R
n)0 × Rn such that

1

2
µ(x) +W ∗

q [ω, µ](x) + a−1(x)b(x)
(

vq[ω, µ]|∂ΩQ
(x) + c

)

= a−1(x)g(x) − T (ω,Bq−1)νΩQ
(x)− a−1(x)b(x)Bq−1x ∀x ∈ ∂ΩQ .

(14)

Proof. We first consider uniqueness. So let u′, u′′ be two solutions in Cm,α
loc (S[ΩQ]−,R

n)
of problem (12). Then we set

ũ ≡ u′ − u′′ ,
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and we note that






L[ω]ũ = 0 in S[ΩQ]
− ,

ũ(x+ qej) = ũ(x) ∀x ∈ S[ΩQ]−, ∀j ∈ {1, . . . , n},
a(x)T (ω,Dũ(x))νΩQ

(x) + b(x)ũ(x) = 0 ∀x ∈ ∂ΩQ .

Accordingly, Proposition 4.1 implies that ũ = 0 and thus u′ = u′′.
We now turn to prove existence. We first note that if u# ∈ Cm,α

q (S[ΩQ]−,R
n) is

such that














L[ω]u# = 0 in S[ΩQ]
− ,

u#(x+ qej) = u#(x) ∀x ∈ S[ΩQ]−, ∀j ∈ {1, . . . , n},
a(x)T (ω,Du#(x))νΩQ

(x) + b(x)u#(x)
= g(x)− a(x)T (ω,Bq−1)νΩQ

(x)− b(x)Bq−1x ∀x ∈ ∂ΩQ ,
(15)

then the function
x 7→ u#(x) +Bq−1x

is a solution of problem (12). Therefore, in order to prove that the function in (13)
solves problem (12), it suffices to show that

v−q [ω, µ] + c (16)

solves problem (15), where (µ, c) ∈ Cm−1,α(∂ΩQ,R
n)0 ×Rn is such that (14) holds. We

first note that Proposition 4.3 ensures the existence and uniqueness of a pair (µ, c) ∈
Cm−1,α(∂ΩQ,R

n)0 × Rn which solves (14). Accordingly, by Theorem 3.3, we immedi-
ately verify that the function in (16) satisfies the first two conditions of problem (12).
Moreover, by a straightforward computation we also verify that equation (14) implies
the validity of the third condition of problem (12) (see Theorem 3.3). Thus the proof is
complete.

5 A remark on a nonlinear Robin-type traction prob-

lem

In this section, we show how the integral equation method of the previous sections can
be exploited in order to solve a nonlinear Robin-type traction boundary value problem
in a periodic domain. To do so, we consider a function G ∈ C0(∂ΩQ×Rn,Rn) such that
the non-autonomous composition operator FG defined by

FG[v](x) = G(x, v(x)) ∀x ∈ ∂ΩQ , ∀v ∈ C0(∂ΩQ,R
n) ,

maps Cm−1,α(∂ΩQ,R
n) to itself. Then we introduce the problem







L[ω]u = 0 in S[ΩQ]
− ,

u(x+ qej) = u(x) +Bej ∀x ∈ S[ΩQ]−, ∀j ∈ {1, . . . , n},
T (ω,Du(x))νΩQ

(x) = G(x, u(x)) ∀x ∈ ∂ΩQ .
(17)

In the theorem below, we show an integral equation formulation of the nonlinear
problem (17).

Theorem 5.1. The map from Cm−1,α(∂ΩQ,R
n)0×Rn to Cm,α

loc (S[ΩQ]−,R
n) that takes

a pair (µ, c) to the function

v−q [ω, µ](x) + c+Bq−1x ∀x ∈ S[ΩQ]− , (18)

is a bijection from the set of solutions in Cm−1,α(∂ΩQ,R
n)0 × Rn such that

1

2
µ(x) +W ∗

q [ω, µ](x)

= G
(

x, vq[ω, µ]|∂ΩQ
(x) + c+Bq−1x

)

− T (ω,Bq−1)νΩQ
(x) ∀x ∈ ∂ΩQ ,

(19)

to the set of functions u ∈ Cm,α
loc (S[ΩQ]−,R

n) which solve problem (17).
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Proof. Assume that the function u ∈ Cm,α
loc (S[ΩQ]−,R

n) solve problem (17). Then by
Lemma 3.5, there exists a unique pair (µ, c) in Cm−1,α(∂ΩQ,R

n)0 × Rn such that u
equals the functions defined by (18). Then a simple computation based on Theorem
3.3, shows that the pair (µ, c) must solve equation (19). Conversely, one can easily show
that if the pair (µ, c) of Cm−1,α(∂ΩQ,R

n)0 ×R
n solves equation (19), then the function

defined in (18) is a solution of problem (17).

By Theorem 5.1 we can convert the nonlinear boundary value problem (17) into the
nonlinear integral equation (19). Then, by arguing as in [10, Thm. 8], we can show
that under suitable growth conditions equation (19) admits (at least) a solution (µ, c)
in Cm−1,α(∂ΩQ,R

n)0 ×Rn. As a consequence, we can deduce the existence of (at least)
a solution of problem (17).
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[15] P. Drygaś, S. Gluzman, V. Mityushev, and W. Nawalaniec, Applied analysis of
composite media–analytical and computational results for materials scientists and
engineers. Woodhead Publishing Series in Composites Science and Engineering.
Elsevier/Woodhead Publishing, Cambridge, MA, 2020.

[16] R. Duduchava, An application of singular integral equations to some problems of
elasticity. Integral Equations Operator Theory 5 (1982), 475–489.

[17] R. Duduchava, D. Natroshvili, and E. Shargorodsky, Basic boundary value problems
of thermoelasticity for anisotropic bodies with cuts. I. Georgian Math. J. 2 (1995),
123–140.

[18] R. Duduchava, D. Natroshvili, and E. Shargorodsky, Basic boundary value problems
of thermoelasticity for anisotropic bodies with cuts. II. Georgian Math. J. 2 (1995),
259–276.
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