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Abstract—In this paper, we consider energy cooperation in a

smart grid scenario. We assume that grid nodes act as prosumers,

who can generate energy thanks to harvesting procedures, and

exploit the presence of a smart grid gateway that enables energy

and money transactions between local and external prosumers.

We propose to adopt a game theoretic approach, where the

prosumers participating in the smart grid can efficiently improve

their revenue. We built a simulator, in which we can tune the

smart grid price settings, and compared the game theoretic

approach with “always sell” , “always buy,” and “random”

strategies through smart grid simulations with 500 participants.

Index Terms—Game Theory, Smart Grid, Energy Manage-

ment, Energy Harvesting.

I. INTRODUCTION

The global scenario is presently showing an unprecedented
increase in worldwide energy consumption accompanied with
an increment of carbon emissions. Employing renewable
sources of energy is one of the solutions that could foster
ecology. However, incorporating the usage of “green” energy
sources requires the evolution of existing power grid. With
the insertion of smart capabilities, renewable sources can be
leveraged in an increasingly cost-effective way [1].

The traditional power grid considers unidirectional energy
and information flows, where the energy needed by consumers
is managed and delivered in a centralized way. The rationale
behind smart grids, instead, makes it possible for the customers
to actively participate in energy management via an infor-
mation network [2]. Smart grids, consisting of smart meters
and digital technologies, allow customers (households or/and
companies) to participate in the exchange by locally buying
and selling energy, i.e., to transact with neighbors in the so-
called “peer-to-peer trading.” This turns communities into self-
sufficient systems that are less dependent on the main electrical
grid [3]. Since energy is locally generated and distributed, the
resilience of smart grid customers is increased, also avoiding
undesirable events such as blackouts [4]. In addition, there
are other advantages such as reduced line losses, energy
transactions that account for real-time data analysis, an ease
of local dynamic control, and a possible merge with other
Internet of Things (IoT) scenarios [5].

However, there are few challenges related with the diffusion
of smart grids, including cyber security threats [6] and espe-
cially the issue that this feature of exchanging energy creates
various decision-making problems to both consumers and
energy providers. For example, consumers may independently

decide when to store or sell the energy produced, depending
on the energy price. The formulation and solution to this task
can be seen from many perspectives. For example, customers
and energy providers may be stimulated toward their interde-
pendency [7]. Game theory may deal with this complicated
decision-making problem and elucidate the solution from
a different standpoint, also keeping the approach based on
quantitative reasoning and inherently promoting cooperative
network trends [8].

In this paper, we consider a game theoretic approach for
smart grid management, in particular, for the money transac-
tions between customers. We simulated a smart grid consisting
of a set of participants, a main grid and a router, and we
applied different strategies for the prosumers, namely, they
can either always sell energy, always buy it, choose an action
at random, or follow a game theoretic (GT) strategy where
they play an equilibrium of the resulting game. We compare
the average monetary budget resulting from each strategy and
we draw interesting conclusions, in particularly showing that,
while selling energy is generally profitable, adding the game
theoretic element can further improve the outcome.

This paper is organized as follows. In Section II, we provide
a literature review of existing decision-making solutions ap-
plied to smart grids. In Section III, we introduce the problem
setup, characterizing prosumers and network elements in a
quantitative manner. This is further framed in a game theoretic
context in Section IV. Numerical results are presented in
Section V. Finally, Section VI concludes the paper.

II. BACKGROUND

A smart grid is a large scale power supply network con-
sisting of many heterogeneous components such as an electri-
cal grid, sensors, communication devices, distributed energy
resources, energy storages, and so on. In a sense, it also
comprises the participants (energy prosumers), and the whole
market. One way to cope with a distributed system consisting
of many heterogeneous components is to apply multi-objective
optimization, choosing a solution from the resulting Pareto
frontier, in which no objective can be improved without
sacrificing at least another one [4], [9].

In this context, game theory seems to be a suitable tool
for coordinating multiple objectives and conciliating conflicts.
Game theory studies multi-agent decision problems that are
strategic interactions among independent and rational players,
who seek to maximize their benefits [10]. While initially used



Fig. 1. Smart grid scheme

as a toolkit for economical and political scenarios, nowadays
game theory is applied to various areas, in particular, it
has recently attracted considerable amount of interest from
engineers and researchers working on smart grids [11], [12].
An overview of cooperative and non-cooperative game theory
applied to smart grids, its evolution, and future directions are
discussed in [13].

In [14], the authors analyze how pricing strategy and game
theoretic optimization techniques can be used to optimize the
demand response in the smart grid. This was formulated as a
binary linear programming problem. Adopting the proposing
technique allows to reduce costs by 25%. In [15], the authors
design a hybrid advanced metering infrastructure (AMI) for
smart grid using game theory, to efficiently save electric power
by modelling instantaneous and future prices.

A similar smart grid energy management was studied in [16]
where the authors adopt a mixed pricing strategy based on the
Rubinstein-Stahl bargaining and a repeated game model. The
proposed scheme allows the consumers to make decisions ac-
counting for their power consumption. An alternative objective
was presented in [17], where the authors derive a scheduling
mechanism accounting for the power consumption patterns of
all the individual appliances.

A Stackelberg game approach is proposed in [18]. In par-
ticular, the authors model the interactions between the smart
grid and consumers, the optimal energy trading parameters are
computed analytically at the solution of the game.

Finally, a complex approach for effective energy routing
in a smart grid scenario is presented in [19]. The authors
introduce maximizing profit strategies to choose the preferable
transaction price for both electricity surpluses and shortages.
Subsequently, an optimization scheme is adopted to search
for an energy route with minimum cost by treating the sale
and purchase quantities as transportation supply and demand,
respectively.

III. PROBLEM SETUP

We consider a smart grid network consisting of a set
of participants (so-called “prosumers”) that are capable of
generating energy by harvesting renewable sources and storing
it in their individual accumulators, as well as to exchange
it with one another. The prosumers can either perform an
energy transaction between themselves or with the main grid.
The schematic representation of such a smart grid network is
provided in Fig. 1.

The smart grid acts as an individual energy and information
exchange router, to which the prosumers report an energy
demand and supply at each time instance. Moreover, the smart
grid keeps track of diverse attributes such as current electricity
price and energy availability.

At each step, participants can sequentially and indepen-
dently of each other choose one of three actions: to buy, to
sell, or to store energy. Buying and selling transactions follow
a first come, first served (FCFS) policy, i.e., when a participant
chooses to buy energy from smart grid, the latter asks all other
participants if they are willing to sell the requested amount of
energy. If a prosumer agrees to sell, then the transaction takes
place. The cycle repeats until demand is fulfilled or there is
no one who is willing or able to sell. A similar procedure is
followed when the prosumer chooses to sell energy.

Each prosumer is characterised by a set of attributes,
updated over time: (i) amount of stored energy, within the
limits of the battery capacity; (ii) energy production, i.e.,
amount of energy generated by the prosumer; (iii) amount of
consumed energy; (iv) monetary state, i.e., balance left after
a transaction of either buying or selling energy; (v) amount
of energy reserved for a blackout. The prosumer declares its
possible energy supply or demand towards the smart grid as

� = current energy level � consumed energy+
+ generated energy � blackout level

If � > 0, the prosumer sends this information to the smart
grid as a possible energy supply, otherwise, � is announced
as energy demand. The last attribute of “blackout level” was
set for all participants to the same reserve value, introduced
to avoid outages and impose a minimum amount of energy to
be stored [4].

IV. GAME-THEORETIC FRAMEWORK

We frame the problem described in Section III as a repeated
game characterised by a set of N players (prosumers), and
a set of strategies S = {buy, sell, store}. Players have no
access to previous decisions of other players. Each player
needs to decide the strategy to play at his/her turn for each
time instance, and can only rely on the information provided
by the smart grid, such as the price of energy. Players are
aware of their own energy production/consumption, but the
corresponding information regarding opponents is hidden.

The extensive form of the game is presented in Fig. 2. In
this representation, all strategies are available to the players,
but actually, the list of available strategies depends on a current
values of the player attributes. The availability of a strategy
to a player is defined by following rules.
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Fig. 2. Extensive form: N players, k steps

TABLE I
PRICE RATES’ COEFFICIENTS

Action Scenario 1 (%
from a price rate)

Buy energy from main grid 100%
Buy energy from smart grid: 80%
Sell energy to main grid 50%
Sell energy to smart grid 80%
Store energy to battery when energy is supposed
to be bought

0

Store energy to battery when energy is supposed
to be sold

65%

Buy: available when energy production is lower than consump-
tion and the storage (excluding the stored energy in case of
blackout) is not sufficient to provide the difference.
Sell: strategy available when energy production is greater than
consumption or there is an available surplus of energy stored.
The participant may sell all surplus of energy produced plus
the energy stored minus ”blackout” value.
Store: strategy available when energy production is greater
than consumption and there is free storage capacity in battery.

The utility of each players is calculated based on the amount
of money spent or gained due to buying and selling energy
over multiple transactions. The utility function for a player
p 2 {1, ..., N} is defined as

up =
TX

i=1

si · ai · c (1)

where ai is the amount of energy exchanged at a time slot i,
si = {�1, 0,+1} is the chosen strategy that corresponds to
sell, store, and buy, respectively. Finally, c stands for the price
rate of a transaction. The price rate is diverse for each action
that involves energy flows (buy/sell); furthermore, the price
rate is also based on whether a player acquired the energy
from smart grid or main grid.

TABLE II
RANGE OF PARTICIPANT ATTRIBUTES.

Attribute Minimum value Maximum value
Battery Capacity 0 120

Energy stored 0 120
Energy production 0 150

Energy consumption 0 150

V. NUMERICAL RESULTS

We present simulation results for N = 500 players, and
T = 100 simulation rounds. All prosumers start the game
with money equal to 1000 monetary units. No discounting
factor is applied for a transaction, and money exchanges are
performed in the same simulation round as an energy transfers.
We compare average money saving of a prosumer after playing
one of the four possible types of behaviors: game theoretic (in
short, “GT”, described in Section IV), always buy, always sell
and random behaviors.

Always buy behavior is defined as follows:
Buy: available as an expansion of Buy strategy from GT
behavior, allowing the participant to buy energy to fill the
free storage capacity in a battery;
Sell: available only if there is no free storage capacity in
battery to receive the surplus of the produced energy;
Store: available when there was a surplus of energy production
that could be stored in a battery.

Instead, always sell implies:
Buy: strategy available as in Buy strategy from GT behavior;
Sell: strategy available as in Sell strategy from GT behavior;
Store: never available.

A. Simulation parameters
We consider a scenario in which the price was chosen such

that every smart grid would benefit from incentivize local
energy transactions, so that the prices are set as per Table I.
In a further experiment, we performed the sensitivity analysis
of the solution varying the values of smart grid prices.

Attributes such as energy production and consumption are
set randomly at each step to mimic every day behavior
changes, with an idea that the weather conditions are not stable
and the prosumers do not use the same amount of energy
every day [20]. A uniform distribution is used to generate
these attributes with max/min of values provided in Table II.
The blackout value is set to 20 units.

B. Results
To compare the four behaviors, we evaluate the average

money left after T rounds of simulations (see Table III).
One can see that both GT and always sell strategies are

advantageous for the prosumers. If players are only selling,
they cover the global consumption demand and there is no
need to buy from the main grid; this situation does not occur
if the players follow always buy or random. In addition, in the
simulation all players keep the batteries sufficiently charged
and are able to prevent a blackout, which takes place when
the main grid is asked to provide more than 20 storage units.
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Fig. 3. Average battery levels after 100 simulation rounds

Fig. 3 demonstrates that the players who adopted the strategy
always sell managed to stay generally above 40 storage units
during the whole simulation period.

One can notice that using always sell strategy eliminates
the need to buy energy from the main grid. Furthermore, due
to the sequential FCFS nature of the simulations, the players
with lower IDs are usually able to sell to the smart grid, see
Fig. 4. Instead, in Fig. 5, the players with higher ID are forced
to sell to the main grid, since no more buying players are left.
The same dynamics occurs when the players buy energy.

C. Sensitivity analysis
The profit is the parameter that can be dynamically op-

timized depending on the price rates. In this section, we
performed a sensitivity analysis, i.e., evaluated how the values
of the price rates affect the average money left.

The search space of price rates is set in a range 0% to
100% of the energy price with 10% linear spacing. The
combinations of all possible parameters were generated and
evaluated in the simulator in order to gather the final outcome
of all scenarios. The final search space was consisting of about
30000 combinations (around 15000 for each general behavior),
such that, price per kWh is set as follows:

1) Buy energy from main grid: 0 - 100% of the price
2) Buy energy from smart grid: 0 - 100% of the price
3) Sell energy to main grid: 0 - 100% of the price;
4) Sell energy to smart grid: 0 - 100% of the price.

TABLE III
AVERAGE MONEY LEFT

Strategy Average money left [units]
Always buy 982.3
Always sell 1056.29

GT 1056.29
Random 1022.91
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Fig. 4. Energy units sold to smart grid after 100 days by 500 players using
strategy always sell
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Fig. 5. Energy units sold to main grid after 100 days by 500 players using
strategy always sell

Given the size of the search space, the number of players
and days that the simulation was performed was reduced, so
that the number of players is set to N = 5 and T = 12 days,
respectively. In Fig. 6, the final amount of money left after
the simulation runtime is presented, the results are ordered by
the ”always sell” behavior, i.e., the duplicates that consider all
general behaviors were removed. It can be clearly seen that
average money left if the prosumers adopt GT and always
sell strategies can be equal for a certain set of parameters,
although, GT strategies provides the better results for a wider
set of parameters, see Fig. 7. All prices are ranged from 0
to 1, and the order of the x-axis matches that of the results
presented in Fig. 6.

The combination of parameters in which the GT strategy
provides higher average money left after T rounds in com-
parison with always sell strategy is presented in Fig. 8. This
situation occurs when the selling price to main grid is almost
zero, caused by the fact that the players does not achieve profit
from selling, therefore they prefer to store energy.

In the next experiment, we constrained the space of pa-
rameters that correspond to a more realistic scenario, obtained
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by imposing constraints, such as the price of buying energy
from the main grid being fixed at 100%. Another restriction
is imposed on the selling price of energy to micro and main
grids, set to be always lower or equal to the price of buying
energy in the microgrid, so players could not profit by buying
energy from a microgrid and selling back to it, or to main grid.
The final search space was reduced to approximately half of
all the combinations. Fig. 10 presents the set of parameters
offset by 1 for better visualization, all prices are ranged from
0 to 1 as described in the beginning of this section.

The average money left for the constrained set of parameters
is displayed in Fig. 9. The order of the x-axis matches the order
of the one in the results presented in Fig. 10.

In Fig. 11, the ratio between selling prices to the main grid
and the micro grid plotted versus a difference between average
money left after adopting GT and always sell strategies is
provided. The negative difference should be understood as a
positive profit for the GT strategy and the negative profit for
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Fig. 8. Values of parameters where “GT” behavior is better than “always sell”
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the always sell strategy. The results for all simulations are
presented in Fig. 11 and show that always sell might be better
than GT strategy when the ratio is higher.

VI. CONCLUSIONS

We considered a smart grid scenario, where a set of pro-
sumers perform energy transactions among each other and
the main grid. Applying game theory for managing the smart
grid network can be beneficial, i.e., this approach provides
flexibility and easiness in designing and improving a robust
smart grid system.

We compared the performance of GT with random, always
sell and always buy strategies, and found out that in the
majority of cases/combinations of parameters, the strategy
GT provides a higher average money left after T rounds of
simulations. The sensitivity analysis also demonstrates that the
price rate settings for the energy transactions inside a smart
grid affect the expediency of choosing one or another strategy,
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and the stochastic behavior of variables makes it difficult to
have a good estimation without a full-scale simulation.

The simple scenario considered in this paper can serve
as a basis for the further development in the area of smart
grid systems. However, the simulator can be expanded by
connecting real world settings such as pricing and weather
data, implementing a simulation step of less than a day
[20]. Moreover, a more realstic battery implementation could
provide a benefit in terms of accuracy. For instance, one can
add the battery parametrization, such as state of health, energy
depreciation, and state of charge [21]. The simulator code can
be found at [22]. Overall, smart grid have a potential to make
energy supply more stable and independent from main power
producers by concentrating and managing local resources.
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