
Sede Amministrativa: Università degli Studi di Padova

Dipartimento di Ingegneria Civile, Edile e Ambientale (ICEA)

CORSO DI DOTTORATO DI RICERCA IN:

SCIENZE DELL’INGEGNERIA CIVILE, AMBIENTALE E DELL’ARCHITETTURA

CICLO XXXVI

Chronos: an AMG solver for numerical simulations on HPC

platforms

Tesi redatta con il contributo finanziario di M3E srl

Coordinatore: Ch.mo Prof. Massimiliano Ferronato

Supervisore: Prof. Carlo Janna

Dottorando: Giovanni Isotton





UNIVERSITÀ DEGLI STUDI DI PADOVA

Abstract
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Chronos: an AMG solver for numerical simulations on HPC platforms

Giovanni Isotton

Nowadays, numerical simulation has become a key element in solving problems of

engineering and industrial interest. In fact, the need to improve the accuracy of the so-

lution drives the development of more complex numerical models with a high degree

of spatial discretization. On large complex problems, the most demanding phase of the

simulation is the solution of the system of linear equations derived from the discretiza-

tion of partial differential equations governing physical process. The solution of these

systems requires the use of infrastructures designed for high performance computing

(HPC) which, through the development of cloud platforms have become easily accessi-

ble for all engineers. This thesis work presents a general-purpose Algebraic MultiGrid

(AMG) linear solver designed for distributed memory HPC systems equipped with

GPU accelerators. The novelty of this research is the development and implementa-

tion of algorithms based on known numerical approaches, capable of exploiting the

hardware resources of today’s HPC systems. In particular, the work focuses on the re-

design of algorithms developed for multi-core CPUs and their porting to GPU boards.

This research project is co-funded by M3E [M3E, 2023], and the developments are in-

tegrated into the proprietary software Chronos. The effectiveness and performance of

the proposed solver have been validated by solving a large set of problems arising from

real-world applications on the Marconi100 supercomputer.
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Sommario
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Dottorato di Ricerca

Chronos: an AMG solver for numerical simulations on HPC platforms

Giovanni Isotton

Oggigiorno la simulazione numerica è diventata fondamentale per risolvere prob-

lemi di interesse ingegneristico e industriale. Infatti, la necessità di migliorare l’accuratezza

della soluzione stimola lo sviluppo di modelli numerici più complessi e con un’elevata

discretizzazione spaziale. Nei problemi complessi di grandi dimensioni, la fase più

onerosa della simulazione è la soluzione del sistema di equazioni lineari derivanti dalla

discretizzazione delle equazioni differenziali parziali che governano il processo fisico.

La soluzione di questi sistemi necessita l’uso di infrastrutture progettate per il calcolo

ad alte prestazioni (HPC) che, attraverso lo sviluppo delle piattaforme cloud, sono di-

ventate di facile accesso per tutti gli ingegneri. Questo lavoro di tesi presenta un solu-

tore lineare general-purpose di tipo Algebraic MultiGrid (AMG) progettatto per sistemi

HPC a memoria distribuita dotati di acceleratori GPU. L’aspetto originale di questa

ricerca è lo sviluppo e l’implementazine di algoritmi, basati su approcci numerici noti,

in grado di sfruttare le risorse hardware degli odierni sistemi HPC. In particolare, gran

parte del lavoro si concentra sulla riprogettazione degli algoritmi sviluppati per CPU

multi-core e il loro porting su schede GPU. Questo progetto di ricerca è cofinanziato da

M3E [M3E, 2023] e tutti gli sviluppi sono integrati nel software proprietario Chronos.

L’efficacia e le performance del solutore proposto sono state validate risolvendo un

ampio set di problemi derivanti da applicazioni reali sul supercalcolatore Marconi100.
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Chapter 1

Introduction

Numerical simulation is widely used for solving engineering problems, both because

direct measurements are often extremely expensive or even impractical, and because

there is an interest in simulating processes that occurred in the past or forecasting fu-

ture events. In the simulation of physical phenomena of practical industrial interest,

it is often necessary to solve equations, or systems of equations, of Partial Differential

Equations (PDEs). Analytical solutions can only be used in oversimplified situations,

with well-defined domains and boundary conditions that are far from real-world ap-

plications. Therefore, numerical methods of discretisation are used such as the Finite

Element Method (FEM) [Zienkiewicz et al., 2013] which is based on approximating

the solution over the global domain as the integral of local element-level contributions

or the Finite Volume Method (FVM) [LeVeque, 2002] which is characterised by the

enforcement of the preservation of physical properties at the level of control volumes.

These methods generates sparse algebraic system of equations:

Ax = b (1.1)

that must be solved, where A ∈ Rn×n is the sparse matrix, b and x ∈ Rn are the right-

hand side and solution vector, respectively, and n is the number of equations.

In current industrial applications, with the constant demand for high spatial refine-

ment to improve the accuracy of the final solution, n can grow up to hundreds millions

of unknowns. Therfore the solution of the linear system may become the most de-

manding stage in numerical solutions, both in terms of computation time, up to 90%

1



2 Chapter 1. Introduction

of the total time [Koric and Gupta, 2016], and requested storage. Systems with bil-

lions of unknowns have also been solved in research experiments. The main difference

between industrial problems and research experiments is that the former are character-

ized by complex geometries, irregular discretizations and heterogeneities in the matrix

coefficients, while the latter are generally obtained by successive refinements of regu-

lar or quite regular grids. Despite their smaller size, problems arising from real-world

applications are very challenging and even having large computational resources may

not be enough.

There are several methods to solve the system (1.1), both direct [Koric and Gupta,

2016; Amestoy et al., 2019; Rouet et al., 2020] and iterative [Saad and Van der Vorst,

2000; D’Ambra et al., 2010; Falgout and Schroder, 2014; Badia et al., 2016]. The former

are generally preferred in industrial applications because they are typically more ro-

bust and require no experience from the user. The main downside is that, especially

in 3D problems, the matrix factors require a huge amount of memory that becomes

the limiting factor for large scale simulations. Moreover, their parallelization is not

trivial because of inherently sequential algorithms needed during the set-up. The lat-

ter present by far less memory restrictions and are suitable for highly-efficient parallel

implementations. However, iterative methods do not guarantee convergence of the

scheme unless a proper preconditioner is adopted. Algebraic MultiGrid (AMG) pre-

conditioning is the most widely used since, if well tuned, it guarantees convergence in

a number of iterations that does not depend or only slightly depends on the mesh size

(under certain assumptions about the underlying PDE and discretization technique)

[Trottenberg et al., 2001; Brezina et al., 2006b; Xu and Zikatanov, 2017; D’Ambra et al.,

2021], a property of paramount importance for the extreme-size simulations that are

foreseen in the near future. The main drawback of AMG preconditioning is that it is

still far from being a black-box method, requiring an experienced user and sometimes a

fine tuning of the set-up parameters. For most AMG solvers, a wrong set-up can easily

lead to slow convergence or overly expensive preconditioners, and, in the worst case,

even convergence failure or divergence [Koric et al., 2014].

The solution of large linear systems requires the use of infrastructures designed

for High-Performance Computing (HPC). An HPC cluster is a set of computing nodes
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connected to each other by a network that allows a massive amount of resources to

be exploited in parallel. Each computing node is composed of one or multiple multi-

core CPUs and often it is supported by Graphic Processing Units (GPU) accelerators.

For large-size problems, GPU boards prove extremely suitable for parallel computing,

providing a good balance between performance, price, ease of software development

and power consumption. In the recent past, the use of these HPC resources was limited

and not trivial for a common engineer: few large companies could afford to maintain

these infrastructures and proper use required specific knowledge. Now, through the

growth of cloud computing, a huge amount of resources can be rented at relatively

modest prices, and there are many services, for a fee, that act as an interface between

the engineer and the cluster to ensure optimal exploitation of resources.

For years US national labs have provided open source software for the solution of

linear systems of equations on distributed-memory systems [Balay et al., 2023; Falgout

and Yang, 2002; Trilinos Project Team, 2023]. However, they do not yet exploit the

use of GPU accelerators to their full potential. On the other hand, the available GPU-

only AMG solvers [NVIDIA, 2023; Bernaschi et al., 2023] are mainly suitable for fluid-

dynamic problems, thus not meeting the needs of the industrial world that is interested

in mechanical problems.

1.1 Objectives

The main objective of this research project is the development of a general-purpose

AMG solver for distributed-memory HPC systems equipped with GPU accelerators.

The novelty is not in the definition of new theoretical frameworks, but in the develop-

ment of algorithms, based on well known methods, that are able to exploit the hard-

ware resources of present and near future HPC systems. In particular, a large part

of the work is focused on redesigning the multi-core CPU algorithms and their port-

ing to GPU boards. This work is cofunded by M3E [M3E, 2023] and the outcomes

of development activities are integrated into the proprietary software Chronos [the

Chronos Project Team, 2023]. Chronos is a library of iterative methods designed for

HPC platforms whose development started in early 2019 and many of its features were
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designed and finalized during this research project. Particular care is spent in the gen-

eral design of the library in order to make it easily maintainable and amenable to im-

provements, without sacrificing performance. Chronos has a strong object-oriented

framework to enable an easy interface to other software, to be used as an innermost

kernel in more complex approaches, such as block preconditioners for multiphysics

[Ali Beik and Benzi, 2018; Ferronato et al., 2019; Frigo et al., 2019; Roy et al., 2020; Wa-

then and Greif, 2020], and to be easily modified to support emerging hardware. The

focus is restricted to Symmetric and Positive Definite (SPD) matrices which arise com-

monly within many fluid simulations and most mechanics applications. Note that the

extension to the non-symmetric case can be done by modifying the AMG set-up at a

high level, using at a low level the same kernels developed for the SPD case [Sala and

Tuminaro, 2008; Lin et al., 2010], adding just few adaptations. The minimum size of

the problems presented herein is on the order of O(106) unknowns. Moreover, as to

the GPU-accelerated algorithms, priority was given to problems arising from the dis-

cretization of elasticity equations.

1.2 Contributions

This work introduces an original AMG solver that proves effective on real-world en-

gineering problems and capable of making the most of HPC systems equipped with

multi-core CPUs and GPU accelerators. To be effective on a wide range of different

problems, Chronos AMG allows for the choice of several options, from the adaptive

generation of the operator near-kernel to the smoother selection, from coarsening to

prolongation, all of this in the framework of the classical AMG method. In particular,

it will be shown that BAMG interpolation, an interpolation whose coefficients are com-

puted through least squares minimization and proposed for the first time in the context

of bootstrap AMG [Brandt et al., 2011], makes this AMG extremely effective also on

mechanical problems without the need to use an aggregation based coarsening. From

the implementation standpoint, Chronos is developed for HPC, adopting a distributed

sparse matrix storage scheme where smaller blocks, stored in Compressed Sparse Row

format (CSR), are nested into a global CSR structure. This storage format, together with
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the adoption of non-blocking send/receive messages, allows for a high overlap be-

tween communications and computations thus hiding data-transfer latency even for a

relatively small amount of local operations. The advantages of this implementation im-

pact all the most important sparse linear algebra operations: matrix-by-vector product,

matrix-by-matrix product and transposition, and also in all the information-gathering

stages preliminary to smoother and prolongation set-up. Moreover, it will be shown

the effectiveness and scalabilty of the Chronos-implemented smoother, the so-called

FSAI, that is so far not implemented in any other AMG solvers. Finally, much of the

AMG set-up was redesigned to take advantage of GPU accelerators, making Chronos

one of the first linear solvers of its kind.

1.3 Outline

The reminder of the thesis is organized as follows. Chapter 2 is an overview of the

Chronos package, describing the main classes used to store the objects on a distributed-

memory environment. Moreover, the classical AMG framework implemented in Chronos

is outlined, focusing on the numerical algorithms adopted to increase effectiveness.

Chapter 3 describes the implementation details of the matrix-by-vector product, fre-

quently the most time-consuming kernel in any iterative method, and the main stages

of the AMG set-up: smoother, prolongation and coarse operator se-up. The focus will

be on the design of algorithms to exploit GPU boards. Chapter 4 collects all the nu-

merical tests that have been performed. In particular, the discussion is subdivided into

two sections: the former asseses the performance of the CPU-only version, comparing

Chronos AMG against other state-of-the-art AMG solvers while the latter focuses on

the GPU-accelerated implementation. Finally, Chapter 5 closes the thesis with some

concluding remarks and ideas for future work.





Chapter 2

Chronos Overview

This chapter provides an overview of the Chronos package. First, the design of the li-

brary is described from an implementation point of view highlighting the main classes

and the startegies used to store the various objects on distributed memory environ-

ments. Then, the classical AMG method is briefly outlined focusing on the specific

numerical algorithms implemented to increase effectiveness.

2.1 Chronos Library Description

The Chronos package is a collection of classes and functions that implement linear al-

gebra algorithms for distributed memory parallel computers. The library is written in

C++, with Message Passing Interface (MPI) directives used for communication among

MPI processes and OpenMP and CUDA for multithread execution. The hybrid MPI-

OpenMP-CUDA implementation is more flexible in the use of modern computing re-

sources and it is generally more efficient than pure MPI due to its better exploitation of

fine-grained parallelism.

Chronos has been developed using the potential of Object-Oriented Programming

(OOP). The abstraction introduced by Chronos through OOP allows the use of the same

distributed matrix object to represent a linear system, a smoother, an AMG hierarchy

or a preconditioner itself. Another advantage of this approach is the possibility to

use simpler classes to derive more advanced elements, such as block preconditioners.

Moreover, whatever the preconditioner, the same iterative methods can be used for the

linear system or eigenproblem solution. In addition, the modular structure allows to

7
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easily integrate the CPU kernels with GPU ones leaving the overall structure of the

library unchanged.

2.1.1 Main classes

The level of abstraction and the hierarchy of the main classes are sketched in Figure 2.1.

All these classes are exposed to the user to access the full range of Chronos functional-

ities.

The Distributed Dense Matrices (DDMat) and Distributed Sparse Matrices (DSMat)

are managed by the DDMat and the DSMat classes, respectively. Both DDMat and DS-

Mat storage schemes require the matrix to be subdivided into np horizontal stripes of

consecutive rows, where np is the number of active MPI processes. In the DDMat, each

stripe is stored row-wise on a different MPI rank to guarantee better access in memory

during multiplication operations. This makes the DDMat very efficient for linear sys-

tems with multiple right-hand-sides and eigenproblems, and distributed vectors are

stored as one-column DDMat. In the DSMat each stripe is subdivided into an array of

CSR matrices. The CSR format is the Chronos standard format for shared sparse ma-

trices and the CSRMAT class is responsible for their management. The DSMat storage

scheme adopted in Chronos is very effective in both the preconditioner set-up and the

Sparse Matrix-by-Vector (SpMV) product because it allows much of the communication

and computation to occur simultanously, as described in the next Chapter.

The Preconditioner class manages the approximation of the inverse of a Distributed

Sparse Matrix. It requires in input a Distributed Sparse Matrix as DSMat-type ob-

ject and an optional test space as a DDMat-type object. The classes derived from

Preconditioner are Jac, aFSAI and aAMG, for Jacobi, aFSAI, and AMG, respectively.

A useful feature is that each of these classes can be used as a smoother in the AMG.

Both the DSMat and Preconditioner classes are derived from the MatrixProd class

which manages the Sparse Matrix-Vector (SpMV) product at the highest level of ab-

straction. The SpMV is frequently the most expensive operation in any preconditioned

iterative solver and its management has defined the design of the whole library. With

reference to Figure 2.1, the MatrixProd class leads the Chronos structure together with

the iterative solvers. Furthermore, more general MatrixProd elements can be readily



Chapter 2. Chronos Overview 9

built using the MatrixProdList class, that manages an implicit MatrixProd object de-

fined as the product of a sequence of MatrixProd objects ordered into a list.

At the top of the hierarchy, there are also the iterative solvers for linear systems

and eigenproblems, LinSolver and EigSolver, respectively. Currently, the classes de-

rived from LinSolver are PCG and BiCGstab, for the Preconditioned Conjugate Gradi-

ent (PCG) and the Preconditioned Biconjugate Gradient Stabilized (BiCGstab), respec-

tively.

Finally, the Power Method and the Simultaneous Rayleigh Quotient Minimization

(SRQCG) are implemented in the two classes PowMeth and SRQCG derived from

EigSolver.

FIGURE 2.1: Chronos main classes and hierarchies.

2.1.2 Distributed Sparse Matrix (DSMat) Storage Scheme

The DSMat storage scheme implemented in Chronos consists of a partitioning of the

matrix into np horizontal stripes of consecutive rows. Each stripe is then divided into

blocks by applying the same subdivision to the columns, as schematically shown in

Figure 2.2, and each block is stored as a CSR matrix.

The CSR matrices have a local numbering, i.e., rows and columns of block IJ are

numbered from 0 to nI−1 and from 0 to nJ−1, where nI and nJ are the number of

rows assigned to MPI processes I and J , respectively. This expedient allows the use of

4-bytes integers, saving memory and increasing efficiency.

Each process stores the diagonal block and the list of left (with a lower index) and

right (with a higher index) blocks corresponding to the connections with neighboring

processes. With reference to Figure 2.2, rank 3 stores the 5 blocks highlighted in red:
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0, 1 and 2 as left neighbors, the diagonal block with only internal connections and 6 as

right neighbor.

This blocked scheme, although a bit cumbersome to implement, allows to stress

non-blocking send/receive communications with a large overlap between data-tranfer

and computation. It has proven very effective in all basic operations involving a DS-

Mat: SpMV product, Matrix-by-Matrix product and matrix transposition.

If GPU accelerators are used, the DSMat object is stored on both the Host (CPU

RAM) and Device (GPU global memory). This allows to simplify the information ex-

change between the MPI processes and reduces copies DeviceToHost-HostToDevice in

many stages of the AMG set-up, as it will be shown in the next Chapter. Note that

having a copy of the DSMat on the Host does not generate any storage issue since the

current bottleneck in terms of storage is related to the global memory of the Device.

FIGURE 2.2: Schematic representation of the standard DSMat matrix
storage scheme implemented in Chronos using 8 MPI processes. The
blue dots are the non-zeroes entries of the DSMat. The red colored blocks

are assigned to rank 3.

Other classes can be derived from the DSMat class in order to handle distributed

matrices with special features. In the applications investigated in this work, matrices

with a block-diagonal structure are also handled. On such matrices, each MPI rank

stores a finite number of consecutive blocks and no block is split between different

ranks. This subdivision then guides the partitioning of the standard DSMat as shown

in Figure 2.3. Moreover, since in applications arising from numerical discretization

the number of blocks is very large and their size small, the exact Cholesky factor can

be computed by factorizing in parallel all its diagonal blocks: several OpenMP threads

are used to factor a chunk of blocks. The sequential routine cholmod_factorize,
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provided by the SuiteSparse library [Chen et al., 2008], is used to factorize the single

CSR blocks. Similary, the forward and backward substitutions are performed block-

by-block using cholmod_solve2 from SuiteSparse. Note that these operations do

not require any communication between the MPI processes, and on each rank they are

executed by multiple OpenMP threads.

FIGURE 2.3: Schematic representation of the DSMat storage scheme with
block-diagonal structure using 4 MPI ranks. The portions of matrices

stored by MPI rank 1 are highlighted with different colors.

2.2 Chronos AMG Framework

Any AMG method is generally built on three main components whose interplay gives

the effectiveness of the overall method:

• Smoothing, where an inner preconditioner is applied to damp the

high-frequency error components;

• Coarsening, in which coarse level variables are chosen for the construction of the

next level;

• Interpolation, defining the transfer operator between coarse and fine variables.

In Chronos a fourth component, borrowed from the context of bootstrap [Brandt

et al., 2011] and adaptive AMG [Brezina et al., 2005, 2006a], is added to the above three
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and consists in a method to improve the near kernel of the linear operator or unveil

hidden components whenever they are not a priori available. Therefore, one of the

strengths of this library is that it offers several options for each AMG component to

allow the user to choose the best combination for any specific problem.

The present work is focused on the classical AMG setting, and below the basic con-

cepts behind this method are briefly recalled , referring the interested reader to more

detailed and rigorous descriptions in the works by Stüben [2001]; Trottenberg et al.

[2001]; Xu and Zikatanov [2017]. For the sake of clearness, this section is restricted to a

two levels only scheme, as the multilevel version can be readily obtained by recursion.

The first component that has to be set-up in AMG is the smoother, a stationary it-

erative method responsible for eliminating the error components associated with large

eigenvalues of A, referred also as the high-frequency errors. The smoother is generally

defined from a rough approximation of A−1 ≃ M−1 and the associated error propaga-

tion operator is given by the following equation:

S = I − ωM−1A, (2.1)

where I is the identity matrix and ω a relaxation factor to ensure:

ωρ(M−1A) < 2 (2.2)

see for instance [Franceschini et al., 2019] for a short explanation. Generally, the

smoother is given by a simple pointwise relaxation method such as (block) Jacobi or

Gauss-Seidel, with the second one often preferred even though its use on parallel com-

puters is not straightforward, or by a Chebyshev polynomial [Adams et al., 2003]. Un-

like other AMG packages such as BoomerAMG [Henson and Yang, 2002] or GAMG

[Balay et al., 2023] where traditional smoothers like Gauss-Seidel or Chebyshev are se-

lected by default, Chronos implements the adaptive Factorized Sparse Approximate

Inverse (aFSAI) with the matrix M−1 taking the explicit form:

M−1 = GTG (2.3)

with G lower triangular. This choice is dictated by its almost perfect strong scalability
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in computation and application and by its proven robustness in real engineering prob-

lems [Janna and Ferronato, 2011; Janna et al., 2015a,b; Baggio et al., 2017]. Moreover, the

cost of aFSAI application is usually much lower than that of Gauss-Seidel and Cheby-

shev since, generally, the number of non-zeroes of M−1 is only 20-40% the number of

non-zeroes of A.

The second component of AMG is the so-called Coarse-Grid Correction (CGC),

which is theA-orthogonal projection operation that should take care of the low-frequency

components of the error. To build CGC in classical AMG, the unknowns of a given

level are partitioned into Fine and Coarse (F/C), with coarse variables becoming the

unknowns of the next level. The choice of coarse variables is crucial in AMG, as it

determines both the rate at which the problem size is reduced and strongly affects the

convergence of the method. Here, let’s introduce the concept of Strenght of Connection

(SoC), i.e., to each edge of the adjacency graph ofA a measure of its relative importance

is associated. Then, using SoC, the graph connections are ranked and those deemed less

important are filtered out. A Maximum Independent Set (MIS) is finally constructed on

the filtered SoC graph to determine coarse variables using the well-known and efficient

PMIS algorithm [De Sterck et al., 2006].

To facilitate explanation, the system matrix is reordered according to F/C partition-

ing of unknowns with first fine variables and second coarse ones:

A =

⎡⎢⎣Aff Afc

AT
fc Acc

⎤⎥⎦ (2.4)

with Aff and Acc square nf × nf and nc × nc matrices, respectively. In classical AMG,

the interpolation operator P is written as:

P =

⎡⎢⎣W
I

⎤⎥⎦ , (2.5)

where W is a nf × nc matrix containing the weights for coarse-to-fine variable inter-

polation. As the system matrix is SPD, the restriction operator R is defined through a

Galerkin approach as the transpose of P , and the coarse level matrixAc is simply given

by the triple matrix product:
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Algorithm 1 AMG Set-up

1: procedure AMG_SETUP(Ak)
2: Define Ωk as the set of the nk vertices of the adjacency graph of Ak;
3: if nk is small enough to allow for a direct factorization then
4: Compute Ak = LkL

T
k ;

5: else
6: Compute Mk such that M−1

k ≃ A−1
k ;

7: Define the smoother as Sk =
(︁
Ik − ωkM

−1
k Ak

)︁
;

8: Partition Ωk into the disjoint sets Ck and Fk via coarsening;
9: Compute the prolongation matrix Pk from Ck to Ωk;

10: Compute the new coarse level matrix Ak+1 = P T
k AkPk;

11: Call AMG_SetUp(Ak+1);
12: end if
13: end procedure

Ac = P TAP (2.6)

In practice, fast convergence and rapid coarsening, i.e., high F/C ratios, are always

desired, and the construction of effective interpolations is of paramount importance to

conciliate these conflicting requirements.

Having defined all the above components, the set-up phase of the two-level multi-

grid method is completed and the iteration matrix is given by:

(S)ν2
(︁
I − PAc

−1P TA
)︁
(S)ν1 (2.7)

with ν1 and ν2 representing the number of smoothing steps performed before and after

the coarse-grid correction, respectively.

Algorithms 1 and 2 briefly report the general AMG set-up phase and application in

a V-cycle, respectively, in a multilevel framework, where it is conventionally assumed

that A0 = A, y0 = y and z0 = z. Details on all the computational kernels sketched in

Algorithm 1 and their parallel implementation will be discussed in the next sections.

In the AMG context, two quantities are used to define the sparsity of the multi-

level AMG hierarchy: grid complexity and operator complexity. The former is the total

number of nodes on all grids divided by the number of nodes on the fine grid while

the latter is the total number of nonzeroes in the linear operators on all grids divided

by the number of nonzeroes in the fine grid operator.
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Algorithm 2 AMG application in a V-cycle

1: procedure AMG_APPLY(Ak, yk, zk)
2: if k is the last level then
3: Solve Akzk = yk using Lk, the exact Cholesky factor of Ak;
4: else
5: Compute sk by applying ν1 smoothing steps to Aksk = yk with s0 = 0;
6: Compute the residual rk = yk −Aksk;
7: Restrict the residual to the coarse grid rk+1 = P T

k rk;
8: Call AMG_Apply(Ak+1, rk+1,dk+1);
9: Prolongate the correction to the fine grid dk = Pkdk+1;

10: Update sk ← sk + dk;
11: Compute zk by applying ν2 smoothing steps to Akzk = yk with z0 = sk;
12: end if
13: end procedure

2.2.1 Unveiling of the near kernel operator

The near kernel plays an important role in most AMG methods. Most smoothers fail in

damping error components that lie in the space of the near kernel and therfore AMG

methods consider the near kernel when constructing interpolation. The kernel (or null

space) associated with the homogeneous discretized operator arising from the most

common PDE or systems of PDE is generally a priori known. For instance it is well-

known that the constant vector is the kernel for the Laplace operator and rigid body

modes constitute the kernel for linear elasticity problems. The information needed to

build these spaces, usually referred to as test spaces in the adaptive AMG terminology,

is readily available to the user from nodal coordinates or other data retrievable from

the discretization.

However, the homogeneous operator kernel is only an approximation of the true

near kernel associated with the fully assembled matrix and does not take into account

all the peculiarities of the problem such as boundary conditions or the strong hetero-

geneities in the material properties that often arise in real-world problems. In many

circumstances, a better test space can be obtained by simply modifying the initial near

kernel suggested by the PDE. In the adaptive AMG literature [Brandt et al., 2011; Brez-

ina et al., 2005, 2006a; Lee, 2020], the test space is found by simply running a few

smoothing steps over a random test space or the initial near kernel, whenever avail-

able. From a theoretical standpoint, the test space should be computed by solving the
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generalized eigenproblem [Brannick et al., 2018]:

Aφ = λMφ (2.8)

A way to extract an effective test space could be by relying on an iterative eigensolver

[Frommer et al., 2021]. In the present implementation, we opt for the Simultaneous

Rayleigh Quotient minimization (SRQCG) [Franceschini et al., 2019] whose cost per it-

eration is only slightly higher than a smoothing step. By contrast, SRQCG can provide

a much better approximation of the smallest eigenpairs especially if a good precon-

ditioner is provided. Since an approximation of A−1 is already available through the

smoother, we simply reuse the previously computed M−1 inside the SRQCG iteration.

Unfortunately, extracting the eigenpairs of (2.8) with high accuracy is generally

more expensive than solving the original system (1.1). Moreover, the SRQCG solu-

tion to (2.8) needs the multiplication of M by a vector which, due to our choice of M

(2.3), would result in a forward and backward triangular solve whose parallelization

may represent an algorithmic bottleneck. For this reason, to limit the set-up cost, we

only approximately solve the eigenproblem:

Aφ = λφ (2.9)

with a predetermined and small number of SRQCG iterations. This simple strategy

usually gives satisfactory results, whenever an initial test space is not available or

boundary conditions and heterogeneity exert a strong influence, such as in geomechan-

ical problems. Another appealing idea, though not explored in this work, is bootstrap-

ping [Brezina et al., 2005, 2006a; Brandt et al., 2011; D’Ambra et al., 2018], which con-

sists in computing a relatively cheap AMG preconditioner from a tentative test space,

and then using AMG itself to better uncover the near null space and rebuild a more

effective AMG.

Operatively, once the test space is found, an orthonormal basis of it is computed

and the basis vectors are collected into a (skinny) matrix V that may be subsequently

used for the calculation of strength of connection and the prolongation.



Chapter 2. Chronos Overview 17

2.2.2 Strength of Connection (SoC)

The construction of the coarse problem in Chronos is based on the definition of a SoC

matrix, that is used to filter-out weak connections from the adjacency graph ofA. There

are three different SoC definitions available in the library:

1. Classical strength of connection:

sij =
−aij

max(minj ̸=i aij ,minj ̸=i aji)
(2.10)

2. Strength of connection based on strong couplings:

sij =
|aij |√
aiiajj

(2.11)

3. Affinity-based strength of connection:

sij =
(
∑︁

k vikvjk)
2

(
∑︁

k v
2
ik)(
∑︁

k v
2
jk)

(2.12)

where sij denotes the SoC between node i and j and aij and vij denote the entries in

row i and column j of the matrices A and V , respectively. SoC (2.10) is particularly ef-

fective for Poisson-like problems where the system matrix is close to an M-matrix. SoC

(2.11) is generally used in smoothed aggregation AMG [Vaněk et al., 1996] and usually

gives good results in structural problems. Finally, SoC (2.12) has been introduced by

Livne and Brandt [2012] and, though requiring a rather expensive computation, it is

able to accurately capture anisotropies as is shown by Paludetto Magri et al. [2019].

After SoC is computed for every pair of nodes, weak connections, those whose SoC

value is below a user-defined threshold, are eliminated. The MIS algorithm is applied

to the resulting graph that retains only the strong connections and these nodes define

the unknowns on the next level. The more aggressively the connections are filtered,

the higher number of nodes are left in the next level. There are two ways of controlling

SoC filtering in Chronos:

1. by a threshold, the traditional way of filtering, where connections below a given

θ are simply dropped;
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2. prescribing an average number of connections per node.

On one side, guaranteeing an average number of connections per node is trickier, since

it requires a preliminary sorting of all the SoC, but it ensures a more regular coarsening

through levels with an almost constant coarsening ratio. Moreover, in affinity-based

SoC, the strength values usually lie in a narrow interval close to unity so that a proper

choice of the drop threshold is almost impossible.

Finally, MIS construction is performed by using the PMIS strategy which is per-

fectly parallel and generally gives rise to lower complexities than the Ruge-Stüben

coarsening [De Sterck et al., 2008]. More aggressive coarsening methods require special

care in the interpolation construction, as we will see in the next section.

2.2.3 Interpolation operators

We recall that the prolongation operator P should satisfy:

V ⊆ range(P ) (2.13)

where V is the near-kernel ofA or, more precisely, for a coarse space of given size nc the

optimal two-level prolongation as stated in [Brannick et al., 2018; Xu and Zikatanov,

2017] should be such that:

span(vi) = range(P ) (2.14)

where vi are approximations of the eigenvectors associated with the smallest nc eigen-

values of the generalized eigenproblem (2.8). To this aim, depending on the problem,

we use two different strategies.

If a test space is available or it is relatively cheap to obtain a reasonable approxi-

mation of the near-kernel, then the so-called BAMG interpolation is used. The name

BAMG is used because this interpolation based on least squares has been proposed for

the first time in the context of bootstrap AMG [Brandt et al., 2011]. In this approach, the

weights of prolongation wij , i.e., the entries of the W block in (2.5), are found through
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least square minimizations:

wij = argmin
j∈Ci

∥vi −
∑︂
j∈Ci

wijvj∥2 i = 1, . . . , n (2.15)

with vk the k-th row of V andCi the interpolatory set for i. From experience, it is imper-

ative for an effective interpolation that the norm ∥vi −
∑︁

j∈Ci
wijvj∥ must be reduced

to zero and, in the general case, this can be accomplished only if the cardinality of Ci,

|Ci|, is equal or larger than nt, the number of test vectors. To guarantee an exact inter-

polation, it is often necessary to use neighbors at a distance larger than one, especially

when dealing with systems of PDEs, with a consequent increase of the overall operator

complexity. Moreover, it may happen that, even if |Ci| ≥ nt, some of the vectors vk are

almost parallel and may produce large jumps in the weights. In turn, large jumps in

P introduces high frequencies in the next level operator that the smoother hardly han-

dles. To overcome these difficulties, BAMG interpolation is computed with an adaptive

procedure similar to those described in [Franceschini et al., 2019; Paludetto Magri et al.,

2019]. More in detail, let’s define the dense matrix Φ whose entries φij correspond to

the j-th component of the i-th test vector vi for any j in the interpolatory set. For each

fine node i ∈ F to be interpolated, the adaptive procedure starts by including in the

interpolatory set all its coarse neighbors at a distance no larger than lmin, and select a

proper basis for Φ by using a maxvol algorithm [Goreinov et al., 2010; Knuth, 1985]. If

either the relative residual:

ri =
∥φi − Φiwi∥
∥φi∥

(2.16)

or the norm of the weights, ∥wi∥, are larger than the user-defined thresholds ϵ and

µ, respectively, then the interpolation distance is increased by one. The interpolation

distance increases up to lmax to limit the computational cost. This procedure, briefly

sketched in Algorithm 3, though slightly expensive, allows to compute an accurate and

smooth prolongation without impacting too much operator complexity. In fact, includ-

ing in Ci all the coarse nodes within a large a priori selected interpolation distance

usually leads to higher operator complexities because several fine nodes may be inter-

polated with excessively large support. Moreover, limiting the number of non-zeroes in

the rows of P has the additional advantage that it is possible to perform prolongation
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Algorithm 3 BAMG prolongation adaptive set-up

1: procedure BAMG_PROLONGATION(S, V , lmin, lmax, ϵ, µ)
2: for all i ∈ F do;
3: Set l = lmin;
4: Set ri = φi;
5: while l ≤ lmax and ( ri > ϵ or wi > µ ) do
6: Include in Ci all the coarse nodes at a distance at most l;
7: Collect all the φk such that k ∈ Ci;
8: Select from φk a maxvol basis Φi;
9: Find the vector of weights wi by minimizing ∥Φiwi − φi∥;

10: l = l + 1;
11: end while
12: end for
13: end procedure

smoothing without an exponential growth of the operator complexity. Prolongation

smoothing is a very common practice in solving elasticity problems with aggregation-

based AMG [Gee et al., 2009] and numerical results will show that it can be beneficial

also in the context of classical AMG.

On the other hand, when there is no explicit knowledge of the test space or when

the matrix at hand arises from the discretization of a Poisson-like problem, Chronos

can also rely on more classical interpolation schemes. Below the expressions of some

well-known interpolation formulas are briefly recalled. First, using the concept of SoC,

let’s define the following sets:

• Ni = {j | aij ̸= 0}, the set of direct neighbours of i;

• Si = {j ∈ Ni | j strongly influences i}, the set of strongly connected neighbours

of i;

• FS
i = F ∩ Si, the set of strongly connected fine neighbors of i;

• CS
i = C ∩ Si, the set of strongly connected coarse neighbors of i;

• NW
i = Ni \ (FS

i ∪ CS
i ), the set of weakly connected neighbors of i.

A generally accurate distance-one interpolation formula, introduced by Ruge and Stüben

[1987], is the so-called classical interpolation. Unlike other distance-one formulas, here,

the interpolation takes care of the contribution from strongly influencing points FS
i ,

and the expression for the interpolation weight is given by:
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wij = −
1

aii +
∑︁

k∈Nw
i ∪FS∗

i
aik

⎛⎝ ∑︂
k∈F s

i \FS∗
i

aikākj∑︁
m∈Cs

i
ākm

⎞⎠ , j ∈ CS
i , (2.17)

where:

āij =

⎧⎪⎪⎨⎪⎪⎩
0 if sign(aij) = sign(aii)

aij otherwise
(2.18)

It is worth noting that the original formula proposed in [Ruge and Stüben, 1987] is here

corrected accordingly with the modification introduced in [Henson and Yang, 2002]

where the set of strongly connected neighbors FS∗
i , that are F-points but do not have

a common C-point, are subtracted to the fine strong neighbors FS
i . This modification

of the interpolation formula is needed to avoid that the term
∑︁

m∈Cs
i
ākm vanishes. In-

deed, using the PMIS-coarsening method no longer guarantees that two strongly con-

nected F-points are interpolated by a common C-point. However, even if for a large

class of problems the classical interpolation is very effective, it can lose efficiency for

challenging problems such as rotated anisotropies or problems with large discontinu-

ities. Hence, some more advanced interpolation formulas are required to overcome

these difficulties. A widely used interpolation strategy, mainly for very challenging

Poisson-like problems, is the Extended+i interpolation. This interpolation formula ex-

tends the interpolatory set including C-points that are at distance two apart from the

F-point considered. Furthermore, also coarse nodes connected to the fine neighbors of

the fine point interpolated are considered. Hence, denoting with Ĉi = Ci ∪
⋃︁

j∈FS
i
Cj

the set of distance-two coarse nodes, the interpolation Extended+i formula takes the

following form:

wij = −
1

ãii

⎛⎝aij + ∑︂
k∈F s

i

aikākj∑︁
l∈Ĉi∪{i}

ākl

⎞⎠ , j ∈ Ĉi (2.19)

with

ãii = aii +
∑︂

n∈Nw
i \Ĉi

ain +
∑︂
k∈F s

i

aik
āki∑︁

l∈Ĉi∪i ākl
. (2.20)

This Extended+i interpolation remedies many problems occurring with distance-one
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FIGURE 2.4: Example of the interpolatory points. The gray point is the
point to be interpolated, black points are C-points and white points are

F-points.

interpolation and provides better weights than other distance-two interpolation for-

mulas at the cost of larger operator complexities. A possible way to reduce the com-

plexities without or mildly affecting the convergence rate is to consider a different in-

terpolatory set, i.e., an interpolatory set larger than the distance-one set CS
i , but smaller

than the distance-two Ĉi. The idea is to consider an interpolatory set that only extends

CS
i for strong F-F connections without a common C-point, since in the other cases the

point i is already surrounded by interpolatory points belonging to CS
i . Here, we pro-

pose to enrich the set CS
i including the minimum number of distance-two coarse nodes

guaranteeing that each F-F strong connection is covered by at least a C-point. Let us

consider the example in Figure 2.4.

Notice that using the classical interpolation, the interpolatory set would be CS
i =

{o} and there would be two fine neighbors of i, j and k, that do not share a C-point with

i. On the other hand, using the Extended+i interpolation, Ĉi = {m,n, l, o} and each F-

node, strongly connected with i, would share at least one C-node of the interpolatory

set Ĉi. However, to guarantee this last condition, it would be sufficient to only include

the node n to the set CS
i , so that the extended interpolatory set would become Ĉ

h
i =

{o, n}. In other words, the set CS
i is extended by including the maximum independent

set of distance-two C-nodes to accomplish the above condition. In the following this

interpolation is referred as Hybrid, and the procedure to construct the interpolatory set

Ĉ
h
i is reported on Algorithm 4.
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Algorithm 4 Computation of extended interpolation set Ĉ
h
i

1: Set the initial interpolatory set Ĉ
h
i = CS

i

2: Compute the initial set F
′
, such that:

3: F
′
= {j ∈ FS

i | j is not strongly connected with at least one node in CS
i }

4: Compute the initial set of C
′′
, i.e., the set of the distance-two coarse nodes strongly

connected with a F
′
-point

5: Compute the vertex degree of each element in C
′′

by taking into account only the
connections with F

′

6: while F
′ ̸= ∅ do

7: Choose the node with maximum degree in C
′′

and add it to Ĉ
h
i

8: Update the set F
′

9: Update the set C
′′

10: end while

2.2.4 Filtering

One problem that may affect AMG methods, especially in parallel implementation, is

the excessive stencil growth occurring in lower levels. This drawback is more pro-

nounced if long-range interpolation or prolongation smoothing are used. Some au-

thors have explored interesting solutions to reduce AMG complexity without detri-

mental effects on convergence [Bienz et al., 2016; Falgout and Schroder, 2014]. Simply

eliminating small entries from the operators, as is done for instance with Incomplete

LU factorizations (ILU) or some approximate inverse preconditioners, may completely

harm the effectiveness of CGC. This happens because removal of small entries from Pk

or Ak+1 = P T
k AkPk may induce an inaccurate representation of the near kernel of A.

As a remedy, the authors in [Falgout and Schroder, 2014] propose to compensate

the action of eliminated entries through a sort of stencil collapsing to guarantee that

the filtered operator, say Ãk+1, exerts the same action of A on the near kernel:

Ãk+1V = Ak+1V (2.21)

with V a matrix representation of the near kernel. While it is relatively simple to enforce

condition (2.21) for one dimensional near kernels, it is not immediate to accommodate

the action on several vectors at the same time. With multiple vectors, first the smallest

entries ofAk+1 are dropped to determine the pattern of Ãk+1, then a correction to Ãk+1,
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∆k+1, is computed by using least squares on:

∥(Ak+1 − Ãk+1)V −∆k+1V ∥2 (2.22)

In more detail, Ãk+1 is computed row-wise such that the absolute norm of each row

is a given percentage ρ of the norm of the original one, to avoid changing too much

the original matrix, and then the correction is computed for the same row. The same

procedure is used on the prolongation operator Pk with the only exception that instead

of V , its injection in the coarse space is used. Operatively, the test space V is used

when available while in cases where V is not computed, such as in Poisson problems,

we simply replace V with a constant vector.

Finally, note that Ãk+1 is no longer guaranteed to be SPD and, especially when an

aggressive dropping is enforced, the use of a non-symmetric Krylov solver, such as

GMRES or BiCGstab, is often needed instead of CG. Obviously, such care is not needed

when only the prolongation is filtered as P̃
T
kAP̃ k is always SPD for any choice of ρ.
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Multi GPU implementation

This chapter describes the implementation for distributed memory GPU-accelerated

systems of the SpMV product and some critical stages of the AMG set-up. Regarding

the AMG computation, this work focused on the most expensive stages in terms of

computing time and memory demand:

1. Smoother computation: the most demanding part in the smoother set-up is the

computation of an approximation of A−1, that is the aFSAI (2.3).

2. Prolongator computation: in this work only the BAMG prolongator (2.15) has

been investigated for GPU acceleration as the mechanical problems are of most

interest to the author. Note that in Chronos, the Extended+i interpolation is also

accelerated following the Matrix-by-Matrix approach proposed by Li et al. [2021].

3. Matrix-by-Matrix (MxM) product: the MxM product plays a major role in the

computation of the coarse matrix (2.6).

On distributed memory systems, the design of an algorithm involves both communica-

tions and computational kernels. The former, handled through MPI directives, usually

represents a preliminary stage which is necessary for the computation that follows, as

it occurs in the aFSAI, BAMG set-up and MxM product. On the other hand, in SpMV

product communications and computations can be successfully overlapped. The com-

munication kernels are the same in both the CPU-only and GPU accelerated versions

and the information is exchanged between the MPI processes always passing through

the Host. If GPU accelerators are used, the copies between Device and Host are handled

through CUDA directives. Note that, as decribed in the Chapter 2, the DSMat object

is always replicated on the Host when accelerators are used and this allows to avoid

25
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frequent HostToDevice copies throughout the AMG set-up. Direct communication be-

tween GPU boards was not investigated in this work because this feature was not yet

available when the Chronos library was originally designed.

Regarding the accelerator, the GPU board used during the development of the

present work is NVIDIA Tesla V100 (based on the Volta CUDA architecture) equipped

with 80 Stream Multiprocessors for a total of 5120 CUDA cores and 16 GByte of GDDR5

memory.

3.1 Distributed memory Sparse Matrix-Vector product (SpMV)

The SpMV product Ay = z between a DSMat A and a DDMat y is the most expensive

operation in any preconditioned iterative solver. On a distributed memory computer,

it consists of a communication stage, mainly handled by the CPUs, and a computation

stage, that can be performed either by the CPU or the GPU accelerator (or, in some

implementations by both).

With reference to Fig. 3.1, the MPI rank 3 gathers the y terms highlighted in green

and computes its stripe of z, highlighted in violet, as the sum of products between

the extra-diagonal CSR blocks, in red, and the entries received from neighbouring pro-

cesses, plus the contribution of the product between diagonal CSR blocks, in orange,

and the stored y terms, in light blue. As detailed below, communication and computa-

tion can be conveniently overlapped thanks to non-blocking communications and the

DSMat storage scheme:

1. First, local elements of y to be sent are moved into a device buffer and copied on

the Host;

2. Then the Host starts non-blocking send/receive communications to/from neigh-

boring processes;

3. in the meantime, the local component of z is initialized with the product between

the diagonal CSR block and the local part of y;

4. each process sequentially tests all the incoming communications and as soon as

some components of y are received, the corresponding buffer is copied onto the



Chapter 3. Multi GPU implementation 27

Device and the local part of z is updated with the product by the off-diagonal CSR

block;

It is easy to observe that the third step in the above list can be overlapped with the first

two, and also the product by the off-diagonal blocks partly hides the communication

latency for the transfer of non-local y components. In the fourth step, the off-diagonal

blocks are processed in sequence because each block is usually large enough to saturate

all the computational resources of a modern GPU.

FIGURE 3.1: Schematic representation of the SpMV product.

For an efficient execution, the SpMV algorithm requires a preliminary stage, called

prepare, during which each MPI rank communicates to its neighbors the list of y entries

it needs to receive to perform the product by the off-diagonal blocks. Since this infor-

mation does not change during the iterative solution of the system, it can be exchanged

just once before the computation starts.

As to the local sparse-matrix-dense-vector product, a review of the different ap-

proaches developed in recent years is proposed by Filippone et al. [2017]. In the present

work, a new CUDA kernel has been developed for the CSR storage format. To this pur-

pose, a group of threads for each row of the sparse matrix is empolyed. Using a group

instead of a single thread makes it possible to exploit at its best the memory band-

width of the GPU, at least loading the elements of the matrix. The group of threads

in charge of each row is called miniwarp in analogy with the group of 32 consecutive

threads named warp in the CUDA jargon mentioned above. In particular, sets (having
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the same number of elements) of contiguous threads with a possible cardinality of 2,

4, 8, 16 or 32 are considered. Those sets of threads are then concurrently mapped to

different data like in other warp-centric kernels that use a warp to manage a block of

contiguous data. The threads contained in a miniwarp are able to perform cooperative

computation by exploiting efficient and fine-grained intra-warp communication primi-

tives like the shuffle. During the execution of the product, each row of the sparse matrix

is assigned to a single miniwarp, that is, multiple rows are concurrently executed in the

same full warp of 32 threads. The size of a miniwarp is dynamically dependent on the

average number of nonzeroes per row of the sparse matrix. The main advantage of this

miniwarp variant is that, for matrices with few nonzero entries per row, the number

of idle threads decreases. With a full warp (32 threads), if a row has, on average, only

k < 32 nonzero entries, there are, always on average, 32 − k threads that remain idle.

Miniwarps reduce the difference significantly by using a size that is much closer to the

average number of nonzero entries per row. Fig. 3.2 shows how the miniwarp works

when applied to a matrix in CSR format in the case of a sparse-matrix dense-vector

multiplication.

FIGURE 3.2: Each miniwarp is in charge of a row of the matrix stored in
CSR format.

3.2 aFSAI smoother

Let’s recall briefly the theoretical framework of the adaptive Factored Sparse Approxi-

mate Inverse (aFSAI).
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FIGURE 3.3: Example of a typical lower triangular non-zero pattern S.

The FSAI preconditioner has been originally introduced for SPD matrices in Kolotilina

and Yeremin [Kolotilina and Y., 1993], with the aim of directly approximating the in-

verse of A as the product of two triangular factors:

M−1 = GTG ≃ A−1 (3.1)

In the equation (3.1), G is a lower triangular matrix whose entries are computed by

minimizing the following Frobenius norm:

∥I −GL∥F (3.2)

over the setWS of matrices having a prescribed lower triangular non-zero pattern S, as

the one depicted in Figure 3.3. The matrix L, explicitly appearing in (3.2), is the exact

Cholesky factorization (lower) of A and it is not actually needed in the computation

of FSAI, since it disappears during the minimization process as shown for instance in

Kolotilina and Yeremin [Kolotilina and Y., 1993]. The unknown G entries, [G]ij , are
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computed by solving the componentwise system:

[GA]ij =

⎧⎪⎨⎪⎩ 0 i ̸= j, (i, j) ∈ S

[L]ii i = j
(3.3)

obtained through differention of (3.2) with respect to [G]ij and setting it equal to zero.

In the equation above, the symbol [·]ij in (3.3) is used to indicate the entry in row i and

column j of the matrix between square brackets. Since [L]ii, the i-th diagonal element

of L, is unknown, we replace it in eq. (3.3) by 1. As a consequence, in place of G, we

compute the matrix ˜︁G by solving:

[ ˜︁GA]ij = δij (3.4)

with δij the Kronecker delta.

From a practical viewpoint, setting up the i-th row of ˜︁G, say ˜︁gT
i , requires:

• first, the definition of the set Pi collecting all the column indices that belong to

the i-th row of S, that is:

Pi = {j : (i, j) ∈ S} (3.5)

• then, the gathering of the dense matrix A[Pi,Pi] formed with the entries of A

having row/column indices in Pi;

• finally, solving the linear system:

A[Pi,Pi] ˜︁G[i,Pi]T = emi (3.6)

with ˜︁G[i,Pi] being the dense vector containing the non-zero entries of ˜︁gi and the

right-hand side emi given by the last vector of the canonical basis of Rmi , with

mi = |Pi|.

Figure 3.4 gives an idea of the gathering process used to collect the dense linear

systems A[Pi,Pi] given a set Pi.

A more practical, although mathematical equivalent, way to implement the FSAI

computation, see Janna and Ferronato [2011]; Janna et al. [2015b], consists in assuming
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...

...

FIGURE 3.4: Schematic representation of the dense linear system gather-
ing for a given set Pi (with cardinality k).

˜︁G unitary diagonal and solving the linear system:

A[Pi,Pi] ˜︁G[i,Pi]T = −A[Pi, i] (3.7)

where Pi = Pi \ i and ˜︁G[i,Pi] contains the off-diagonal non-zero entries of ˜︁G. A diagonal

scaling is finally applied to ˜︁G in order to guarantee that all the diagonal entries of the

preconditioned matrix are unitary:

diag(DG
˜︁GA ˜︁GTDG) = diag(GAGT ) = I (3.8)

where diag(·) is the operator returning the diagonal matrix having the diagonal of its

argument as entries, I is the identity matrix and the DG entries are given by:

DG[i, i] =
1

A[i, i]− ˜︁G[i,Pi]A[Pi,Pi] ˜︁G[i,Pi]T (3.9)
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Condition (3.8) ensures that G, over all the matrices B ∈ WS , is the unique one mini-

mizing the Kaporin number of the preconditioned matrix:

κ =

1

n
tr(GAGT )

det(GAGT )
1
n

(3.10)

which gives a measure of the PCG convergence rate Kaporin [1994].

The FSAI preconditioner for an SPD matrix is breakdown-free and possesses an

extremely high degree of parallelism in both construction and application to a vector.

However, to be competitive with other preconditioners, FSAI needs to be sparse with

a non-zero pattern composed by only significant entries of the true inverse factor of

A. The appropriate a priori choice of S is unfortunately very difficult thus making the

original FSAI unpractical in ill-condition cases.

A better way to compute FSAI is by choosing S adaptively while computing ˜︁G Janna

and Ferronato [2011]. The basic concept in the adaptive computation of FSAI (aFSAI

from now on) is the improvement of the quality of a given initial factor G0, already

satisfying equations (3.7) and (3.8), by extending its pattern with those entries that

mostly contribute in reducing the Kaporin number of G0AG
T
0 . Let us define S0 the

non-zero pattern of G0 and assume the identity matrix as our default initial guess.

Writing explicitly the Kaporin number κ of G0AG
T
0 , gives:

κ =

1

n
tr(G0AG

T
0 )

det(G0AG
T
0 )

1
n

=

1

n
tr(DG0

˜︁G0A ˜︁GT
0DG0)

det(DG0
˜︁G0A ˜︁GT

0DG0)
1
n

(3.11)

and, recalling that G0AG
T
0 has unitary diagonal entries and det( ˜︁G0) = 1 by construc-

tion, it follows that:

κ =
1

det(A)
1
n

1

det(DG0)
2
n

=
det
[︂
diag( ˜︁G0A ˜︁GT

0 )
]︂ 1

n

det(A)
1
n

(3.12)

Denoting by ˜︁gT
0,i the i-th row of ˜︁G0, we can write the numerator of (3.12) as:

det
[︂
diag( ˜︁G0

˜︁A ˜︁GT
0 )
]︂
=

n∏︂
i=1

˜︁gT
0,iA˜︁g0,i =

n∏︂
i=1

ψ0,i (3.13)
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having defined ψ0,i = ˜︁gT
0,iA˜︁g0,i. With the above definiton, a simplified expression for

the Kaporin conditioning number of the preconditioned matrix can be found:

κ =

(︃∏︁n
i=1 ψ0,i

det(A)

)︃ 1
n

(3.14)

which can be differentiated to obtain the gradient of κ with respect to ˜︁G0. Choosing

the positions of the gradient corresponding to its largest entries in absolute value is

an effective heuristics, as it allows for finding an augmented pattern S1 giving a large

reduction of κ in equation (3.14). Since each ψ0,i in (3.14) does not depend on any other

row of ˜︁G0 except the i-th one, the pattern expansion can be carried out on each row

concurrently. The ψ0,i gradient, denoted as ∇ψ0,i, is obtained by collecting its partial

derivatives with respect to the components of ˜︁g0,i:

∂ψ0,i

∂[ ˜︁G0]ij
= 2

(︄
n∑︂

r=1

ajr [˜︂G0]ir + aji

)︄
, ∀j = 1, . . . , i− 1, (3.15)

with the computational cost for its evaluation consisting in a single sparse-matrix by

sparse-vector product. A new pattern P1
i is obtained by enlarging P0

i with the s posi-

tions corresponding to the largest entries of ∇ψ0,i in absolute value and finally ˜︁g1,i is

computed by solving (3.7), after replacing the sub/superscript “0” with “1”. Repeating

the above procedure kmax times allows one to find all the rows of ˜︁G2, ˜︁G3, . . ., up to˜︁Gkmax . It is also possible to monitor the preconditioner quality by computing the value

of ψk,i. Hence it is possible to stop the adaptive procedure independently for every row

when
ψk,i

ψ0,i
=
˜︁gk,iA˜︁gT

k,i˜︁g0,iA˜︁gT
0,i

≤ ε, (3.16)

where ε is a user-specified tolerance. Once the approximation of ˜︁G is satisfactory, a

diagonal scaling is applied, to ensure a unitary diagonal for GAGT .

Three user-specified parameters are generally used to control the aFSAI quality:

1. kmax, the maximum number of steps of the iterative procedure for each row;

2. s, the number of new positions added to the non-zero pattern of each row in a

single step;
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3. ε, the relative tolerance on the Kaporin number reduction used to stop the proce-

dure.

3.2.1 Gathering

Before calling the specific GPU kernels for the aFSAI set-up on every single device, each

MPI processes needs to collect some information from the others. This preliminary

stage is refferred as gathering. As the pattern of G is computed dynamically during

the set-up, in principle each MPI rank may need the entire matrix A, whose entries

belonging to other processes with lower rank. Obviously, such a condition cannot be

satisfied in very large problems because the wholeAmatrix cannot be stored on a single

node. On the other hand, preliminary tests showed that using only the information

from neighboring processes, as in the communication pattern of SpMV, is not enough

to build a satisfactory aFSAI.

Two intermediate gathering strategies based on heuristics have been investigated:

block and row gatherings. The former makes maximum use of the CSR block structure

of the DSMat object while the latter is designed to reduce the required storage.

Let’s start with the block gathering denoting by ˆ︁A the communication matrix of A,

that is a boolean matrix of size np × np with entries ˆ︁Aij ̸= 0 if and only if the corre-

sponding block ij of A contains at least one non-zero element. Then, it is imposed thatˆ︁G, the communication graph of G, is no larger than the lower triangular part of ˆ︁Ak

for a small power k, typically in the range 1 ÷ 3, which is simply computed through

Sparse-Matrix-by-Sparse-Matrix products between the communication matrices. Onceˆ︁G is known, it is used to guide the collection of information from other MPI processes.

With reference to Fig. 3.5, for instance, process 3 assembles locally the matrix A3, that

it uses locally to compute its own stripe G3 of G by gathering all the green blocks from

its left-neighboring processes on ˆ︁G. Thanks to the symmetry, only the communication

of the green blocks in the lower part is needed as a transpose can be used to obtain the

additional entries.

Note that, again as a positive effect of the symmetry, each MPI rank knows in ad-

vance from the pattern of ˆ︁Ak which blocks it has to receive and send to the other pro-

cesses as well as the list of processes it needs to communicate with. The block gathering



Chapter 3. Multi GPU implementation 35

FIGURE 3.5: Schematic representation of the block collection for process
3. Green colored blocks in the lower part of the matrix A are those that

need to be gathered for the assembly of A3.

procedure consists of a preliminary computation stage of ˆ︁Ak and of 2 stages of commu-

nications, that can be partly overlapped by using non-blocking communication:

1. Each MPI rank computes its part of ˆ︁Ak.

2. Each MPI rank sends to its right-neighboring processes (and receives from the

left ones) the sizes of the blocks that have to be exchanged.

3. Each MPI rank sends to its right-neighboring processes (and receives from the

left ones) the above set of blocks.

Note that, if a similar approach is extended to non-symmetric systems, each MPI rank

needs to communicate to the others also the list of required blocks, which is not known,

a priori, as in the symmetric case. The communicated list of blocks can be conveniently

received into a 2-dimensional array data structure with size (nL + 1)2, where nL is the

number of left-neighboring processes in ˆ︁G. Only the block-lower part of this structure

is actually filled with (nL
2 + nL)/2 blocks received from the other MPI processes plus

the (nL+1) blocks already in place. Once all the communications have been completed,

the 2-dimensional array of CSR matrices is copied into the full (lower plus upper) CSR

matrix AIp that is the main input for the aFSAI GPU kernel. Observe that, during this

copy, these two large structures must coexist, becoming the main part of the memory

footprint of each MPI taks, that can be quantified as ∼ 1.6 the size of AIp .
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The row gathering procedure has been investigated in order to remove this storage

bootleneck. Let’s denote with yji the list of y entries that the j-th MPI rank sends to the

i-th rank during the SpMV oparation (Section 3.1). In order to compute an effective

aFSAI, the i-th MPI rank gathers from j-th rank (with j < i) the expanded set of rows

ykji, where k is a distance typically in the range 4 ÷ 8 (for example, y2ji is the set of

connections that includes yji and its neighbors). Since the row gathering doesn’t rely on

the CSR block structure of the DSMat object, this procedure is a little more complex

than the previous one, and composed by the following stages:

1. Each MPI rank computes the list of rows to send to its right-neighboring pro-

cesses.

2. Each MPI rank collects the rows to send to its right-neighboring processes.

3. Each MPI rank sends to its right-neighboring processes (and receives from the

left ones) the sizes of the rows that have to be exchanged.

4. Each MPI rank sends to its right-neighboring (and receives from the left ones) the

above set of rows.

5. Each MPI rank removes all unnecessary enrties that compromise the symmetry

of the AIp pattern (the symmetry is a requirement of the local kernels described

in the next section).

This approach has an approximately halved memory footprint, compared to block-

gathering, while still allowing an effective aFSAI to be calculated. Block gathering is

generally preferable when FSAI is used as the preconditioner itself and the problem is

severely ill-conditioned

As already noted in Bernaschi et al. [2019], the aFSAI set-up can be safely per-

formed in single precision and, in the distributed memory context, this option is par-

ticularly advantageous. In fact, beyond reducing processing time due to the use of

single-precision arithmetic, it also allows a smaller amount of data movement during

the gathering stage and the HostToDevice copies. Two casting operations are needed in

this case. The first one is performed on the matrix A at the Host level: A is copied into

a new matrix As using single precision floats for its entries, As = single(A). Then, the
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matrix As is used for the aFSAI set-up, as described above. Once Gs, G with single pre-

cision entries, is computed, a second cast is performed at the Device level transforming

single precision floats into doubles, G = double(Gs). This last casting operation can be

conveniently overlapped with the HostToDevice copy of the double precision A, since

only As has been transferred before. When both the double precision representation of

A and G are present on the Device, the Krylov method is ready to start.

3.2.2 GPU kernels

The three main kernels involved in the aFSAI set-up are the following:

1. Kaporin: the computation of the Kaporin gradient ∇ψi, and the selection of its

most relevant components.

2. SystemGathering: the collection of A entries to form A[P i,P i] and A[P i, i].

3. SystemSolution: the solution of collected dense SPD systems, carried out by means

of Cholesky decomposition.

Once the matrix AIp is gathered, the computation of each row of G can take place in-

dependently from the others. In order to exploit this high potential for parallelism, a

specific set-up algorithm has to be designed according to the hardware features. The

CPU implementation is based on the algorithm proposed in Janna et al. [2015b] where

the outermost loop involves the matrix rows while for the GPU the so-called batched

approach proposed by Bernaschi et al. [2016, 2019] has been used. According to this

approach, the three main kernels of the set-up manage row batches with the same num-

ber of non-zeros. In the adaptive-FSAI the number of non-zeros of G is not known a

priori, since it is controlled dynamically by ε at the row level. To address this issue, the

outermost loop involves the k steps, taking care also of excluding the rows that reached

the criterion ( 3.16) during the iterations.

The allocation of the GPU resources can be made at the beginning of the computa-

tion according to maximum number of non-zeros per row, that is the product between

kmax and s. In particular, the Kaporin kernel uses a different number of CUDA threads

per row than SystemGathring and SystemSolution: 32 threads (1 warp) versus 1 thread
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Algorithm 5 aFSAI set-up on CPU

1: procedure AFSAI_CPU_SETUP(kmax,s,ε,AIp , ˜︁G)
2: ˜︁G0 ← I ;
3: i← 0;
4: while (i < n) do ▷ loop over ˜︁G0 rows
5: k ← 0;
6: while (k < kmax) do ▷ loop over k steps
7: Compute∇ψk,i;
8: Form Pi

k+1 by adding to Pi
k the s largest positions of∇ψk,i;

9: Gather AIp [Pi
k+1

,Pi
k+1

] and AIp [Pi
k+1

, i] from AIp

10: Solve AIp [Pi
k+1

,Pi
k+1

] ˜︁G[i,Pik+1
]T = −AIp [Pi

k+1
, i];

11: if (ψk,i ≤ ψ0,i · ε) then ▷ check convergence
12: break;
13: end if
14: k ← k + 1;
15: end while
16: i← i+ 1;
17: end while
18: end procedure

per row, respectively. Therefore, two different sizes for the batches are defined accord-

ing to the available global memory, sizekap and sizesys and the total number of batches

are simply nbkap = n/sizekap and nbsys = n/sizesys, respectively.

The CPU and GPU procedures are provided in Algorithm 5 and 6, respectively.

Regarding the GPU algorithm, the array Done of size n is used to mark the rows that

fullfill the criterion ( 3.16) and can be neglected in the next k steps. Lines 11 and 12 of

the algorithm call the function for Kaporin, while lines 23 and 24 call the two functions

for SystemGathering and SystemSolution, refer to the works by Bernaschi et al. [2016,

2019] for a detailed description of the algorithm.

As shown in Bernaschi et al. [2019], the computation of the Kaporin gradient is

the part of the preconditioner set-up that requires more time. Although the algorithm

for the evaluation of the Kaporin gradient is the same as in Bernaschi et al. [2019], its

CUDA implementation is different due to changes introduced in the warp-level prim-

itives starting on the CUDA toolkit version 9.0. Since CUDA has been around for a

while, we are not going to describe it in detail. However, is important to recall that,

in the CUDA, GPUs execute warps of 32 parallel threads according to an execution

model that NVIDIA calls Single Instruction Multiple Thread (SIMT), in other words,
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Algorithm 6 aFSAI set-up on GPU

1: procedure AFSAI_GPU_SETUP(kmax,s,ε,AIp , nbkap,sizekap,nbsys,sizesys, ˜︁G)
2: ˜︁G0 ← I ;
3: Done← 0;
4: k ← 0;
5: while (k < kmax) do ▷ loop over k steps
6: j, i← 0;
7: while (j < nbkap) do ▷ loop over kaporin batches
8: while (i < sizekap · (1 + j)) do ▷ loop over batch rows
9: if (Done[i] = 0) then

10: Compute∇ψk,i;
11: Form Pi

k+1 by adding to Pi
k the s largest position of∇ψk,i;

12: end if
13: i← i+ 1;
14: end while
15: j ← j + 1;
16: end while
17: j, i← 0;
18: while (j < nbsys) do ▷ loop over system batches
19: while (i < sizesys · (1 + j)) do ▷ loop over batch rows
20: if (Done[i] = 0) then
21: Gather AIp [Pi

k+1
,Pi

k+1
] and AIp [Pi

k+1
, i] from AIp

22: Solve AIp [Pi
k+1

,Pi
k+1

] ˜︁G[i,Pik+1
]T = −AIp [Pi

k+1
, i];

23: if (ψk,i ≤ ψ0,i · ε) then ▷ check convergence
24: Done[i]← 1;
25: end if
26: end if
27: i← i+ 1;
28: end while
29: j ← j + 1;
30: end while
31: k ← k + 1;
32: end while
33: end procedure

a variant of the SIMD (Single Instruction, Multiple Data) model, which is one of the

four classes defined by the classic Flynn’s taxonomy. CUDA toolkits prior to version

9.0 relied on the implicit assumption that the threads within a warp worked in a fully

synchronous way. If this is not true, a program may show unexpected side effects up

to the point of being unreliable. The point can be illustrated in a simple case based

on the __ballot(predicate) primitive that returns an unsigned int whose nth bit

is set if-and-only-if predicate evaluates as true for the nth thread of the warp. In the

fragment of code shown in Figure 3.6, the CUDA compiler and the hardware should
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try to re-converge the threads right after the if/else block for better performance.

FIGURE 3.6: Unsafe CUDA programming based on the implicit assump-
tion that warp’s threads run synchronously.

But this re-convergence is not guaranteed in the most recent versions of the CUDA

toolkit. Therefore, the ballot_result variable may not contain the ballot result from

all 32 threads. Starting on version 9.0, up to version 10.0 of the CUDA toolkit the

legacy warp-level primitives worked synchronously (albeit with a deprecation warn-

ing at compilation time). But, starting on version 10.1, the only alternative to obtain the

expected behaviour, is to employ an explicit control on the threads that participate in

warp operations by using the new form of the warp-level primitives. The set of threads

that participates in each primitive is specified by means of a 32-bit mask, which is al-

ways the first argument in the new syntax of the warp-level primitives. So, for instance,

the new form of the __ballot() primitive is __ballot_sync(mask, predicate). All

the participating threads are synchronized before the execution if they are not already

synchronized. In the simple case reported in Figure 3.6, it is enough to replace the last

line with unsigned ballot_result = __ballot_sync(0xFFFFFFFF, result);. Un-

fortunately there is not a general rule to determine what is the right value of the mask

argument. The set of threads to be included in the mask is determined by the program

logic, and may depend on branch conditions or other information available only at

execution time. That is exactly the situation that occurred with the kernel for the eval-

uation of the Kaporin gradient that relies heavily on warp-level primitives like shuffle

to exchange values stored in the registers among threads belonging to the same warp

(as described in Bernaschi et al. [2019] this is the technique that makes very efficient
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the selection of minimum and maximum values within that kernel).

Let’s see an example of the contributions of the three main kernels in the following

fragment of the CUDA profiler (nvprof) output for a medium size matrix (about 5

million unknows and an average of 45 entries per row):

Time(%) Time Calls Avg Min Max Name

44.14% 8.15852s 17310 471.32us 3.5480us 1.3083ms Kaporin

27.64% 5.10948s 660 7.7416ms 4.2520us 29.935ms SystemGathering

24.74% 4.57197s 660 6.9272ms 2.6200us 35.367ms SystemSolution

...

The three kernels take more than 90% of the time. The remaining kernels are used to

check if the convergence criterion for the refinement has been reached and to build, in

the end, the preconditioner. None of them takes more than 0.5% of the total execution

time and are all pretty simple.

3.3 BAMG prolongator

The BAMG prolongator, as previously described in Section 2.2, is generally used when

a test space is available. For each fine node i ∈ F , an adaptive procedure is imple-

mented to compute the prolongation weights wi by minimizing the residual ri of equa-

tion 2.16.

To ensure good interpolation, this approach collects an interpolatory set of coarse

nodes Ci that does not belong entirely to the domain managed by the single MPI rank.

Therefore, before calling the GPU kernels, a preliminary gathering stage is necessary to

collect all information from neighbouring domains: F/C indices and the corresponding

test space. First of all, weak connections are filtered out and SoC is used to guide

gathering. In BAMG, SoC based on strong couplings has proved to be very effective.

Then, the portion of the domain that the i-th MPI rank gathers from the j-th rank is

defined in a similar way as in the row gathering used for the aFSAI set-up. In particular,

for strong connections only in the set ykji, where k is typically 2 ÷ 4, the i-th MPI rank

gathers F/C indices and the test space. The procedure is composed by the following

stages:
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Algorithm 7 BAMG set-up on CPU

1: procedure BAMG_CPU_SETUP(lmin,lmax,ϵ,µ,FCIp ,VIp ,W )
2: W ← 0;
3: i← 0;
4: while (i < n) do ▷ loop over rows
5: if (i ∈ F) then
6: l← 0;
7: while (l < lmin) do ▷ loop over lmin distance
8: Update Ci and assembly Φi;
9: l← l + 1;

10: end while
11: while (l < lmax) do ▷ loop over lmax distance
12: Update Ci and assembly Φi;
13: Select a basis for Φi by using maxvol algorithm;
14: Compute wi by minimizing ri;
15: if (ri < ϵ or ∥wi∥ < µ) then ▷ check convergence
16: break;
17: end if
18: l← l + 1;
19: end while
20: end if
21: i← i+ 1;
22: end while
23: end procedure

1. Each MPI rank computes the list of strong connections to send to its neighboring

(left and right) processes.

2. Each MPI rank collects the the F/C indices and the test space to send to its neigh-

boring (left and right) processes.

3. Each MPI rank sends to (and receives from) its neighboring processes the sizes of

the lists that have to be exchanged.

4. Each MPI rank sends to (and receives from) its neighboring processes the above

set of F/C nodes and the test space.

Once communications are completed, the received information are merged with those

locally defined on the processor’s subdomain creating two structures, FCIp and VIp ,

for the F/C indices and the test space, respectively. These are the main input for the

computation kernels.

Three main kernels are involved in the BAMG set-up:
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1. FindSet: the search for the interpolatory set Ci at a certain distance l, with lmin <

l < lmax and the assembly of the matrix Φi. This dense matrix collects the vk

components, where vk is the k-th row of the test space VIp .

2. MaxVolume: the setting of a proper basis for Φi by the maxvol algorithm [Goreinov

et al., 2010; Knuth, 1985] to remove almost-parallel vectors vk that may produce

large jumps in the weights.

3. WeightCompute: the weight computation carried out by means of least square

minimizations.

Once each MPI ranks completes the gathering stage, the computation of each row of

the W block in (2.5), wi, can take place independently from the others. Again, specific

algorithms are developed to exploit the different hardware features of the CPU and

GPU. The CPU-only implementation is based on a straightforward approach where the

outermost loop involves W rows while for the GPU a batched approach is used. During

the search procedure of the interpolatory set, each node i must store all neighbouring

connections (F/C both), and due to the storage limitations of the global memory of

the GPU board, only one batch of rows can be handled at a time. Therefore, in the

GPU implementation the outermost loop involves the batches of rows, taking care of

excluding the rows that reached one of the following criteria: ri < ϵ or ∥wi∥ < µ, with

ϵ and µ user defined thresholds. Note that if at lmax the interpolation doesn’t not meet

any of the criteria, the node i is promoted to coarse (this generally only happens for

few nodes at the first level of the AMG hierachy).

The allocation of GPU resources is made at the beginning of the computation defin-

ing the size of the batches sizeBAMG according to the maximum number of neighboring

connections: this is not known a priori and it is assumed equal to 3,000 based on heuris-

tics. All the (few) rows with a larger number of neighbor connections are marked and

handled together at the end by repeating the procedure with a single batch. The total

number of batches is nbBAMG = n/sizeBAMG.

The CPU and GPU procedure are provided in Algorithm 7 and 8, respectively. Re-

garding the GPU algorithm the array Done of size n is used to mark the rows that fullfill

the convergence criteria and can be neglected in the next l steps. Lines 9 and 19 of the
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algorithm call the function for FindSet during the distance loop over lmin and lmax, re-

spectively. Lines 23 and 24 call the two functions for MaxVolume and WeightCompute.

In the FindSet kernel particular care was taken to implement the neighbor connection

search in CUDA. From an algebraic point of view, this operation is equivalent to a

symbolic merge of sparse matrix rows and it is not trivial to develop an algorithm that

exploits the GPU board. A hash-based approach was adopted following the one pro-

posed by Nagasaka et al. [2017] in the context of the Matrix-by-Matrix (MxM) product.

Since this approach is the core kernel of the MxM product, it will be described in detail

in the next Section. Finally, the GPU porting of MaxVolume and WeightCompute kernels

straightforward: the former kernel implements in CUDA exactly the same algorithm

of the CPU-only version using 1 CUDA thread per row while the latter exploits the

cublasDgelsBatched provided by the CUDA Toolkit [NVIDIA et al., 2023].
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Algorithm 8 BAMG set-up on GPU

1: procedure BAMG_GPU_SETUP(lmin,lmax,ϵ,µ,FCIp ,VIp ,W )
2: W ← 0;
3: Done← 0;
4: j, i← 0;
5: while (j < nbBAMG) do ▷ loop over batches
6: while (l < lmin) do ▷ loop over lmin distance
7: while (i < sizeBAMG · (1 + j)) do ▷ loop over batch rows
8: if (i ∈ F) then
9: Update Ci and assembly Φi;

10: end if
11: i← i+ 1;
12: end while
13: l← l + 1;
14: end while
15: i← i− sizeBAMG;
16: while (l < lmax) do ▷ loop over lmax distance
17: while (i < sizeBAMG · (1 + j)) do ▷ loop over batch rows
18: if (i ∈ F and Done[i] = 0) then
19: Update Ci and assembly Φi;
20: Select a basis for Φi by using maxvol algorithm;
21: Compute wi by minimizing ri;
22: if (ri < ϵ or ∥wi∥ < µ) then ▷ check convergence
23: Done[i]← 1;
24: end if
25: end if
26: i← i+ 1;
27: end while
28: l← l + 1;
29: end while
30: j ← j + 1;
31: end while
32: end procedure

3.4 MxM product

In this section the implementation of MxM product on a multi-GPU setting is de-

scribed. The MxM product plays a major role in the computation of the coarse matrix

(2.6) and this problem, so far, has received limited attention. A multi-GPU algorihm

has been recently proposed by Azad et al. [2022], however, this approach uses com-

plicated 2D and 3D partitioning of the matrices that make it difficult to embed in the

framework of an existing library as Chronos.

Regardless of the hardware, CPU or GPU, one of the main issue in the MxM prod-

uct is represented by the number of non-zero entries as well as the sparsity pattern of
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the resulting matrix product that are not predictable in advance. To get the required

information, many solutions resort to a so-called symbolic stage, in which the number

of nonzeros in the result matrix is computed, postponing the actual computation of the

values to a following numeric stage [Nagasaka et al., 2017; Mathias et al., 2020; NVIDIA

et al., 2023]. Even if the sparsity pattern of the output was known, achieving a balanced

work distribution and a suitable (i.e, as regular as possible) access to the global memory

is far from being trivial on a GPU. Moreover, the situation gets worse when the size of

the problem does not fit in the memory of a single GPU.

A straightforward solution to split the product computation among the GPUs is

that each GPU computes the corresponding block of rows of the product matrix. As

an example, in the most simple configuration with just two GPUs, the first GPU is in

charge of computing the first half of the rows and the second GPU is in charge of the

second half of the rows of the resulting matrix. The steps to be carried out are described

below for only computing the rows of just the first half of the product matrix (i.e., from

the viewpoint of the first GPU) but the same approach can be applied to any subset

of rows. To finalize the scalar products of the rows of the first matrix by the columns

of the second matrix, each GPU needs the rows of the second matrix corresponding

to the column indices of each row of the first matrix that are above or below its range

of row indices. In this example the first GPU has just the nonzeros of the first half of

each column of the second matrix. If a row of the first matrix belonging to its subset

has nonzeros whose column index is larger than n/2, where n is the total number of

rows (assume that n is an even number), it needs those nonzero entries to complete the

product. In the following example of two very small (4 × 4) matrices (the horizontal

line represents the distribution of data between the two GPUs), the first GPU, in order

to complete its part of the product, needs the elements, b41 and b44 of the last row in

charge of the second GPU.
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⎡⎢⎢⎢⎢⎢⎢⎢⎣

a11 0 0 a14

0 a22 0 a24

0 0 a33 0

a41 a42 0 a44

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∗

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b11 0 0 b14

0 b22 b23 0

0 b32 b33 0

b41 0 0 b44

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11b11 + a14b41 0 0 a11b14 + a14b44

a24b41 a22b22 a22b23 a24b44

. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
It is possible to exchange all the data necessary to complete the product on each

GPU before starting the computation, so that the product appears as if it were com-

pletely local from the viewpoint of the computing kernel. Regarding the kernel that

addresses the computation on the single GPU, an enhanced version of the nsparse [Na-

gasaka et al., 2017] is adopted. In fact, this nsparse open-source solution proved to be

much more efficient of any combination of cuSparse (i.e., the official NVIDIA library

for sparse matrix operations [NVIDIA et al., 2023]) primitives for the MxM. With the

choice of exchanging all information in advance of the computing kernel, the efficiency

of nsparse is fully exploited by calling it just once. As an alternative, it is possible to

compute the local part of the product, exchanging, in the mean time, the required data,

then compute the remaining part of the product and sum the two contributions. This

choice could offer an advantage due to the potential overlap of the computation of the

local part with the exchange of the data for the non local part. Even if this latter scheme

is used on the CPU-only version, its use in the multi-GPU MxM is not convenient. In-

deed, it entails a double execution of the nsparse kernel (with two different symbolic

steps) and also the execution of an additional kernel for the sum of the two partial

products. The latter kernel is not completely trivial, since the matrices are stored in

CSR format.

In summary, the first procedure for the multi-GPU MxM is composed by the fol-

lowing steps, as sketched in Algorithm 9:
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1. each GPU checks which rows of the second matrix needs to be received from

other GPUs, (see lines 2 to 6 in Algorithm 9).

2. CPUs exchange information about the number of non-zeros entries of each re-

quired row, using MPI collective communication primitives (MPI_Allgather,

MPI_Alltoall, MPI_Alltoallv) (see line 7 in Algorithm 9).

3. CPUs, after the allocation of suitable memory buffers (whose size is determined

in the previous step), exchange the indices and the corresponding values of the

non-local rows using MPI point-to-point non blocking communication primi-

tives, (see lines 8 and 9 in Algorithm 9);

4. Each GPU builds the subset of rows of the second matrix that it needs, by combin-

ing the rows it already owned with those received by other GPUs in the previous

step. To minimize the number of memory copy operations, a new form of sparse

matrix representation is introduced, the segmented CSR. The idea is to maintain

the local part of the matrix in its original CSR data structure and to store the non-

local part, coming from other MPI processes, in an auxiliary CSR data structure.

The nsparse has been amended so that, depending on a simple check, either the

primary (local) or the auxiliary CSR is used, (see line 10 in Algorithm 9).

5. Each GPU carries out the product between its part of the first matrix and the

suitable subset of the second matrix built in the previous step, (see line 11 in

Algorithm 9).

3.4.1 Enhancements to the nsparse kernel

Several changes have been introduced to the original nsparse implementation while

the main workflow remained the same (see, for reference, Nagasaka et al. [2017]). To

recap the original version, the matrix-by-matrix product of two CSR matrices is done

in two main stages: symbolic and numeric. The symbolic stage is needed to determine

the number of nonzeros of the output matrix whereas the numeric stage is used for

calculating the nonzero elements. In order to cope with load imbalance caused by

variable number of nonzeros of the resulting matrix, the updated version relies on the
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Algorithm 9 MxM product on GPU

Input: Two matrices A and B, each process owns only a block of consecutive rows
(from h to k) of each matrix.
Output: Matrix C = AB, each process computes only its block of consecutive rows
(from h to k).

1: rowsToReceive← 0
2: for aij ∈ Alocal do
3: if j < h or j > k then
4: rowsToReceive← j
5: end if
6: end for
7: nnzPerRow ←MPIcollective(nnz(B(rowsToReceive)))
8: Allocate memory for B(rowsToReceive) combining the information contained in
nnzPerRow and rowsToReceive

9: B(rowsToReceive)←MPIpoint−to−point(Bremote)
10: Bsegmented ← merge(Blocal, B(rowsToReceive))
11: C ← sparseProduct(Alocal, Bsegmented)
12: return C

binning of the output matrix rows, in the same way as the original nsparse driver.

Despite keeping the original code structure, there are several significant improvements

that result in a speed-up around 2. In particular:

1. updating of shuffle primitives

2. an enhanced hash table algorithm

3. addition of new bins

4. direct access of A rows

The nsparse implementation relies on the lagacy behaviour of CUDA shuffle prim-

itives, therfore these have been updated according to their new definition introduced

from CUDA-9.

The goal of the new hash table algorithm is to accelerate the access to the GPU

shared memory and eliminate unnecessary branching. Instead of the original atomic

access to the shared memory, a while loop is added to help finding a free spot with

no need of an atomic operation. This allows to quickly navigate through unoccupied

slots in the hash table and insert the column index key, and the value val in a smaller

number of atomic steps. The performance advantage of this variant is more evident in
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the numeric part of the driver since in that case the bin choice is exactly determined

by the symbolic stage which allows for using a precisely defined hash table size for a

given row of the output matrix. Since in this situation the hash table is always filled

up close to its limit, one often has to iterate several times in order to find a free spot

due to the collisions. In contrast, in the symbolic stage, due to overestimation of the

hash table size, the new while loop does not give a significant speedup since the hash

table is sparse enough and finding a free spot is easier. Secondly, inside the innermost

while loop there are only if and else clauses and the atomicAdd construct is taken out-

side the hash algorithm because all keys must be updated anyway. The original and

enhanced procedure are provided in Algorithm 10 and 11, respectively. In these algo-

rithms the hash tables for the column indeces and the values are defined as table_key

and table_val, respectively. They have both size tsize, the former is initialized with -1

while the latter with 0. The variable HASH_SCAL is just a constant number.

Algorithm 10 Original nsparse hash operation

1: procedure HASH_ORIGINAL(table_key[tsize] = {−1}, table_val[tsize] = {0.}, key,
val)

2: hash = (key ∗HASH_SCAL) & (tsize − 1);
3: while (true) do
4: if (table_key = key) then
5: atomicAdd(table_val[hash], val);
6: break;
7: else if (table_key = −1) then
8: old← atomicCAS(table_key[hash], −1, key);
9: if (old = −1 then

10: atomicAdd(table_val[hash], val));
11: break;
12: end if
13: else
14: hash = (hash+ 1) & (tsize − 1);
15: end if
16: end while
17: end procedure

Most of the times, in AMG the matrices involved in a MxM product are sparse

with the resulting matrix being sparse as well. In such a case, the numeric part resorts

to the use of the smaller bins, i.e. those that are tailored for very sparse rows of the

output matrix. The original nsparse implementation included a pwarp kernel used for

rows whose number of nonzeros was less than or equal to 16 with each row processed



Chapter 3. Multi GPU implementation 51

Algorithm 11 Enhanced nsparse hash operation

1: procedure HASH_ENHANCED(table_key[tsize] = {−1}, table_val[tsize] = {0.}, key,
val)

2: hash = (key ∗HASH_SCAL) & (tsize − 1);
3: if (table_key[hash] ! = key) then
4: while (table_key[hash] ! = key and table_key[hash] ! = −1) do
5: hash = (hash+ 1) & (tsize − 1);
6: end while
7: if (table_key[hash] ! = key) then
8: while (true) do
9: old← atomicCAS(table_key + hash, −1, key);

10: if (old = −1 or old = key) then
11: break;
12: else
13: hash = (hash+ 1) & (tsize − 1);
14: end if
15: end while
16: end if
17: end if
18: atomicAdd(table_val[hash], val);
19: end procedure

by 16 threads (half warp). The next bin was intended to be in charge of rows with

up to 256 nonzeros. This was a very coarse bin splitting. Few new bins are added

with a maximum count of nonzero ranging from 16 up to 256 (in powers of 2) that

use the pwarp kernel. It does not result in an excessive use of shared memory while

providing a higher parallelism. Additionally, in the new pwarp kernel each partial

warp processes in parallel several columns of the first operand instead of the rows of

the second one providing a better coalesced memory access pattern in the inner loop.

Several new kernels have been added to manage the cases in which the rows of the

resulting matrix do not fit the shared hash table. In particular, there is a new chunk

kernel in which the rows of the output matrix are split into chunks of equal size that fit

the shared memory. The pointer to the last visited entry is saved to quickly jump to the

end of the last visited chunk. The hash table is completely removed and replaced with

a bitwise-or insertion of keys and atomic addition of values. Each chunk is compacted

efficiently and dumped to the output array without sorting it. On top of that, the local

data of the two operands is cached and reused for the subsequent chunks resulting in

a better performance. This is by far more advantageous than using the (slow) GPU

global memory as in the original implemenation of nsparse.
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When the matrix has a quite regular number of non-zero elements per row or the

largest bin dominates over the smaller bins, it is advisable to use just one bin. Since

in this case rows are not permuted, it is possible to take advantage of data locality re-

sulting in a performance boost. In this new version of nsparse, a mechanism to handle

such cases is introduced: if the largest bin has more than 15% of the rows, than only

this bin is used without permuting the rows. From practical standpoint, this situation

is quite common with many matrices having a regular row size.

3.4.2 Computation scheme of the RAP operation

The MxM product is used in the computation of the coarse matrix Ac (2.6) that is also

referred to as RAP product. RAP is the acronym for the double matrix product be-

tween Restriction R, system matrix A and Prolongation P , with R = P T since only SPD

matrices are considered in this work. The RAP operation can be perfomed in two ways:

• R(AP ) where at first AP is computed and then the result is multiplied by R from

the left;

• (RA)P where at first RA is computed and then the result is multiplied by P from

the right.

Mathematically, these two operations are clearly equivalent. Moreover, in most of the

CPU-only algorithms the run times of the double matrix product are almost the same

independently of the order of the operations. In fact the amount of floating point op-

erations is identical and the parallelization is only done over the rows of the output

matrix (which is the most common scheme on CPU for this kind of operations). How-

ever, with GPU accelerators the situation is quite different. This topic has just been

touched by Naumov et al. [2015]; Liu and Vinter [2015] in the following a detailed

discussion in the context of nsparse-algorithm is provided.

The nsparse-like algorithms on GPU execute R(AP ) much faster than (RA)P , see

Tables 3.1 and 3.2 and Figure 3.7. In order to understand the reason, let’s first compare

the double matrix product stages AP with RA and R(AP ) with (RA)P . Since the ma-

trix A is symmetric and R = P T (it is enough that A has a symmetric pattern and the

pattern of R is the same as the pattern of P T ) we have that AP = (RA)T . Therefore,
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it is easy to compare these two products in terms of performance. Similarly, the result-

ing matrices of R(AP ) and (RA)P are the same and can be compared. Consequently,

understanding the performance differences between these two stages will answer the

question of why R(AP ) is faster than (RA)P using nsparse-like algorithms on GPU.

operation nsparse Time [s]
original enhanced

AP 0.13 0.07
R(AP ) 1.33 0.68

Total 1.46 0.75

TABLE 3.1: Execution times ofAP andR(AP ) products for both original
and enhanced nsparse.

operation nsparse Time [s]
original enhanced

RA 9.12 2.99
(RA)P 2.15 1.33

Total 11.27 4.32

TABLE 3.2: Execution times ofRA and (RA)P products for both original
and enhanced nsparse.
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FIGURE 3.7: Execution times of R(AP ) and (RA)P products for both
original and enhanced nsparse.

The matrices used in this test arise from a standard discretization of a small 3D

mechanical problem (so that it can be handled by a single GPU, communications in

fact playing a minor role), and RAP refers to the first level of the grid hierarchy in

the AMG framework. The information related to the matrices involved in the RAP

operation is presented in Table 3.3.
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A(left factor) B (right factor) C(product)

n m nnz nnz/n n m nnz nnz/n n m nnz

AP 739k 739k 30M 40 739k 33k 20M 27 739k 33k 50M
R(A) 33k 739k 20M 615 739k 33k 50M 68 33k 33k 15M

RA 33k 739k 20M 615 739k 739k 30M 40 33k 739k 50M
(RA)P 33k 739k 50M 1,536 739k 33k 20M 27 33k 33k 15M

TABLE 3.3: R(AP ) vs (RA)P matrix information. In the matrix product,
A refers to the left matrix, B refers to the right matrix, and C is the out-
put matrix. For each matrix, the following information is provided: the
number of rows, n, the number of columns, m, the number of nonzeros,

nnz and the average number of nonzeros per row, nnz/n.

Performing AP and RA products produces a skinny and a fat matrix, respectively.

In AP the output has many rows while in RA, the result has many columns. Even

though the two resulting matrices, AP and RA, are transposes of each other(remember

R ≡ RT ), AP is more efficiently utilizing the GPU. This is due to the fact that AP has

a higher degree of parallelism with respect to the RA product since the resulting ma-

trix of AP has few nonzeros per row ≈ 68 while RA has ≈ 1, 536. Therefore, it uses

smaller bins that have a higher amount of parallelism due to an increase in the number

of concurrent thread blocks residing on each streaming multiprocessor, thus providing

a better usage of GPU resources. Despite the fact that the RA product, instead, has a

much smaller amount of rows of the output matrix, these rows are much denser than

that of the output of the AP product. Therefore, in this case, the hash table load is

higher and bigger bins are used in the symbolic and numeric stages of nsparse. More-

over, from the algorithmic point of view, the compaction of the rows via the hash table

is the most computationally intensive part, so lowering this intensity by diluting the

hash table compaction over many rows is a more advantageous strategy. As a conse-

quence, when the output is a long and skinny matrix it is preferred to have many rows

instead of many columns.

The situation with the second stage matrix product of R(AP ) vs (RA)P is more

interesting since in this case the output matrices are identical, therefore, they have the

same bin distribution, and the input matrices have the same dimensions. The only
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Algorithm 12 nsparse-like algorithms for AB = C

1: n← An×m

2: for i in n do ▷ loop over CUDA blocks
3: for aij in Ai∗ do ▷ loop over block warps
4: for bjk in Baij ,∗ do ▷ loop over warp lanes
5: cik ← aij · bjk ▷ update the hash table
6: end for
7: end for
8: end for

thing that is different is the number of nonzeros per row of the input matrices. Con-

sider the product A by B, the nsparse-like algorithms in exploit the so-called fined-

grain parallelism over the lanes of a warp in the inner loop of the Algorithm 12 at the

expense of parallelization over the warps (middle loop). This is due to the fact that the

inner loop has a coalesced reading while the reading of the nonzeros of A is done in

strides. Therefore, it is preferred to have a smaller number of nonzeros of A instead

of B. Moreover, under the hypothesis of equal bin distribution and an equal amount

of floating point operations when comparing the two matrix products, having many

nonzeros per row of A will result in the merging over many corresponding rows of B

which entails more synchronizations and collisions among the warps instead of lanes.

Since the merging of rows over the warps is more expensive, having significantly more

nonzeros per row in (RA) than of R, it results in a slowdown of the second stage of the

double product of (RA)P with respect to R(AP ).





Chapter 4

Numerical results

This Chapter collects all the numerical experiments performed to validate and test the

Chronos package. The numerical experiments have been performed using large sparse

matrices arising from challenging real-world problems. In particular, the Chronos

AMG is benchmarked on a set of problems that can be grouped into two classes de-

noted as Fluid dynamic (F) and Mechanical (M). The first one consists of a series of

problems arising from the discretization of the Laplace operator related to fluid dy-

namic problems, such as underground fluid flow (reservoir), compressible or incom-

pressible airflow around complex geometries (CFD) or porous flow (porous flow). The

second category includes problems related to mechanical applications such as subsi-

dence analysis, hydrocarbon recovery, gas storage (geomechanics), mesoscale simula-

tion of composite materials (mesoscale), mechanical deformation of human tissues or

organs subjected to medical interventions (biomedicine), design and analysis of me-

chanical elements, e.g., cutters, gears, air-coolers (mechanical).

In the experiments, challenging test cases are considered, not only for the high num-

ber of degrees of freedom (DOFs), but also because of their intrinsic ill-conditioning.

Indeed, in real applications, engineers usually have to deal with large jump of the phys-

ical proprieties, complicated geometries leading to highly distorted elements, hetero-

geneity and anisotropy. The matrices considered in the experiments are listed in Table

4.1 with details about the size, the number of non-zeros and the application field they

arise from.

All these matrices are Symmetric Positive Definite (SPD), therefore, the precondi-

tioned Conjugate Gradient (PCG) is used to solve the linear systems. In particular,

57
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Matrix Class n nnz avg. nnz/row Application field

spe10 F 3,410,693 90,568,237 26.55 3D porous flow
geo4m M 4,224,870 335,738,340 79.47 3D geomechanics
wing4m M 4,538,205 187,714,431 41.36 3D mechanical
finger4m F 4,718,592 23,591,424 5.00 2D porous flow
worm8m M 8,215,599 652,063,779 79.37 3D mechanical
guenda11m M 11,452,398 512,484,300 44.75 3D geomechanics
M10 M 11,593,008 940,598,090 81.13 3D mechanical
agg14m M 14,106,408 633,142,730 44.88 3D mesoscale
M20 M 20,056,050 1,634,926,088 81.52 3D mechanical
tripod24m M 24,186,993 1,111,751,217 45.96 3D mechanical
rtanis44m F 44,798,517 747,633,815 16.69 3D porous flow
geo61m M 61,813,395 4,966,380,225 80.34 3D geomechanics
poi65m F 65,939,264 460,595,552 6.99 3D CFD
Pflow73m F 73,623,733 2,201,828,891 29.91 3D reservoir
poi111m F 111,980,168 782,234,908 6.99 3D CFD
c4zz134m M 134,395,551 10,806,265,323 80.41 3D biomedicine
poi198m F 198,076,032 1,384,390,392 6.99 3D CFD

TABLE 4.1: Benchmark matrices used in the numerical experiments. For
each matrix, the class, the size, n, the number of non-zeros, nnz, the
average number of non-zeroes per row and the application field are pro-

vided.

the right-hand side vector is a random vector, the initial solution is zeroes and con-

vergence is considered achieved when the l2-norm of the relative iterative residual

becomes smaller than 10−8 · ∥b∥.

Chronos performance has been evaluated on Marconi100, a supercomputer hosted

in the Italian consortium for supercomputing (CINECA). Marconi100, classified within

the first ten positions of the TOP500 ranking [Strohmaier et al., 2023] at the time this

manuscript was written (from July 2023 it has been replaced by Leonardo supercom-

puter), was composed by 980 nodes based on the IBM Power9 architecture, each equipped

with two 16-cores IBM POWER9 AC922 at 3.1 GHz processors and four NVIDIA Volta

V100 GPUs with Nvlink 2.0 and 16GB of memory.

The Chapter is structured as follow: first, the focus is on the CPU-only version

of the AMG that is compared to other state-of-the-art solvers. These CPU-only runs

draw a baseline for the GPU experiments. Specifically, all the main kernels described in

Chapter 3, SpMV product, aFSAI smoother, BAMG prolongation and MxM product,

are investigated individually and then the accelerated AMG as a whole is analysed.

Finally, some specific applications of the Chronos package are discussed.
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4.1 Performance of the CPU-only version

This section focuses on the performance of the CPU-only version and its comparison

with other stat-of-the-art solvers. In particular, the discussion of the results is subdi-

vide into two parts, the former collecting test cases from fluid dynamics and the latter

from mechanics. Also strong and weak scalability analysis of the proposed implemen-

tation is provided, using large scale computational resources. The results are presented

in terms of total number of computational cores used ncr, the grid and operator com-

plexities, Cgd and Cop, respectively, the number of iteration, nit and the set-up, iteration

and total times, Tp, Ts and Tt = Tp+Ts, respectively. For each test, the number of cores,

ncr, is selected to have a per core load of about 100-150,000 dofs and, consequently,

different numbers of nodes are allocated for different problem dimensions. For all the

tests, each node reserved for the run is always fully exploited by using 8 MPI tasks and

4 OpenMP threads for each task.

As a reference point to evaluate the performance of Chronos, we compare it with

the state-of-the-art solvers BoomerAMG, a classical AMG, and GAMG, a smoothed

aggregation-based AMG, as preconditioners in fluid dynamics and mechanical prob-

lems, respectively. BoomerAMG and GAMG have been chosen as baseline solvers be-

cause they are very well known and open-source packages whose performance have

been demonstrated in several papers [Balay et al., 2023; Brezina et al., 2006b; Falgout

and Yang, 2002; Henson and Yang, 2002].

4.1.1 Fluid dynamics test cases

The AMG implemented in Chronos is highly tunable, offering several set-up options

to effectively solve a wide set of problems as it will be shown below.

First, let’s start by comparing Chronos and BoomerAMG performance using a setup

that is as similar as possible. Such comparison is intended to verify the HPC implemen-

tation and to demonstrate the efficiency of the DSMat storage scheme for SpMV prod-

uct, considering the three test cases finger4m, poi65m and Pflow73m. The com-

parison takes place with the same preconditioner configuration, i.e., Jacobi smooth-

ing, classical SoC with θ = 0.25, PMIS coarsening and Extended+i prolongation. The
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Matrix ncr Solv. type Cgd Cop nit Tp [s] Ts [s] Tt [s]

finger4m 32 Chr-jac 1.453 2.558 16 1.13 0.55 1.68
32 Boomer-jac 1.454 2.574 16 0.81 0.70 1.51

poi65m 384 Chr-jac 1.327 4.036 16 3.81 1.65 4.46
384 Boomer-jac 1.361 4.450 13 5.70 2.03 7.73

Pflow73m 480 Chr-jac 1.125 1.614 3308 14.1 611.9 626.0
480 Boomer-jac 1.123 1.593 3576 26.1 771.7 797.8

TABLE 4.2: Solution of three fluid dynamic test cases among those re-
ported in Table 4.1 using Jacobi smoothing and Extended+i prolonga-
tion. For each run, the following information is provided: the number
of cores ncr, the grid Cgd and operator Cop complexities, the number of
PCG iteration nit, the set-up time Tp, the iteration time Ts and the total

time Tt.

only exception takes place for Pflow73m where the strength of connection threshold is

taken as θ = 0.0, that significantly increases performance.

Table 4.2 provides for each test case the results obtained with this standard set-ups

that is denoted as Chr-jac and Boomer-jac. The grid and operator complexities with the

two software are basically the same and also the iteration count turns out to be quite

similar, showing that the two implementations are consistent. Only a slight difference

occurs for Pflow73m but it is compatible with very small differences in the code im-

plementation.

Figure 4.1 provides the time for the preconditioner set-up (left) and for PCG (right)

for each solving strategy. Each time reported in the figure is normalized with respect

to the corresponding Boomer-jac time, which is the baseline in these experiments. Ob-

serve that, while using Jacobi smoothing, Chronos is faster than BoomerAMG in the

set-up for poi65m and Pflow73m, while BoomerAMG is better in finger4m. Dif-

ferently, as to the iteration time, Chronos slightly outperforms BoomerAMG in all the

tests. In all cases, the Chronos implementation turns out to be very efficient and the

total solution time is comparable and sometimes even better than that of the Boomer-

AMG.

In Table 4.3, the labels Chr and Boomer identify the results obtained with Chronos

and BoomerAMG when the default smoothers are selected, i.e., aFSAI and hybrid

Gauss-Seidel, respectively. The use of a more elaborated/sophisticated smoother with

respect to either Jacobi or hybrid Gauss-Seidel gives a significant advantage in terms of
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Matrix ncr Solv. type Cgd Cop nit Tp [s] Ts [s] Tt [s]

finger4m 32 Chr 1.453 2.558 7 3.71 0.33 4.04
32 Boomer 1.454 2.574 12 0.79 0.94 1.73

poi65m 384 Chr 1.346 4.496 6 27.5 1.84 29.34
384 Boomer 1.361 4.450 14 5.88 3.18 9.06

Pflow73m 480 Chr 1.125 1.614 240 46.5 64.2 110.7
480 Boomer 1.123 1.593 2777 26.5 1042.3 1068.8

TABLE 4.3: Solution of three fluid dynamic test cases among those re-
ported in Table 4.1 using default smoothers and Extended+i prolonga-
tion. For each run, the following information is provided: the number
of cores ncr, the grid Cgd and operator Cop complexities, the number of
PCG iteration nit, the set-up time Tp, the iteration time Ts and the total

time Tt.

iteration count and solving time at the price of a more expensive set-up, as shown

also on Figure 4.1. The use of aFSAI always allows for achieving a faster conver-

gence. Furthermore, the more ill-conditioned the problem is, the better aFSAI compares

with other smoothers. In Pflow73m, which is the hardest problem in fluid dynamics,

Chronos with aFSAI smoothing is 6 times faster than BoomerAMG. The set-up time is

larger, but the speed-up obtained in the iteration stage may justify this effort, especially

in transient simulations where the user may have to solve repeatedly the same linear

system and can take advantage of preconditioner recycling.
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FIGURE 4.1: Comparison between Chronos and BoomerAMG by us-
ing the Extended+i prolongation and Jacobi or default smoothing. Left:
normalized Tp to the Boomer-jac solution. Right: normalized Ts to the

Boomer-jac solution.
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Matrix ncr Prol. type Cgd Cop nit Tp [s] Ts [s] Tt [s]

32 Chr-clas 1.467 1.871 31 3.57 1.32 4.89
finger4m 32 Chr-hybc 1.465 2.051 14 3.62 0.66 4.28

32 Chr-exti 1.453 2.558 7 3.71 0.33 4.04

384 Chr-clas 1.612 1.943 46 23.3 6.47 29.8
rtanis44m 384 Chr-hybc 1.585 2.030 36 26.6 6.09 32.8

384 Chr-exti 1.572 2.580 16 34.0 2.90 36.9

384 Chr-clas 1.381 2.339 21 17.9 4.69 22.59
poi65m 384 Chr-hybc 1.361 2.888 13 19.0 2.57 21.57

384 Chr-exti 1.346 4.496 6 27.5 1.84 29.34

480 Chr-clas 1.236 1.391 414 39.4 60.2 99.6
Pflow73m 480 Chr-hybc 1.234 1.448 416 40.4 67.1 107.5

480 Chr-exti 1.234 2.346 410 57.7 120.9 178.6

TABLE 4.4: Comparison between different interpolation formulas in the
solution of the fluid dynamic test problems from Table 4.1. For each run,
the following information is provided: number of cores ncr, prolonga-
tion type, grid Cgd and operator Cop complexities, number of iteration

nit, set-up time Tp, iteration time Ts and total time Tt.

In our fluid dynamics examples, the prolongations of choice for classical AMG are

typically the classical or Extended+i interpolations. The latter is usually more effec-

tive, although more expensive, for challenging problems due to its ability to accurately

interpolate fine nodes having strong fine neighbors that do not share the same strong

coarse node, possibly produced by high coarsening ratios. In Table 4.4, these two

well-known prolongations are compared to the hybrid one that has been discussed in

Chapter 2. For finger4m and poi65m, observe that the Extended+i interpolation is

the more accurate one, with higher operator complexity. As expected, this leads to a

lower number of iterations, but a higher computational cost per iteration. On the other

hand, the classical interpolation formula is the cheapest to compute, with very low

operator complexity. However, taking into account only distance-one coarse nodes,

the prolongation operator is not able to accurately reproduce the smooth error, caus-

ing an increase of the iteration count, up to twice the iteration count obtained with

Extended+i. For these two tests, the best configuration lies in the middle, i.e., the hy-

brid interpolation formula, which keeps the operator complexity small by only taking

distance-two coarse nodes that are actually useful in the interpolation process. In this

way, Chronos AMG is able to obtain a more accurate interpolation formula with a com-

putational cost comparable to the classical one.
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The behavior is quite different for the other two test cases. In rtanis44m, a strong

heterogeneity and anisotropy of permeability tensor dramatically increase the con-

ditioning of the problem. Hence, the most accurate interpolation method, i.e., Ex-

tended+i, is needed to efficiently solve this problem. The iteration count is one third

with respect to classical interpolation and the solution time is approximately one half.

Unlike before, the increased accuracy of the hybrid interpolation over classical is not

enough to give a sufficient benefit in terms of solving time. It is worth noting that the

increased set-up cost for Extended+i is in this case largely compensated in the iteration

stage. This gain is even more pronounced in cases where preconditioner recycling is

possible such as in some transient or non-linear simulations.

The last test case considered in this section is Pflow73m, a very challenging and

severely ill-conditioned problem from underground flow. Even if this is a diffusion

problem, the great jumps in permeability and the distorted mesh lead to a matrix whose

near-kernel is not well represented by the constant vector. For this reason, the iterations

to converge are much larger than in the other tests and not even the most accurate in-

terpolations such as Extended+i or hybrid give any benefit over classical interpolation,

which, being the cheapest one, proves the most effective strategy for this test case.

4.1.2 Mechanical test cases

As seen above, Chronos allows for setting-up a very flexible AMG preconditioner,

adaptable to problem types the user has to solve, with different choices available for

interpolation operators and smoothing methods. In addition to different available

choices for interpolation and smoothing, Chronos allows the possibility to directly

smooth the prolongation and/or filter it. Moreover, for mechanical test problems, it

is very helpful keeping low the grid complexity, especially in case of prolongation

smoothing. This is easily achieved with default settings by dropping only a very small

number of connections in the SoC graph.

As in the previous paragraph, first a baseline is defined with state-of-the-art meth-

ods such as BoomerAMG (Boomer), with Hybrid Gauss-Seidel smoothing, the unknown-

based Boomer with separate treatment of unknowns relative to different directions

(unk-based-Boomer) and the GAMG, a smoothed aggregation-based method. Let’s
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Matrix ncr Prec. type Cgd Cop nit Tp [s] Ts [s] Tt [s]

Boomer 1.244 3.207 931 64.1 611.9 676.1
unk-based-Boomer 1.328 3.669 335 43.8 262.4 203.5

tripod24m 160 GAMG 1.543 - 294 12.1 80.5 92.6
BAMG-aFSAI 1.041 1.116 222 21.8 23.0 44.8

SBAMG-aFSAI 1.041 1.322 118 36.7 16.1 52.9
FBAMG-aFSAI 1.041 1.212 120 33.5 13.5 47.0

TABLE 4.5: Solution of the tripod24m test case from Table 4.1 with dif-
ferent approaches. For each run, the following information is provided:
the number of cores ncr, the preconditioner type, the grid complexity
Cgd, the operator complexity Cop, the number of iteration nit, the set-up

time Tp, the iteration time Ts, and the total time Tt.

first refer to the test case tripod24m, whose results are provided in Table 4.5. With the

standard Boomer, the solution is reached with a high number of iterations, more than

900 and the iteration time affects the total time the most. A significant improvement is

obtained using the unknown-based version [Baker et al., 2009], where iterations are re-

duced by one third, and set-up and iteration times drop by 50%. The aggregation based

AMG seems to be the most effective one for mechanical problems as, with GAMG, it-

erations are further reduced, and both Tp and Ts times decrease significantly. In this

problem, Chronos with BAMG prolongation and aFSAI smoother (BAMG-aFSAI) is

more effective than GAMG with a speed-up of two on the total time. The set-up time is

larger, but the number of PCG iterations is lower and the cost per iteration is one third

that of GAMG. It is also possible to smooth the prolongation operator with a Jacobi

step. We denote this method as SBAMG-aFSAI. As could be expected, the operator

complexity and the set-up time both increase but, on the other hand, the number of

iterations and solution time are smaller. The increase of operator complexity and set-

up time can be limited by means of filtering (FBAMG-aFSAI) without compromising

effectiveness. FBAMG-aFSAI requires the same number of iterations to converge but at

a lower cost per iteration. These two last strategies are particularly effective in a FEM

simulation where the preconditioner can be reused several times in different time-steps

so that the set-up cost becomes negligible.

Chronos proved to be robust and efficient in addressing all the mechanical test

cases. A comparison of the number of iterations and times obtained with GAMG and

the three BAMG strategies outlined above is shown in Table 4.6. To highlight the
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speed-up, Figure 4.2 shows set-up and the iteration time normalized to the GAMG

times. Unfortunately, the comparison for the two largest cases, geo61m and c4zz13m,

is not reported because these matrices have not been dumped on file due to their large

size, and the tests have been run by linking Chronos to the FEM simulator ATLAS [At-

las Project Team, 2023]. For the three benchmarks, guenda11m, tripod24m and M20,

the number of PCG iterations required by GAMG and BAMG is comparable, but the

overall solution time is significantly lower for BAMG with a speed-up of Chronos over

GAMG up to 4 in these tests. The only exception is the matrix agg14m where GAMG

is able to produce a very effective preconditioner at the lowest set-up cost.

Finally, it can be observed that, through a proper set-up, Chronos is able to produce

total solution times that depends only mildly on the problem nature but on its size

only. Figure 4.3 shows for each problem the total solution time divided by the number

of non-zeroes per allocated core, and this resulting time is further normalized with

the average among all the experiments. In other words, the figure should show the

solution time for each problem as if "exactly" the same resources were allocated for

each non-zero. For a preconditioner that is totally independent of the problem nature,

the same solution time for every problem is expected. Note that total solution times

obtained with Chronos are very close to the average normalized solution time, thus

showing only a mild dependence on the application at hand.

4.1.3 Strong and weak scalability

In this section, the strong and weak scalability of the AMG preconditioners imple-

mented in Chronos are evaluated. All three times, i.e., set-up Tp, iteration Ts and total

Tt times, are analyzed to assess scalability. The strong scalability test is shown in the

top of Figure 4.4, on the left for poi65m with Extended+i prolongation and on the

right for the c4zz134m test matrix with BAMG prolongation. The number of cores

varies from the minimum necessary to store matrix and preconditioner up to 8 times.

In both tests, the times decrease as the computing resources increase, with a trend close

to the ideal one. Finally, the weak scaling is investigated with a standard 7-point finite

difference discretization of the Poisson problem. Figure 4.4, bottom, shows, both the

total time spent in the set-up and solve phase, on the left, and corresponding parallel
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Matrix ncr Prol. type Cgd Cop nit Tp [s] Ts [s] Tt [s]

64 GAMG 1.580 - 978 18.3 306.2 324.5
guenda11m 64 BAMG 1.041 1.118 937 27.8 105.0 133.0

64 SBAMG 1.041 1.354 638 50.3 96.3 147.0
64 FBAMG 1.041 1.240 638 43.5 79.8 123.0

128 GAMG 1.644 - 26 12.5 5.8 18.2
agg14m 128 BAMG 1.085 1.287 135 30.6 22.2 52.8

128 SBAMG 1.085 2.264 31 114.4 8.1 122.6
128 FBAMG 1.085 1.670 34 53.6 7.3 60.9

128 GAMG 1.162 - 245 211.0 391.4 602.4
M20 128 BAMG 1.054 1.184 775 71.2 275.0 347.0

128 SBAMG 1.054 1.677 151 158.0 71.2 229.2
128 FBAMG 1.054 1.292 158 93.9 55.1 149.1

160 GAMG 1.543 - 294 12.1 80.5 92.6
tripod24m 160 BAMG 1.041 1.116 222 21.8 23.0 44.8

160 SBAMG 1.041 1.322 118 36.7 16.1 52.9
160 FBAMG 1.041 1.212 120 33.5 13.5 47.0

TABLE 4.6: Comparison between different interpolation formula in the
solution of the mechanical test problems from Table 4.1. For each run,
the following information is provided: number of cores ncr, prolonga-
tion type, grid Cgd and operator Cop complexities, number of iteration

nit, set-up time Tp, iteration time Ts and total time Tt.

efficiencies, on the right. Weak scaling efficiency up to N nodes is defined as

E = T1/(N · TN ) (4.1)

with T1 the time required on a single node and TN the time on N nodes. In this testa

about 218,750 unknowns per core have been assigned.

The results show that efficiency is very good and stays almost constant in the first

two doubles of the cores, whereas a smaller efficiency occurs in the last one. This per-

formance dropdown can be ascribed to two distinct factors. First of all, while Mar-

coni100 cores can be fully reserved for the test runs, the overall network is always

shared with other users, and, consequently, the larger the resource allocation, the larger

the disturbance from other running processes. Secondly, a performance dropdown is

almost unavoidable in AMG methods, as the grid hierarchy ends always up with small

grids. The larger the amount of resources allocated, the less efficient will be the soft-

ware in dealing lower levels. Currently, to ease the implementation, Chronos uses all

the allocated cores on each grid except the last one, where an allgather operation is



Chapter 4. Numerical results 67

gu
en
da
11
m

ag
g1
4m M

20

tr
ip
od
24
m

0

1

2

3

4

5

6

7

8

9

10

N
or
m
a
li
ze
d
S
et
-u
p
T
im

e GAMG

BAMG

SBAMG

FBAMG

gu
en
da
11
m

ag
g1
4m M

20

tr
ip
od
24
m

0

1

2

3

4

5

6

7

8

9

10

N
or
m
al
iz
ed

It
er
a
ti
on

T
im

e

GAMG

BAMG

SBAMG

FBAMG

FIGURE 4.2: Comparison between GAMG and the BAMG strategies on
the mechanical test cases. Left: normalized Tp to the GAMG solution.

Right: normalized Ts to the GAMG solution.

called from a single core to solve the coarsest problem. In a future implementation, it

is planned to progressively reduce the amount of resources with levels, thus reducing

the network traffic and increasing efficiency.
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4.2 Performance of the GPU-accelerated version

This section focuses on the GPU-accelerated version of the Chronos AMG. Previously

presented comparisons with other linear solvers have shown that the CPU-only imple-

mentation of Chronos is a state-of-the-art one. Therfore, the following comparisons will

be made primarily between CPU-only and GPU-accelerated Chronos versions, taking

the CPU-only as a baseline.

Firts, the discussion addresses individually all the main kernels described in Chap-

ter 3: SpMV product, aFSAI smoother, BAMG prolongation and MxM product; then,

the accelerated AMG as a whole is analysed. Finally, some specific applications of the

Chronos package are discussed.

4.2.1 Effectiveness of the DSMat storage scheme in the SpMV product

This section shows the effictiveness of the SpMV product in the GPU-accelerated runs.

To this aim, let’s first compare the time required by Chronos and the well-known open

source package PETSc [Balay et al., 2023] to perform 100 iterations of CG precondi-

tioned with Jacobi. The choice of Jacobi is dictated by the fact that, since its implemen-

tation is straightforward, these tests allow to directly evaluated the SpMV efficiency.

Figures 4.5 to 4.7 show the comparison between PETSc and Chronos, in both CPU-only

and GPU-accelerated mode, by increasing the computing resources from a subset of a

node (8 CPUs and 1 GPU) to 4 full nodes (128 CPUs and 16 GPUs) on the test matrices

spe10, geo4m and agg14m. The speed-up of the CPU version of Chronos (Chr-CPU)

over PETSc (PETSc-CPU) is on average 2.39 and reaches a maximum value of about

3.15. As expected, smaller speed-up values (about 2) are obtained as the computing re-

sources increase due to the communication overhead becoming significant on the over-

all run time. The GPU-accelerated modes of Chronos (Chr-GPU) and PETSc (PETSc-

GPU) have the same performance, showing that the two implementations of the SpMV

and CG are equivalent. With Chronos, the GPU acceleration leads to a speed-up over

the CPU-only version of about 10 for agg14m and geo4m matrices whereas it reaches

a smaller value ≃ 6 for spe10. This lower performance is easily explained by consid-

ering the lower number of non-zeroes per row characterizing spe10, which induces
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a worse operation over communication ratio. The use of GPU-accelerated Chronos

allows an overall speed-up over CPU-only PETSc in the range from 15 to 25 on the

performed test cases.
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FIGURE 4.5: Scalability and Speed-Up of Jacobi preconditioned CG
on the spe10 matrix. Left: total wall time in seconds for the execu-
tion of 100 iterations of Jacobi preconditioned CG. Right: Speed-Up
of GPU-accelerated Chronos (Chr-GPU) over pure CPU Chronos (Chr-
CPU) (blue columns) and Speed-Up of Chronos over PETSc in pure CPU
runs (green columns). The computing resources vary from a subset of a

node (see text) to 4 Marconi100 nodes.
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of GPU-accelerated Chronos (Chr-GPU) over pure CPU Chronos (Chr-
CPU) (blue columns) and Speed-Up of Chronos over PETSc in pure CPU
runs (green columns). The computing resources vary from a subset of a

node (see text) to 4 Marconi100 nodes.

8-1 16-2 32-4 64-8 128-16

100

101

102

103

# CPUs - # GPUs

T
im

e
[s
]

PETSc-CPU

PETSc-GPU

Chr-CPU

Chr-GPU

8-1 16-2 32-4 64-8 128-16
0

5

10

15

20

# CPUs - # GPUs

S
p
ee
d
-U

p

Chr-CPU/Chr-GPU

PETSc-CPU/Chr-CPU

FIGURE 4.7: Scalability and Speed-Up of Jacobi preconditioned CG on
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node (see text) to 4 Marconi100 nodes.
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4.2.2 Effectiveness of aFSAI

The multi-GPU implementation of the aFSAI is tested using it as a preconditioner it-

self. The aFSAI preconditioner, or smoother in the AMG context, is much more de-

manding than Jacobi in term of both implementation effort and set-up time. However,

the adoption of aFSAI as preconditioner in real world problems is fully justified by its

superior effectiveness in accelerating CG convergence. Figure 4.8 shows the compar-

ison between the total solution time, including also the set-up time, and the number

of iterations necessary to reduce the initial residual by 8 orders of magnitude using

CG preconditioned with Jacobi and aFSAI. Only some of the smallest matrices of Ta-

ble 4.1 have been considered, as their solution cost through Jacobi would have been

prohibitive with the largest ones. The experiments were run using the GPU-accelerated

Chronos library on a single Marconi100 node and clearly show the ability of aFSAI in

reducing the number of iterations. In all the tests aFSAI outperfoms Jacobi by a factor

of at least 2 in the worst case and up to 10 in the most ill-conditioned geo4m.
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FIGURE 4.8: Comparison between the GPU-accelerated CG precondi-
tioned with Jacobi and aFSAI using a single node of Marconi100. Left:

Total solution time. Right: Number of iterations to converge.

Let’s now focus on the strong and weak scalability of aFSAI-preconditioned CG.

Three different times are considered to evaluate scalability: the preconditioner set-up

time, Tp, the iteration time, Ts, and total time, Tt = Tp + Ts. The set-up time includes

both the preliminary gathering and the computation stage on the GPU board, the latter
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dominating the set-up. Strong scalability tests have performed on some of the largest

matrices of Table 4.1, by varying the number of GPUs from the minimum necessary

to store the matrix and the preconditioner to a maximum of 512, corresponding to 128

nodes. Figures 4.9 to 4.12 provide execution times and parallel efficiency, ratio be-

tween real and ideal speed-up, vs the number of GPUs. In all tests both the set-up

and solution time decrease inversely proportional to the computing resources with an

almost ideal behaviour. The perfomrance of the set-up stage is closer to ideal as its

communication has a lower impact on preconditioner set-up.
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FIGURE 4.9: Strong scalability of aFSAI CG on matrices guenda11m
(left) and M10 (right). aFSAI set-up time Tp, CG iteration time Ts and

total time Tt = Tp + Ts vs. number of GPUs.
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Ts and total time Tt = Tp + Ts vs. number of GPUs.

Regarding the parallel efficiency, Figure 4.13 shows the maximum number of GPUs

such that the efficiency is at least 50% for the matrices arising from structural mechan-

ics. This particular subset of matrices have been analysed because all of them have

more than 10 millions rows and have a similar number of non-zeroes per row ranging

from 45 to 80. As expected, the computational resources that can be used at the same

efficiency increase with the number of non-zeroes in the matrix.

The weak scalability of the implementation is tested using a 7-point stencil Finite

Differences discretization of the Poisson problem on a cubic domain. In this experiment

the number of equations is kept constant at 1,771,561 for each GPU, increasing the

number of GPUs from 32 to 256. For larger problem sizes, the number of CG iterations

increases (see Figure 4.14 upper-right), since aFSAI is not an optimal preconditioner,

as for instance AMG. As a consequence, the iteration time as well as the total time

correspondingly increase. However, focusing on the set-up stage and the time required

by a single CG iteration (bottom-left and bottom right of Figure 4.14, respectively), it

can be observed that they do not change or only slightly change when the problem size

increases, showing an almost perfect weak scalability.
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4.2.3 Effectiveness of BAMG prolongation

The GPU-accelerated set-up of the BAMG prolongation is tested on some of the me-

chanical problems collected in Table 4.1. As described in Section 3.3, the set-up is

composed by a preliminary gathering stage on the Host and a computation stage on the

Device. Unlike the aFSAI computation, the preliminary stage is not negligible com-

pared to the total time, therfore, three different times are considered in the results:

the gathering time, Tg, the computing time of the CUDA kernel, TBk, and total time,

TBt = TBg + TBk. These times refer to the BAMG set-up for the first level of the hier-

archy, only since the computation of the first level is about 80% of the preconditioner

set-up when it comes to addressing mechanical problems.

In Table 4.7 the results for the CPU-only (Chr-CPU) and GPU-accelerated (Chr-

GPU) mode of Chronos on the test matrices wing4m, worm8m, agg14m and M20 are

presented. In these runs, the computing resources, number of CPU cores ncr and num-

ber of GPU boards nGPU , are selected to have the maximum workload compatible with

storage requirements: about 2 · 10−7 and 2 · 10−8 entries per CPU core and GPU board,

respectively. Figure 4.15 shows the speed-up of GPU-accelerated version in the com-

putation kernel only and in the total set-up.

Matrix Chronos mode ncr nGPU TBg [s] TBk [s] TBt [s]

wing4m Chr-CPU 8 - - 5.43 5.43
Chr-GPU 8 1 - 2.26 2.26

worm8m Chr-CPU 32 - 0.92 3.72 4.88
Chr-GPU 32 4 0.92 1.39 2.77

agg14m Chr-CPU 32 - 1.70 4.87 6.96
Chr-GPU 32 4 1.70 2.35 4.82

M20 Chr-CPU 64 - 1.66 8.16 10.18
Chr-GPU 64 8 1.66 1.99 4.36

TABLE 4.7: BAMG computing time in the first level of AMG hierarchy
for some of the machanical test problems from Table 4.1. For each run,
the following information is provided: Chronos mode, number of cores
ncr, number of GPU boards nGPU , gathering time TBg, CUDA kernel

time TBk and total time TBt.

The speed-up for the kernel-only is about 3÷ 4 for the test cases with higher num-

ber of non-zeros per row, worm8m and M20, while it decreases to 2 for the others. These

relatively low speed-ups, compared to the aFSAI one seen in the previous section, are
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mainly due to the intrinsic adaptivity of the algorithm that does not allow efficient

scheduling of the workload: as the interpolation distance increases, the workload on

the GPU board decreases since it must handles just a few fine nodes. Moreover, the

larger the distance, the more expensive is the iteration. A non-adaptive approach,

computing all the weights up to the maximum distance, was also investigated to fa-

cilitate workload scheduling, but the resulting increase in computational load reduced

all the benefits of the optimized scheduling. The total speed-up is further reduced by

the gathering stage, except for the case wing8m where no data movement is present

since the run uses a single GPU board. The preliminary gathering plays a major role,

particularly in the GPU-accelerated version: this stage is the same for the two Chronos

modes but its relative magnitude on the total time increases from 20% for Chr-CPU up

to more than 30% for Chr-GPU. An optimization is already planned since the gather-

ing does not yet exploit OpenMP parallelization that proved to be very effective in the

aFSAI set-up. Figure 4.16 showns the strong scaling for agg14m and M20 test cases: as

expected the BAMG total time decreases as computing resources are increased with al-

most ideal behaviour. By decreasing the work on the GPU, the behaviour deviates from

the ideal, however the parallel efficiency with the minimum workload per GPU is still

about 50% and 60% for agg14m (test case with the smallest number of non-zeros per

row) and M20 (test case with the highest number of non-zeros per row), respectively.
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matrices agg14m (left) and M20m (right). Total BAMG computing time

TBt vs. number of GPUs.

4.2.4 Effectiveness of MxM product

This section shows the effectiveness of the multi-GPU implementation of the MxM

product in the context of the AMG set-up and, in particular, in the computation of the

coarse matrix Ac (2.6). This operation, also reffered to as RAP product, involves two

MxM products with both square and rectangular matrices. In the following, the results

are presented in terms of computation time of the RAP product TRAP for the first level

of the AMG hierarchy which is the most expensive one. As pointed out in Section

3.4, the RAP operation is performed R(AP) where first AP is computed and then it is

multiplied by R from the left.

Table 4.8 collects the results for the CPU-only (Chr-CPU) and GPU-accelerated

(Chr-GPU) mode of Chronos on the test matrices wing4m, worm8m, agg14m and M20.

For each run, further details are provided on the resulting matrix Ac, the number of

rows n and the number of entries per row avg. nnz/row, and on the utilized com-

putating resources, number of CPU cores ncr and number of GPU boards nGPU . The

resources are selected to have about 2 · 10+7 and 2 · 10+8 entries per CPU core and GPU

board, respectively. The speed-up of GPU-accelerated version is highlighted in Figure

4.17. Note that the largest speed-up values, around 4 ÷ 5, are related to the test cases

in which the resulting matrix has a larger number of non-zeros per row, worm8m and

M20: for these cases communications among MPI ranks and data transfer (DeviceToHost
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Matrix Ac Chronos mode ncr nGPU TRAP [s]
n avg. nnz/row

wing4m 350,115 223.18 Chr-CPU 8 - 7.90
Chr-GPU 8 1 1.53

worm8m 525,833 486.63 Chr-CPU 32 - 11.62
Chr-GPU 32 4 2.92

agg14m 560,026 324.10 Chr-CPU 32 - 10.14
Chr-GPU 32 4 3.27

M20 1,027,225 434.61 Chr-CPU 64 - 15.48
Chr-GPU 64 8 3.03

TABLE 4.8: RAP computing time in the first level of AMG hierarchy for
some of the machanical test problems from Table 4.1. For each run, the
following information is provided: number of rows n and number of
entries per row avg. nnz/row of the coarse matrix Ac, Chronos mode,
number of cores ncr, number of GPU boards nGPU and RAP time TRAP .

and HostToDevice) have less impact on the total computing time, that is dominated by

the computing stage. The run related to wing4m performs better than agg14m even

if in the latter the Ac is denser, since the former uses a single GPU board and is not

affected by any data movement. Finally, the strong scaling is investigated on agg14m

and M20 test cases by doubling the computing resources twice, refer to Figure 4.18-left

and Figure 4.18-right, respectively. As expected the RAP time decreases increasing the

computing resources with an almost ideal behaviour. With the smallest workload per

GPU the parallel efficiency is about 70% in both cases.
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FIGURE 4.17: Speed-up of the GPU accelerated mode over the CPU-only
in the RAP product for the first level of the AMG hierarchy.
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FIGURE 4.18: Strong scalability of the GPU-accelerated RAP product on
matrices agg143m (left) and M20 (right). RAP computing time TRAP vs.

number of GPUs.

4.2.5 Effectiveness of the whole AMG

In this section, the multi-GPU implementation of the Chronos AMG is investigated.

The focus is more on mechanical problems, as they are more interesting for the au-

thor from a professional point of view as far as the development of GPU-accelerated

algorithms is considered.

Let’s first refer to the M20 test case. Table 4.9 provides the AMG set-up times for

the CPU-only (Chr-CPU) and GPU-accelerated (Chr-GPU) mode of Chronos using 64

CPU cores and, only for Chr-GPU, 8 GPU boards. The detailed time profiling consider

the following stages: set-up of smoother (aFSAI) S, Test Space TS, Strenght of Connec-

tions SoC, BAMG Prolongator P , Prolongation Smoothing PS, Prolongation Filtering

PF and RAP product RAP . The speed-ups of the GPU-accelerated version are high-

lighted in Figure 4.19. These results are provided for the first two levels, Lev1 and

Lev2, and for the entire grid hierarchy AllH . Note that the AMG set-up is not fully

GPU-accelerated, in particular, the computation of the strenght of connection, coarse

node selection and filtering of the prolongation are still performed on the CPU. The

first three have a negligible effect while the latter is about 25% of the total time for the

GPU run and has a big influence on the overall speed-up. Prolongation filtering was

not addressed in this work because it was planned to abandon this approach in favour
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AMG stage Chronos mode Lev1 Lev2 AllH

S Chr-CPU 39.66 7.76 47.96
Chr-GPU 5.98 2.92 9.50

TS Chr-CPU 12.03 1.52 13.66
Chr-GPU 1.39 0.31 1.97

SoC Chr-CPU 1.99 0.37 2.40
Chr-GPU 1.99 0.37 2.40

P Chr-CPU 10.19 0.68 10.93
Chr-GPU 4.39 0.55 5.13

SP Chr-CPU 9.57 1.50 11.15
Chr-GPU 3.85 0.73 4.70

FP Chr-CPU 9.03 0.79 9.89
Chr-GPU 9.03 0.79 9.89

RAP Chr-CPU 15.48 2.46 18.08
Chr-GPU 3.03 0.62 3.73

TABLE 4.9: AMG set-up times for M20 test case: set-up of smoother
(aFSAI) S, Test Space TS, Strenght of Connections SoC, Prolongation
Smoothing PS, Prolongation Filtering PF and RAP product RAP . A

total of 64 CPU cores and 8 GPU boards have been used

of a more complex, but more efficient one based on energy minimization [Olson et al.,

2011; Manteuffel et al., 2017; Janna et al., 2023]. The development of these algorithms

will be addressed in future research. Analysing the speed-ups of the individual stages

in the first two levels, it can be seen that there is a degradation of the performance of the

GPU algorithms at the second level and a consequent decrease in relative speed-ups.

This is due to the decreased workload on the single GPU board. Another improve-

ment, that will be considered in the future, could be that of redistributing unknows

on a smaller number of GPUs as the level size shrinks thus increasing GPU occupancy

and reducing communication overhead. As expected, the stages that suffer the least

are the prolongation smoothing and the RAP product, both of which are based on the

MxM product that is designed to handle even very low workloads through a binning

approach, as described in the previous Chapter.

The GPU-accelerated version of Chronos is then tested on some of the real-world

problems collected in Table 4.1. In particular, Table 4.10 shows a comparison between

Chr-CPU and Chr-GPU in terms of AMG set-up time Tp, iteration time Ts, and total

time Tt = Tp+Ts. Additional information is also provided regarding grid and operator

complexities, Cgd and Cop, the number of iterations required to achieve convergence nit
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FIGURE 4.19: Speed-up of the GPU accelerated mode over the CPU-only
one in the AMG set-up for M20 test case.

and the utilized computing resources. Regarding the latter, they have been selected to

have about 1−2·10+7 and 1−2·10+8 entries per CPU core and GPU board, respectively.

The corresponding speed-ups are highlighted in Figure 4.20.

The number of iterations is slightly different between the run with Chr-CPU and

Chr-GPU because in the GPU-accelerated version the smoother is computed in single

precision, so with highly ill-conditioned problems it is a bit less effective. However, the

benefit gained from single precision computation is still larger than the cost of a few

more iterations in the solution stage.

Regarding speed-ups in the set-up stage, the highest values, about 3, correspond to

mechanical test cases with the higher number of non-zeros per row: wing4m, worm8m

and M20. The lowest values, about 2, occur with agg14m and the fluid dynamics case

poi111m, in the latter the prolongation set-up is also not accelerated. As noted above,

not all stages of the computation make use of accelerators and the workload per GPU

board is low for levels of the hierarchy beyond the first. Therefore, there is still room

for improvement and both of these problems will be addressed in future developments.

On the other hand, the iteration stage already gives excellent results, with speed-ups

up to 10 times over the Chr-CPU version. This performance actually balances the non

fully-optimized set-up of the AMG on multi-GPU, particularly in all those applications

where the preconditioner can be recycled.

The section concludes with a brief analysis on strong and weak scalability in terms



Chapter 4. Numerical results 85

Matrix Chronos mode ncr nGPU Cgd Cgd nit Tp [s] Ts [s] Tt [s]

wing4m Chr-CPU 8 - 1.084 1.473 288 89.8 140.4 230.2
Chr-GPU 8 1 322 32.3 10.2 42.5

worm8m Chr-CPU 32 - 1.069 1.430 337 83.1 107.4 190.1
Chr-GPU 32 4 361 31.4 7.4 38.8

agg14m Chr-CPU 32 - 1.042 1.374 51 51.2 16.1 67.3
Chr-GPU 32 4 77 26.5 1.9 28.4

M20 Chr-CPU 64 - 1.054 1.296 294 122.9 225.9 347.0
Chr-GPU 64 8 314 39.9 9.2 49.1

poi111m Chr-CPU 64 - 1.379 2.325 29 60.3 16.6 76.9
Chr-GPU 64 8 30 30.6 1.6 32.2

TABLE 4.10: Chronos performance on some of the test problems from
Table 4.1. For each run, the following information is provided: Chronos
mode, number of cores ncr, number of GPU boards nGPU , grid and op-
erator complexities Cgd and Cop, number of iterations nit, AMG set-up

time Tp, iteration time Ts and total time Tt.

of set-up time, iteration and total. Figure 4.21 showns the strong scalability of worm8m

and M20 test cases. The computing resources are doubled twice from the configura-

tion that allows the maximum workload compatible with storage requirements. As ex-

pected both the set-up and solution times decrease inversely proportional to the com-

puting resources; with the lowest workload per GPU the parallel efficiency is about

50% and 60% for the set-up only and for the total time, respectively.

The weak scaling is investigated in Figure 4.22 with a standard 7-point finite differ-

ence discretization of the Poisson problem, using about 1 · 10+8 non-zeroes per GPU

board. The results show an almost ideal behaviour, with the set-up and total time that

increase only slightly doubling the number of resources.
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FIGURE 4.20: Speed-up of the GPU accelerated mode over the CPU-only
one: AMG set-up time (left) and iteration time (right).
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FIGURE 4.21: Strong scalability of the GPU-accelerated mode on matri-
ces worm8m (left) and M20 (right). AMG set-up time Tp, iteration time Ts

and total time Tt = Tp + Ts vs. number of GPUs.
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4.3 Chronos package applications

The development of a complex tool as an AMG solver for distributed memory systems

was possible due to the high versatility of the Chronos package, as described in Chap-

ter 2. The implementation of the entire software structure required a huge effort, but

resulted in the successfull assembly of a library for sparse linear algebra having a very

wide field of application, even outside the context of the AMG solver. This Chapter

shows the robustness and parallel efficiency of the Chronos package on two different

applications: the use of the aFSAI smoother as a preconditioner itself in the iterative

linear solver of a geomechanical Finite Element (FE) simulator; the development a pre-

conditioned framework to solve the algebraic block system arising in the simulation of

fluid flow in Discrete Fractured Networks (DFN).

4.3.1 Acceleration of FE Geomechanical simulators

In geomechanical and basin evolution simulations, very fine meshes are needed to pro-

vide a realistic representation of complex stratigraphy and simulate the physical pro-

cesses that are involved. Therfore, the exploitation of HPC infrastructure is mandatory.

The CPU version of Chronos has already proven its effectiveness on this kind of prob-

lems as shown by Colombo et al. [2022], where it was interfaced with the open-source

FE machanical simulator Code_Aster [EDF, 2023]. In this section the GPU-accelerated

version of Chronos is tested through Atlas software [Atlas Project Team, 2023], a M3E

propietary FE geomechanical simulator.

A real deep-water sedimentary model, is used as a benchmark. In particular, three

geological events of the compaction model are investigated: at the beginning TS2, in

the middle TS5 and at the end of the deposition TS7. Moreover, different levels of

mesh refinement are considered: low, medium, high. Table 4.11 summarizes the main

information of the FE-mesh, number of nodes (nn) and number of 8-noded hexahedral

elements (nhex8). Note that the TS7−high mesh corresponds to number of degrees of

freedom (3 · nn) greater than one billion.

Regarding the linear solver, the GPU-accelerated version of the aFSAI, described

in Chapter 3, is used as a preconditioner itself. The aFSAI is preferred over AMG
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FE-mesh low medium high
nn nhex8 nn nhex8 nn nhex8

T2 2,270,080 1,454,032 14,886,987 11,632,256 106,057,453 93,058,048
T5 4,585,544 3,817,800 33,612,825 30,542,400 256,619,387 244,339,200
T7 6,168,724 5,440,911 46,442,791 43,527,288 359,888,677 348,218,304

TABLE 4.11: Number of nodes nn and number of elements nhex8 for
each FE-mesh.

because on geomechanical simulations, the model bottom and side boundaries are both

considered fully constrained thus generating a linear system which is characterized by

a reduced number of low frequencies. Therefore, coarse-grid correction is no more

mandatory and a single-level preconditioner, that has a smaller set-up time, performs

reasonably well even with large size models.

Marconi100 supercomputer has been used for running the tests, using a different

ammount of resources according to the mesh refinement in order to assign approxi-

mately the same number of equations to each node: 1, 7 and 53 nodes for low, medium

and high refinement, respectively.

The graph shown in Figure 4.23 collects the solution times required to solve the lin-

ear systems. In particular, the total solution time is split into set-up time of the aFSAI

and iteration time of the PCG. The set-up stage, dashed portion of the columns, remains

nearly constant as well as the workload per node for all the mesh refinements high-

lighting the high level of parallelism in the aFSAI computation. On the other hand, the

iteration time grows due to the increasing number of iterations since single-level pre-

conditioners like FSAI are non-optimal as multi-level ones. Note that the total solution

time for the largest problem TS7-high, consisting of more than one billion unknowns,

takes around half a minute.

The speed-up of the GPU-accelerated version over the CPU-only version is shown

in Figure 4.24. Using GPU accelerators allows for a speed-up which is 5 in the worst

case, with minimum workload, about 1,680,000 equations per GPU board. The speed-

up grows up to 13 for the largest workload, about 4,920,000 equations per GPU board.

Finally, Figure 4.25 provides the strong scalability for a fixed problem size, and

specifically, the trend of the total solution time Tt increasing the number of GPU boards.
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FIGURE 4.23: Total solution time in seconds, aFSAI set-up time plus
PCG iteration time. The columns correspond to the six analyzed meshes
(TS-refinement). Each refinement level is paired with the computing

resources (cores [GPUs]).

In particular, the TS5-medium problem is solved increasing the computational re-

sources from 224 cores and 24 GPUs to 1792 cores and 224 GPUs. The solution time

Tt decreases inversely proportional to the computing resources, as expected, with a be-

havior close to the ideal one. Note that, even for very small workload per-GPU (about

450,000 dofs) the parallel efficiency is larger than 60%.
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4.3.2 Block matrix-free preconditioner for DFN problems

This section describes how the Chronos package has been used to develop a precondi-

tioned framework in order to solve the algebraic block systems arising in the simulation

of fluid flow in large-size Discrete Fractured Networks (DFN). DFN models are usually

preferred when the fracture network has a dominant impact on the fluid flow dynam-

ics. They explicitly represent the fractures as intersecting planar polygons and neglect

the surrounding rock formation, prescribing continuity constraints for the fluid flow

along the fracture intersections, usually called traces. The discrete algebraic formula-

tion of the DFN model proposed by Berrone et al. [2013a,b, 2019], leads to following

system:

K =

⎡⎢⎢⎢⎢⎢⎢⎣
A 0 −C

Gh A −αB

−αBT −CT Gu

⎤⎥⎥⎥⎥⎥⎥⎦ , x =

⎡⎢⎢⎢⎢⎣
h

p

u

⎤⎥⎥⎥⎥⎦ , f =

⎡⎢⎢⎢⎢⎣
q

0

0

⎤⎥⎥⎥⎥⎦ , (4.2)

where α is usually on the order of 1, h ∈ Rnh
is the discrete hydraulic head on fractures,

p ∈ Rnp
are the discrete Lagrange multipliers and u ∈ Rnu

is the discrete flux on the

traces. The vector q ∈ Rnh
includes the boundary conditions and the forcing terms.

Usually, np = nh, while according to the problem nu can be either larger or smaller

than nh. The matrices in (4.2) are as follows:

• A ∈ Rnh×nh
is symmetric positive definite (SPD) and fracture-local, in the sense

that it has a block-diagonal structure with the block size depending on each frac-

ture dimension.

• Gh ∈ Rnh×nh
and Gu ∈ Rnu×nu

are symmetric positive semi-definite (SPSD),

usually rank-deficient. The matrix Gh is fracture-local, i.e., with a block diago-

nal structure, while Gu has a global nature and operates on degrees of freedom

related to different fractures;

• B,C ∈ Rnh×nu
are rectangular coupling blocks. The matrix C is fracture-local,

with rectangular blocks whose size depends on the dimension of each fracture

and the related traces, while B = C + E has a global nature accounted for the
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contribution of matrix E that has zero entries in the positions corresponding to

the nonzero entries of the rectangular blocks of matrix C;

A reduced form of the system (4.2) is obtained by a block Gaussian elimination. The

main computational burden is then the solution of the SPD system:

Su(α)u = r (4.3)

where Su is the Schur complement and r is the reduced forcing terms. Since Su is

SPD, the Conjugate Gradient solver, preconditioned with a Newton-Chebyshev poly-

nomial [Bergamaschi and Martinez Calomardo, 2021; Bergamaschi et al., 2023], is em-

ployed where the diagonal of Su, DS , is used as seed preconditioner. In this context, the

Chronos package is used to develop a parallel matrix-free implementation of the Su-

vector multiplication and the computation of DS . Refer to the work by Bergamaschi

et al. [2023] for a comprehensive description of the algorithm and of implementation

details. The parallel efficiency of this implementation is evaluated on Marconi100 su-

percomputer using real-world models. In this application accelerators are not used;

the parallelization relies on the MPI-OpenMP hybrid version, CPU-only. The relevant

sizes and nonzeros of the test matrices are reported in Table 4.12. Note that, although

the size of the models is limited, it is still the largest currently feasible because the

software that generates the meshes and matrices does not support distributed memory

environment.

Test case nu np ≡ nh nnz(K) # fractures

Frac014 312,518 221,144 10,854,803 1,425
Frac151 1,428,334 502,152 31,802,122 15,102
Frac293 2,777,378 994,907 44,646,710 29,370

TABLE 4.12: Size n and nonzeros nnz for each DFN test case.

First, the choice of the optimal polynomial degree m is made using Frac014 test

case on 128 cores (4 nodes) of Marconi100. Table 4.13, providing the number of it-

erations to converge and solution time for PCG, shows that the number of iterations

always decreases with the degree of the polynomial, as expected, while the time to

solution initially decreases but reaches a minimum for m = 127.
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m PCG iters Solv. time [s]

3 2940 48.633
7 1509 50.024

15 670 44.493
31 378 49.962
63 195 51.636

127 76 40.509
255 46 49.445

TABLE 4.13: Number of iterations to converge and solution time for PCG
preconditioned with a polynomials of varying degrees and 128 Mar-

coni100 cores for test case Frac014.

Finally, the two cases Frac16 and Frac32 are solved with degree m = 127 by

increasing the number of cores up to 32. The results are provided in Table 4.14. It

is possible to note how the number of PCG iterations remains constant, as expected,

while the solution times decreases with the increase of the number of cores. To better

understand how effective polynomial preconditioning is in parallel, also the parallel

efficiency η is reported, which is defined as the ratio between real and ideal speed-up.

The results show an excellent strong scalability, with an efficiency of about 70% with

32 cores where the number of unknowns binded to each core is only 15,000 and 30,000

for Frac16 and Frac32, respectively.

Test case # of cores PCG iters Set-up time [s] Solv. time [s] η[%]

2 105 83.9 1678.6 100.0
4 104 43.3 866.6 96.8

Frac16 8 104 23.0 459.6 91.3
16 103 12.5 249.7 84.0
32 103 7.9 157.5 66.7
4 107 87.5 1750.2 100.0

Frac32 8 107 46.3 924.4 94.7
16 106 25.1 501.6 87.2
32 108 15.0 300.5 72.8

TABLE 4.14: Number of iterations to convergence, solution time and par-
allel efficiency of the PCG preconditioned with polynomials of degreem

= 127 with a varying number of Marconi100 cores.
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Conclusions

In this thesis a novel AMG solver for the solution of large and sparse linear systems

of equations designed for HPC platforms has been presented. The solver is part of

the Chronos package, a proprietary software from M3E [M3E, 2023] that cofunded the

research project.

The presented AMG is based on classical methods already known in the literature,

however, all of its algorithms have been revisited, tuned and optimized on the basis

of a large experimentation on real-world and industrial benchmarks arising from a

wide variety of application fields. Moreover, its great flexibility in the choice of the

preconditioning strategy ensures that, once a proper set-up is found, total solution time

depends almost solely on the problem size and the amount of computational resources

allocated. Special care was given to both the design of high-level data structures and

computing kernels to optimize parallel performance. A novel memory layout for the

distributed matrix is proposed to enhance overlapping between communication and

computation in the most important sparse linear algebra operations, matrix-by-vector

product, matrix-by-matrix product and transposition, and to facilitate the gathering of

the information which is preliminary to smoother and prolongation set-up. Moreover,

an accelerated multi-GPU implementation was developed for all major set-up stages of

the AMG: smoother, prolongation and coarse matrix set-up.

A wide set of numerical experiments was analyzed using the Marconi100 super-

computer which is equipped with both multi-core CPUs and GPU accelerators. These

results show the ability of Chronos AMG to give excellent performance on a variety of

applications. The CPU-only version provides solution times no worse or even better

than those offered by other widely used HPC linear solvers such as BoomerAMG and

95
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GAMG. With regard to the GPU version, the best performance, in terms of speed-up

and scalability, is in the smoother set-up and in the computation of the coarse matrix

(matrix-by-matrix products). Unfortunately, the overall performance of the AMG set-

up is negatively affected by the low-workload per single GPU board, in the lower levels

of the hierarchy and by the prolongation set-up that is still not fully GPU-accelerated.

Future developments related to GPU accelerators will focus on reducing resources with

levels, improving prolongation set-up and adopting nvlink communications to further

reduce data transfer between Host and Device.

Finally, the object-oriented design of Chronos made it possible to exploit some of

its components even outside the AMG context. The GPU-accelerated aFSAI smoother

has been successfully used as a preconditioner itself in a FE geomechanical simulator.

Moreover, all kernels for sparse linear algebra were used as basis for the development

of a preconditioned framework to solve algebraic block system arising in the simulation

of fluid flow in Discrete Fractured Networks (DFN).
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